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Continuous crystal and Duistermaat-Heckmann measure for
Coxeter groups.

Philippe Biane, Philippe Bougerol, and Neil O’Connell

ABSTRACT. We introduce a notion of continuous crystal analogous, for gen-
eral Coxeter groups, to the combinatorial crystals introduced by Kashiwara
in representation theory of Lie algebras. We explore their main properties in
the case of finite Coxeter groups, where we use a generalization of the Lit-
telmann path model to show the existence of the crystals. We introduce a
remarkable measure, analogous to the Duistermaat-Heckman measure, which
we interpret in terms of Brownian motion. We also show that the Littelmann
path operators can be derived from simple considerations on Sturm-Liouville
equations.

1. Introduction

The aim of this paper is to introduce a notion of continuous crystals for Coxeter
groups, which are not necessarily Weyl groups. Crystals are combinatorial objects,
which have been associated by Kashiwara to Kac-Moody algebras, in order to pro-
vide a combinatorial model for the representation theory of these algebras, see e.g.
L4, [t [19], [RF] for an introduction to this theory. The crystal graphs defined
by Kashiwara turn out to be equivalent to certain other graphs, constructed inde-
pendently by Littelmann, using his path model. The approach of Kashiwara to the
crystals is through representations of quantum groups and their “crystallization”,
which is the process of letting the parameter ¢ in the quantum group go to zero. This
requires representation theory and therefore does not make sense for realizations of
arbitrary Coxeter groups. On the other hand, as it was realized in a previous paper
[E], Littelmann’s model can be adapted to fit with non-crystallographic Coxeter
groups, but the price to pay is that, since there is no lattice invariant under the
action of the group, one can only define a continuous version of the path model,
namely of the Littelmann path operators. In this continuous model, instead of the
the Littelmann path operators e;, f; we have continuous semigroups e, f! indexed
by nonnegative real numbers ¢ > 0. In the crystallographic case it is possible to
think of these continuous crystals as “semi-classical limits” of the combinatorial
crystals, in much the same way as the coadjoint orbits arise as semi-classical limits
of the representations of a compact semi-simple Lie group. These continuous path
operators, and the closely related Pitman transforms, were used in [E] to investigate
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symmetry properties of Brownian motion in a space where a finite Coxeter group
acts, with applications in particular to the motion of eigenvalues of matrix-valued
Brownian motions. In this paper, which is a sequel to [E], but can for the most
part be read independently, we define continuous crystals and start investigating
their main properties. As for now the theory works well for finite Coxeter groups,
there are still several difficulties to extend the theory to infinite groups. This theory
allows us to define objects which are analogues to simplified versions of the Schu-
bert varieties (or Demazure-Littelmann modules) associated with semi-simple Lie
groups. We hope these objects might help in certain questions concerning Coxeter
groups, such as, for example, the Kazhdan-Lusztig polynomials.

This paper is organized as follows. The next section contains the main defini-
tion, that of a continuous crystal associated with a realization of a Coxeter group.
We establish the main properties of these objects, following closely the exposition
of Joseph in [[Ld]. It would have been possible to just refer to [fLd] for the most part
of this section, however, for the convenience of the reader, and also for convincing
ourselves that everything from the crystallographic situation goes smoothly to the
continuous context, we have preferred to write everything down. The main body of
the proof is relegated to an appendix in order to ease the reading of the paper. In
section 3 we introduce the path operators and establish their most important prop-
erties. The path operators are used in section 4 to introduce the path model, which
provides a concrete realization of continuous crystals and proves their existence, at
least in the finite Coxeter group case. It remains an interesting and challenging
problem to extend these properties to the general case. Our approach to the path
model is different from that in Littelmann [@], in that we base our exposition on
the Pitman transforms, which are defined from scratch, and whose braid relations
play a prominent role. We investigate the analogues of the Berenstein-Zelevinsky
polytopes (see [E]) which contain the Kashiwara coordinates on the crystals, we
also study concatenation of paths, and the action of the Coxeter group, as well as
the Schiitzenberger involution. We think that even in the crystallographic case our
treatment sheds some light on these topics. In section 5, we introduce an analogue
of the Duistermaat-Heckman measure, motivated by a result of Alexeev and Brion
@] We prove several interesting properties of this measure, and show that it is
intimately linked with Brownian motion. In particular (corollary f.3) we give a
Brownian proof of the fact that the crystal defined by the path model depends
only on the final position of the path. The final section is of a quite different na-
ture, and somewhat independent of the rest of the paper. The Littelmann path
operators have been introduced as a generalization, for arbitrary root systems, of
combinatorial operations on Young tableaux. Here we show how, using some simple
considerations on Sturm-Liouville equations, the Littelmann path operators appear
naturally. In particular this gives a concrete geometric basis to the theory of geo-
metric lifting which has been introduced by Berenstein and Zelevinsky in @] in a
purely formal way.

2. Continuous crystal

2.1. Basic definition. We use the standard references [, [[L7] on Coxeter
groups and their realizations. A Coxeter system (W, S) is a group W generated
by a finite set of involutions S such that, if m(s,s’) is the order of ss’ then the
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relations
(Ssl)m(s,s’) -1
for m(s, s’) finite, give a presentation of W.
A realization of (W, S) is given by a real vector space V with dual V'V, an action
of Won V, and a subset {(as,ay),s € S} of V x VV such that each s € S acts on
V by the reflection given by

s(x) =2 —al(x)as, TE€V,

so a)(as) = 2. One calls a4 the simple root associated with s € S and «) its

coroot.

We consider a realization of a Coxeter system (W, .S) in a real vector space V|
and the associated simple roots ¥ = {a,s € S} in V and coroots {a),s € S} in
VY. The closed Weyl chamber is the convex cone

C={veV;al(v) >0, for all « € S}

thus the simple roots are positive on C. There is an order relation on V induced
by this cone, namely A < p if and only if u — X € C.

We adapt the definition of crystals due to Kashiwara (see, e.g., Kashiwara ,
29, Joseph [1§]) to a continuous setting.

DEFINITION 2.1. A continuous crystal is a set B equipped with maps
wt : B—>YV,
EasPa : B—=RU{-x}, a €,
el : BU{0}—>BU{0},aeX,reR,

where 0 is a ghost element, such that the following properties hold, for all « € X3,
and be B

(C1) @a(b) = €a(b) + o (wit(b)),
(C2) If e (b) # O then

ealend) = eq(b) —r,
palend) = @a(b) +,
wt(elb) = wt(b) + ra,

(C3) For all v € R,b € B one has €~,(0) = 0,¢e%(b) = b. If e’ (b) # O then, for
all s € R,

e (b) = €5, (e (b)),
(C4) If pa(b) = —o0 then eh(b) =0, for allr € R,r #0.

Sometimes we write, for r > 0,
T o__ —Tr
fa - ea .

EXAMPLE 2.2 (The crystal B,). For each o € X, we define the crystal B, as
the set {by(t),t < 0} with the maps given by
wt(by (1)) =ta, eq(ba(t)) = —t, @a(ba(t)) =1,
el (ba(t)) = ba(t +r) if r < —t and e/, (b (t)) = O otherwise,

and, if & # «, €0/ (ba(t)) = —00, o (ba(t)) = —00, €L, (ba(t)) = 0, when r # 0.



4 PHILIPPE BIANE, PHILIPPE BOUGEROL, AND NEIL O’'CONNELL

2.2. Morphisms.

DEFINITION 2.3. Let By and By be continuous crystals.
1. A morphism of crystals is a map v : ByU{0} — B2U{0} such that ¢¥(0) =0
and for all @« € ¥ and b € By,

wt(9(b)) = wt(b), £a(¥(b)) = €a(b), Pa(¥(b)) = Pa(b)

and el (¥(b)) = ¥(eh (b)) when el (b) € By.
2. A strict morphism is a morphism 1 : By — By such that €, (1)(b)) =
(el (b)) for allb € By.

8. A crystal embedding is an injective strict morphism.

The morphism 1 is called a crystal isomorphism if there exists a crystal mor-
phism ¢ : By — Bj such that ¢ o9 = idp, o}, and ¥ o ¢ = idp,foy- It is then an
embedding.

2.3. Tensor product. Consider two continuous crystals By and Bs associated
with (W, S,¥). We define the tensor product By ® Bs as the continuous crystal
with set B = By X By, whose elements are denoted by ® by, forb; € By, by € Bs.

Let 0 = 9a(b1) — €q(b2) where (—o0) — (—o00) = 0, let o+ = max(0,0) and
o~ = max(0,—0), then the maps defining the tensor product are given by the
following formulas:

wt(by ® by) wt(by) + wt(bs)
caby@by) = ealb))+0"
balbr @bs) = ¢o(b) 40"
en(br@by) = em(nm=Tp g emin(nma)teTy,

Here b1 ® 0 and 0 ® by are understood to be 0. Notice that when o > 0, one
has £4(b1 ® ba) = €4(b1) and
(2.1) el (b1 ® ba) = el b1 ® b, for all r € [—0, +00].

As in the discrete case, one can check that the tensor product is associative (but
not commutative) so we can define without ambiguity the tensor product of several
crystals.

2.4. Highest weight crystal. A crystal B is called upper-normal when, for
all b € B,

€a(b) = max{r > 0;el(b) # 0}

and is called lower-normal if
fa(b) = max{r > 0;e5"(b) # O}.

We call it normal (this is sometimes called semi-normal by Kashiwara) when it is
lower and upper normal. Notice that this implies that €, (b) > 0 and ¢, (b) > 0.

We introduce the semigroup F generated by the {f7, o simple root,r > 0}:
F={ftfrkeN ry,--- ,rp > 0,00, ,a € X},

Kk

and, if b is an element of a continuous crystal B, the subset F(b) = {f(b), f € F}
of B.
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DEFINITION 2.4. Let A € V, a continuous crystal B(X) is said to be of highest
weight X if there exists by € B(X) such that wt(by) = A, el (bx) = 0, for allr >0
and o € ¥ and such that B(A\) = F(by).

For a continuous crystal with highest weight A, such an element b is unique,
and called the primitive element of B()). If the crystal is normal then A must be
in the Weyl chamber C. The vector X is a highest weight in the sense that, for all
be B(A), wt(b) < A

2.5. Uniqueness. The crystal B(co). Following Joseph [Lf], [[Ld] we intro-
duce the following definition.

DEFINITION 2.5. Let (B(\),\ € C), be a family of highest weight continuous

crystals.  The family is closed if, for each A\, € C, the subset F(by ® b,) of
B(\) @ B(w) is a crystal isomorphic to B(A + p)

Joseph ([[§], 6.4.21) has shown in the Weyl group case, for discrete crystals,
that a closed family of highest weight normal crystals is unique. The analogue holds
in our situation.

THEOREM 2.6. For a realization of a Cozeter system (W, S), if a closed family
B(A), A € C, of highest weight continuous normal crystals exists, then it is unique.

The proof of the theorem, which follows closely Joseph [@], is in the appendix

&l

3. Pitman transforms and Littelmann path operators for Coxeter
groups

3.1. The Pitman transform. Let V be a real vector space, with dual space
VV. Let @ € V and a¥ € VV be such that oV () = 2. The reflection s, : V. — V
associated to (a, ") is the linear map defined, for z € V, by

5q(7) =z — ¥ (z)a.
For T' > 0, let C3(V) be the set of continuous path n : [0,7] — V such
that 7n(0) = 0, with the topology of uniform convergence. We have introduced

and studied in [E] the following path transformation, similar to the one defined by
Pitman in [@]

DEFINITION 3.1. The Pitman transform P, associated with (o, &) is defined
on C2(V') by the formula:
= — i v >t>0.
Pan(t) =n(t) — inf o (n(s))a,  T2t=0
A path n € C2(V) is called a-dominant when oV (n(t)) > 0 for all t € [0,7.
The following properties of the Pitman transform are easily established.

PROPOSITION 3.2. (i) The transformation P, : CH(V) — C(V) is continuous.

(ii) For all m € CL(V), the path P,n is a-dominant and Pan = n if and only
if n is a-dominant.

(iii) The transformation P, is an idempotent, i.e. PoPan = Pan for all n €
CL(V).

(w)) If ™ is a-dominant, and 0 < x < oV (n(T)), then there exists a unique
path n in CL(V) such that

Pan=m
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and n(T) = m(T) — xa. Moreover for 0 <t <T

n(t) = n(t) — min[z, TiZHSth aY(n(s))]e.

3.2. Littelmann path operators. Let V, VY, «a, a" be as above. Using propo-
sition .3, as in [Bf], we can define generalized Littelmann path operators (see [25]).

DEFINITION 3.3. Let n € C2(V), and x € R, then we define EXn as the unique
path such that
Poalin =Pan and En(T) =n(T) + za
if —aV(n(T)) + info<i<r @V (n(t)) < z < —info<i<r a¥(n(t)) and EXn = 0 other-
wise. The following formula holds
Ean(t) = n(t) —min(-z, inf a*(n(s)) - inf a”(n(s))a
if —a¥(T)+ info<i<r ¥ (n(t)) <2 <0, and

Ean(t) = n(t) —min(0, —z — inf a*(n(s)) + inf a”(n(s))a

if 0 <z < —infocicr @V (n(t)).

Here, as in the definition of crystals, 0 is a ghost element. The following result
is immediate from the definition of the Littelmann operators.

PROPOSITION 3.4. E99 = n and EXEYn = EXFYn as long as EYn # 0.

We shall also use the notation F2 = £, for > 0, and denote by HZ the
restriction of the operator F2 to a-dominant paths. Let m be an a-dominant path
in C(V) and 0 < x < aV(T), then HZx is the unique path in C% (V') such that

PoHLT =
and
Hem(T) = 7w(T) — za.
Observe that in this equality
r=— inf aY(HIx(t)).

0<t<T

3.3. Product of Pitman transforms. Let a,3 € V and av,3" € VV be
such that a¥(8) < 0 and BY(a) < 0. Replacing if necessary (o, ", ,3") by
(ta, @V /t, B/t,t3Y), which does not change P, and Pg, we will assume that oV (3) =
BY (). We use the notations

p=—Lav(e) = -1, X()=a¥(rle), Y(s) = 8 (a(o)).

The following result is proved in [g].

THEOREM 3.5. Let n be a positive integer, then if p > cos -,

n—1
— _ ] ) (D) (g,
(PaPsPa - )7(t) m(t) tzs(’zséﬁl_fzs%lzo(z;Tz(p)Z (i)
n terms =

n—2

_ : . (i+1) (.
(3.1) tzsUzslgfzsnfzzo(; Ti(p) 2" (s:))



CONTINUOUS CRYSTAL AND DUISTERMAAT-HECKMANN MEASURE FOR COXETER GROUPSI

where Z*) = X if k is even and Z*) =Y ifk is odd. The Ty (x) are the Tchebycheff
polynomials defined by

(3.2) To(z) =1, Th(x) = 2z, 22Ty (z) = Te—1(x) + Tht1(x) for k> 1.
The Tchebycheff polynomials satisfy Ty (cos6) = W and, in particular,

under the assumptions on p and n, Tx(p) > 0 for all £ < n — 1. An important
property of the Pitman transforms is the following corollary (see [H]).

THEOREM 3.6. (Generalized braid relations for the Pitman transforms.) Let
a,f € V oand o¥,8Y € VV be such that o (a) = BY(B) = 2, and ¥ (B) <
0,8Y () <0 and ¥ (B8)BY (o) = 4cos® T, where n > 2 is some integer. Then

PaPsPo...=PsPaPs...
where there are n factors in each product.

3.4. Pitman transforms for Coxeter groups. Let (W,S) be a Coxeter
system, with a realization in the space V. For a simple reflection s, denote by P,
or P; the Pitman transform associated with the pair (o, @Y). From theorem E
and Matsumoto’s lemma [[f], Ch. TV, No. 1.5. Prop.5] we deduce:

THEOREM 3.7. Let w = s1---8; be a reduced decomposition of w € W, with
51, ,8- €S. Then
Puw i=Ps, -+ Ps,

depends only on w and not on the chosen decomposition.

When W is finite, it has a unique longest element, denoted by wg. The trans-
formation P, plays a fundamental role in the sequel. The following result is proved
in 2.

PROPOSITION 3.8. For any path n € CX(V), the path Py,n takes values in

the closed Weyl chamber C. Furthermore Puw, s an idempotent and PPy, =
PuwoPuw = Puw, for allw e W.

3.5. Braid relations for the H operators. Let w € W and fix a reduced
decomposition w = s;...s,. For any path 7 in C%(V), denote n, = n and for
k=2,...,p,

Nk—1 = Ps, ... Ps, .
Then n;_1 = Ps, i is as,-dominant, by proposition @ (4i) and

e = FgFne—1 = HiFnk—1

where
_ Vv

(3.3) o == inf o), (nu(t)).
Observe that
(3.4) 21 € [0, (s ()]
and

Nk—1(T) = ni(T) — Tras,;
thus

Ne—1(T) = n(T) — inasi.
i=k
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Furthermore,
(3-5) My = HEEHG L HE Pu,
and the numbers (21,...,z)) are uniquely determined by this equation.

Let w € W be an element of the Coxeter group. We consider two reduced

decompositions
/

/
w:51"'5p,w:51"'5p

of w. Let i = (s1,--+,8p) and j = (s1,--+, 5},).

Let 7 : [0,T] — V be a continuous path such that n(0) = 0, and let (z1,...,zp),
respectively (y1,...,¥p), be the numbers determined by equation @) for the two
decompositions i and j. The following theorem states that the correspondance
between the z,’s and the y,,’s actually does not depend on the path 7. In other

words, we have the following braid relation for the operators H.
(3.6) Hp - HGHG =HE - HEH

THEOREM 3.9. There exists a piecewise linear continuous map (ﬁ: : RP — RP
such that for all paths n € C3.(V),

(yla"' ayp) = ¢]](1'15 azp)'

PrOOF. First step: If the roots a, 5 generate a system of type A; x A; and
W = 54,58 = S35q, then P, and Pg commute, and it is immediate that z; = y»,
29 = y1. Let o, " and 8,8V be such that

a’(a) =4Y(8) =2, a’(B)=p"(a)=—1,
then « and [ generate a root system of type A, and the braid relation is
Wo = SaS3Sa = S3SaSs-

We prove that the following map

1= (y2— Y1) N Y3 y1 = (2 — x1) A3
(3.7) T2 =y1 +y3 Yo =1 + T3
r3=y1V (Y2 — ¥3) ys =21 V (z2 — 3)

satisfies the required properties. Assume that, for m = Py,,n,

n=HSHZH .
Then define 172 = Pan,m = PgPan,no = ™ = PaPsPan. Using theorem @ for
computing the paths 7; one gets the explicit formulas.

r3 = —info<s<r ¥ (n(s))
o = —infocs,<s, <7 (6Y(n(51)) + ¥ (n(s2)))
21 = —info<g,<s,<T (@¥(n(s1)) + B8Y(n(s2))) — x3.

Similar formulas are obtained for the y; coming from the other reduced decomposi-
tion, by exchanging the roles of o and 3. The formula @) follows by inspection.

In the context of crystals, this result is well known and first appeared in Lusztig
[27] and Kashiwara [B(]. We observe that it can also be obtained from the consid-
erations of section .6, see especially @

Second step: When the roots generate a root system of type A,, using Mat-
sumoto’s lemma, one can pass from one reduced decomposition to another by a
sequence of braid relations corresponding to the two cases of the first step.
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Third step: We consider now the case where the roots generate the dihedral
group I(m), and w = $488... = $3Sq... is the longest element in W. We will use
an embedding of the dihedral group I(m) in the Weyl group of the system A,,_1,
see e.g. Bourbaki [E], ch. V, 6, Lemme 2. Recall the Tchebicheff polynomials T
defined in (B.3). Let A = cos(27/m), a; = az = 1 and, for k > 1,

agk = Th—1(N),  agg+1 = Ti(N) + Te—1(N)
then,

(3-8) A2k + A2k42 = A2k41, G2k4102k—1 + A2p41 = (1 + az)azg,

Moreover aj > 0 when £ < m and a,, = 0.

In the Euclidean space V = R™~! we choose simple roots a, - -+ , Qy—1 Which
satisfy <Oéi,Oéj> = Q45 where Qi = 2if i = j, Qi = —1 if |’L 7j| = 1, Qi = 0
otherwise. Let a;’ = a; and s; = S4,. These generate a root system of type A,,—1.

Let II be the two dimensional plane defined as the set of x € V such that for
all n < m,

(an, ) = anlaq,x)
if n is odd, and
(an, ) = anlag, x)
if n is even. It follows from the relation (B.g) that the vectors

a = § UnQn, ﬂ = E QnQp

n 0dd,n<m n even,n<m

are in II. Let o = 2a/]|a||?, Y = 28/||8]|* and

T1 = 518385 S2p—1,

T2 = 528486+ * S2r,

where 2p = m — 1,7 = p when m is odd and 2p = m,r = p— 1 when m is even. Let
wp be the longest element in the Weyl group of A,,—;. Its length is ¢ = (m—1)m/2.
We first consider the case where m is odd, m = 2p +1,q¢ = pm. Then

wo = (1172)P71, and wg = T2(7172)P

are two reduced decompositions of wg. Since (7172)™ = Id the angle between «
and —( is w/m and these vectors are the simple roots of the dihedral system I(m).

Let v be a continuous path in II, let v, = vy and for 1 < k < p, k-1 = Paye 17k
and

24(t) = — inf_ a4 (m(s).

LEMMA 3.10. Let v be a continuous path with values in II and let

o(t) = - inf a¥(3(5))

Then, for all k, zi(t) = agk—12(t) and
7)7'17(15) = 7)0417)0437)&5 e .PO‘prl,Y(t) = ’Y(t) — inf O‘V(’Y(S))O‘ = Pa (t)

s<t
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PROOF. First, notice that oV (y(t)) = oY (7(¢)). Since v is in II, one has

) == inf oY, (1(s) = = inf a2y 1Y (3(5)) = azp12(0)

where we use the positivity of ag,—1. Therefore

Yp—1(t) = Pas, 1 7(t) = (1) + 2p(t)azp—1 = ¥(t) + azp—12(t)agp—1.

Now, since the ag;+1 are orthogonal,

a(t) = = inf 3, o0 a(5) = inf 03,4 (4(6) = azp-se ()

and

Yp—2(t) = Pasy_sVp-1(t) = Vp—1(t) + 2p—1(t)2p—3

= () + z(t)(azp—3a2p—3 + G2p—_102p—1).
Continuing, we obtain that
2k (t) = agk—1x(t)

Ye(t) = v(t) + 2(t)(azp—102p—1 + - + azp_102p_1)

Since & = a1 + azas + asos + -+ - + agp—1Q2p—1 We obtain the lemma. [
We have similarly, if v is a path in II,
Pr¥(t) = PayPasPas *+* Pan, ¥ () = (t) — Eg BY (7(8))B = Pa ().

Let i = (Sila e 7Siq) = (i1;i27 T 7im) andj = (Sj17 T asjq) = (jlajZa e ajm)
where ix = jky1 = (81,83, , S2p—1) when k is odd and ik = jk+1 = (2,84, - , S2p)
when k is even. We write explicitly

wo = (Tng)pTl = Siy *** Si,, Wo = 7.2(7_17_2);1 = Sj, " 5j,-

Let us denote by qﬁg : R? — R? the mapping given by the second step corrresponding
to these two reduced decompositions of wg in the Weyl group of A4,,_1.

Let v be a path with values in II. If we consider it as a path in V' we can set
Ng =7q =y and, forn=1,2,...,q,

-1 = ,Pozin My Zn = — Ogi?éT O‘;/n (nn(t))
- . - s _ : Vs
=1 = Pay,flny 2=~ inf aj (7 ())-
Then, by definition,
(21’ ce. ,gq) = ¢Ji(z1, oo ,zq).

We now consider v as a path in II. We let

(ulaUQa" : ,Um) = (aaﬁvav/gv' o ,CY)
and
(’1}1,’()2," . ;'Um) = (Baaaﬁaaa" . aﬁ)
In I(m) the two reduced decompositions of the longest element are
Sul ...Suyn — SU1 ”'S’Um'
We introduce v, = 3 =7, and, forn =1,2,...,m,
Yn—1 = Pun, ce ,Pum’Yma ﬁn—l - Pvn e ,Pum;j/m

_ . \/ ~ —— . \/ ~
oo == f (1), T = — b v, (Ga(t)).
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It follows from lemma and from its analogue with « replaced by § that
21 = a1T1,22 = A3T1, " ,2p = A2p—1T1

Zp+1 = A2X2, Zp42 = A4X2, "+ , Z2p = A2pT2
and more generally, for £k =0, - --

-1 -1 -1
Gy R2kp4+1 = Gz R2kp4+2 = ' = Gy 122kp+p = Th+1

-1 -1 -1
Ao Z2(2k+1)p+1 = Qg Z(2k+1)p+2 = " = Qgp Z(2k+2)p = Lk42-
This defines a linear map
(1'15 e ,Z'm) = g(zlsza e 7Zq)-

Analogously exchanging the role of a and 8 we define a similar map

(‘%1)"' a'i"m) 26(215223"' ’Zq)
(for instance Z; = a2Z1, 22 = a1, --). Then we see that
(xlv"' ,Z'm) = ¢(j17 ai'm)

where _

p=gogiog .
The proof when m is even is similar (when m = 2p, wy = (1172)? and wo = (1271)?
are two reduced decompositions of wg). This proves the theorem in the dihedral
case.

Fourth step. We use Matsumoto’s lemma to reduce the general case to the

dihedral case.
This ends the proof of theorem @ O

REMARK 3.11. Although the given proof is constructive, it gives a complicated
expression for gzﬁ*l' which can sometimes be simplified. In the dihedral case I(m),
for the Weyl group case, i.e. m = 3,4, 6, these expressions are given in Littelmann
@] For m = 5 it can be shown by a tedious verification that it is given when
«, 3 have the same length, by a similar formula. Thus for m = 2,3,4,5,6 let
co =1,¢1 = 2cos(m/m), cp1 + o1 = c1¢y, for n > 1, and

u = max(CxTrt+1—Ch-1Tk+2,0 < k <m—3), v =min(ckTrr2—Cht12r+1,1 <k <m)

Then the expressions are given by

Ym = max(Ty—1 — C1Tm,U)
Ym—1 = Ty +max(Tym—2 — o, 1)
y2 = x1+min(xs — cox1,10)
y1 = min(zy — c121,0)
and
ntys+--=r2+Ta+---
YatYs+ - =x1+T3+ -
This determines completely (y1,- -, ym) as a function of (z1,- -, zy,) when m < 6.

For m = 7 we think (and made a computer check) that we have to add that

yr+ys = ¢+ max(cex1,Tq — C3T7, W)

w = min(cou, x4 — cov, max(rg — 15 + Tg + Cou, C1T3 — Ta — CaV).
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We do not know of similar formulas for m > 8.

REMARK 3.12. The map given by theorem@ is unique on the set of all possible
coordinates of paths. We will see in the next section that this set is a convex cone.
Since the value of the map (bji. is irrelevant outside this cone, we will assume that
there exists a unique such map for each pair of reduced decompositions i, j.

4. Continuous Littelmann module

4.1. String parametrization of C%(V). Let (W,S,V,V") be a realization
of the Coxeter system (W, .S). We say that a path is dominant if it takes its values in
the closed Weyl chamber C. Thus a path is dominant if and only if it is a-dominant
for all simple roots a.

DEFINITION 4.1. Let m € C2(V) be a dominant path, and w € W. We define
Ly = {n € Cp(V); Pun = w}.

These sets are defined for arbitrary Coxeter groups. We shall establish their
main properties in the case of finite Coxeter groups, where they are analogues
of Demazure-Littelmann modules. It remains an interesting problem to establish
similar properties in the general case.

From now on we assume that W is finite, with longest element wg, and we
denote L, = L¥°, which we call the Littelmann module associated with 7. We will
see that L, U {0} is invariant under the Littelmann operators.

For notational convenience, we sometimes write a¥'n instead of o (n).

Let n € Ly, where 7 is dominant and wg = s ... s4 be a reduced decomposition,
then we have seen that

— x Tg—1 T
n_HS;H)q ...H51ﬂ-

Sg—1
for a unique sequence
Ql(n> = (1‘1, ceey zq)-
Following Berenstein and Zelevinsky [B], we call g;(1)) the i-string parametrization

of 1, or the string parametrization if no confusion is possible.
We let

Ciw = Qi(LTr)a

this is the set of all the (z1, - ,x4) € R? which occur in the string parametrizations
of the elements of L.

PROPOSITION 4.2. The set L, is compact and the map o0; is a bicontinuous
bijection from L, onto its image CT.

PrROOF. The map p; has an inverse

o (@, mg) = HEEH - M,
hence it is bijective. It is clear that o; and p; ! are continuous. Since Puw, is
continuous, Ly = {1; Pu,(n) = 7} is closed. Using g; ' we easily see that L, is
equicontinuous, it is thus compact by Ascoli’s theorem. (I

We will study C{" in detail in the following sections.
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4.2. The crystallographic case. In this section we consider the case of a
Weyl group W with a crystallographic root system. When « is a root and oV its
coroot, then £L and £, from definition B.3 coincide with the Littelmann operators
o and f,, defined in [BH]. Recall that a path 7 is called integral in [R5 if its
endpoint 7n(7T) is in the weight lattice and if, for each simple root «, the minimum
of the function «V(n(t)) over [0,T] is an integer. The class of integral paths is
invariant under the Littelmann operators.

Let m be a dominant integral path. The discrete Littelmann module B, is
defined as the orbit of 7 under the semigroup generated by all the transformations
€as fa, for all simple roots a.

Let i = (s1, -+ ,84) where wg = s1--- 84 is a reduced decomposition, then it
follows from Littelmann’s theory that

Br={n€ Lnx;jzy,-- 2 €N} = 9;1({(951a"' ,2q) € CT5m €N,z € N},
Furthermore, the set B, has a crystal structure isomorphic to the Kashiwara crystal
associated with the highest weight m(T"). On B the coordinates (z1,--- ,z4) are
called the string parametrization of the dual canonical basis by Berenstein and
Zelevinsky. They are described in Littelmann @] and Berenstein and Zelevinsky

.

E When restricted to B, the Pitman operator P, coincides with e%*, i.e. the

operator sending 7 to e”n, where n = max(k, e%n # 0).
For any path 7 : [0,7] — V and A > 0 let An be the path defined by (An)(t) =
An(t) for 0 <t < T. The following results are immediate.

PROPOSITION 4.3 (Scaling property). For any A > 0, ALy = L.

PropPOSITION 4.4. If 7 is a dominant integral path, then the set
1
Bﬂ'(@) = UHENEBTMT

1s dense in L.

PROPOSITION 4.5. Letn € C3(V), r € R,u > 0, then
£ (un) = u&y(n).

PROPOSITION 4.6. Let m be a dominant path and a > 0 then C#™ = aC and,
for each n € Lz, 0ar(an) = aor(n).

Actually a good interpretation of L, in the Weyl group case is as the ”limit” of
%Bm when n — oo. In the general Coxeter case only the limiting object is defined.

4.3. Polyhedral nature of the crystal for a Weyl group. Let W be a
finite Weyl group, associated to a crystallographic root system. Let B, be the
discrete Littelmann module associated with an integral dominant path 7. Recall
that it is the image of 7 under all the products of the Littelmann operators ey, fa,
for o simple roots. We fix a reduced decomposition wy = s1--- s, of the longest
element and let i = (s1,---,54). We have seen that if p; : Ly — C7 is the string
parametrization of the continuous module L., then

Br={n€ Lz, -,z €N} = gi_l({(xl,~~~ &q) € Cfsx €N, -+ zg € N}
Therefore the set

CF = CF NN
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is the image of the discrete Littelmann module B, or equivalently, the image of
the Kashiwara crystal with highest weight m(T"), under the string parametrization
of Littelmann [2€] and Berenstein and Zelevinsky [[§]. Let

r—1
Ky = {(1'17" ! 7:Cq) € RQ’O <z < O‘;/T(W(T) - anain)ar =1, q}
n=1

It is shown in Littelmann [2€] that there exists a convex rational polyhedral cone
C; in R?, depending only on i such that, for all dominant integral paths m,

Cr =CNNI N K,

This cone is described explicitly in Berenstein and Zelevinsky [E] Recall that
CF = 0i(Lx). Using propositions [£.3, .6, [£3 it is easy to see that the following
holds.

PROPOSITION 4.7. For all dominant paths T,
Cfr =CiN K.

4.4. The cone in the general case. We now consider a general Coxeter
system (W, S), with W finite, realized in V.

THEOREM 4.8. Let i be a reduced decomposition of wgy, then there exists a
unique polyhedral cone Ci in RY such that for any dominant path w

Cf =CinNK;,.
In particular CT depends only on A = n(T).

PROOF. It remains to consider the non crystallographic Coxeter systems. It is
clearly enough to consider reduced systems. We use their classification: W is either
a dihedral group I(m) or Hz or Hy (see Humphreys [L7]), and the same trick as
the one used in the proof of theorem @

We first consider the case I(m) where m = 2p + 1 and we use the notation of

the proof of theorem @ Let i = (i1, - ,%q) be as in that proof, and write
wo = (T172)PT1 = 85, c - 8

q

for the longest word in A,,_1. Let 7 be a path with values in the plane II. If we
consider v as a path in V = R™~! we can set, for ¢ = (m — 1)m/2,

Mg =7
and, forn=1,2,...,¢q

-1 = Pain Mny Zn = — OSiItléT O‘;/n (Un(t))

We can also consider v as a path in II, with the realization of I(m). Let
u= (u1;u27"' 7u7TL) = (a,ﬂ,a,ﬂ,~ o ,O[).
Let 7, = v and, forn=1,2,...,m,

-1 = Pu, -+ Puplim, Tn =— OgiltléT ur\{(nn(t))

We have seen that the map

, —
(xl o ,ZCm) 9(21’«22; azq)a
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is linear. Let Cj be the cone associated with i in A,,_1, then Cy = ¢(Cj) is the
cone in R™ associated with the reduced decomposition a3 - - - « of the longest word
in I(m). Furthermore, for any dominant path 7 in II, CT = Cy N K.

The proof when m is even is similar.

In order to deal with the cases Hs and Hy it is enough, using an analogous
proof to embed these systems in some Weyl groups.

Let us first consider the case of Hy. We use the embedding of Hy in Eg (see
R9)). Consider the following indexation of the simple roots of the system Eg:

;

O @)
1 2 3 4 6 7 8
System Eg
In the euclidean space V = R?® the roots au,...,as, satisfy (g, a5) = —1lor0

depending whether they are linked or not. Let ¢ = (1 4 v/5)/2. We consider
the 4-dimensional subspace II of V defined as the set of x € V orthogonal to
ag—oaq, ar—das, ag—dag and das —ay. Let s; be the reflection which corresponds
to a; and

T1 = S188, T2 = 5287, T3 = 8356, T4 = S4S55.

One checks easily that 7, 79, 73, 74 generate Hy and that the vectors

d1 = a1 + ¢ag, G = s + par, d = ag + pag,du = as + ¢ as

are in IL. If 7 is a continuous path in II, then, fori = 1,--- ,4,if &’ = &;/(2||a:|?),
_ o AV ~ .
Prr(t) = (1) ~ inf &Y (n(s)

The case of Hj is similar by using Ds:

5
O
O
1 2 3 4
O
System Dg 6
In V = RS we choose the roots ar,...,as with (a;,a;) = —1 if they are linked.

We define a 3-dimensional subspace II defined as the set of € V' orthogonal to
as — oaq, aq — ¢pas and ¢ag — az. Then the reflections

(4.1) T1 = 1S5, To = S2S4, T3 = S356,
generate Hs and
a1 = a1 + aas, ae = ag + aay, &z = ag + bag

are in II. O
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We will prove in corollary @ that the cones Cj have the following description:
for any simple root «, let j(«) be a reduced decomposition of wy which begins by
So. Then

C; = {z € RY (bg(a) ()1 > 0, for all simple roots a}.
4.5. The cone in the dihedral case. In this section we provide explicit

equations for the cone, in the dihedral case, following the approach of Littelmann
[26] in the Weyl group case.

LEMMA 4.9. Let o, 3 €V, aV,8Y € VV and ¢ = —3Y(«). Consider a contin-
uous path n € CY(V) and m = Pan. Let

U = g [af"(n(t) +b min a*(n(s))],
V. = i la min §7(n(s) + (ac — b)a” (n ()],
W = amin 5*(n(t) - (ac—b) min o”(n(t)),

where a,b are real numbers such that a > 0,ac —b > 0. Then U = min(V, W).

PROOF. Since m = P,n,

BY () = B (x(1)) — ¢ min a¥(5(s)),

>s>0
thus
U = minlaf((®) + (b —ac) min o (n(s))]

— . . V b _ . V .
A [ min af*(n(s)) + (b —ac) min a”(n(s))]
where we have used the fact that, if f,g:[0,7] — R are two continuous functions,
and if g is non decreasing, then

A2 [f(6) +9(t)] = min [ min f(s) +g(t)].

Since oV (7 (t)) > — ming>s>0 @ (n(s)),

. v EEAYNY > i v e v _
i, B (x(s)) + (e — b)a” (x(1)) = i, aB” (x(s)) — (ac ) min o (1(s))
Let ¢y be the largest ¢ < T where the minimum of the right hand side is achieved.
Suppose that tg < T. If a¥(7(tg)) > — ming >s>0 @’ (n(s)) then ming>s>o ¥ (n(s))
is locally constant on the right of ¢o. Since min;>s>a3" (7(s)) is non increasing,
it follows that tg is not maximal. Therefore, when ty < T,

oY (m(to)) = — in a¥(n(s))

and

— min [ min aBY N eV VW
U= i [ min aB"(n(s) - (ac = b) inf o”(n(s)] =V <W.

When tg =T, then U =W < V. Thus U = min(V,W). O

We consider a realization of the dihedral system I(m) with two simple roots
o, and ¢ := —a¥(3) = —3Y(a) = 2cos =-. Let

w sin(nm/m)
" sin(m/m)
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Then ag = 0,a;1 =1, and ap41 + ap-1 = cap, a, >0if 1 <n <m-—1and a,, =0.
Let wg = s1...8n be a reduced decomposition of the longest element wg € W,
i=(s1,-"*,8m) and aq, - ,q,;, be the simple roots associated with s1,--- , $p,.
This sequence is either (o, 3,«,---) or (8,a,8, ). Clearly the two roots play
a symmetric role, and the cones associated with these two decompositions are the
same. We define o as the simple root not equal to a;. As before, when n € C%.(V),
we define n,, =n and for k=0,--- ,m—1,n, =P ... Ps,.m, and

Sk41

- min oV _
xp = OgltlélTak(nk(t)) fork=1,...,m.

PROPOSITION 4.10. The cone for the dihedral system I(m) is given by

Tm—1 Tm—2

T
Ci:{($1,~~~,$m>€RT; >—>...Za_1}.
1

Am—1 Am—2

PROOF. For any p, k such that 0 <p <m,0 < k < p, let

Ve = min laieiog(lp-k(t) +ar min oy (-1 (s))];
Wi = a Tgltilzlo i (Mp—k(t)) — arya Tgltigo i1k (Mpr1-k(t))-

Since ak—1 + ag+1 = cag, the lemma above gives that Vi, = min(Wyi1, Vig1)-
Therefore

VO = min(Wl, WQ, ey Wp, Vp)
Notice that

V= min a0y (m(®) + o, min oy (m(s))] = 0

and
Wp = Ap4+171

since 19 = Pu,1 is dominant. Furthermore

Vo = OgltiélT i1 (mp(t))

since ag = 0 and a; = 1. Hence,
(4.2) Or<nti<nT oy 1 (np(t)) = min(asry, — a1p_1, -, aps — ap_171, apy121,0).
The path 1,1 = Pa,,n I8 ay-dominant, therefore o, (n,—1(t)) > 0 and it follows
from (@) applied with p=m — 1 that for k=1,--- ,m —2

Om—kTh4+1 — Om—k—12% > 0,

which is equivalent, since a,,—r = ay to

Tm—1 Lm—2

> > > 1 > 0.
am—1 am—2 ai
Conversely, we suppose that these inequalities hold, i.e. that for k=1,--- ,m —2
(4.3) Ak 1Tm—k — OTm—k—1 = 0,

Am—kTk+1 — Om—k—12k > 0,

and that (z1,---,zm) € K, for some dominant path 7. Let us show that

n:Hmm...H(ﬁiﬂ-

Am,
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is well defined. Since the string parametrization of 1 is x this will prove the propo-

sition. It is enough to show, by induction on p =0, --- ,m that
np = Hey Her ™ - Faym

is ap41-dominant. This is clear for p = 0 since g = 7 is dominant. If we suppose
that this is true until p — 1 can apply (@) and write that

021<IIT oy (mp(t)) = min(agay — a1xp_1,-- -, apTy — ap_11, ap1171,0)

Since ¢ < 2, it is easy to see that

Gp—1 > An—2

an, - an—1
for n < m — 1. Therefore,
Tk+1 > Am—k—1 > Ap—k
Tk Gm—k  Gp—k+1

and a1 (np(t) >0 forall 0 <t <T. O

In the definition of Vi, and W} in the proof above, replace the sequence (ax) by
the sequence (ag+1). We obtain the following formula.

PROPOSITION 4.11. If y, = — ming>t>0 @1 (M (1)), then
Ym = maX{O, Am—1Tm—1—0m—-2Tm, Am—2Tm—2 —Am—-3TLm—1," " ,A2T2 —A1T3, alxl}

4.6. Remark on Gelfand Tsetlin cones. In the Weyl group case, the con-
tinuous cone appears in the description ot toric degeneration (see Caldero [ﬂ], Alex-
eev and Brion ]) The polytopes C;j(\) are called the string polytopes in Alexeev
and Brion [fl]. Notice that they have shown that the classical Duistermaat Heckman
measure coincides with the one given below in Definition @ Explicit inequalities
for the string cone C; (and therefore for the string polytopes) in the Weyl group case
are given in full generality in Berenstein and Zelevinsky in [E, Thm.3.12]. Before,
Littelmann [@, Thm.4.2] has described it for the so called "nice decompositions”
of wy. As explained in this paper they were introduced to generalize the Gelfand
Tsetlin cones.

For the convenience of the reader let us reproduce the description in the A,
case, considered explicitely in Alexeev and Brion @] The standard reduced de-
composition of the longest element in the symmetric group W = S,,11 is

wo = (81)(8251)(838281) ... (SnSn—1...51),
where s; denotes the transposition exchanging ¢ with ¢ 4+ 1. Let us use the coordi-
nates z; ; with 4,5 > 1, i + j < n + 1. The string cone is defined by
Tn12>20; Tpo122Tp-1120; ... T1p>--2>x171 20,
and to define the polyhedron C3* one has to add the inequalities
i—1

Tij <af (N) = @ijo1 4 Y (—Thjo1+ 20k — Tk jia)-
k=1

A more familiar description of this cone is in terms of Gelfand-Tsetlin patterns:

Gij 2 9it1,j = Gij+1
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in variables g; ;, 7,5 > 1, ¢ +j < n+ 1 and with variables go ; corresponding to A:

n+1 n+1
A= Z 90,i€; = Z Aiei; so that Oé;/(>\) = <A, €5 — €j+1> - Aj - )\j+1-
=0 i=0

The linear change of coordinates is given by g; j = Aj + Sh_; (Thj—1 — Tk )-

4.7. Crystal structure of the Littelmann module. We now return to the
general case of a finite Coxeter group.

Let 7 be a dominant path in C%(V). For n € L, we define wt(n) = n(T). Let
er, be the generalized Littelmann operator £/, defined in Definition @, and

ealn) = max{r > 0;£1(n) # 0} = — inf o (n(t))

paln) = max(r > 05657 (n) # 0} = 0¥ (T) = inf_a"(n(t)).

THEOREM 4.12. With the above definitions, L, is a normal continuous crystal
with highest weight m(T).

Proor. All properties have been verified in the preceding sections, except the
highest weight property, but this follows from the fact that any n € L, can be
written as

n=HHa! - H,

see proposition @ (]

The geometry of this crystal is easy to describe, using the sets C which pa-
rametrize L,. We have seen (cf. theorem @) that C] depend on the path =
only through (7). We put on C{ a continuous crystal structure in the follow-
ing way. Let i = (s1,---,8,) where wy = s1---84 is a reduced decomposition. If
x= (1, - ,2q) € CT we set

wt(x) = n(T) — Zxkak.
k=1

If the simple root « is a, then we define ef, ; for r € R by
eg,i(xlv'r?a T azq) = (561 + 7z, azq) or 0

depending whether (x1 4+ r,--- ,24) is in CT or not. We let, for b € CT,

£a(b) = max{r > 0;¢, 4(b) # 0}
and

Pa(b) = max{r > 0;e_;(b) # 0}.
We now consider the case where « is not a;. We choose a reduced decomposition
wo = 8185+ sy With ay = a and let j = (s}, s5,--,s;). We can define €], ; on
Cj“, €a, Qo @s above and transport this action on C] by the piecewise linear map
#] introduced in theorem @ In other words

€ni = Pl oel ;0 b
Then p; : Ly — CT is an isomorphism of crystal. This first shows that our con-
struction does not depend on the chosen decompositions wg = s s5 - -+ s, and then

q
that the crystal structure on L, depends only on the extremity 7(7") of the path =
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THEOREM 4.13. If m and T are two dominant paths such that m(T) = 7(T)
then the crystals on L, and Lz are isomorphic.

This is the analogue of Littelmann independence theorem (see [@])

DEFINITION 4.14. When W s finite, for A € C, we denote B(\) the class of
the continuous crystals isomorphic to L, where m is a dominant path such that
w(T) = .

4.8. Concatenation and closed crystals. The concatenation 7 x 7 of two
paths 7 : [0,7] — V, 5 : [0,7] — V is defined in Littelmann [R5 as the path
m*xn:[0,T] = V given by (mxn)(t) = w(2t), and (7 xn)(t +T/2) = n(T) + n(t)
when 0 < ¢t < T'/2. Recall that L, is the crystal contained in C%.(V) generated
by a dominant path w. If w1 and my are two dominant paths, let D(my,m2) =
Pwo (Lﬂ'l * L7T2)) and

L(7T1, 7T2) = U{Lﬁ, IS D(T(l, 7T2)}.
Since L(m, ) is a union of crystals it is itself a crystal.

THEOREM 4.15. If w1 and me are two dominant paths, there exists a crystal
embedding

©: L, @ Ly, — L(m1,m2) C Cp(V)
defined by ©(n1 ® n2) = N1 * N9.

ProOOF. We have to show that, for simple roots a, for n; € Lr,,n2 € Ln,, for
all s e R,

Ofed,(m ©m2)] = &5,(m *n2).
This is a purely one-dimensional statement, which uses only one root, hence it
follows from the similar fact for Littelmann and Kashiwara crystals. For the con-

venience of the reader we provide a proof below.
For any x > 0, let

x _ _ . . Vv
Pin(t) =n(t) — min(0, z + ogfgta n(s))a.

Thus
Ty = i i v >
Pin=mn if nggta n(s) > —x
and
(4.4) Pan=&m

with y = (— info<s<r @¥n(s) — z) V 0.

LEMMA 4.16. Let n1,m2,€ CX(V),z > 0, y € [0,aVw(T)], and 7 be an a-
dominant path, then

(i) Paol(m *n2) = Pami * PEny where x = o¥'ni (T) — info<i<r a¥mi (t);
(i) PaP? = Pa:
(iii) PEHYT = HZ V.
Proor. For all ¢ € [0,7T/2]

Po(m xm2)(t) = Pam(t).
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Furthermore,

Pal(m *12)(T +1)/2)
= (m *12)((T' +t)/2) — minfinfocs<r aVni(s), a'n(T) + infocs<i Vrpa(s)]o
=m(T) — infocs<r a’m(s)at

12(t) — minf0, infocs<t aVna(s) + @’m(T) — infocs<r Vm(s)]a
=Pomi(T) + PEna(t).

This proves (i), and (i7) follows from .4, Furthermore, info< <7 oV (HY7(s)) = —v,
therefore (iii) follows also from k4. O

PROPOSITION 4.17. Let 71,72 be a-dominant, x € [0,a¥m (T)], y € [0, aVm2(T)],
z=min(y,a"m(T) —x) and r =z +y — z, then

Hum * HYmo = HL, (11 * H.m2),
PROOF. Let s = ¥ (HZm (T)) — infocy<r a¥ (HEm )(t). By lemma [£.16;
Pa(Hom * Him2) = Pa(Haom) x Po(HEm2)
and PEHY o = H g, Since Py HEm = 71 one has
Po(HET % HYm2) = m1 % HE s
Notice that s = @V (71 (T)) — z. On the other hand,
(Ham * HEma)(T) = Hom(T) + Hime(T) = m(T) + m2(T) — (z + y)o
(m1x H V) (T) = mi(T) + m2(T) — (s Ay)ex

and we know that n = H’, 7 is characterized by the properties Pon = 7 and n(T) =
m(T) — ra.. Therefore the proposition holds for r + s Ay =a +y. O

We now prove that, for a € ¥, n; € Ly, m2 € Ly,, for all s € R,
Oled(m ®@mn2)] = €5 (m *n2).
Since eSel, = e5tt and E5EL = £51 it is sufficient to check this for s near 0. We

write n1 = HZm and 1y = HYme where m = Pq (1), m2 = Pa(12) are a-dominant.
By proposition , if z=min(y,aVm(T) —z) and r =z + y — 2, then

5;(771 * 7]2) = Eé(Hzﬂl * HZWQ) = EéHg(ﬂl * HZTFQ).
We first show that if
(4.5) Ealm*m2) =0

then 2, (1 ® 12) = 0. For |s| small enough ({£.3) holds only when r = 0 and s > 0
or when s < 0 and

(4.6) r=a"((m *Him)(T)) = aVm(T) + aVme(T) — 2z.
If r = 0, then z = min(y,a¥m (T) —x) = x+y hence x = 0 and y < "7 (T). But
ga(m ®1m2) = £a(m) — min(pa(m) = £a(12),0) = max(2z +y — a'm (T), ).

(notice that, in general, when 7 is a-dominant, e,(HZ7) = = and @,(HZT) =
aVm(T) — x). Therefore e,(m ®@n2) = 0 and €5,(n, @ n2) = 0. Now, if r is given by

(I£4), then
z=a'm(T)—x+a"m(T) -y
since r = x+y— 2. We know that a¥m2(T) —y > 0, hence z = min(y, oVm (T) — z)
only if
z=a"m(T) —z,a"m(T) =y,y > a’m (T) — =
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Then
calm @n2) =2z +y —a'm(T).
On the other hand,
wt(m ®@n2) = wt(m) + wt(nz) = m (1) — zo + m2(T) — ye,
thus, using y = a¥ma(T),
Palm @ n2) = ea(m ®@n2) + " (wt(m @n2)) =0

and e (m ®n2) = 0 when s < 0.
We now consider the case where (.4) does not hold. Then for s small enough,

Ea(m *m2) = EGHL (1 x Homa) = HE (1 x Homa).
Using proposition , if s is small enough, and y > oV (T') — z, then
HE o (mx Hme) = HE *my « HEm = O(eg, (Ham ® Hims))
and if y < aVmy(T) — z, then
HL % (my * Hime) = HEm x HY %o = O(el (HEm @ HYma)).
The end of the proof is straightforward. [J
This proves that the family of crystals B()\),\ € C is closed. From theorem

and theorem @, we get

THEOREM 4.18. When W is a finite Cozeter group, there exists one and only
one closed family of highest weight normal continuous crystals B(A\), A € C.

4.9. Action of W on the Littelmann crystal. Following Kashiwara ,
and Littelmann [25], we show that we can define an action of the Coxeter group
on each crystal L,. We first notice that for each simple root «, we can define an
involution S, on the set of paths by

San=En for x=—a"(n(T)).
In particular,
(4.7) San(T') = sa(n(T))-
LEMMA 4.19. Let n € C3(V) and o € ¥ such that o (n(T)) < 0. For each
v € CY(V) there exists m € N such that, for allmn >0,
Po(y M HY = Py (4 x 7*™) % Sa(n)*™.

ProoF. By lemma ,
Pa(yx D) = Poly % ™) + Pi(n)
where
— VY *NY (T — : 2 *1 )
v =a’ (yxq)(T) — min o (yxn™)(s)
Let Ymin = ming<s<r a”y(s) and Nymin = ming<s<r a¥n(s). Since aV~(T) < 0,
there exists m > 0 such that for n > m one has,

min oY (y*7*)(s) = min(Ymin, @ (Y(T) 4+ kn(T)) + Nuin; 0 < k <n — 1)

0<s<T
= a'(y(T)+ (n—1)n(T)) + Mmin-

Using that (y*n*™)(T) = v(T) + mn(T) we have = aVn(T') — Nmin. In this case,
PZ(n) = Sa(n), which proves the lemma by induction on n > m. O
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THEOREM 4.20. There is an action {Sy,,w € W} of the Cozeter group W on
each Ly such that Ss, = So when « is a simple root.

PrOOF. By Matsumoto’s lemma, it suffices to prove that the transformations
S, satisfy to the braid relations. Therefore we can assume that W is a dihedral
group I(g). Consider two roots «, 8 generating W. Let n be a path, there exists
a sequence (a;) = a, 3, q,... or 3,a,f3,... such that s, 5a, - - -54,7(T) € —C. Let
7 = Sa1Say - Sa.n. Let 5o, -84, be a reduced decomposition. We show by

induction on k < g that there exists my; > 0 and a path 4 such that

(48) Pak T Pal (ﬁ*(mk+n)) = VK * (Sak T Salﬁ)*n

For k = 1, this is the preceding lemma. Suppose that this holds for some k. Then
a)c/-‘,-l(sak T Smﬁ(T)) <0

(cf. Bourbaki, [@], ch.5, no.4, Th. 1). Thus, by the lemma, there exists m such

that, for n > 0,

Pﬂék+1 (’yk*(Sak e Sa1ﬁ>*(m+n)) = Pﬂék+1 (’yk*(Sak e Sa1ﬁ>*m)*(Sak+1 Sak e Salﬁ)*n
Hence, by the induction hypothesis, if yx11 = Payyy (V6 * (Say, -+ Sar 7)), then

Pak+17)ak o '7)041 ((ﬁ*(mk+m+n)) = Vk+1 % (Sak+1 Sak e Salﬁ)*n

We apply @) with k = ¢q, then there exists two reduced decompositions, and we
see that S, 54, , - - Sa, 7 does not depend on the reduced decomposition because
the left hand side does not, by the braid relations for the P,. This implies easily
that Sa,Sa,_; * "+ Sa;n also does not depend on the reduced decomposition. .

Using the crystal isomorphism between L, and the crystal B(m(T")) we see that

COROLLARY 4.21. The Coxeter group W acts on each crystal B()), where
A € C, in such a way that, for s = s, in S, and b € B()\),

Sa(b) = €X(b), where x = —a¥ (wt(b)).
Notice that these S, are not crystal morphisms.

4.10. Schiitzenberger involution. The classical Schiitzenberger involution
associates to a Young tableau 7' another Young tableau T of the same shape. If
(P, Q) is the pair associated by Robinson-Schensted-Knuth (RSK) algorithm to
the word uq ---u, in the letters 1,---,k, then (P, Q) is the pair associated with
uj---u}, where i* = k41—, see e.g. Fulton [f]. It is remarkable that P depends
only on P, and that Q depends only on (). We will establish an analogous property
for the analogue of the Schiitzenberger involution defined in [ for finite Coxeter

groups. The crystallographic case has been recently investigated by Henriques and
Kamnitzer [14], [L5], Morier-Genoud [2§], and Lenart [24].

For any path n € C3(V), let
k) =n(T —t)—n(T), 0<t<T.
Let us show that
Sn = —wokn,

suitably interpreted, is the analogue of Schiitzenberger involution. Since w3 = id,
S is indeed an involution. The following is proved in .
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PROPOSITION 4.22. For any n € CX(V),
PwoSU(T) = Pwon(T)'
As remarked there, this implies that the transformation on dominant paths
= Im =Py, ST

gives the analogue of the Schiitzenberger involution on the Q’s. We will consider
the action on the crystal itself, i.e. the analogue of the Schiitzenberger involution
on the P’s.

Let m be a dominant path and A = 7(T). Notice that the transformation S
on C%(V) does not preserve the Littelmann module L,. It sends L, onto Ly,. By
the preceding proposition A = 7(T) = In(T), therefore L, and L, are crystals
isomorphic to B(A). More precisely, there is a unique strict morphism G : Ly — Ly,
such that G(m) = I.

If o is a simple root, then & = —wga is also a simple root and &V = —aVwy.
The following property is straightforward. In the A,, case, it was shown by Lascoux,
Leclerc and Thibon [Bd] and Henriques and Kamnitzer [I4] that it characterizes
the Schiitzenberger involution on the crystals B()\).

LEMMA 4.23. For any path n in C3.(V), any r € R, and any simple root a, one
has
ELSn=8E"n
ea(Sn)) = va(n), va(Sn)) = ca(n)
Sn(T) = won(T).

For each simple root «, we define the co-Pitman operators F,, by F, = kPyk.
Note that these operators were defined in [E], section 4.2, where the unfortunate
notation £, was used, however we prefer the notation here. If 7 is a-dominant,
then

FoHET =HEim
where z = o¥7(T). In other words, FoHZm is the “lowest” element in the a-string
of 7.

PROPOSITION 4.24. If o € CX(V), the string parameters of Foo and Fao(T)
depend only on the string parameters of o and o(T).

PROOF. Choose a reduced decomposition i(«) of wy which ends with s, (i.e.

as, = a) and let gja)(0) = (z1,%2,- - ,24-1,24). Then o = Ha?Pyo, therefore
Foo =HEPyo for z = aV(Pao(T)) = a¥(o(T)) + 224, hence
Oi(a) (Fa0) = (21,22, -+ ,q_1,2).

On the other hand, Foo(T) = Pao(T) — za =0(T) + (x4 — 2)c. O

PROPOSITION 4.25. Let n € CX(V), then Sn(T) and the string parameters of
Sn depend only on n(T) and on the string parameters of 1.

PROOF. One has (—wg)Pa(—wo) = Pa, (recall that & = —woar) and,

(4.9) SFo = PaS.
Let i = (s1,---,84), where wy = s1--- s4 is a reduced decomposition and i’ =
(81, - ,8¢). Then wy = 51 --- 34 is also a reduced decomposition. Let us compute

the i’ string coordinates i/ (S1) = (y1,- - ,yq) of S, for which
Sn=HEHE " L HY Py S,

Qg—1
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Let 0, = n and, for any k=0, ,q,
o = ,7-‘%+1 .. '-7:%77
then, by ([L9),
Sor = Payq - Pa,Sn = Hg: B 'Hgllpwosﬁ-

It follows from the proposition above that ok (T") and the string coordinates of oy
depend only on 7(T") and the string coordinates of 7. In particular this is the case
of &) 0, (T) and ming< <7 o) 0 (s) and therefore of

o= - dnf G(Son)(s) =~ inf o} (~woSen)(s)
_ v _ v A
= - Y (so)(s) = — ok o) (on(T — ) — o (T))
Y _ v
= agor(T) oglgéT ap og(s). O
Let n € C%(V). Fix a reduced decomposition i = (a1, ,a4) of wy and let
(y1,- -+ ,Yq) = 0i(Sn) be the string parametrization of Sn. One has, by definition,
(4.10) Sn="HE ... HE Py Sn.

Since PuyS1(T) = Pu,n(T), by proposition [£29, we know that (yi,---,y,) is in
the polyhedron C;* where A\ = P, n(T). Therefore we can define

Sn =Mt -+ Y Py

In the A, case, in the RSK interpretation the two paths Sn and gn have the same
P but not the same Q. It follows from lemma that

LEMMA 4.26. Letn € CO( ), then

S(Eq(m) = €57 (S(), wt(NS’( —wowt(n)
a(S(n )) —Ea(n)a ea(S(n) = ¢a(n).
THEOREM 4.27. The map 7 : CH(V) — CH(V ) defined by
(% 12) = S(S12 * S

s a crystal isomorphism.
PROOF. Let n1,m2 € C2(V),0 = ¢a(n) — €a(n2) and ¢ = —o. Then
S(g;nin(r,—a)+g+n2) _ 567 min(r,—o)—ot S77 _ gmax( r,o)—6" 5772
and - . -
S(g;‘nax(r7—o')—o' 771) 5 max(r,—o)+o 5771 _ ggnln(fr,fa)Jra 5771
Therefore, using lemma .23 -,
S(Egin(r,fa)+g+n2) « S(Egax(r,fa)fa’nl) _ 5577"(5772 * Snl)

hence

B

(Emax(ri=a) =0Ty 4 gmin(ri—o)+oT )
(S(Eminri=a)to™ ) x S(Emx(r=a) =" )
= S(E57(Sm2*Sm))

= EQS(Sng *.S11)

= &Em(m xn2).

T(Eq(m xm2)) =
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On the other hand, using lemma [£.24, and the fact that Sn(T") = wen(T),

wt(7(m *n2)) = wt(S(Sn2 x Sn1)) = wo wt(Sn2 x Sn1)

wo (812 * S )(T') = wo(wo (12(T") + mi(T))) = wt(m *12)
One checks analogously the intertwining relations e,07 = 7oe, and Y, 0T = ToY,,.
O

We can now define an involution Sy on each continuous crystal of the family
{B(\), A € C} by transporting the action of S on C%(V):

L7r $ LI7r

Qiﬂ' \L l QiITr

B(\) ——~ B(\)

where 7 is a dominant path such that 7(7) = A. It does not depend on = itself by
proposition . Similarly we can define Sy by transporting the action of S

S
Ly ——— 1L,
of

N

B()\) T B()\)

Let A\, € C. For by € B(\) and by € B(u) let

Tau(b1 @ ba) = S, (Suba ® Sxb1)
where v € C is such that S,ba ® Saby € B(7).
THEOREM 4.28. For \,u € C, the map
Tt B(A) ® B(p) — B(n) ® B(A)
s a crystal isomorphism.

This follows from theorem . As in the construction of Henriques and Kam-
nitzer [[14], [Lg] these isomorphisms do not obey the axioms for a braided monoidal
category, but instead we have that:

(1) Tuproma, =1
(2) The following diagram commutes:

B\ © B(n) ® B(o) —“£' B(\) @ B(0) ® B(p)

T(x,u>®1l lT(%(U,u))

B(p) ® B(\) @ B(o) B(o) ® B(p) ® B(\)

e
T((w:2),0)

which makes of B()\),\ € C, a coboundary category.

5. The Duistermaat-Heckman measure and Brownian motion

5.1. In this section, we consider a finite Coxeter group, with a realization in

some Euclidean space V identified with its dual so that, for each root a, o = Hi‘ﬁz .
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5.2. Brownian motion and the Pitman transform. Fix a reduced de-
composition of the longest word

wWo = 8182 S¢q

and let i = (s1,---,84). Recall that for any n € C%(V), its string parameters
= (21, ,24) = 0i(n) satisfy

i-1
(5.1) 0<z <ol (A=) zjay), i<g

j=1

where A = Py, n(T). For each simple root « choose a reduced decomposition

ia = (57, ,s7) such that s = s, and denote the corresponding string parameters

(03

0i,(n) by (2%, ,25). Using the map ¢i* given by theorem B.9 we obtain a
continuous piecewise linear function Wi : R? — R such that

(5.2) = \If:l(:zj)
Of course
(5.3) Ul(r) >0, forallacX.

Denote by M; the set of (z,A) € R% x C which satisfy the inequalities (f.1]) and

(F-9), and set
M} ={z eRL: (x,)\) € M;}.

Let P be a probability measure on C% (V) under which 7 is a standard Brownian
motion in V. We recall the following theorem from [E]

THEOREM 5.1. The stochastic process Pu,n is a Brownian motion in V' condi-
tioned, in Doob’s sense, to stay in the Weyl chamber C.

This means that Py,n is the h-process of the standard Brownian motion in V
killed when it exits C, for the harmonic function

) = ] 'O,

aER

for A € V, where R, is the set of all positive roots. Let ¢; = t%/2 [, e~ IIAIP/2t g
and

k= c;1/ h(\)2e NP2 gy
c
THEOREM 5.2. For (o,\) € M;,
(5.4) P(0i(n) € do, Puyn(T) € d\) = ez h(A\)e IM*/2T dg d.

The conditional law of 0;(n), giwen (Pwyn(s),s < T) and Puw,n(T) = A, is the
normalized Lebesgue measure on Mf‘, and the volume of MiA is k=1h(N).

This theorem has the following interesting corollary, which gives a new proof
of the fact that the set C7 depends only on 7(T), and is polyhedral.

COROLLARY 5.3. For any dominant path m, let A\ = 7(T), then Cf = M}, and
C; = {z e RL; ¥ (z) > 0, for all a € T}.
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PRrOOF. It is clear that C is contained in MiA and the theorem implies that
CT, equal by definition to the set of gi(n) when P,,n = , contains M{*. The
description of Cj follows, since Cj = 7, m dominant path}. O

Theorem is proved in section p.4.

5.3. The Duistermaat-Heckman measure. Let G be a compact semi-
simple Lie group with maximal torus 7. If O, is a coadjoint orbit of G, cor-
responding to a dominant regular weight, endowed with its canonical symplectic
structure w, then this maximal torus acts on the symplectic manifold (O),w), and
the image of the Liouville measure on O, by the moment map, which takes values
in the dual of the Lie algebra of T, is called the Duistermaat-Heckman measure.
It is proved in [fl] that this measure is the image of the Lebesgue measure on the
Berenstein-Zelevinsky polytope by an affine map. In analogy with this case, we de-
fine for a realization of a finite Coxeter group, the Duistermaat-Heckman measure,
and prove some properties which generalize the case of crystallographic groups.

DEFINITION 5.4. For any A € C, the Duistermaat-Heckman measure m},;; on
V' is the image of the Lebesgue measure on Mf‘ by the map

q
(5.5) ,7::(,7:1,---,xq)EM{\H)\—ijajEV.
j=1
THEOREM 5.5. The Laplace transform of the Duistermaat-Heckman measure
is given, for z € V*, by

(z,wA)
(z,0) ,, A dv) = Zwewf(w)e

(& m v 5

et h)

where e(w) is the signature of w € W.
With, the notations of theorem[5.4, the conditional law of n(T), given (Puw,n(s),0 <
s < T) and Pu,n(T) = X\, is the probability measure ), = km/h(N).

Theorem f.5 is proved in section p.5

PROPOSITION 5.6. The Duistermaat-Heckman measure m},,; has a continuous
piecewise polynomial density, invariant under W and with support equal to the

convex hull co(W ) of WA.

PROOF. The measure m?,; is the image by an affine map of the Lebesgue mea-

sure on the convex polytope CT when 7(T") = A. Therefore it has a piecewise poly-
nomial density and a convex support. Its Laplace transform is invariant under W so
m? g itself is invariant under W. The support S(A) is equal to {n(T);n € L. }. No-
tice that if i is in Ly, then when z = ¥ (n(T)), £2n is in L, and EXn(T) = son(T).
Starting from 7(T) = A\ we thus see that WA is contained in S(A). So co(W) is
contained in S(A). The components of x € M are non negative, therefore co(IWWA)
contains S(A) N C and, by W-invariance it contains S(\) itself. [J

5.4. Proof of theorem . First we recall some further path transforma-
tions which were introduced in [Bf|. For any positive root 5 (not necessarily simple),
define Q3 = Ppsg. Then, for ¢ € CL(V),

Qpp(t) = (t) — inf BY((t) —¢(s)B, T >t>0.

t>5>0
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Let wg = 5152 -84 be a reduced decomposition, and let o;; = ag,. Since 5,Pg =
Ps.35aq, for roots a # 3, the following holds
ng = ngwO = Qﬁl ce Qﬁqv
where 81 = a1, [; =51...8,-104, when ¢ < g. Set ¥y = 9 and,
) — L Vv )
(56) Wi—1 Qﬁi s Qﬁqw Yi T1>11£OB (1/%( ) %(t))

Then ¥y = Q¥ and, for each i < g,
Quo¥(T) )+ Z Yil-

Define <i(¢) = (y1,¥2,-..,Yq).- Now let n = woz/J, so that Q.Y = Pyen. Set
1y =1 and, for ¢ < g,

(5.7) Nie1=Pay - Pagn T = nggOa (1:(1))-

Then 719 = Pu,n and, for each i < g,
Puon(T) =ni(T) + ZSCJO‘J

The parameters o;(1) = (z1,...,x4) are related toGi(¥) = (Y1, Y2, . .., yq) as follows.

LEMMA 5.7. For each i < q, we have:

(1) mi = si...s1i,
(i)

i = yi + B (i(T)) = B (Quot(T Zygﬁg — s,
(iii)
yi = i + o) (0:(T)) = @ (Puon(T Zza% - Ti.

PrOOF. We prove (7) by induction on ¢ < ¢. For ¢ = ¢ it holds because
Ng =1 = woy = woq and sq...s1 = wp. Note that, for each ¢ < g, we can write

Qﬁi = Pﬂlsgl =S1... Si,l'Pmsi ... 81,

Therefore, assuming the induction hypothesis n; = s; ... s1v;,

Ni—1 = PaMi = Pa;Si- .. 510
Si—1 ... Slgﬁi’t/}i
—1... 811,

as required. This implies (i1), using 17;—1(T") = 0;(T) 4+ z;04 and ;1 (T) = ;(T) +
yiBi
20, = o (i1 (T) —ni(T))
= o/ (si—1-.510i-1(T) — si ... 510:(T))
o (sic1 ... s1(0i(T) + yi%i) — s ... s10:(T))
2yi + o (o (si—1 ... s10i(T)) ;)
= 2y; + 26 (%u(T)).
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Finally, (4) follows immediately from (%) and (7). O

By (iii) of the preceding theorem, we can define a mapping F : M; — R% x C
such that

(Ci(lﬁ), Qwow(T)) = F(Qi(n)apwon(T))'
Let L; = F(M;). Tt follows from (ii) that F~1(y, \) = (G(y, \), \), where

i—1
Gy, \) =B (A= _v;8) — i

j=1
Thus, L; is the set of (y,\) € RL x C' which satisfy

i—1
(5.8) 0<yi <BYA=D wif) (i<q)
j=1
and
(5.9) U (Gly,\) >0 acX.
We can interpret the last inequality as follows. Set
(5.10) @4 (y, ) = @’ (\) = Vo (G(y, V).
For each simple root a choose i, = (s¥,...,s{) such that s = s, and write

G (¥) = (y,...,y5). Denote the corresponding ¢;’s by 5. It follows from
lemma .7 that y¢ = @ (y, Qu,¥(T)). To see that the inequality (F.9) holds
directly in this context, observe that, if Q,,,%(T) = A then, for each simple «,

VL(Gy, V) = a¥ (V) = @4 (y,N) = i + " (7 (T) 2 0.

Asin [Q], we extend the definition of Qg to two-sided paths. Denote by C2(V)
the set of continuous paths 7 : R — V such that 7(0) = 0 and ¥ (7 (t)) — Fo0 as
t — Foo for all simple a.. For 7 € CR(V) and 3 a positive root, define Qgm by

Qpm(t) = m(t) + [w(t) — w(0)]B,
where
— v _
o)== _inf_B"(x(t) = n(s))

It is easy to see that Qgm € C(V'). Thus, we can set 7, = 7 and, for i < g,
M1 =Qp, ... Qp,m wit) = —inf B (mi(t) — mi(s))-

Then
T = Qwoﬂ' = Qﬁ1 Qﬁqﬂ'
and, for each i < ¢,

Quom(t) = mi(t) + Z[Wj (t) —w;(0)]5;.

The following is an immediate consequence of [E, Lemma 5.5].
LEMMA 5.8. If Qum(t) = A and w(t) =y then
inf 0 (Quym(u)) = a¥(A) — (Y, \).
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Introduce a probability measure P, under which 7 is a two-sided Brownian
motion in V with drift 4 € C, and set

¥ = (m(t),t >).
Set w(t) = (wi(t),...,wq(t)).
PROPOSITION 5.9. Under P, the following statements hold:

(1) Qu,m has the same law as 7.
(2) For each T € R, the random variables w1 (T), .. .,wq(T) are mutually inde-
pendent and exponentially distributed with respective parameters 26y (p), . - ., Qﬁ(}/(u).
(8) For each T € R, w(T) is independent of (Qu,m(s), —00 < s < T).
(4) The random variables inf, >0 &V (Qu,m(u)), a a simple root, are indepen-
dent of the o-algebra generated by (w(t),t > 0).

PROOF. We see by backward inductionon k = ¢q,--- ,1that Qg, --- Qg 7(s),s <
T has the same distribution as Qg, , --- Qg 7(s),s < T and is independent of wy (T")
and that wi(T') has an exponential distribution with parameter 23 (n). At each
step, this is a one dimensional statement which can be checked directly or as a
consequence of the classical Burke output theorem for the single queue, see .
This implies that (1), (2), and (3) hold. Moreover

inf B (Quum(t)) = — inf BY (s, -+~ Qp,7(s)

is independent of 7(t),¢ > 0. Since 81 can be chosen as any simple root «, this
proves (4). O

For £ € C, denote by E¢ the event that Q,,,m(s) € C'—¢ for all s > 0 and by
Ee¢ 7 the event that Q,,,7(s) € C — ¢ for all T > s > 0. By proposition @, Ee is
independent of .

For r > 0, define

B\ ) ={¢eV: [IC=Al <r}
and
R(z,m) = (21 =721 4+7) X+ X (2g — 1,24 + 7).
Fix (z,A) in the interior of L; and choose € > 0 sufficiently small so that R(z,€) is
contained in L; X B(\,¢€) and

o1 inf VIN) =@ (2", \N) > 0.
( ) /\’GB(/\,g}z’eR(zye)a ( ) oz(z )_

LEMMA 5.10.
Pu(Quo(T) € B(A€), () € R(2,¢))
= Claigio]P’#(Eg)*lPu(Qwow(T) € B(\e), w(T) € R(z,€), Ee 7).

PROOF. An elementary induction argument on the recursive construction of
Qw, shows that, on the event F¢, there is a constant C' for which

max ly; —wi(D)| V| Quot(T) = Quom(T)I| < CE]l
Hence, for ¢ sufficiently small,

Pu(Quo(T) € B(A e — CliED), si(¥) € R(z,e — Cl€]]), E¢)
Pu(Qu,m(T) € B(\€), w(T) € R(z,€), E)
Pu(Que¥(T) € B(A, e + Cl€]), () € R(z,e + C|€]]), Ee).

IA A
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Now E¢ is independent of v, and so

P (Quo(T') € B(A e = Cl&ll), si(¥) € R(z,e = C[i&]]))
Py(Ee)"Pu(Quom(T) € B(\€), w(T) € R(z€), E¢)
Pu(Quo(T) € B(A, e + Cl&l), «i(¥) € R(z,e + C[&]))-
Letting £ — 0, we obtain that

Pu(Quet(T) € B(As€), i(¥) € R(2, )
=limese—o Pu(Ee) P (Quom(T) € B(\,€), w(T) € R(z,€), E).

<
<

(5.12)

Finally observe that, on the event
{Qu,m(T) € B(\¢€), w(T) € R(z,€)},
we have, by Lemma p.§ and (5.11)),
inf oY (Quym() = a¥(Quen(T)) — @ (W(T), Quen(T))

inf av(N) =l (2, N)>0.
N €EB(Xe),2’ €R(z,¢€)
Thus, we can replace E¢ by E¢ 1 on the right hand side of (), and this concludes
the proof of the lemma. ([

For a,b € C, define ¢(a,b) = Zwewf(w>€<wa’b>-

LEMMA 5.11. Fiz p € C. The functions f(a,b) = ¢(a,b)/[h(a)h(b)] and
gu(a,b) = ¢(a,b)/d(a,n) have unique analytic extensions to V- x V. Moreover,
f(0,0) = k=" and g,,(0,b) = h(b)/h(u)-

PROOF. It is clear that the function ¢ is analytic in (a,b), futhermore it van-
ishes on the hyperplanes (8,a) = 0,(8,b) = 0, for all roots 8. The first claim
follows from an elementary analytic functions argument. In the expansion of ¢
as an entire function, the term of homogeneous degree d is a polynomial in a,b
which is antisymmetric under W, therefore a multiple of h(a)h(b). In particu-
lar the term of lowest degree is a constant multiple of h(a)h(b). This constant is
nonzero, as can be seen by taking derivatives in the definition of ¢. By ’'Hopital’s
rule, lim,—, gu(a,b) = h(b)/h(r). It follows that lim,_¢ f(a,b) is a constant. To
evaluate this constant, note that, since h is harmonic and vanishes at the boundary
of C,

/ h(A)2emINP/2 (g, \)dA = elal*/2 / e—INP/2 ),
c 1%

Letting a — 0, we deduce that f(0,\) = k=1, as required. O

Denote by F¢ the event that 1(s) € C — ¢ for all s > 0 and by F¢ r the event
that ¢(s) €e C — & forall T > s > 0.

LEMMA 5.12. For B C C, bounded and measurable,

. 1
A Pu(Fe)™ Pu(e(T) € B, Fer)

_ c;lh(,u)—l/ XV = IIT /2= IX 1212y 3y g
B



CONTINUOUS CRYSTAL AND DUISTERMAAT-HECKMANN MEASURE FOR COXETER GROUPS

PROOF. Set zp = fv e~ IIAIP/2T gy By the reflection principle,

where

Pu((T) € dX, Fer) =N =IIT2 N c(w)pr (we, € + N)d,
weW

pe(a,b) = zt_le*”b’auz/m is the transition density of a standard Brownian

motion in V. Integrating over A and letting 7' — oo, we obtain (see [2])

Thus,

Pu(Fe) = Y e(w)els5m,
wew

using lemma and the bounded convergence theorem,

ngopu(Ff)ilpu(w(T) € B, Fg,T)

’ ’ )\I
27! lim AV =IIPT/2 = (EPHERN 1) /2T gy y=1g (¢, £+ AN
C3¢6—0 B

sl dim [ eI T/2 (el ) 2Ty (57 £+ X> N

C3£—0 B

zglh(u)—l/Be<W>—”H”2T/Qe—|*’W”h(X/T)dX

cglh(u)—l/ X =T /2= NI /2Ty 3y g,
B

as required. O

Applying lemmas , and proposition @, we obtain
]P)#(Qwow(T) € B()‘ﬂe)v §i(1/1) € R(Z,E))

i Pu(Ee) P (Quor(T) € BV ), w(T) € R(z,0), Ber)  (lemma BI)

claignio Pu(Ee) '"Pu(w(T) € R(2,€))P.(Qum(T) € B(\€), Eer) (lemma f.9(3))
ClaiEnLO]P’#(Eg)*lP#(w(T) € R(z,€))P,(¢(T) € B(\¢€), Fer)

q
[ e m=et @0 — e=<fW] Tim P,(Ee)™'Pu(¢(T) € B(Xe), Fer)

pate} C3¢—0
(lemma .9 (2))
q
H e~ B (W)zi [eeﬂiv(#) _ e*éﬂiv(#)]
=1

xc}lh(u)_l/ R )e”(’\/)_””HQT/Qe_”)‘/HZ/QTh()\')dX. (lemma .12)
BV ,€

Now divide by || B(y, €)||(2¢)? and let € tend to zero to obtain

P (Que¥(T) € dA, (1) € dz)

q
- He—ﬁiv(u)zz'e(u7>\>—HMHZT/QC;lh(/\)e—IMIIQ/QT d\ dz.

i=1

Letting p — 0 this becomes, writing P = Py,

(5.13)

P(Qu, (T € dA, i(¥) € dz) = ez h(N\)e M2 gx dz.
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Using lemma @, it follows that, for (w, A) in the interior of M,
5.14 P(0i(n) € dw, Pu,n(T) € d\) = e h(N)e IMNP/2T quy d.
( n 077 T

Under the probability measure P,  is a standard Brownian motion in V' with
2
transition density given by p.(a,b) = z; e~ Ib=el"/2t " By theorem @ under P,
Puw,n is a Brownian motion in C. Its transition density is given, for £, A € C, by
h(N)

@6 N) = 5 Y e(w)pi(we, ).
h(§)

As remarked in , this transition density can be extended by continuity to the
boundary of C. From lemma .11 we see that g7 (0, \) = k‘lh()\)Qe_|‘>‘||2/2T. Thus,

(5.15) P(Pou,n(T) € dX) = k™ h(N)2e~INF/2T gy

To complete the proof of the theorem, first note that since ¢;(¢) is measurable with
respect to the o-algebra generated by (Qu,¢(u), u > T), 0i(n) is measurable with
respect to the o-algebra generated by (Py,n(u), w > T). Thus, by the Markov
property of Py,n, the conditional distribution of g;(n), given (Pu,n(s),s < T),
is measurable with respect to the o-algebra generated by P,,n(T). Combining
this with (p.14) and (p.15), we conclude that the conditional law of g;(n), given
(Puwon(s),s < T) and Py,n(t) = A, is almost surely uniform on M;), and that the
Euclidean volume of M;* is k~h()), as required.

5.5. Proof of theorem @ Let ¢ = won and Q,y, = Puw,wo. Denote by P
(respectively Q) the semigroup of Brownian motion in V' (respectively C'). Under
P, by [, Theorem 5.6], Q% is a Brownian motion in C. Let § € C. The function
es(v) = e{%v) is an eigenfunction of P, and the es-transform of P; is a Brownian
motion with drift 6. Setting ¢5(v) = 3, cyr e(w)e!™®?), the function ¢;5/h is an
eigenfunction of Q; and the (¢s/h)-transform of @ is a Brownian motion with
drift ¢ conditioned never to exit C (see [, Section 5.2] for a definition of this
process). By theorem f.9, the conditional law of (T, given (Py,n(s), s < T) and
Puon(T) = A, is almost surely given by 3. It follows that the conditional law of
P(T), given (Qu,t(s), s < T) and Q¥ (T) = A, is almost surely given by 3.
Denote the corresponding Markov operator by K(\,-) = u}y(-). By [E, Theorem
5.6] we automatically have the intertwining K P, = Q:K. Note that Kes is an
eigenfunction of ;. By construction, the Kes-transform of Q;, started from the
origin, has the same law as Qw0¢(5), where (%) is a Brownian motion in V' with drift
8. Recalling the proof of [B], Theorem 5.6] we note that Q,,,%(?) has the same law as
a Brownian motion with drift § conditioned never to exit C. It follows that Kes =
¢s/(c(0)h), for some ¢(d) # 0. Now observe (using lemma for example) that

limg o Keg(¢) = 1. Thus, by lemma f.11, ¢(8) = limg_o ¢s(£)/h(E) = k= h(9).
We conclude that
(wd,\)
(6,v) ,, A dv) = kaEW E(w)e

This formula extends to § € V* by analytic continuation (see lemma .11 again),
and the proof is complete.
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5.6. A Littlewood-Richardson property. Let i = (s1,...,s,) where wg =
$1...84 is a reduced decomposition. For n € C%(V), let z = p;(n).
For each simple root « choose now j, = (s¢, - ,s%), a reduced decomposition

1 9g
of wp, such that s* = s,, and denote the corresponding string parameters of the
) q ) g g

path n by (2¢,---,%7) = 0j,(n). Asin (6.9), there is a continuous function ¥/, :
R? — R such that £ = W{,(z). Fix A,z € C and suppose that A + 7(s) € C for
0<s<T. Then &y = —inf,<r a”(n(s)) < a”(A). In other words,

(5.16) U (x) < a¥(N), aeX.
Let Mik’“ denote the set of z € M;* which satisfy the additional constraints (f.16).

This is a compact convex polytope. Let v** be the uniform probability distribution
on MiA’“ and let vy, be its image on V' by the map

q
z = (21, - ,zq)eMix\,H»—»/\Jr‘u—Z:cjajEV_
j=1

Let 1 be the Brownian motion in V starting from 0. Observe that, by theorem @,
the event {n(s) € C —\,0 < s < T} is measurable with respect to the o-algebra
generated by p;(n). Combining this with theorem f.9 we obtain:

COROLLARY 5.13. The conditional law of pi(n), given Py,n(s),s < T, Py,n(T) =
pwand X +n(s) € C for 0 < s < T, is v and the conditional law of X + n(T) is

Unp-
For s,t > 0 let
(Tsm)(t) = n(s +1) = 0(s), (7s Puwon)(t) = Pugn(s + 1) = Puyn(s).
LEMMA 5.14. For all s > 0,
Puo (TsPuwen) = Py T

PROOF. If my,m : Rt — V are continuous path starting at 0, let 1%, be the
path defined by mxsma(r) = m1(r) when 0 < r < s and myxsma(r) = m1(8)+m2(r—s)
when s < r. By lemma , Puo (1 *s T2) = Py (1) *s T2 where 75 is a path such
that Py, (T2) = Pu, (72). Since 75(m1 %5 m2) = 7o, this gives the lemma. O

Let 7, be the measure on C given by

Yap(dr) = Mw\,u (dx).

It will follow from theorem that this is a probability measure. Consider the
following o-algebra

Gs.t = 0(Puwon(a),a < 8, Putsn(r),r < t).

The following result is a continuous analogue of the Littelmann interpretation of
the Littlewood-Richardson decomposition of a tensor product.

THEOREM 5.15. For s,t > 0, yx,, is the conditional distribution of Puw,n(s+1)
given Gs 1, Puon(s) = A and Py, Tsn(t) = p.
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PROOF. When (X, (0:), P;) is a Markov process with shift 0; (ie. Xo1¢ =
X 06;), for any o(X,,r > 0)-measurable random variables Z,Y > 0, one has

E(Z o b:o(Xs,8 <t,Y00;)) =Ex,(Z|o(Y)) o b;.
Let us apply this relation to the Markov process X = Py,n (see [B]). Notice that
since Py, (TsX) = Pu, (10X) 0 b, it follows from the lemma that
Gst = 0(Xa, Puo (10 X) (1) 0 05,0 < 5,17 < t).
Therefore, for any Borel nonnegative function f: V — R,
E[f (Puwon(s + 1)|Gs.e] = Exo[f (Xe)|o(Puy (10 X)(r), 7 < t)] 0 0.

One knows (Theorem 5.1 in [P]]) that X is the h—process of the Brownian motion

killed at the boundary of C. In other words, starting from Xy = A, X is the h—
process of A + n(t) conditionally on A + n(s) € C, for 0 < s < ¢. It thus follows

from corollary that
EnﬂXMdnmmxmeStnE%L/ﬂmmmdw#u>

when Py, (70X )(t) = p. This proves that

Eﬂf(ﬁhmn(s+*tnlg&t]::][flw>duxw(w>

when Py, n(s) = A and Py, 7sn(t) = p.

5.7. A product formula. Consider the Laplace transform of u3,; given, for
AeC,zeV* by

D S ()
BTy

This is an example of a generalized Bessel function, following the terminology of
Helgason [@] in the Weyl group case and Opdam @] in the general Coxeter case.
It was a conjecture in Gross and Richards ] that these are Laplace transform
of positive measures (this also follows from Rosler [@]) They are positive eigen-
functions of the Laplace and of the Dunkl operators on the Weyl chamber C' with
eigenvalue ||A||? and Dirichlet boundary conditions and Jy(0) = 1. Let fy be the
density of the probability measure 3. One has

(5.17) Ja(2)

5.18 e £ () do = Jy(2).
(5.18) [ R do =0
Let, for v € C,
1
foU%:E@B'E:’KWWfNWU*H)
weW

It follows from the next result that fy ,(v) > 0.
THEOREM 5.16. (i) For \,;n € C and z € V*,
R = [ Do) do

c
(ii)
Yauldr) = fxu(z)de.
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PrOOF. The first part is given by the following computation, similar to the
one in Dooley et al [f], we give it for the convenience of the reader. It follows from

(F-17) and (5-18) that
2)Ju(z) = [ e T(2) fr(v) dv = e(w
Ia(2)Ju(2) /V Ju(z) fa(v) d k; ( )/V

o (zwptv)
h(p)h(2)

Using the invariance of the measure u3,; under W, fy(wv) = fi(v) for w € W.
One has

r(v) dv.

elzw(utv))

{
) (2) = k;&:(w)/‘/mh(v)dv

e(z,wv)
= k;é‘(w)/‘/mﬁ(“”)dv
1
~ h(p) /V Jo(2)h(x) (v = p) dv
1
- W weW /wlc Jo(2)h(v) fr(v — p) dv

1
= m /CJU(z)h(wv)fA(wvu) dv

_ / J.(0) fau(v) do
C

where we have used that, up to a set of measure zero, V = Uyeww 'C. This
proves ().

Let us now prove (4i), using theorem f.15. Since 7 is a standard Brownian
motion in V', {n(r),r < s} and 747 are independent, hence, for z € V*,
IE(e<Z*’7(S+t)>)|gS ¢) IE(e(zm(s»e(mm(t))|gS ¢)

E(e" |o(Pyyn(a),a < 8))E(e 7" |o(Py, e (b),b < 1))

By theorem @,
Ia(z) = E(") |0 (Py,n(a),a < s)
when Py, n(s) = A and, since 7,1 and n have the same law,
Ju(2) = (=71 o (Pugan(b), b < 1))

when Py, 7sn(t) = p. Therefore

E(e&1H |G, 1) = Jn(2)Ju(2)-
On the other hand, by lemma [£.16, G, ; is contained in o (Py,n(r),” < s+ t), thus

E(e1HG, 1) = B(E(eS D o(Pugn(r),r < s +1))|Gs,t)
= E(J= (Puon(s +1))|Gs.t)-

It thus follows from theorem that

Ia(z)Ju(2) = /Jv(z) dya,u(v).

Therefore, for all z € V*,

/Jv(z) Fau(v)do

/Jv(z) dyau(v).
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By injectivity of the Fourier-Laplace, transform this implies that

d%\,u(?)) = fA,u(U) dv. O

The positive product formula gives a positive answer to a question of Rosler
@] for the radial Dunkl kernel. It shows that one can generalize the structure
of Bessel-Kingman hypergroup to any Weyl chamber, for the so called geometric
parameter.

6. Littelmann modules and geometric lifting.

6.1. It was observed some time ago by G. Lusztig that the combinatorics of
the canonical basis is closely related to the geometry of the totally positive vari-
eties. This connection was made precise by Berenstein and Zelevinsky in [E], in
terms of transformations called ”tropicalization” and ”geometric lifting”. In this
section we show how some simple considerations on Sturm-Liouville equations lead
to a natural way of lifting Littelmann paths, which take values in a Cartan alge-
bra, to the corresponding Borel group. Using this lift, an application of Laplace’s
method explains the connection between the canonical basis and the totally positive
varieties.

This section is organized as follows. We first recall the notions of tropicalization
and geometric lifting in the next subsection, as well as the connection between the
totally positive varieties and the canonical basis. Then we make some observations
on Sturm-Liouville equations and their relation to Pitman transformations and the
Littelmann path model in type A;. We extend these observations to higher rank
in the next subsections then we show how they explain the link between string
parametrization of the canonical basis and the totally positive varieties.

6.2. Tropicalization and geometric lifting. A subtraction free rational
expression is a rational function in several variables, with positive real coefficients
and without minus sign, e.g.

ty + 2ty /ts, (1 —t3)/(1 —t) or 1/(t1ts + 3tsty)

are such expressions, but not t; — t3. Any such expression F(t1,...,t,) can be
tropicalized, which means that
Frrop(®1,,. .., 2n) = H%l Elog(F(ezl/E, ceey em”/a))
e—U4

exists as a piecewise linear function of the real variables (z1, ..., x,), and is given by
an expression in the maxplus algebra over the variables z1, ..., z,. More precisely,
the tropicalization F' — Fi,op replaces each occurence of + by V (the max sign
x Vy = max(x,y)), each product by a +, and each fraction by a —, and each
positive real number by 0. For example the three expressions above give

(t1 +t2/t3)trop = 1 V (22 — 23), (1 — %) /(1 — 2))trop = 0V . V 2,
and
(1/(z129 + 32324) )trop = — (21 + 22) V (23 + 74)) -

Tropicalization is not a one to one transformation, and there exists in general many
subtraction free rational expressions which have the same tropicalization. Given
some expression G in the maxplus algebra, any subtraction free rational expression
whose tropicalization is G is called a geometric lifting of G, cf [
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6.3. Double Bruhat cells and string coordinates. We recall some stan-
dard terminology, using the notations of [ We consider a simply connected com-
plex semisimple Lie group G, associated with a root system R. Let H be a maximal
torus, and B, B_ be corresponding opposite Borel subgroups with unipotent radi-
cals N, N_. Let ay,i € I, and o ,i € I, be the simple positive roots and coroots,
and s; the corresponding reflections in the Weyl group W. Let e;, fi, hi,i € 1,
be Chevalley generators of the Lie algebra of G. One can choose representatives
w € G for w € W by putting 5; = exp(—e;) exp(f;) exp(—e;) and 7w = vw if
1(v) + l(w) = l(vw) (see [ (1.8), (1.9)). The Lie algebra of H, denoted by h has
a Cartan decomposition h = a + ia such that the roots «; take real values on the
real vector space a. Thus a is generated by «,i € I and its dual a* by «;,i € 1.

A double Bruhat cell is associated with each pair u,v € W as

LY = NuNNB_vB_.

We will be mainly interested here in the double Bruhat cells L*:¢. As shown in
@], given a reduced decomposition w = s;, ...s;, every element g € L™ has
a unique decomposition g = x_;,(r1)...2_4, (r4) with non zero complex numbers
(r1,...,7q), where z_;(s) = ¢; <i€ 391) (where ¢; is the embedding of SLs into G
given by e;, fi, h;). The totally positive part of the double Bruhat cell corresponds
to the set of elements with positive real coordinates. For two different reduced
decompositions, the transition map between two sets of coordinates of the form
(r1,...,7q) is given by a subtraction free rational map, which is therefore subject
to tropicalization.

As a simple example consider the case of type As. Let the coordinates on
the double Bruhat cell L€ for the reduced decompositions wy = s1S281, and
wp = $28182 be (uy,us,us) and (t1,t2,t3) respectively, then

tQ 0 0 ujus 0 0
(61) tq tlﬁg/tg 0 = | uz + U2/U1 UQ/’LLl’LLg 0
1 t3/t2+1/t1 1/ﬁ1t3 1 1/’u,3 1/u2
which yields transition maps
t1 = uz+uz/u
o = wiug
t3 = ’ul’LLQ/(UQ + U1U3).

On the other hand, for each reduced expression wg = s;, ... s;, we can consider
the parametrization of the canonical basis by means of string coordinates. For
any two such reduced decompositions, the transition maps between the two sets of
string coordinates are given by piecewise linear expressions. As shown by Berenstein
and Zelevinsky, these expressions are the tropicalizations of the transition maps
between the two parametrizations of the double Bruhat cell L™ €, associated to
the Langlands dual group. For example, in type Az (which is its own Langlands
dual) let (z1,x2,23) be the Kashiwara coordinates of the canonical basis, using
the reduced decomposition wg = s15251, and (y1, Y2, y3) the ones corresponding to
wy = S$25152. The transition map between the two is given by

y1 = x3V(xa— 1)
Y2 = T1+T3
yz = 1A (22 —x3)
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which is the tropicalization of (6.3).

We will show how some elementary considerations on the Sturm-Liouville equa-
tion, and the method of variation of constants, together with the Littelmann path
model explain these connections.

6.4. Sturm-Liouville equations. We consider the Sturm-Liouville equation

(6.2) ¢ +ap =g

on some interval of the real line, say [0, 7] to fix notations. In general there exists
no closed form for the solution to such an equation. However, if one solution ¢ is
known, which does not vanish in the interval then all the solutions can be found
by quadrature. Indeed using for example the ”"method of variation of constants”
one sees that every other solution ¢ of this equation in the same interval can be
written in the form

o(t) = upo(t) + vgao(t)/o %ds

for some constants u,v. If this new solution does not vanish in the interval I, we

can use it to generate other solutions of the equation by the same kind of formula.
This leads us to investigate the composition of two maps of the form

t
1
Eyv:o— up(t) +v<p(t)/ ———ds
o o ¥*(s)
acting on non vanishing continuous functions. It is easy to see, using integration
by parts, that whenever the composition is well defined, one has
Eu,v o Eu’,v’ = Euu’,uv’-i—'u/u’

therefore these maps define a partial right action of the group of unimodular lower
triangular matrices
v 0
()

on the set of continuous paths which do not vanish in I. Of course this is equiv-
alently a partial left action of the upper triangular group, but for reasons which
will soon appear we choose this formulation. In particular if we start from ¢ and
construct

() = up(t) + vo(t) / @#()d

which does not vanish on [0, 7], then ¢ can be recovered from ¢ by the formula

o(t) = u(t) —o(t) | s

Coming back to the Sturm-Liouville equation, let 7, p be a fundamental basis of
solutions at 0, namely n(0) = p’(0) = 1, n’(0) = p(0) = 0. Then in the two-
dimensional space spanned by p,n the transformation is given by

(2,y) — (uz, uy + v/x)

and it is defined on x # 0. Again it is easy to check, using this formula, that this
defines a right action of the lower triangular group.
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Let us now investigate the limiting case u = 0, which gives (assuming v = 1 for
simplicity)
ds

(6.3) To(t) = w(t)/o POk

This map provides a “geometric lifting” of the one-dimensional Pitman transfor-
mation. Indeed set ¢(t) = et then using Laplace’s method

t
. a(t)/e —2a(s)/e — _ :
(6.4) 513& elog (e /0 e ds) a(t) — 2 ogfgt a(s).

This time the function ¢ cannot be recovered from 7 . If we compute the same
transformation with ¢, (t) := @(t)(1 +v fg ﬁds) we get

Tout) = uld) fy stspds
= et +v ) So7ds) (% - Wﬁ‘“)
o(t) Jy Frapeds
T(t).
This is of course not surprising, since 7 ¢ vanishes at 0, it thus belongs to a one-
dimensional subspace of the space of solutions to the Sturm-Liouville equation, and

7T is not invertible. In order to recover the function ¢ from ¢ = 7¢ we thus need
to specify some real number. A convenient choice is to impose the value of

[T
5*/o P2 = Ty

With this we can compute

/T L 1 1 o(t) 1
2 §= t 1 - T = -

PROPOSITION 6.1. Assume that v = T ¢ for some nonvanishing p, then the set

T71(xp) can be parametrized by & €]0,4+o00[. For each such & there exists a unique

e € T71 (1) such that & = fOT mds, given by

T
pelt) = (1) (% +/t ﬁds) |

Identifying the positive halfline with the Weyl chamber for SL,, we see that
sets of the form 7 ~1(¢) are geometric liftings of the Littelmann modules for SLs.
The formula in the proposition gives a geometric lifting of the operator H* since

T
H%a(t) = a(t) —x A 2t inf a(s) = lim elog (e“(t)/s(ex/s +/ eQa(S)/Ed5)> .
t

<s<T e—04

We shall now find the geometric liftings of the Littelmann operators. For this
we have, knowing an element ¢, € 71(1), to find the solution corresponding to

&5. Since
1 | _
Pe; (t) - 1/1(t) (a +/t —1/1(8)2 dS) 1= 1, 2
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one has

1 1 1 1 to

@1:902+w___):(102 1+__ )/ ds
¢ ¢ (51 &2 ¢ (51 fondS 0 Pes(8)?

2

Using Laplace method again one can recover the formula for the operators £2,
see definition @

6.5. A 2 x 2 matrix interpretation. We shall now recast the above com-
putations using a 2 x 2 matrix differential equation of order one, and the Gauss
decomposition of matrices. This will allow us in the next section to extend these
constructions to higher rank groups.

Let N4 be the nilpotent group of upper triangular invertible 2 x 2 matrices, let
N_ be the corresponding group of lower triangular matrices, and A the group of
diagonal matrices, then an invertible 2 x 2 matrix g has a Gauss decomposition if it
can be written as g = [g]_[g]o[g]+ with [g]— € N_,[g]o € A and [g]+ € Ni. We will
use also the decomposition g = [g]_[g]o+ With [g]o+ = [d]olg]+ € B = AN,. The
condition for such a decomposition to exist is exactly that the upper left coefficient
of the matrix g be non zero.

Let us consider a smooth path a : [0, 7] — R, such that a(0) = 0, and let the
matrix b(t) be the solution to

db da
(6.5) — = (dt da> b; b(0) = Id.
it \0 —de
Then one has
ea(t) ea(t) t 672a(s)d8
b(t) = ( 0 fé)fa(t)

Now let g = <:j u91> and consider the Gauss decomposition of the matrix

bo — uet) 4 pet(®) ft e2a(8)ds y~tea(t) fot e—2a(s) (g
g = ,Ue—a(t u—le—a(t)

One finds that

1 0
[bg]* = ve~2(®) 1
uea(t) fyealt) fot e—2a(s)ds
and
lbglos. = uet®) 4 pealt) fot e—2a(s) s u—Lea(®) fot e—2a(s) Jg
glo+ 0 (uea(t) + pea(® fot 672a(s)ds)71

One can check the following proposition.

PROPOSITION 6.2. The upper triangular matriz [bglo+ satisfies the differential
equation
d < a(t) 1
M — [ dttuv b
dt[ glo+ < 0 —%Tuma(t) [bglo+

where T, pa(t) = log(E, ,e*®).
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This equation is of the same kind as the equation (@) satisfied by the original
matrix b, but with a different initial point. The right action E, , is thus obtained
by taking the matrix solution to (@), multiplying it on the right by g = (Z ugl
and looking at the diagonal part of the Gauss decomposition of the resulting matrix.
Actually in this way the partial action T, , extends to a partial action T, of the
whole group of invertible real 2 x 2 matrices. One starts from the path a, constructs
the matrix b by the differential equation and then takes the 0-part in the Gauss
decomposition of bg. This yields a path Tja. The statement of the proposition
above remains true for [bglo4+. The importance of this statement is that one can
iterate the procedure and see that T, 4, = Ty, 0 T, when defined.

0 -1

1 0 >,then

Consider now the element s = (

Tsa(t) = a(t) + log ( /0 t 62“(5)d5> .

This is the geometric lifting of the Pitman operator obtained in @) In the next
section we shall extend these considerations to groups of higher rank.

6.6. Paths in the Cartan algebra. We work now in the general framework
of the beginning of section @

One has the usual decomposition g = n_ 4+ a 4+ n;.. Correspondingly there is a
Gauss decomposition g = [g]-[glolg]+ with [g]- € N_,[glo € 4, [g]+ € N, defined
on an open dense subset. We denote by [glo+ = [g]o[g]+ the B = AN, part of the
decomposition.

The following is easy to check, and provides a useful characterization of the
vector space generated by the e;.

LEMMA 6.3. Let n € ny, then one has [h='nh]y = n for all h € N_ if and
only if n belongs to the vector space generated by the e;.

Let a be a path in the Cartan algebra a and let b be a solution to the equation

where n € @,Ce;.

PROPOSITION 6.4. Let g € G, and assume that bg has a Gauss decomposition,
then the upper part [bglos in the Gauss decomposition of bg satisfies the equation

(6.6) Slbglos = (5 Tya+ m)lbalos

where Tga(t) is a path in the Cartan algebra.

Proof.
Let us write the equation

< (bg]-oalo+) = (a+ m)lbg] bl
in the form

bg1=" L lbg] - = gl (ra+ mlba]- — < glo- b
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Since the left hand side of this equation is lower triangular, the right hand side has
zero upper triangular part therefore, by lemma @
d d
= |[bg]=" (= bgl—| = |=[bglo+[bglos
=[2G+ mibel-| = | Gislostalst]

therefore there exists a path Tya such that equation ([f.6) holds. O

n = E n;€;
7

with all n; > 0. When ¢ = 5; is a fundamental reflection, one gets a geometric
lifting of the Pitman operator

t
Ts,a(t) = a(t) + log </ e_o”(“(s))ds> a)
0

associated with the dual root system, i.e.

We now assume that

1
lim T, (—a) = Pyva.
e—0 £ v

Thanks to the above proposition, one can prove that these geometric liftings satisfy
the braid relations, and T, provides a geometric lifting of the Pitman operator P,
for all w € W.

Analogously the Littelmann raising and lowering operators also have geometric
liftings.

6.7. Reduced double Bruhat cells. In this section we show how our con-
siderations on Littelmann’s path model allow us to make the connection with the
work of Berenstein and Zelevinsky [[f]. We consider a path a on the Cartan Lie
algebra, and the solution b to %b = (%a + n)b. When we multiply b on the right
by 5;,, and take its Gauss decomposition

[bsiy] - [bsi,Jo[bsi, |4 = [blo[b]+si,
then
[B]454, [bsi, |71 = [b]g ' [bsiy ] [bsi Jo € Nsiy N N B_L*1:¢
and
[b] 454, [bsi, |5 = 24y (r1)
for some r1. In fact, using our formula for Littelmann operators,

T
- eoq(a(T))/ o—a1(a(s)) g,
0

Comparing with (B.3) we see that 71e=*1(4(D) gives a geometric lifting of the Kashi-
wara coordinate for the Littelmann module. We can continue the process starting
from [bs;, ]+, to get

[bsiy ]+ 8ia[bsiy 8ia] 5" = 235 (72)
(using the fact that [g1g2]+ = [[g1]+92]+ for g1,92 € G) obtaining successive de-
compositions

(Bl 48iy -« 8, [0Sy - 83, ]5 " = D_iy (1) .. 3, (Th)

This gives the Kashiwara coordinates of [[b]1w]—o € L™, which are thus seen to
correspond to the coordinates on the cone by a geometric lifting.
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7. Appendix
This appendix is devoted to the proof of theorem @

LEMMA 7.1. If B(\), X € C, is a closed normal family of highest weight contin-
uous crystals then for each A\, pn € C such that X\ < u there exists an injective map
Uyt B(A) — B(p) with the following properties

(1) Uxu(bx) = by,
(i1) Uy el (b) = el Uy u(b), for allb e B(A),a € ,r >0,
(iii) Wi, fo(b) = fEUAu(b) if fo(b) € B(N).

PROOF. Let v = u—A. First consider the map ¢y, : B(A) — B(A\)®B(v) given
by éxu(b) = b® b, when b € B(\). Since b, is a highest weight £,(b,) = 0. By
normality, for all b € B(X), ¢4 (b) > 0. Therefore o := ¢, (b) — £4(b,) = @a(b) > 0.
By definition, this implies that €, (b®b,) = €4(b), Ya(b®by) = 0 (b), wt(b®b,) =
wt(b) + v. Using (R.J]) we see also that, for r > 0, e’,(b® b,) = el,b® b, and that,
when f7(b) € B(A), < pq(b) = o by normality, and therefore f(b®b,) = fLb®b,.
Since the family is closed there is an isomorphim iy, : F(by ® b,) — B(u). One
has ix,,(bx ® b,) = b,,. One can take Wy , =iy, 0Py ,. O

The family ¥, , constructed above satisfies ¥y » = id and, when A < p < v,
U,,0W,, =V,,, so that we can consider the direct limit B(oco) of the family
B(M\),A € C, with the injective maps ¥ ,, : B(A) — B(u), A < p. Still following
Joseph [[LY], we define a crystal structure on B(co).

PROPOSITION 7.2. The direct limit B(co) is a highest weight upper normal
continuous crystal with highest weight 0.

PROOF. By definition, the direct limit B(co) is the quotient set B/ ~ where
B = UycaB(a) is the disjoint union of the B(\)'s and where by ~ by for by €
B(\), by € B(u), when there exists a v € C such that v > A\, v > g and ¥, ,(by) =
W, (b2). Let b be the image in B(co) of b € B. If b € B()), then we define
wt(b) = wt(b) — A, €a(b) = ea(b), Pa(b) = a(b) + oV (wt(b)) and, when r > 0,
el (b) = er(b). These do not depend on A, since if 4 > X and &' = Wy ,(b), then
one has b’ = b and wt(b') = wt(b) + 1 — . In order to define f7(b) for r > 0, let us
choose p > A large enough to ensure that

palt) = 2al)) + " (wh(b)) +a” (0 —N) > 7.

Then fIb' # 0 by normality and we define f"b = frb/. Again this does not depend
on p. Using the lemma we check that this defines a crystal stucture on B(co).
Each ¥y ,, A < u, commutes with the el,, 7 > 0. This implies that B(co) is upper
normal. Since each B()) is a highest weight crystal, B(co) has also this property.
([l

We will denote by, the unique element of B(oo) of weight 0. Note that B(co)
is not lower normal. For instance,

(7.1) valboo) = 0, f(bso) # 0, for all f € F.

For \ € C we define the crystal S(\) as the set with a unique element {sy} and
the maps wt(sy) = A, eq(sx) = —a¥(N), pa(sa) = 0 and €, (sx) = 0 when r # 0.

LEMMA 7.3. The map
Uy :be B(A) — b®sy € B(oo)®S(A)
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s a crystal embedding.
PROOF. Let b € B()\), then
wt(Vy (b)) = wt(b® s)) = wt(b) + wt(sy) = wt(b) — A+ A = wt(b).

Let 0 = gaa( ) — a(sx). Then 0 = ¢, (b) since e4(sx) = —a¥(\) and @, (b) =
©a(b) — a¥(A). Thus o > 0 by normality of B(\). By the definition of the tensor
product, this implies that

ea(UA (b)) = ca(b®@ 5)) = £4(b) = ea(b),
thus o (¥A(b)) = wa(b). Furthermore,

eLWA(B) = (b @ 1) = R () @ eminreIe s,

When 7 > —o, this is equal to e[,(b) ® sx = Wa(e,(b)). If r < —o then
el (UaA(b) = ey (b)@elT7(sy) = 0, since e5,(sx) = 0 when s # 0, and on the other
hand, e’,(b) = 0 by normality. Thus ¥ (el (b)) = 0. O

/

If f= fin--- fit € F, wesay that f' € F'is extracted from f if f' = fan e fid
with 0 <7, < rp,k =1,---,n. Recall the definition of B, = {ba(t),t < 0} given
in Example E

LEMMA 7.4. Let f € F and o € X, then there exists f' extracted from f and
t > 0 such that

f(boo ® ba(o)) = f/boo ® ba(*t)'

Moreover if X € C is such that o¥(X) = 0 and BY(X\) large enough for all €
Y —{a}, then for u € C, for the same f' € F and t > 0,

Foa®@b,) = f'br @ fobu

PROOF. The first part follows easily from the definition of the tensor product.
Let A € C such that «¥(\) =0, p € C,8 € ¥ — {a} and r > 0. If, for some s > 0,
one has e3(f3b,) # 0 then wt(ej(faby)) = p+ s8 —raisin p— C (since p is a
highest weight). This is not possible because 3 (s —ra) > sﬂv(ﬁ) > 0. Therefore,
by normality, eg(f3b,) = 0. On the other hand, for all f = e for e F,

ea(fbr) = BY(wt(fba)) +ea(fbr) = B (wt(fby)) Z?‘kﬁv ag).

Let 0 = @g(fbr) —eg(fibu) = vs(fbx) and s > 0. Then

o =ps(fbr) = 8Y(\) = DB (o).

k=1
If 3Y () is large enough, then ¢ > max(s, 0) which implies, see (P.I]), that
(7.2) F3(fox @ fobu) = (F302) ® fobu

On the other hand, v, (b)) = a¥(X) + e4(bx) = 0, since £4(by) = 0 by normality.
We also know that ¢, (bao) = 0, see ([7-1]), hence

n

@a(fb)\ 9004 b/\ ZT a(boo) - Zrkav(ak) = sﬁa(fboo)

k=1 k=1
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Thus 0 = ¢4 (fbs) and does not depend on A. It follows that the following decom-
position is independent of A:

(7.3) Fa(for® fabu) = f7° foa @ £,
Using (E) and (E), it is now easy to prove the lemma by induction on n, proving

first the second assertion. [J

PROPOSITION 7.5. For each simple root o, there is a crystal embedding T,
B(oo) — B(00) ® By such that T'o(boo) = boo @ be(0).

PROOF. Let us show that the expression

(7.4) Fa(fboo) = fboo ©0a(0)), f€F,
defines the morphism I'y,. First we check that it is well defined. By definition,
fboo = fb, for all v € C such that fb, # 0.
Let us choose A as in lemma @ For p1 € C large enough, EAJW % 0. Let us
write L
forpp = oA @ byu) = f'by @ fED,.
Then f’ and ¢ depend only on fbx;,, which by definition depends only on fbs
By lemma @,
F(boo ©ba(0)) = F'boo @ bal(—1)
which depends only on fb (and not on f itself), showing that T',, is well defined
on Fboo, and thus on B(c0), since Fbo = B(00). Notice that f(beo ® ba(0)) # 0
since f'bs # 0.
Let us prove that T, is injective. Suppose that f(bee © ba(0)) = f(boo @ ba(0))
for some f, f € F. Using lemma
f(hoo @ ba(0)) = f'boe @ ba(—t) and f(boo @ ba(0)) = f'boe @ ba(—1).
If A € C is as in this lemma, then
Fox®by) = 03 ® fo(bu) = ['br ® fobu = F(bx ® by),

therefore fbxi, = fbAﬂL, thus fboo = fbeo. It is clear that I', commutes with
T r > 0. Since £4(bo(0)) = Yo (bso) = 0,
€a(Ta(bs)) = €a(bos ®ba(0)) = £a(boo),
hence, if f = fin--- fi1 € F,

n

fa(la(fbo)) = €a(fTalbes)) = ca(Ta(bos)) — Zrkﬂv(ak) = ca(fbso))-

k=1
Therefore 'y, commutes with e,. It also commutes with wt since wt(b) = 0. Let
us now consider e, r > 0. Let b € B(c0). If €, (b) # 0, then

Fa(b) = Ta(faeq (b)) = foa(Taleq (b)) # O
hence T'y (e}, (b)) = e, (T'o(b)). Suppose now that el (b) = 0. Since B(oco) is upper
normal, one has £,(b) = 0, hence €,(I'a(b)) = 0. By the lemma, there is f' € F
and t > 0 such that T, (b) = T (b) = f'booc ® bo(—t). Therefore

0=—ca(Ta(d) >calf'bes) > 0.
By upper normality this implies that e, (f'bo) = 0, hence
ea(Ta(b)) = e (f'boo ® ba(—1)) = (€4, 'boc) ® ba(—t) = 0. O
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The following lemma is clear.

LEMMA 7.6. Let By, By and C be three continuous crystals and Y : By — Bs
be crystal embeddings. Then v : By ® C' — By ® C defined by 1/J(b ®c)=1yb)c
s a crystal embedding.

7.1. Uniqueness. Proof of theorem @ Recall that ¥ is the set of simple
roots. Fix a sequence A = (--- , a9, aq) of elements of ¥ such that each simple root
occurs infinitely many times and a,, # ay, 11 for all n > 1. Let B(A) be the subset
of -+ By, ® By, in which the k-th entry differs from b,, (0) for only finitely many
k. One checks that the rules given for the multiple tensor give B(A) the structure
of a continuous crystal (see, e.g., Kashiwara, [Bg], 7.2, Joseph [Lg],[L]]). Let b4 be
the element of B(A) with entries b, (0) for all n > 1. We denote B(A) = Fba.

PROPOSITION 7.7. There exists a crystal embedding T' from B(co) onto B(A)
such that T'(bs) = ba.

ProOOF. Let f € F. We can write f = - fir where (- ,a2,01) = A and
rp > 0 for alln > 1. By lemmam

Fal( orﬁ (bOO)) = Ja; (Falbm) = gi (boo ® bal(o)) = boo ® bm(*Tl)

therefore

/

Fal( ;]Z gllbOO):( 5’; Qiboo)®ba1(*7"'1)
for some rf,- -+, 7, > 0. Similarly,
Fozz( : f:éb ) ( ;]Z ---f;gboo)®ba2(—7“l2/)

for some 14,14, - ,rfc'. If we apply lemma [7.§ to B = B(c0), By = B(c0) ®
Ba,, ¥ =T4,,C = Ba,, we obtain a crystal embedding

Ty, : B(00) ® By, — B(00) ® By, ® Ba,
such that, for b € B(c0),b; € By,

ag(b®b1) Ta,b® by.
Let r%m:fazorm;B( ) — B(co )®Ba2®Ba1,then
Tamon (15 fboo) = Ty (fak -+ fa2bog ® bay (—19)
= T, ( -f;éboa@bal(fr;)
= (/A -'féé’boa®ba2<fr;f>®bal<fr1>.

Again, with T, we build Tas 00,0 = Las © Tag.ay- Inductively we obtain strict
morphisms

Topooovay 2 B(00) = B(00) ® By, ® -+ @ By, ® By,

such that for some sg, -, 1
Loy pooesan (fap -  fayboo ) = boo ® bay (—8k) ®@ - @ ba, (—s1).
Now we can deﬁne I': B(co) — B(A) by the formula
( ’ fhb ) "®bak+n(0)®'"®b0¢k+1(0)®bak(7sk)®'”®bal(isl)'

One checks that this is a crystal embedding. [
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This shows that B(co) is isomorphic to B(A), which does not depend on the
chosen closed family of crystals, and thus proves the uniqueness. It also shows that
B(A) doest not depend on A, as soon as a closed family exists.
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