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On Lipschitz compactifications of trees

Benôıt Kloeckner

15th April 2008

Abstract

We study the Lipschitz structures on the geodesic compactification

of a regular tree, that are preserved by the automorphism group. They

are shown to be similar to the compactifications introduced by William

Floyd, and a complete description is given.

In [4], we described all possible differentiable structures on the geodesic
compactification of the hyperbolic space, for which the action of its isometries
is differentiable. We consider here the similar problem for regular trees and
obtain a description of “differentiable” compactifications, based on an idea of
William Floyd [3]. A tree has a geodesic compactification, but it is obviously
not a manifold and we shall in fact replace the differentiability condition by
a Lipschitz one.

Note that we only consider regular trees so that we have a large group
of automorphisms, hence the greatest possible rigidity in our problem. A
close case is that of the universal covering of a finite graph (that is, when the
automorphism group is cocompact). Our study does not extend as it is to
this case, in particular one can convince oneself by looking at the barycentric
division of a regular tree that condition (1) in theorem 2.1 should be modified.
However, similar results should hold, up to considering the translates of a
fundamental domain instead of the edges at some point.

This note is made of two sections. The first one recalls some facts about
regular trees and their automorphisms, Floyd compactifications, and gives
the definition of a Lipschitz compactification. The second one contains the
result and its proof.
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1 Preliminaries

1.1 Regular trees and their automorphisms

We denote by Tn the regular tree of valency n ≥ 3 and by Tn is topological
realization, obtained by replacing each abstract edge by a segment. All
considered metrics on Tn shall be length metrics, since general metrics could
have no relation at all with the combinatorial structure of Tn. Up to isometry,
two length metrics on Tn that are compatible with the topology differ only
by the length of the edges. We shall therefore identify Tn equipped with
such a metric and Tn equipped with a labelling of the edges by positive
real numbers (the label corresponding to the length of the edge). When all
edges are chosen of length 1, we call the resulting metric space the “standard
metric realization” of Tn, denoted by Tn(1). Its metric shall be denoted by
d; it coincides on vertices with the usual combinatorial distance.

There is a natural one-to-one correspondence between automorphism of
Tn and isometries of Tn(1). We denote both groups by Aut(Tn) and endow
them with the compact-open topology, so that a basis of neighborhoods of
identity is given by the sets BK(Id) = {φ ∈ Aut(Tn); φ(x) = x ∀x ∈ K}
where K runs over all finite sets of vertices.

Given an automorphism φ, one defines the translation length of φ as the
integer T (φ) = minx{d(x, φ(x))} where the minimum is taken over all points
(not only vertices) of Tn(1). The following alternative is classical:

1. if T (φ) > 0 then there is a unique invariant bi-infinite path (xi)i∈Z and
φ(xi) = xi+T (φ) for all i,

2. if T (φ) = 0 then either φ fixes some vertex, or φ has a unique fixed
point in Tn(1), which is the midpoint of an edge.

In the first case, φ is said to be a translation (a unitary translation if T (φ) =
1). Any translation is a power of a unitary translation.

1.2 Compactification of trees

The standard metric tree Tn(1) is a CAT(0) complete length space, thus
is a Hadamard space (see for example [2]). Therefore, it has a geodesic
compactification we now briefly describe.

A boundary point p is a class of asymptotic geodesic rays, where two
geodesic rays γ1 = x0, x1, . . . , xi, . . . and γ2 = y0, y1, . . . , yj, . . . are said to be
asymptotic if they are eventually identical: there are indices i0 and j0 so that
for all k ∈ N, on has xi0+k = yj0+k. The point p is said to be the endpoint of
any geodesic ray of the given asymptoty class.
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The union T n = Tn∪∂Tn is given the following topology: for a point that
is not on the boundary, a basis of neighborhoods is given by its neighborhoods
in Tn; for a boundary point p, a basis of neighborhoods is given by the
connected components of Tn \ {x} containing a geodesic ray asymptotic to
p, where x runs over the vertices

It is a general property of Hadamard spaces that Aut(Tn) acts on Tn by
homeomorphisms for this topology. Our goal will be to see which additional
structure can be added to this topology, that is preserved by Aut(Tn).

We have no differentiable structure on T n, but due to the Rademacher
theorem it is natural to look at Lipschitz structures instead.

Definition 1.1 Let X be a metrizable topological space. A Lipschitz struc-
ture [δ] on X is the data of a metric δ that is compatible with the topology
of X, up to local Lipschitz equivalence (two metrics δ1, δ2 are said to be
locally Lipschitz equivalent if the identity map (X, δ1) → (X, δ2) is locally
bilipschitz).

The natural isomorphisms of a space X endowed with a Lipschitz struc-
ture are the locally bilipschitz maps. Usually, for an action of a Lie group
on a manifold to be differentiable, one asks the map G × M → M to be
differentiable. Similarly, we say that an action of a topological group Γ on
a metrizable topological space X is Lipschitz if it is a continuous action
by locally bilipschitz maps, and if moreover the Lipschitz factor is locally
uniform.

We can now define our main object of study.

Definition 1.2 A Lipschitz compactification of Tn is a Lipschitz structure [δ]
on T n, where δ is a length metric, and such that the action of Aut(Tn) on
T n is Lipschitz.

In [3], Floyd introduced a method for compactifying a graph. We give
definitions that are adapted to the simpler case of trees.

Definition 1.3 By a Floyd function we mean a function h : N →]0, +∞[
such that

∑
r h(r) < +∞. Two Floyd functions h1, h2 are said to be compa-

rable if there is a C > 1 such that for all r ∈ N one has C−1h2(r) ≤ h1(r) ≤
Ch2(r).

Definition 1.4 A Floyd metric on T n is the length metric obtained from a
vertex x0 and a Floyd function h by assigning to each edge e the length h(d),
where d ∈ N is the combinatorial distance between e and x0.

By a Floyd compactification of Tn we mean the topological space T n en-
dowed with the Lipschitz structure corresponding to a Floyd metric.
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The condition that
∑

h(r) converges ensures that we do get a distance
on T n. For example, the distance between two boundary points p and p′ is
2
∑

r≥R h(r) where R is the combinatorial distance between x0 and the only
geodesic joining p and p′.

Two Floyd metrics obtained from the same point x0 and Floyd functions
h1, h2 are easily seen to define the same Lipschitz structures if and only if
h1 and h2 are comparable.

2 Description of all Lipschitz compactifica-

tions of regular trees

Theorem 2.1 Any Lipschitz compactification of Tn is a Floyd compactifica-
tion.

The Floyd compactification of Tn obtained from a Floyd function h and a
base point x0 is a Lipschitz compactification if and only if there is a constant
0 < η < 1 so that for all r ∈ N

h(r + 1) ≥ η h(r). (1)

Remark 1 Condition (1) implies that h decreases at most exponentially fast.
It is interesting to compare this with the usual conformal compactification of
the hyperbolic space, obtained by multiplying the metric by a factor that is
exponential in the distance to a fixed point.

Remark 2 Condition (1) implies that the considered Lipschitz structure de-
pends only upon h, not x0. We can therefore denote this compactification by
T n(h).

Proof. We first prove that any Lipschitz compactification of Tn is a
Floyd compactification.

Let δ′ be any length metric in the given Lipschitz class, and fix any vertex
x0 of Tn. We define h by h(r) = min δ′(x, y) where the minimum is taken
over all edges xy that are at combinatorial distance r from x0. Then h is a
Floyd function because x0 is at finite δ′ distance from the boundary. Denote
by δ the Floyd metric obtained from x0 and h, and let us prove that [δ] = [δ′].
It is sufficient to prove that there is a constant C so that for all r, two edges
that are at combinatorial distance r from x0 have their δ′ lengths that differ
by a factor at most C.

For any R ∈ N, let B(R) be the closed ball of radius R and center x0 in
Tn(1). It contains a finite number of edges, so that there is a constant CR

that satisfies the above property for all r ≤ R.
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Since the compactification is assumed to be Lipschitz, for all p ∈ ∂Tn

there are a neighborhood V of p, a neighborhood U of the identity and a
constant k so that any φ ∈ U is k-Lipschitz on V . Since ∂Tn is compact, we
can find a finite number of such quadruples (pi, Vi, Ui, ki) so that the Vi cover
∂Tn. Moreover we can assume that the Vi are the connected components
of Tn \ B(R) for some radius R, and that U = ∩Ui = BB(R)(Id). Since for
all i and r > R, U acts transitively on the set of edges of Vi that are at
combinatorial distance r from x0, those edges have their δ′-length that differ
by a factor at most C ′ = sup ki. Moreover, there is an automorphism φ0 that
fixes x0 and permutes cyclically the Vi. Since φ0 is locally Lipschitz, there is
a R′ and a C ′′ so that for all r ≥ R′ and all couple (i1, i2), there are edges of
Vi1 and Vi2 that are at combinatorial distance r from x0 and whose δ′ lengths
differ by a factor at most C ′′. The supremum C of CR′ and C ′′C ′2 is the
needed constant.

Consider now the Floyd compactification obtained from x0 and h and
denote by δ the associated Floyd metric. By construction, any automorphism
φ of Tn that fixes x0 is an isometry for δ, thus is locally bilipschitz for the
corresponding Lipschitz structure.

Two translations are close to one another when they differ by an element
close to identity. An element close enough to identity must fix x0, thus is
an isometry. Therefore, we only need to prove that a given translation is
Lipschitz to get that all automorphisms in a neighborhood are equilipschitz.
Checking unitary translations is sufficient since any translation is an iterate
of one of those.

Let φ be a unitary translation, and γ = . . . , y−1, y0, y1, . . . be its trans-
lated geodesic, where we assume that y0 realizes the minimal combinatorial
distance d0 between vertices of γ and x0. By local finiteness, φ is locally
bilipschitz around any point of Tn and we need only check the boundary.

Let us start with the attractive endpoint p of γ. Assume that our Floyd
compactification is Lipschitz. It implies that φ is locally bilipschitz around
p, in particular there is a r0 > 0 and a k > 1 such that for any r ≥ r0,

k δ(yr+1, yr+2) ≥ δ(yr, yr+1)

h(r + d0 + 1) ≥ k−1h(r + d0)

which gives condition (1).
Conversely, assume that (1) holds.
For any vertex x we have

|d(φ(x), x0) − d(x, x0)| ≤ 1 + 2d0

since the worst case is when x = x0 or x is in a connected component of
Tn \ {x0} other than that of γ. Therefore, the length of an edge and of its
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image by φ differ by a factor bounded by η−(1+2d0). Therefore, φ is Lipschitz.
Since φ−1 is also a unitary translation, φ is bilipschitz. �

It would be interesting to consider more general spaces, for example eu-
clidean buildings or CAT(-1) buildings like the Ipq described by Bourdon in
[1]. It is not obvious how to define the Floyd compactification: for exam-
ple, a mere scaling of the distance in each cell by a factor depending on the
combinatorial distance to a fixed cell would create gluing problems (an edge
shared by two faces having two different length). This spaces could therefore
be less flexible than trees.
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