
AROUND THE GYSIN TRIANGLE I

FRÉDÉRIC DÉGLISE

Abstract. We define and study Gysin morphisms on mixed motives over a
perfect field. Our construction extends the case of closed immersions, already
known from results of Voevodsky, to arbitrary projective morphisms. We prove
several classical formulas in this context, such as the projection and excess
intersection formulas, and some more original ones involving residues. We
give an application of this construction to duality and motive with compact
support.

Introduction

Since Poincaré discovers the first instance of duality in singular homology, mathe-
maticians slowly became aware that most of cohomology theories could be equipped
with an exceptional functoriality, covariant, usually referred to as either transfer,
trace or more recently Gysin morphism1. In homology, this kind of exceptional func-
toriality exists accordingly. The most famous case is the pullback on Chow groups.
Motives of Voevodsky are homological: they are naturally covariant. As they mod-
eled homology theory, they should be equipped with an exceptional functoriality,
contravariant. This is what we primarily prove here for smooth schemes over a
field. Further, we focus on the two fundamental properties of Gysin morphisms:
their functorial nature and their compatibility with the natural functoriality, corre-
sponding to various projection formulas. The reader can already guess the intimate
relationship of this theory with the classical intersection theory.

The predecessor of our construction was to be found in the Gysin triangle defined
by Voevodsky2 for motives over a perfect field k: associated with a closed immer-
sion i : Z → X between smooth k-schemes, Voevodsky constructs a distinguished
triangle of mixed motives:

M(X − Z)→M(X)
i∗
−→M(Z)(n)[2n]

∂X,Z

−−−→M(X − Z)[1].

The arrow labelled i∗ is the Gysin morphism associated with the closed immersion i.
Because this triangle corresponds to the so-called localization long exact sequence in
cohomology, fundamental in Chow and higher Chow theory, it has a central position
in the theory of mixed motives. In [Dég04] and [Dég08b], we studied its naturality,
which corresponds to the projection formulas mentionned in the first paragraph,
for the Gysin morphism i∗. Interestingly, we discovered that these formulas had
counterpart for the residue morphism ∂X,Z appearing in the Gysin triangle3. The
main technical result of this article (see Theorem 1.34) is the functoriality property

Date: 2005 - last revision: 04/2011.
Partially supported by the ANR (grant No. ANR-07-BLAN-042).
1 The term transfer is more frequently used for finite morphisms, trace for structural morphisms

of projective smooth schemes over a field, and Gysin morphisms for the zero section of a vector
bundle, usually understand as a part of the Gysin long exact sequence.

2See [FSV00, chap. 5, Prop. 3.5.4].
3The reader is referred to section 1.3 for a summary of these results.
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2 FRÉDÉRIC DÉGLISE

of the Gysin morphism i∗. But, as in the case of projection formulas, this comes
with new formulas for the residue morphism. Let us quote it now:

Theorem. Let X be a smooth k-scheme, Y (resp. Y ′) be a smooth closed sub-
scheme of X of pure codimension n (resp. m). Assume the reduced scheme Z asso-
ciated with Y ∩Y ′ is smooth of pure codimension d. Put Y0 = Y −Z, Y ′

0 = Y ′−Z,
X0 = X − Y ∪ Y ′.

Then the following diagram, with i,j,k,l,i′ the evident closed immersions, is com-
mutative :

M(X)
j∗ //

i∗
��

(1)

M(Y ′)(m)[2m]
∂X,Y ′

//

k∗

��
(2)

M(X − Y ′)[1]

(i′)∗

��
M(Y )(n)[2n]

l∗
// M(Z)(d)[2d]

∂Y,Z //

∂Y ′,Z��
(3)

M(Y0)(n][2n+ 1]

∂X0,Y0��
M(Y ′

0)(m)[2m+ 1]
−∂X0,Y ′

0

// M(X0)[2].

This theorem can be understood as follows: the commutativity of square (1) in fact
gives the functoriality of the Gysin morphism (take Y ′ = Z) ; the commutativity
of square (2) shows the Gysin triangle is functorial with respect to the Gysin mor-
phism of a closed immersion. Finally the commutativity of square (3) reveals the
differential nature of the residue morphism: it can be seen as an analogue of the
change of variable theorem for computing the residue of differential forms.4

More generally, our Gysin morphism is associated with any morphism between
smooth k-schemes. We go from the case of closed immersions to that of projective
morphisms by a nowadays classical method5. Using the projective bundle formulas
for motives, one easily defines the Gysin morphism for the projection of a projective
bundle. As any projective morphism f can be factored as closed immersion i
followed by the projection of a projective bundle p, we can put: f∗ = p∗i∗. The
key point is to show this definition is independant of the factorisation. Taking into
account the theorem cited above, this reduces to prove that for any section s of
a the projection p, the following relation holds: p∗s∗ = 1. When the definition is
correctly settled, the main properties of the general Gysin morphism follows from
the particular case of closed immersions. Let us summarize them for the reader:

• functorial nature (Prop. 2.9),
• projection formula in the transversal case (Prop. 2.10),
• excess intersection formula (Prop. 2.12),
• naturality of the Gysin triangle with respect to Gysin morphisms (Prop.
2.13).

To end this description of the motivic Gysin morphism, we come back to the
point of view at the beginning of the introduction. It was told that the existence
of this exceptional functoriality was a consequence of Poincaré duality. In the end
of this work, we go on the reverse side: Poincaré duality is a consequence of the
existence of the Gysin morphism6. In fact, we use the tensor structure on the
category of mixed motives and construct duality pairings for a smooth projective
k-scheme X of dimension n. Let p : X → Spec(k) (resp. δ : X → X ×k X) be

4In fact, one can show that the residue morphisms of motives induces the usual residue on
differential forms via De Rham realization.

5A model for us was the pullback on Chow groups as defined by Fulton in [Ful98].
6Though stated in a different language, this was already observed and used in [SGA4, XVIII].
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the canonical projection (resp. diagonal embedding) of X/k. We obtain duality
pairings (cf Theorem 2.18)

η : Z
p∗

−→M(X)(−n)[−2n]
δ∗−→M(X)(−n)[−2n]⊗M(X)

ǫ : M(X)⊗M(X)(−n)[−2n]
δ∗
−→M(X)

p∗
−→ Z.

which makes M(X)(−n)[−2n] a strong dual of M(X) in the sense of Dold-Puppe
(see Paragr. 2.16 for recall on this notion). This result implies the usual formula-
tion of Poincaré duality: the motivic cohomology of X is isomorphic to its motivic
homology via cap-product with a homological class, the fundamental class of X/k.
But this duality result holds more universally: any motive defines both a cohomol-
ogy and a homology ; the previous duality statement is valid in this generalized
setting.

The morality of this result is that the existence of the Gysin morphism is es-
sentiallty equivalent to Poincaré duality when one restricts to projective smooth
schemes over k (we left the precise statement to the reader).

Brief description of the organization of the paper. Section 1 is concerned with the
Gysin triangle associated with a closed immersion. Sections 1.1, 1.2 and 1.3 contains
reminders on the articles [Dég04] and [Dég08b], concerning both the definitions and
the results. Section 1.4 contains the proof of the main theorem of this paper, as
stated above.

In section 2, we develop the general Gysin morphism: section 2.1 contains es-
sentially the proof that the definition explained above is independant of the choice
of the factorization, section 2.2 states and proves the properties listed above. In
the end of section 2.2, we also relate our Gysin morphism in the case of finite étale
covers with the transfers one gets using the theory of finite correspondences (see
Prop. 2.15). Section 2.3 explores duality as explained above, and shows how one
can deduce a natural construction of a motive with compact support.

Further background and references. Gysin morphisms for motives were already con-
structed by M. Levine within his framework of mixed motives in [Lev98].7 The
treatment of Levine has common feature with ours. In comparison, our principal
contribution consists in the formula involving residues, together with the excess
intersection formula. The construction of Gysin morphism on cohomology – which
follows from its existence on motives through realization – was also treated directly
by Panin in the setting of oriented cohomologies. In his setting, Panin does not
consider residue morphisms.

This work has been available as a preprint for a long time.8 It has been used in
[BVK08] by Barbieri-Viale and Kahn about questions of duality. Ivorra refers to
it in [Ivo10] mainly concerning motivic fundamental classes (Def. 1.26 here). Our
initial interest for the Gysin morphism was motivated by the some computation in
the coniveau filtration at the level of motives ; we refer the reader to [Dég11] in
this book for this subject.

We have extended the considerations of the present paper in a more general
setting in [Dég08a]: the base can be arbitrary and we work in an abstract setting
which allows to consider both motives and MGL-modules – the latter corresponds
to generalized oriented cohomologies, see loc. cit. for details. The present version

7Recall Levine showed an equivalence of triangulated monoidal categories between his category
of mixed motives and the one of Voevodsky under the assumption of resolution of singularities.

8 It first appears on the preprint server of the LAGA in 2005.
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is still useful as the proof are much simpler. Let us mention also the fundamental
work [Ayo07] of Ayoub on cross functors. It yields Gysin morphisms through a
classical procedure (dating back to [SGA4]). However, one has to take care about
questions of orientation which are not treated by Ayoub (aka Thom isomorphisms).
This is done in [CD09b]. On the other hand, the excess intersection formula, as well
as formulas involving residues do not follow directly from the 6 functors formalism
but from the analysis done here.

A final word concerning Poincaré duality: it was well known that strong duality
for motives of smooth projective k-schemes was a consequence of the construction
by Voevodsky of a ⊗-functor from Chow motives to geometric motives (see [FSV00,
chap. 5, 2.1.4]). On the other hand, our direct proof of duality shows the existence
of this functor (see Remark 2.19) without using the theory of Friedlander and
Lawson on moving cycles ([FL98]).9 Let us mention also that the new idea in our
definition of the motive with compact support of a smooth k-scheme is that the
Gysin morphism of the diagonal allows to construct a comparison functor from
the motive with compact support to the usual motive (see property (iv) after Def.
2.21) – this idea was already used in [CD09a]. Compared to other versions of motive
with compact support, one by Voevodsky in [FSV00, chap. 5, §4] and the other
by Huber-Kahn in [HK06, app. B], ours allows one to bypass the assumptions of
resolution of singularities for some of the fundamental properties.
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Notations and conventions

We fix a base field k which is assumed to be perfect. The word scheme will
stand for any separated k-scheme of finite type, and we will say that a scheme is
smooth when it is smooth over the base field. The category of smooth schemes is
denoted by Sm(k). Throughout the paper, when we talk about the codimension
of a closed immersion, the rank of a projective bundle or the relative dimension of
a morphism, we assume it is constant.

Given a vector bundle E over X , and P the associated projective bundle with
projection p : P → X , we will call canonical line bundle on P the canonical invert-
ible sheaf λ over P characterized by the property that λ ⊂ p−1(E). Similarly, we
will call canonical dual line bundle on P the dual of λ.

We say that a morphism is projective if it admits a factorization into a closed
immersion followed by the projection of a projective bundle.10

We let DMgm(k) (resp. DM eff
gm (k)) be the category of geometric motives (resp.

effective geometric motives) introduced in [FSV00, chap. 5]. For the result of
section 1, we work in the category DM eff

gm (k). If X is a smooth scheme, we denote

9Explicitly: the proof of Prop. 2.1.4 of [FSV00, chap. 5] refers to [FSV00, chap. 4, 7.1] which
uses in particular [FSV00, chap. 4, 6.3] whose proof is a reference to [FL98].

10Beware this is not the convention of [EGA2] unless the aim of the morphism admits an ample
line bundle.
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by M(X) the effective motive associated with X in DM eff
gm (k). From section 2 to

the end of the article, we work in the category DMgm(k). Then M(X) will be the
motive associated with X in the category DMgm(k) (through the canonical functor
DM eff

gm (k)→ DMgm(k)).
For a morphism f : Y → X of smooth schemes, we will simply put f∗ = M(f).

Moreover for any integer r, we sometimes put Z((r)) = Z(r)[2r] in large diagrams.
When they are clear from the context (for example in diagrams), we do not indicate
twists or shifts on morphisms.
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1. The Gysin triangle

1.1. Relative motives.

Definition 1.1. We call closed (resp. open) pair any couple (X,Z) (resp. (X,U))
such that X is a smooth scheme and Z (resp. U) is a closed (resp. open) subscheme
of X .

Let (X,Z) be an arbitrary closed pair. We will say (X,Z) is smooth if Z is
smooth. For an integer n, we will say that (X,Z) has codimension n if Z has
(pure) codimension n in X .

A morphism of open or closed pairs (Y,B) → (X,A) is a couple of morphisms
(f, g) which fits into the commutative diagram of schemes

B
� � //

g ��
Y
f��

A
� � // X.

If the pairs are closed, we also require that this square is topologically cartesian11.
We add the following definitions :

• The morphism (f, g) is said to be cartesian if the above square is cartesian
as a square of schemes.
• A morphism (f, g) of closed pairs is said to be excisive if f is étale and gred
is an isomorphism.
• A morphism (f, g) of smooth closed pairs is said to be transversal if it is
cartesian and the source and target have the same codimension.

11i.e. cartesian as a square of topological spaces ; in other words, Bred = (A×X Y )red.
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We will denote conventionally open pairs as fractions (X/U).

Definition 1.2. Let (X,Z) be a closed pair. We define the relative motive MZ(X)
— sometimes denoted by M(X/X − Z) — associated with (X,Z) to be the class
in DM eff

gm (k) of the complex

...→ 0→ [X − Z]→ [X ]→ 0→ ...

where [X ] is in degree 0.

Relative motives are functorial with respect to morphisms of closed pairs. In
fact, MZ(X) is functorial with respect to morphisms of the associated open pair
(X/X−Z). For example, if Z ⊂ T are closed subschemes of X , we get a morphism
MT (X)→MZ(X).

If j : (X − Z) → X denotes the complementary open immersion, we obtain a
canonical distinguished triangle in DM eff

gm (k) :

(1.2.a) M(X − Z)
j∗
−→M(X)→MZ(X)→M(X − Z) [1].

Remark 1.3. The relative motive in DM eff
gm (k) defined here corresponds under the

canonical embedding to the relative motive in DM eff
− (k) defined in [Dég04, def.

2.2].

The following proposition sums up the basic properties of relative motives. It
follows directly from [Dég04, 1.3] using the previous remark. Note moreover that in
the category DM eff

gm (k), each property is rather clear, except (Exc) which follows
from the embedding theorem [FSV00, chap. 5, 3.2.6] of Voevodsky.

Proposition 1.4. Let (X,Z) be a closed pair. The following properties of relative
motives hold:

(Red) Reduction: If we denote by Z0 the reduced scheme associated with Z then:

MZ(X) = MZ0(X) .

(Exc) Excision: If (f, g) : (Y, T )→ (X,Z) is an excisive morphism then (f, g)∗ is
an isomorphism.

(MV) Mayer-Vietoris : If X = U ∪ V is an open covering of X then we obtain a
canonical distinguished triangle of shape:

MZ∩U∩V (U ∩ V )
M(jU )−M(jV )
−−−−−−−−−→MZ∩U (U)⊕MZ∩V (V )

M(iU )+M(iV )
−−−−−−−−−→MZ(X) −→MZ∩U∩V (U ∩ V ) [1].

The morphism iU , iV , jU , jV stands for the obvious cartesian morphisms
of closed pairs induced by the corresponding canonical open immersions.

(Add) Additivity: Let Z ′ be a closed subscheme of X disjoint from Z. Then the
morphism induced by the inclusions

MZ⊔Z′(X)→MZ(X)⊕MZ′(X)

is an isomorphism.
(Htp) Homotopy: Let π : (A1

X ,A1
Z) → (X,Z) denote the cartesian morphism

induced by the projection. Then π∗ is an isomorphism.
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1.2. Purity isomorphism.

1.5. Consider an integer i ≥ 0. Recall that the i-th twisted motivic complex
over k is defined according to Voevodsky as Suslin’s singular simplicial complex of
the cokernel of the natural map of sheaves with transfers Ztr(Ai

k − 0) → Ztr(Ai
k),

shifted by 2i degrees on the left (cf [SV00] or [FSV00]). Motivic cohomology of
a smooth scheme X in degree n ∈ Z and twists i is defined following Beilinson’s
idea as the Nisnevich hypercohomology groups of this complex which we denote
by Hn

M(X ;Z(i)). Moreover, there is a natural pairing of complexes Z(i)⊗ Z(j)→
Z(i+ j) (cf [SV00]) which induces the product on motivic cohomology.

Recall there exists12 a canonical isomorphism

(1.5.a) ǫX : CHi(X)
∼
−−→ H2i

M(X ;Z(i))

which is functorial with respect to pullbacks and compatible with products.
According to [FSV00, chap. 5, 3.2.6], we also get an isomorphism

(1.5.b) Hn
M(X ;Z(i)) ≃ HomDMeff

gm (k)(M(X) ,Z(i)[n])

where Z(i) on the right hand side stands (by the usual abuse of notation) for the
i-th Tate geometric motive. In what follows, we will identify cohomology classes in
motivic cohomology with morphisms in DM eff

gm (k) according to this isomorphism.
Thus cup-product on motivic cohomology corresponds to a product on mor-

phisms that we describe now. Let X be a smooth scheme, δ : X → X ×k X be the
diagonal embedding and f : M(X)→M, g : M(X)→ N be two morphisms with
target a geometric motive. We define the exterior product of f and g, denoted by
f⊠Xg or simply f⊠g, as the composite

(1.5.c) M(X)
δ∗−→M(X)⊗M(X)

f⊗g
−−−→M⊗N .

In the case where M = Z(i)[n], N = Z(j)[m], identifying the tensor product
Z(i)[n] ⊗ Z(j)[m] with Z(i + j)[n + m] by the canonical isomorphism, the above
product corresponds exactly to the cup-product on motivic cohomology.

According to the isomorphism (1.5.a), motivic cohomology admits Chern classes.
Thus, applying the isomorphism (1.5.b), we attach to any vector bundle E on a
smooth scheme X and any integer i ≥ 0, the following morphism in DM eff

gm (k)

(1.5.d) ci(E) : M(X)→ Z(i)[2i]

which corresponds under the preceding isomorphisms to the i-th Chern class of E
in the Chow group. For short, we call this morphism the i-th motivic Chern class
of E.

Remark 1.6. According to our construction, any formula in the Chow group involv-
ing pullbacks and intersections of Chern classes induces a corresponding formula
for the morphisms of type (1.5.d).

1.7. We finally recall the projective bundle theorem (cf [FSV00, chap. 5, 3.5.1]).
Let P be a projective bundle of rank n over a smooth scheme X , λ its canonical

12 Following Voevodsky, this isomorphism is obtained from the Nisnevich hypercohomology
spectral sequence of the complex Z(i) once we have observed that Hq(Z(i)) = 0 if q > i and
Hi(Z(i)) is canonically isomorphic with the i-th Milnor unramified cohomology sheaf KM

i . The
compatibility with product and pullback then follows from a careful study (cf for example [Dég02,
8.3.4]).
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dual line bundle and p : P → X the canonical projection. The projective bundle
theorem of Voevodsky says that the morphism

(1.7.a) M(P )

∑
i≤n c1(λ)

i
⊠p∗

−−−−−−−−−−−→
n

⊕

i=0

M(X)((i))

is an isomorphism.
Thus, we can associate with P a family of split monomorphisms indexed by an

integer r ∈ [0, n] corresponding to the decomposition of its motive :

(1.7.b) lr(P ) : M(X)(r)[2r]→ ⊕i≤nM(X)(i)[2i]→M(P ) .

The following lemma will be a key point in the theory of the Gysin morphism:

Lemma 1.8. Consider the notations introduced above.
Let x ∈ CHn(P ) be a cycle class and xi ∈ CHn−i(X) be cycle classes such that

(1.8.a) x =

n
∑

i=0

p∗(xi).c1(λ)
i.

Consider an integer i ∈ [0, n] and the following morphisms in DM eff
gm (k)

x : M(X)→ Z(n)[2n]

xi : M(X)→ Z(n− i)[2(n− i)]

associated respectively with x and xi through the isomorphisms (1.5.a) and (1.5.b).
Then we get the equality of morphisms M(X) (i)[2i]→ Z(r)[2r] in DM eff

gm (k):

x ◦ li(P ) = xi(i)[2i].

Proof. Taking care of Remark 1.6, the equality (1.8.a) induces the following equality
of morphisms M(P )→ Z(r)[2r]:

x =

r
∑

i=0

c1(λ)
i
⊠(xi ◦ p∗) =

∑r
i=0

[

xi(i)[2i]
]

◦ c1(λ)i⊠p∗.

The second equality follows from the definition of the exterior cup product (formula
(1.5.b)). Thus, the definition of li(P ) and the formula (1.7.a) for the projective
bundle isomorphism on motives allow to conclude. �

Remark 1.9. Note in particular that we deduce from the preceding lemma the fol-
lowing weak form of the cancellation theorem of Voevodsky [Voe02]: for any smooth
scheme X and any non negative integers (n, i) such that i ≤ n, the morphism

HomDMeff
gm (k)(M(X) ,Z(n− i)[2(n− i)])→ HomDMeff

gm (k)(M(X) (i)[2i],Z(n)[2n]),

φ 7→ φ(i)[2i]

is an isomorphism.

Lemma 1.10. Let X be a smooth scheme and E/X be a vector bundle. Consider
the projective completion P of E/X, the closed pair (P,X) corresponding to the
canonical section of P/X and the complementary open immersion j : U → P .
Then the distinguished triangle (1.2.a) associated with (P,X)

(1.10.a) M(U)
j∗
−→M(P )

πP−−→MX(P )→M(U) [1]

is split.
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Proof. Recall P = P(E⊕A1
X). Let ν : P(E)→ P be the embedding associated with

the monomorphism of vector bundles E → E⊕A1
X . The closed immersion ν factors

through the open immersion j : U → P . Let us denote finally by L the canonical
line bundle on P(E) and by s0 its zero section. Then, according to [EGA2, §8],
there exists an isomorphism of schemes ǫ : L→ U such that the following diagram
commutes:

L
ǫ // U

j

��
P(E)

ν //

s0

OO

P.

Thus the morphism j∗ is isomorphic in DM eff
gm (k) to the morphism

ν∗ : M(P(E))→M(P )

which is a split monomorphism according to the respective projective bundle iso-
morphisms for P(E)/X and P/X . �

1.11. Consider a smooth closed pair (X,Z). Let NZX (resp. BZX) be the normal
bundle (resp. blow-up) of (X,Z) and PZX be the projective completion of NZX .
We denote by BZ(A

1
X) the blow-up of A1

X with center {0} × Z. It contains as a
closed subscheme the trivial blow-up A1

Z = BZ(A
1
Z). We consider the closed pair

(BZ(A
1
X),A1

Z) over A
1
k. Its fiber over 1 is the closed pair (X,Z) and its fiber over

0 is (BZX ∪ PZX,Z). Thus we can consider the following deformation diagram :

(1.11.a) (X,Z)
σ̄1−→ (BZ(A

1
X),A1

Z)
σ̄0←− (PZX,Z).

This diagram is functorial in (X,Z) with respect to cartesian morphisms of closed
pairs. Note finally that, on the closed subschemes of each closed pair, σ̄0 (resp. σ̄1)
is the 0-section (resp. 1-section) of A1

Z/Z.
The existence statement in the following proposition appears already in [Dég08b,

2.2.5] but the uniqueness statement is new :

Proposition 1.12. Let n be a natural integer.
There exists a unique family of isomorphisms of the form

p(X,Z) : MZ(X)→M(Z)(n)[2n]

indexed by smooth closed pairs of codimension n such that :

(1) for every cartesian morphism (f, g) : (Y, T ) → (X,Z) of smooth closed
pairs of codimension n, the following diagram is commutative :

MT (Y )
(f,g)∗ //

p(Y,T )

��

MZ(X)

p(X,Z)

��
M(T )(n)[2n]

g∗(n)[2n] // M(Z)(n)[2n].

(2) Let X be a smooth scheme and P be the projective completion of a vector
bundle E/X of rank n. Consider the closed pair (P,X) corresponding to
the 0-section of E/X. Then p(P,X) is the inverse of the following morphism

M(X)(n)[2n]
ln(P )
−−−→M(P )

πP−−→MX(P ) .

where ln(P ) is the monomorphism of (1.7.b) and πP is the epimorphism
of the split distinguished triangle (1.10.a).
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Proof. Uniqueness : Consider a smooth closed pair (X,Z) of codimension n.
Applying property (1) to the deformation diagram (1.11.a), we obtain the com-

mutative diagram :

M(X,Z)
σ̄1∗ //

p(X,Z)

��

M
(

BZ(A
1
X),A1

Z

)

��

p
(BZ (A1

X
),A1

Z
)

M(PZX,Z)

p(PZX,Z)

��

σ̄0∗oo

M(Z)(n)[2n]
s1∗ // M(A1

Z)(n)[2n] M(Z)(n)[2n]
s0∗oo

Using homotopy invariance, s0∗ and s1∗ are isomorphisms. Thus in this diagram,
all the morphisms are isomorphisms. Now, the second property of the purity iso-
morphisms determines uniquely p(PZX,Z), thus p(X,Z) is also uniquely determined.

For the existence part, we refer the reader to [Dég08b], section 2.2. �

Remark 1.13. The second point of the above proposition appears as a normalization
condition. It will be reinforced later (cf Remark 2.3).

Definition 1.14. Let (X,Z) be a smooth closed pair of codimension n. Denote
by j (resp. i) the open immersion (X −Z)→ X (resp. closed immersion Z → X).

With the notation of the preceding proposition, the morphism p(X,Z) will be
called the purity isomorphism associated with (X,Z).

Using this isomorphism, we deduce from the distinguished triangle (1.2.a) the
following distinguished triangle in DM eff

gm (k), called the Gysin triangle of (X,Z)

M(X − Z)
j∗
−→M(X)

i∗
−→M(Z)(n)[2n]

∂X,Z

−−−→M(X − Z) [1].

The morphism ∂(X,Z) (resp. i∗) is called the residue (resp. Gysin morphism)
associated with (X,Z) (resp. i). Sometimes we use the notation ∂i = ∂(X,Z).

Example 1.15. Consider a smooth scheme X and a vector bundle E/X of rank n.
Let P be the projective completion of E, λ be its canonical dual invertible sheaf and
p : P → X be its canonical projection. Consider the canonical section s : X → P
of P/X .

We define the Thom class of E in CHn(P ) as the class

t(E) =

n
∑

i=0

p∗(cn−i(E)).c1(λ)
i.

It corresponds according to paragraph 1.5 to a morphism t(E) : M(P )→ Z(n)[2n].
Consider the notations of Lemma 1.10 together with the definition of the exterior

product (1.5.c). By definition of Chern classes, the restriction of the class t(E) to
P(E) is zero. Because the canonical map P(E) → U is a homotopy equivalence13,
we get that j∗(t(E)) = 0. Thus, as the triangle (1.10.a) is split, the morphism

t(E)⊠P p∗ : M(P )→M(X) (n)[2n]

factors uniquely through πP :

M(P )
πP−−→MX(P )

ǫP−→M(X) (n)[2n].

Because the coefficient of c1(λ)
n in t(E) is 1, we deduce from Lemma 1.8 that

ǫP ◦ p
−1
(P,X) = 1. Thus, according to the previous definition, we obtain the following

13See the argument in the proof of Lemma 1.10.
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formula14:

(1.15.a) s∗ = t(E)⊠P p∗.

Remark 1.16. Our Gysin triangle agrees with that of [FSV00], chap. 5, prop.
3.5.4. Indeed, in the proof of 3.5.4, Voevodsky constructs an isomorphism which he
denotes by α(X,Z). He then uses it as we use the purity isomorphism to construct
his triangle. It is not hard to check that this isomorphism α(X,Z) satisfies the two
conditions of Proposition 1.12 and thus coincides with the purity isomorphism from
the uniqueness statement.

1.3. Base change formulas. This subsection is devoted to recall some results we
obtained previously in [Dég04] and [Dég08b] about the following type of morphism :

Definition 1.17. Let (X,Z) (resp. (Y, T )) be a smooth closed pair of codimension
n (resp. m). Let (f, g) : (Y, T )→ (X,Z) be a morphism of closed pairs.

We define the morphism (f, g)! as the following composite :

M(T )(m)[2m]
p
−1
(Y,T )
−−−−−→M(Y, T )

(f,g)∗
−−−−→M(X,Z)

p(X,Z)
−−−−−→M(Z)(n)[2n].

In the situation of this definition, let i : Z → X and k : T → Y be the obvious
closed embeddings and h : (Y − T ) → (X − Z) be the restriction of f . Then we
obtain from our definitions the following commutative diagram :

M(Y − T ) //

��

M(Y )
j∗ //

f∗
��

(1)

M(T )(m)[2m]
∂Y,T //

(f,g)!
��

(2)

M(Y − T ) [1]

h∗

��
M(X − Z) // M(X)

i∗ // M(Z)(n)[2n]
∂X,Z // M(X − Z) [1]

(1.17.a)

The commutativity of square (1) corresponds to a refined projection formula. The
word refined is inspired by the terminology “refined Gysin morphism” of Fulton in
[Ful98]. By contrast, the commutativity of square (2) involves motivic cohomology
rather than Chow groups.

1.18. Let T (resp. T ′) be a closed subscheme of a scheme Y with defining ideal J
(resp. J ′). We will say that a closed immersion i : T → T ′ is an exact thickening
of order r in Y if J ′ = J r. We recall to the reader the following formulas obtained
in [Dég04, 3.1, 3.3] :

Proposition 1.19. Let (X,Z) and (Y, T ) be smooth closed pairs of codimension n
and m respectively. Let (f, g) : (Y, T )→ (X,Z) be a morphism of closed pairs.

(1) (Transversal case) If (f, g) is transversal (which implies n = m) then
(f, g)! = g∗(n)[2n].

(2) (Excess intersection) If (f, g) is cartesian, we put e = n − m and ξ =
g∗NZX/NTY . Then (f, g)! = ce(ξ)⊠T g∗(m)[2m].

(3) (Ramification case) If n = m = 1 and the canonical closed immersion
T → Z×XY is an exact thickening of order r in Y , then (f, g)! = r.g∗(1)[2].

Note that each case of the above proposition gives, via the commutative Diagram
(1.17.a), two formulas: one involving Gysin morphisms and the other one involving
the residues. When we will apply this proposition, we will always refer to one these
two formulas.

14 This is the analog of the well-known formula in Chow theory: for any cycle class x ∈
CH∗(Z), s∗(x) = t(E).p∗(x).
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Remark 1.20. In the article [Dég08a, 4.23], the case (3) has been generalized to
any codimension n = m. In this generality, the integer r is simply the geometric
multiplicity of Z ×X Y – when assumed to be connected.

Corollary 1.21. Let X be a smooth scheme such that X = X1 ⊔X2. Consider the
open and closed immersion νi : Xi → X for i = 1, 2.

Then the isomorphism (ν1∗, ν2∗) : M(X1) ⊕ M(X2) → M(X) admits as an
inverse isomorphism the map (ν∗1 , ν

∗
2 ) : M(X)→M(X1)⊕M(X2).

Proof. In fact, according to the first point of the above proposition, we get the
following relations for i = 1, 2: ν∗i νi∗ = 1, ν∗2−iνi∗ = 0. This, together with the fact
(ν1∗, ν2∗) is an isomorphism, allows to conclude. �

Another application of the preceding proposition is the following projection for-
mula:

Corollary 1.22. Let (X,Z) be a smooth pair of codimension n and i : Z → X be
the corresponding closed immersion.

Then, (1Z⊠Zi∗) ◦ i∗ = i∗⊠X1X : M(X)→M(Z)⊗M(X) (n)[2n].

Proof. Just apply point (1) of the proposition to the cartesian morphism (X,Z)→
(X ×X,Z ×X) induced by the diagonal embedding of X . The only thing left to
check is that (i× 1X)∗ = i∗ ⊗ 1, which was done in [Dég08b, 2.6.1]. �

Remark 1.23. In the above statement, we have loosely identified the motiveM(Z)⊗
M(X) (n)[2n] with (M(Z) (n)[2n]) ⊗ M(X) through the canonical isomorphism.
This will not have any consequences in the present article. On the contrary in
[Dég08b], we must be attentive to this isomorphism which may result in a change
of sign (cf remark 2.6.2 of loc. cit.).

Another corollary of the preceding proposition is the following analog of the
self-intersection formula:

Corollary 1.24. Let (X,Z) be a smooth closed pair of codimension n with nor-
mal bundle NZX. If i denotes the corresponding closed immersion, we obtain the
following equality:

i∗i∗ = cn(NZX)⊠Z1Z∗.

Indeed it follows from the transversal case of the preceding proposition applied to
the cartesian morphism (i, 1Z) : (Z,Z) → (X,Z) and from the commutativity of
square (1) in diagram (1.17.a).

Example 1.25. Consider a vector bundle p : E → X of rank n. Let s0 be its
zero section. According to the homotopy property in DM eff

gm (k), we get s0∗p∗ = 1.
Thus, the preceding corollary applied to s0 implies the following formula:

(1.25.a) s∗0 = cn(p
−1E)⊠Ep∗.

Moreover, the Gysin triangle associated with s0 together with the isomorphism s0∗
gives the following distinguished triangle:

M
(

E×
)

−→M(E)
cn(E)⊠X1X∗−−−−−−−−−→M(X)(n)[2n]

∂E,X◦s0∗
−−−−−−→M

(

E×
)

[1]

where E× is the complement of the zero section. Following a classical terminology,
we call it the Euler triangle of E/X .15

15 It is the analog of the Euler long exact sequence associated with E/X in cohomology.
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Definition 1.26. Let (X,Z) be a smooth closed pair of codimension n and i : Z →
X be the corresponding closed immersion. Let π : Z → Spec(k) be the structural
morphism of Z.

We define the motivic fundamental class of Z in X as the following composite
map:

ηX(Z) : M(X)
i∗
−→M(Z) (n)[2n]

π∗−→ Z(n)[2n].

Example 1.27. Let X be a smooth scheme and p : E → X be a vector bundle of
rank n. According to formula (1.25.a), the motivic fundamental class of the zero
section of E/X is:

(1.27.a) ηE(X) = cn(p
−1E).

Let P/X be the projective completion of E/X . According to formula (1.15.a), the
motivic fundamental class of the canonical section of P/X is:

(1.27.b) ηP (X) = t(E).

Remark 1.28. If we use the cancellation theorem of Voevodsky (see [Voe02] or use
more directly Remark 1.9), the Gysin map i∗ induces a canonical pushout16:

i∗ : Hs
M(Z;Z(t))→ Hs+2n

M (X ;Z(t+ n)).

Then, through the isomorphism (1.5.b), we get the equality ηX(Z) = i∗(1), where 1
stands for the unit of the (bigraded) cohomology ring H∗

M(Z;Z(∗)). This motivates
our terminology.

According to the computations of the previous example, the following lemma is
a generalization of formulas (1.15.a) and (1.25.a):

Lemma 1.29. Let (X,Z) be a smooth closed pair of codimension n and i : Z → X
be the corresponding closed immersion. Assume that i admits a retraction p : X →
Z.

Then i∗ = ηX(Z)⊠X p∗.

Proof. Let π : Z → Spec(k) be the structural morphism. According to formula
(1.5.c), we deduce that π∗⊠Z 1Z∗ = 1Z∗. The lemma follows from the following
computation:

i∗
(1)
= [π∗⊠Z (p∗i∗)] ◦ i∗ = (π∗ ⊗ p∗)(1Z∗⊠Z i∗) ◦ i∗

(2)
= (π∗ ⊗ p∗)(i

∗
⊠X1Z∗)

= ηX(Z)⊠Xp∗

where equality (1) is justified by the preceding remark and the relation pi = 1Z
whereas equality (2) is in fact Corollary 1.22. �

Lemma 1.30. Let X be a smooth scheme and E/X be a vector bundle of rank n.
Let s (resp. s0) be a section (resp. the zero section) of E/X. Assume that s is
transversal to s0 and consider the cartesian square:

Z
i //

k ��

X
s
��

X
s0 // E

Then the motivic fundamental class of i is:

ηX(Z) = cn(E).

16 We prove in [Dég09, lem. 3.3] that this pushout coincides through the isomorphism (1.5.a)
with the usual pushout in Chow theory.
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Proof. Let π (resp. π′) be the structural morphism of Z (resp. X). The lemma
follows from the computation below:

ηX(Z) = π∗i
∗ = π′

∗k∗i
∗ (1)
= π′

∗s
∗
0s∗

(2)
= cn(p

−1E) ◦ s∗
(3)
= cn(E) ◦ p∗ ◦ s∗ = cn(E).

Equality (1) follows from Proposition 1.19, equality (2) from Formula (1.27.a) and
equality (3) from Remark 1.6. �

Example 1.31. Let E/X be a vector bundle and p : P → X be its projective
completion. Let λ be the canonical dual line bundle on P . Put F = λ⊗P p

−1(E) as a
vector bundle over P . According to our conventions, we get a canonical embedding
λ∨ ⊂ p−1(E ⊕ A1

X). Then the following composite map

λ∨ → p−1(E ⊕ A1
X)→ p−1(E)

corresponds to a section σ of F/P . One can check that σ is transversal to the zero
section sF0 of F/P and that the following square is cartesian:

X
s //

��

P
σ
��

P
sF0 // F

where s is the canonical section of P/X . Thus the preceding corollary gives the
following equality: ηP (X) = cn(F ).17

1.4. Composition of Gysin triangles. We first establish lemmas needed for the
main theorem. First of all, using the projection formula in the transversal case (cf
1.19) and the compatibility of Chern classes with pullbacks, we easily obtain the
following result:

Lemma 1.32. Let (Y, Z) be a smooth closed pair of codimension m and P/Y be
a projective bundle of dimension n. We put V = Y −Z and consider the following
cartesian squares :

PV
ν //

pV

��

P
p
��

PZ
ιoo

pZ

��
V

j // Y Z
ioo

Finally, we consider the canonical line bundle λ (resp. λV , λZ) on P (resp. PV ,
PZ).

Then, for any integer r ∈ [0, n], the following diagram is commutative

M(PV )
ν∗ //

c1(λV )r⊠pV ∗

��

M(P )
ι∗ //

c1(λ)
r
⊠p∗

��

M(PZ)((m))
∂ι //

c1(λZ)r⊠pZ∗

��

M(PV ) [1]

c1(λV )r⊠pV ∗[1]

��
M(V )((r))

j∗ // M(Y )((r))
i∗ // M(Z)((r +m))

∂i // M(V )((r))[1].

The following lemma will be in fact the crucial case in the proof of the next
theorem.

17In fact, from the definition of the Thom class (Example 1.15), one can check directly the
equality cn(F ) = t(E) in the Chow group CHn(P ): the computation we get in this example shows
that our (sign) conventions are coherent.
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Lemma 1.33. Let X be a smooth scheme and E/X (resp. E′/X) be a vector
bundle of rank n (resp. m). Let P (resp. P ′) be the projective completion of E/X
(resp. E′/X) and i (resp. i′) its canonical section.

We put R = P ×X P ′ and consider the closed immersions:

i : X → P, j : P → R, k = j ◦ i,

where j = P ×X i′ and k = (i, i′). Then k∗ = i∗j∗.

Proof. We consider the following canonical morphisms:

R
q //

q′

��
π

AA

  A
A

P ′

p′

��
P p

// X

According to Lemma 1.29, we obtain

i∗ = ηP (X)⊠P p∗, j∗ = ηR(P )⊠Rq
′
∗, k∗ = ηR(X)⊠Pπ∗.

Applying the first case of Proposition 1.19 to the cartesian morphism of closed
pairs (q′, p′) : (R,P ′)→ (P,X), we obtain the relation:

ηP (X) ◦ q′∗ = ηR(P
′).

Together with the preceding computations, it implies the following equality:

i∗j∗ = ηR(P )⊠P ηR(P
′)⊠Pπ∗.

Thus we are reduced to prove the relation:

(1.33.a) ηR(X) = ηR(P )⊠RηR(P
′).

Consider the notations of Example 1.31 applied to the case of E/X (resp. E′/X):
we get a vector bundle F/P (resp. F ′/P ) of rank n (resp. m) such that:

ηP (X) = cn(F ),

resp. ηP ′(X) = cm(F ′).

Let σ (resp. σ′) be the section of F/P (resp. F ′/P ′) constructed in loc. cit.
Consider the vector bundle over R defined as:

G = F ×X F ′ = q′−1(F )⊕ q−1(F ′).

We get a section (σ ×X σ′) of G/P which is transversal to the zero section sG0 and
such that the following square is cartesian:

X
i //

��

R

σ×Xσ′

��
R

sG0 // G.

Thus, according to Lemma 1.30, we obtain:

ηR(X) = cn+m(G).

The relation (1.33.a) now follows from Remark 1.6 and the equality

cn+m(G) = q′∗(cn(F )).q∗(cm(F ′))

in CHn+m(R). �
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Theorem 1.34. Consider a topologically cartesian square of smooth schemes

Z
k //

l ��
Y ′

j��
Y

i // X

such that i,j,k,l are closed immersions of respective pure codimensions n, m, s, t.
We put d = n+ t = m+ s and let i′ : (Y −Z)→ (X−Y ′), j′ : (Y ′−Z)→ (X−Y )
be the closed immersion respectively induced by i, j.

Then the following diagram is commutative :

M(X)
j∗ //

i∗

��
(1)

M(Y ′)((m))
∂j //

k∗

��

(2)

M(X − Y ′) [1]

(i′)∗

��
M(Y )((n))

l∗
// M(Z)((d))

∂l //

∂k

��
(3)

M(Y − Z)((n))[1]

∂i′

��
M(Y ′ − Z)((m))[1]

−∂j′

// M(X − Y ∪ Y ′) [2]

Proof. We will simply call smooth triple the data (X,Y, Y ′) of a triple of smooth
schemes X , Y , Y ′ such that Y ′ and Y are closed subschemes of X . Such smooth
triples form a category with morphisms the commutative diagrams

Ȳ

g

��

� � // X̄

f
��

Ȳ ′

g′

��

? _oo

Y
� � // X Y ′? _oo

made of two cartesian squares. We say in addition that the morphism (f, g, g′) is
transversal if f is transversal to Y , Y ′ and Y ∩ Y ′.

To such a triple, we associate a geometric motive M(X,Y, Y ′) as the cone of the
canonical map of complexes of Smcor(k)

. . . // [X − Y ∪ Y ′] //

��

[X − Y ′] //

��

. . .

. . . // [X − Y ] // [X ] // . . .

where [X ] and [X − Y ′] are placed in degree 0. This motive is evidently functorial
with respect to morphisms of smooth triples.

We will also use the notation M
(

X/X−Y
X−Y ′/X−Y ∪Y ′

)

for this motive because it is

more suggestive. By definition, it fits into the following diagram, with Ω = Y ∪Y ′:

(D) : M(X − Ω) //

��

M(X − Y ) //

��

M
(

X−Y
X−Ω

)

//

��

M(X − Ω) [1]

��
M(X − Y ′) //

��

M(X) //

��
(1)

M
(

X
X−Y ′

)

��

//

(2)

M(X − Y ′) [1]

��

M
(

X−Y ′

X−Ω

)

//

��

M
(

X
X−Y

)

//

��

M
(

X/X−Y
X−Y ′/X−Ω

)

// //

��
(3)

M
(

X−Y ′

X−Ω [1]
)

��
M(X − Ω) [1] // M(X − Y ) [1] // M

(

X−Y
X−Ω

)

[1] // M(X − Ω) [2].



AROUND THE GYSIN TRIANGLE I 17

In this diagram, every square is commutative except square (3) which is anticom-
mutative due to the fact the permutation isomorphism on Z[1] ⊗ Z[1] is equal to
−1. Moreover, any line or row of this diagram is a distinguished triangle.

With the hypothesis of the theorem, the proof will consist in constructing a purity
isomorphism p(X,Y,Y ′) : M(X,Y, Y ′) → M(Z)(d)[2d] which satisfies the following
properties :

(i) Functoriality : The morphism p(X,Y,Y ′) is functorial with respect to transver-
sal morphisms of smooth triples.

(ii) Symmetry : The following diagram is commutative :

M(X,Y, Y ′)

p(X,Y,Y ′) **UUUUUUU
// M(X,Y ′, Y )

p(X,Y ′,Y )ttiiiiiii

M(Z)(d)[2d]

where the horizontal map is the canonical isomorphism.
(iii) Compatibility : The following diagram is commutative :

M
(

X−Y ′

X−Ω

)

//

p(X−Y ′,Y −Z)

��

M
(

X
X−Y

)

//

p(X,Y )

��

M(X,Y, Y ′) //

p(X,Y,Y ′)

��

M
(

X−Y ′

X−Ω

)

[1]

p(X−Y ′,Y −Z)[1]

��
M(Y − Z)((n)) // M(Y )((n))

j∗ // M(Z)((d))
∂j // M(Y − Z)((n))[1]

With this isomorphism, we can deduce the three relations of the theorem by con-
sidering squares (1), (2), (3) in the above diagram and applying the evident purity
isomorphism where it belongs.

We then are reduced to construct the isomorphism and to prove the above rela-
tions. The second relation is the most difficult one because we have to show that
two isomorphisms in a triangulated category are equal. This forces us to be very
precise in the construction of the isomorphism.

Construction of the purity isomorphism for smooth triples :

Consider the deformation diagram (1.11.a) for the closed pair (X,Y ) and put
B = BY (A

1
X), P = PY X . Put also (U, V ) = (X − Y ′, Y − Z), BU = B ×X U and

PV = P×Y V . Note that, because Z = (Y ×X Y ′)red, we get V = Y ×XU ; thus BU

is the deformation space of (1.11.a) for the closed pair (U, V ). By functoriality of
the deformation diagram and of relative motives we obtain the following morphisms
of distinguished triangles :

M(U, V ) //

��

M(X,Y ) //

��

M
(

X/X−Y
U/U−V

)

+1 //

��

M
(

BU ,A
1
V

)

// M
(

B,A1
Y

)

// M
(

B/B−A
1
Y

BU/BU−A1
V

)

+1 //

M(PV , V ) //

OO

M(P, Y ) //

OO

M
(

P/P−Y
PV /PV −V

)

+1 //

OO

According to Proposition 1.12 and homotopy invariance, the vertical maps in the
first two columns are isomorphisms. As the rows in the diagram are distinguished
triangles, the vertical maps in the third column also are isomorphisms.
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Using Lemma 1.32 with P = P(NY X ⊕ A1
Y ), we can consider the following

morphism of distinguished triangles :

M(PV , V ) // M(P, Y ) // M
(

P/P−Y
PV /PV −V

)

+1 //

M(PV ) //

OO

M(P ) //

OO

M
(

P
PV

)

+1 //

OO

M(PV ) // M(P ) // M(PZ)((s))
+1 //

p
−1
(P,PZ )

OO

M(Y − Z)((n)) //

ln(PV )

OO

M(Y )((n)) //

ln(P )

OO

M(Z)((d))
+1 //

ln(PZ )

OO

The triangle on the bottom is obtained by tensoring the Gysin triangle of the pair
(Y, Z) with Z(n)[2n]. From Proposition 1.12, the first two of the vertical composite
arrows are isomorphisms, so the last one is also an isomorphism.

If we put together (vertically) the two previous diagrams, we finally obtain the
following isomorphism of triangles :

M(U, V ) //

p(X−Y ′,Y −Z)

��

M(X,Y ) //

p(X,Y )

��

M(X,Y, Y ′) //

(∗)
��

M(U, V ) [1]

��
M(Y − Z)((n)) // M(Y )((n))

j∗ // M(Z)((d))
∂j // M(Y − Z)((n))[1].

We define p(X,Y,Z) as the morphism labeled (∗) in the previous diagram so that
property (iii) follows from the construction. The functoriality property (i) follows
easily from the functoriality of the deformation diagram.

The remaining relation
To conclude it only remains to prove the symmetry property (ii). First of all, we

remark that the above construction implies immediately the commutativity of the
following diagram :

M
(

X/X−Y
X−Y/X−Y ∪Y ′

)

p(X,Y,Y ′) ))SSSSSS

// M
(

X/X−Y
X−Z/X−Y

)

p(X,Y,Z)vvmmmmmm

M(Z)((d)),

where the horizontal map is induced by the evident open immersions.
Thus, it will be sufficient to prove the commutativity of the following diagram :

M
(

X
X−Z

)

p(X,Z) ((QQQQQQ

αX,Y,Z //

(∗)

M
(

X/X−Y
X−Z/X−Y

)

p(X,Y,Z)uukkkkkk

M(Z)((n+m)),

where αX,Y,Z denotes the canonical isomorphism.

From now on, we consider only the smooth triples (X,Y, Z) such that Z is
a closed subscheme of Y . Using the functoriality of p(X,Y,Z), we remark that the
diagram (∗) is natural with respect to morphisms f : X ′ → X which are transversal
to Y and Z.
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Consider the notations of the paragraph 1.11 and put DZX = BZ(A
1
X) for short.

We will expand these notations as follows :

D(X,Z) = DZX, B(X,Z) = BZX ,P (X,Z) = PZX ,N(X,Z) = NZX.

To (X,Y, Z), we associate the evident closed pair (DZX,DZX |Y ) and the double
deformation space

D(X,Y, Z) = D(DZX,DZX |Y ).

This scheme is in fact fibered over A2
k. The fiber over (1, 1) is X and the fiber over

(0, 0) is B(BZX ∪ PZX,BZX |Y ∪ PZX |Y ). In particular, the (0, 0)-fiber contains
the scheme P (PZX,PZY ).

We now put

{

D = D(X,Y, Z), R = P (RZX,RZY )
D′ = D(Y, Y, Z), P = RZY.

Remark also that D(Z,Z, Z) = A2
Z and that R = P ×Z P ′ where P ′ = PY X |Z .

18

From the description of the fibers of D given above, we obtain a deformation dia-
gram of smooth triples :

(X,Y, Z)→ (D,D′,A2
Z)← (R,P, Z).

Note that these morphisms are on the smaller closed subscheme the (0, 0)-section
and (1, 1)-section of A2

Z over Z, denoted respectively by s0 and s1. Now we apply
these morphisms to the diagram (∗) in order to obtain the following commutative
diagram :

MZ(X)

p(X,Z)

��

αX,Y,Z

##F
FF

FF
FF

F
// MA2

Z
(D)

p
(D,A2

Z
)

��

%%JJJJJJJJ
MZ(R)

p(R,Z)

��

αR,P,Z

##G
GG

GG
GG

G
oo

M(X,Y, Z)

p(X,Y,Z)
xx

x

{{xxx

// M
(

D,D′,A2
Z

)

p(D,D′ ,Z)
tt

t

yyttt

M(R,P, Z)

p(R,P,Z)
ww

w

{{www

oo

M(Z)((n+m))
s1∗

// M
(

A2
Z

)

((n+m)) M(Z)((n+m)).s0∗

oo

One knows that every part of this diagram save the triangle ones are commutative.
As the morphisms s1∗ and s0∗ are isomorphisms, the commutativity of the left
triangle is equivalent to the commutativity of the right one.

Thus, we are reduced to the case of the smooth triple (R,P, Z). Now, using
the canonical split epimorphism M(R) → MZ(R), we are reduced to prove the
commutativity of the diagram :

M(R)

i∗ ��
--[[[[[[[[[[[[[

M
(

R/R−P
R−Z/R−P

)

p(R,P,Z)
qqccccccccccc

M(Z)((d))

where i : Z → R denotes the canonical closed immersion.
Using the property (iii) of the isomorphism p(R,P,Z), we are finally reduced to

prove the commutativity of the triangle

M(R)

i∗ ��

j∗

--[[[[[[[[[[[[[

M(P )((n))

k∗qqccccccccccc

M(Z)((d))

where j and k are the evident closed embeddings. This is Lemma 1.33. �

18The last property is equivalent to the identification: N(NZX,NZY ) = NZY ⊕NY X|Z .
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As a corollary (take j = i ◦ l, k = 1Z), we get the functoriality of the Gysin
morphism of a closed immersion :

Corollary 1.35. Let Z
l
−→ Y

i
−→ X be closed immersion between smooth schemes

such that i is of pure codimension n.
Then, l∗ ◦ i∗ = (i ◦ l)∗.

As an illustration of the formulas obtained in the preceding theorem, we prove
the following result:

Proposition 1.36. Consider a smooth closed pair (X,Z) of codimension n and
ν : Z → X the corresponding immersion.

Consider the canonical decompositions Z = ⊔i∈IZi and X = ⊔j∈JXj into con-

nected components. Put Ẑj = Z ×X Xj. For any index i ∈ I, let j ∈ J be the

unique element such that Zi ⊂ Xj ; we let νji : Zi → Xj be the immersion induced

by ν and we denote by Z ′
i the unique scheme such that: Ẑj = Zi ⊔ Z ′

i.
Consider the following commutative diagram:

M(X)
ν∗

// M(Z)((n))
∂X,Z // M(X − Z) [1]

⊕j∈JM(Xj)
(νji)j∈J,i∈I

//

∼

OO

⊕i∈IM(Zi)((n))
(∂ij)i∈I,j∈J

//

∼

OO

⊕j∈JM
(

Xj − Ẑj

)

[1]

∼

OO

where the vertical maps are the canonical isomorphisms.
Then, for any couple (i, j) ∈ I × J ,

(1) if Zi ⊂ Xj, νji =
(

νji
)∗

and ∂ij = ∂Xj−Z′
i
,Zi

,

(2) otherwise, νji = 0 and ∂ij = 0.

Proof. We consider the following cartesian squares made of the evident immersions:

If Zi ⊂ Xj , otherwise,

Zi

νj
i // Xj

xj

��

Ẑj

ẑjoo

νj
i

��

Zi
oo

Zi νi
// X Zν

oo Zizi
oo

∅ //

��

Xj

xj

��

Ẑj

ẑjoo

νj
i

��

∅oo

��
Zi νi

// X Zν
oo Zizi

oo

(1.36.a)

We also consider the open and closed immersion uj : (Xj − Ẑj)→ (X − Z).
According to corollary 1.21, we obtain the following equalities:

νji = z∗i ν
∗xj∗, ∂i,j = u∗

j∂X,Zzi∗.

Then the result follows from the following computations:

z∗i ν
∗xj∗

(a)
= ν∗i xj∗

(b)
=

{

(νji )
∗ if Zi ⊂ Xj ,

0 otherwise.

u∗
j∂X,Zzi∗

(c)
= ∂Xj ,Ẑj

ẑ∗j zi∗
(d)
=

{

∂Xj ,Ẑj
(zji )∗

(e)
= ∂Xj−Z′

i
,Zi

if Zi ⊂ Xj ,

0 otherwise.

We give the following justifications for each equality:
(a) : Corollary 1.35 (νi = ν ◦ zi).
(b) : Proposition 1.19 applied to the first square of the respective commutative

diagram of (1.36.a) corresponding to the each respective case.



AROUND THE GYSIN TRIANGLE I 21

(c) : Theorem 1.34 applied to the second cartesian square of (1.36.a).
(d) : Proposition 1.19 applied to the third square of the respective commutative

diagram of (1.36.a) corresponding to each respective case.
(e) : Proposition 1.19. �

2. Gysin morphism

In this section, motives are considered in the category DMgm(k).

2.1. Construction.

2.1.1. Preliminaries.

Lemma 2.1. Let X be a smooth scheme, P/X and Q/X be projective bundles of
respective dimensions n and m. We consider λP (resp. λQ) the canonical dual
line bundle on P (resp. Q) and λ′

P (resp. λ′
Q) its pullback on P ×X Q. Let

p : P ×X Q→ X be the canonical projection.
Then, the morphism σ : M(P ×X Q) −→

⊕

i,j M(X)(i+ j)[2(i+ j)] given by the
formula

σ =
∑

0≤i≤n, 0≤j≤m

c1(λ
′
P )

i
⊠c1(λ

′
Q)

j
⊠p∗

is an isomorphism.

Proof. As σ is compatible with pullback, we can assume using property (MV)
of Proposition 1.4 that P and Q are trivializable projective bundles. Using the
invariance of σ under automorphisms of P or Q, we can assume that P and Q are
trivial projective bundles. From the definition of σ, we are reduced to the case
X = Spec(k). Then, σ is just the tensor product of the two projective bundle
isomorphisms (cf paragraph 1.7) for P and Q. �

The following proposition is the key point in the definition of the Gysin morphism
for a projective morphism.

Proposition 2.2. Let X be a smooth scheme, p : P → X be a projective bundle of
rank n and s : X → P a section of p.

Then, the composite map M(X)((n))
ln(P )
−−−→ M(P )

s∗
−→ M(X)((n)) is the iden-

tity.19

Proof. In this proof, we work in the category DM eff
gm (k).

Let ηP (X) be the motivic fundamental class associated with s (see Definition
1.26). According to Lemma 1.29, we obtain: s∗ = ηP (X)⊠P p∗.

Let E/X be the vector bundle on X such that P = P(E). Let λ be the canonical
dual line bundle on P . If we consider the line bundle L = s−1(λ∨) on X , the section
s corresponds uniquely to a monomorphism L → E of vector bundles on P . We
consider the following vector bundle on P :

F = λ⊗ p−1(E/L).

Then the canonical morphism:

λ∨ → p−1(E)→ p−1(E/L)

19In fact, this result holds in the effective category DMeff
gm (k) as the proof will show.
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made by the canonical inclusion and the canonical projection induces a section σ of
F/P which is transversal to the zero section sF0 of F/P and such that the following
square is cartesian:

X
s //

��

P
σ
��

P
sF0 // F.

Thus, according to Lemma 1.30, we get: ηP (X) = cn(F ).
The result now follows from the computation of the top Chern class cn(F ) in

CHn(P ) and Lemma 1.8. �

Remark 2.3. As a corollary, we obtain the following reinforcement of Proposition
1.12, more precisely of the normalization condition for the purity isomorphism :

Let X be a smooth scheme, P/X be a projective bundle of rank n, and s :
X → P be a section of P/X . Then, the purity isomorphism p(P,s(X)) is the inverse
isomorphism of the composition

M(X)((n))
ln(P )
−−−→M(P )

(1)
−−→Ms(X)(P )

where (1) is the canonical map.

2.1.2. Gysin morphism of a projection. The following definition will be a particular
case of Definition 2.7.

Definition 2.4. Let X be a smooth scheme, P be a projective bundle of rank n
over X and p : P → X be the canonical projection.

Using the notation of (1.7.b), we put:

p∗ = ln(P )(−n)[−2n] : M(X)→M(P ) (−n)[−2n]

and call it the Gysin morphism of p.

Lemma 2.5. Let P , Q be projective bundles over a smooth scheme X of respective
ranks n, m. Consider the following projections :

P p

**VVVVVVV

P ×X Q

p′ ++WWWWWWW

q′ 33fffffff
X

Q q

44iiiiiii

Then, the following diagram is commutative :

M(P )((−m)) q′∗

--[[[[[[[

M(X)

q∗
,,YYYYYYY

p∗
22eeeeeee

M(P ×X Q)((−n−m))

M(Q)((−n)) p′∗

11ccccccc

Proof. Indeed, using the compatibility of the motivic Chern class with pullback (cf
1.5), we see that both composite morphisms q′∗p∗ and p′∗q∗ are equal (up to twist
and suspension) to the composite

M(X)((n+m))→
⊕

i≤n,j≤m

M(X)((i+ j))→M(P ×X Q) ,

where the first arrow is the obvious split monomorphism and the second arrow is
the inverse isomorphism to the one constructed in Lemma 2.1. �
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2.1.3. General case. The following lemma is all we need to finish the construction
of the Gysin morphism of a projective morphism :

Lemma 2.6. Consider a commutative diagram

P p
((RRR

R

Y
j

((PPP
P

i 66mmmm
X

Q q

66mmmm

where X and Y are smooth schemes, i (resp. j) is a closed immersion of codimen-
sion n+ d (resp. m+ d), P (resp. Q) is a projective bundle over X of dimension
n (resp. m) with projection p (resp. q).

Then, the following diagram is commutative

M(P ))((m)) i∗
--ZZZZZZZZ

M(X)((n+m))

q∗
,,ZZZZZZZZ

p∗ 22dddddddd

M(Y )((n+m+ d)).

M(Q)((n)) j∗
11dddddddd

(2.6.a)

Proof. Considering the diagonal embedding Y
(i,j)
−−−→ P ×X Q, we divide diagram

(2.6.a) into three parts:

M(P )((m))
i∗

++VVVVVVVVVVVVV

p′∗

��
M(X)((n+m))

q∗ --

p∗ 11

(1) M(P ×X Q) (i,j)∗ //
(2)

(3)

M(Y )((n+m+ d)).

M(Q)((n))
j∗

33hhhhhhhhhhhhhh
q′∗

OO

The commutativity of part (1) is Lemma 2.5. The commutativity of part (2) and
that of part (3) are equivalent to the case X = Q, q = 1X – and thus m = 0.

Assume we are in this case. We introduce the following morphisms where the
square (*) is cartesian and γ is the graph of the X-morphism i:

PY
p′

//

j′

��
(∗)

Y

j

��
Y

γ 66llllll

i ))RRRRRRR

P p // X

Note that γ is a section of p′. Thus, Proposition 2.2 gives: γ∗p′∗ = 1, and we reduce
the commutativity of the diagram (2.6.a) to that of the following one:

M(PY )((d))

(5)

γ∗

ssffffff
M(Y )((n+ d))

p′∗

oo

M(Y )((n+ d)) (4)

M(P )

j′∗

OO

i∗

kkXXXXXXXXX
M(X)((n))p∗oo

j∗

OO

Then commutativity of part (4) is Corollary 1.35 and that of part (5) follows from
Lemma 1.32. �

Let f : Y → X be a projective morphism between smooth schemes. Following
the terminology of Fulton (see [Ful98, §6.6]), we say that f has codimension d if it
can be factored into a closed immersion Y → P of codimension e followed by the
projection P → X of a projective bundle of dimension e − d. In fact, the integer
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d is uniquely determined (cf loc.cit. appendix B.7.6). Using the preceding lemma,
we can finally introduce the general definition :

Definition 2.7. Let X , Y be smooth schemes and f : Y → X be a projective
morphism of codimension d.

We define the Gysin morphism associated with f in DMgm(k)

f∗ : M(X)→M(Y )((d))

by choosing a factorisation of f into Y
i
−→ P

p
−→ X where i is a closed immersion

of pure codimension n+ d and p is the projection of a projective bundle of rank n,
and putting :

f∗ =

[

M(X)((n))
ln(P )
−−−→M(P )

i∗
−→M(Y )((n+ d))

]

((−n)),

definition which does not depend upon the choices made according to the previous
lemma.

Remark 2.8. In [Dég09, 3.11], we prove that the Gysin morphism of a projective
morphism f induces the usual pushout on the part of motivic cohomology corre-
sponding to Chow groups.

2.2. Properties.

2.2.1. Functoriality.

Proposition 2.9. Let X, Y , Z be smooth schemes and Z
g
−→ Y

f
−→ X be projective

morphisms of respective codimensions m and n.
Then, in DMgm(k), we get the equality : g∗ ◦ f∗ = (fg)∗.

Proof. We first choose projective bundles P , Q over X , of respective dimensions s
and t, fitting into the following diagram with R = P ×X Q and QY = Q×X Y :

Q

q

��

R q′

$$J
JJJ

p′OO

QY q′′

&&LLLL

i′ 88rrrr

P
p

KK

%%KK
Z g //

krr

99

j

44

Y f //
i ::tttt

X.

The prime exponent of a symbol indicates that the morphism is deduced by base
change from the morphism with the same symbol. We then have to prove that the
following diagram of DMgm(k) commutes :

(2)

M(Q)((t))

p′∗

��
j∗

��

(3)M(R)((s+ t))

i′∗ ))SSSSSSSS

(1)M(P )((s))
q′∗

66mmmmmmm

i∗ ((QQQQQQQ
M(QY )((n+ t))

k∗ ))TTTTTTTT

M(X)
p∗

99rrrrr

q∗
//

M(Y )((n))
q′′∗

55kkkkkkkk

M(Z)((n+m)).

The commutativity of part (1) is a corollary of Lemma 1.32, that of part (2) is
Lemma 2.5 and that of part (3) follows from Lemma 2.6 and Corollary 1.35. �
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2.2.2. Projection formula and excess of intersection. FromDefinition 2.7 and Propo-
sition 1.19 we directly obtain the following proposition :

Proposition 2.10. Consider a cartesian square of smooth schemes

(2.10.a) T
q ��

g // Z
p��

Y
f // X

such that f and g are projective morphisms of the same codimensions.
Then, the relation f∗p∗ = q∗g

∗ holds in DMgm(k).

2.11. Consider now a cartesian square of shape (2.10.a) such that f (resp. g) is
a projective morphism of codimension m (resp. m). Then m ≤ n and we call
e = n−m the excess of dimension attached with (2.10.a).

We can also associate with the above square a vector bundle ξ of rank e, called

the excess bundle. Choose Y
i
−→ P

π
−→ X a factorisation of f such that i is a

closed immersion of codimension r and π is the projection of a projective bundle
of dimension s. We consider the following cartesian squares:

T
q ��

i′ // Q
π′

//

��

Z
p��

Y
i // P

π // X

Then NTQ is a sub-vector bundle of q−1NY P and we put ξ = q−1NY P/NTQ. This
definition is independent of the choice of P (see [Ful98], proof of prop. 6.6).

The following proposition is now a straightforward consequence of Definition 2.7
and the second case of Proposition 1.19 :

Proposition 2.12. Consider the above notations.
Then, the relation f∗p∗ =

(

ce(ξ)⊠q∗((m))
)

◦ g∗ holds in DMgm(k).

2.2.3. Compatibility with the Gysin triangle.

Proposition 2.13. Consider a topologically cartesian square of smooth schemes

T
j //

g ��
Y
f��

Z
i // X

such that f and g are projective morphisms, i and j are closed immersions. Put
U = X − Z, V = Y − T and let h : V → U be the projective morphism induced by
f . Let n, m, p, q be respectively the relative codimensions of i, j, f , g.

Then the following diagram is commutative

M(V )((p)) // M(Y )((p))
j∗ // M(T )((m+ p))

∂Y,T // M(V )((p))[1]

M(U) //
h∗

OO

M(X)
i∗ //

f∗

OO

M(Z)((n))
∂X,Z //

g∗((n))

OO

M(U) [1]

h∗

OO

where the two lines are the obvious Gysin triangles.

Proof. Use the definition of the Gysin morphism and apply Lemma 1.32, Theorem
1.34. �
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2.2.4. Gysin morphisms and transfers in the étale case.

2.14. In [Dég08b], paragraphs 1.1 and 1.2 we have introduced another Gysin mor-
phism for a finite equidimensional morphism f : Y → X . Indeed, the transpose
of the graph of f gives a finite correspondence tf from X to Y which induces a
morphism tf∗ : M(X)→M(Y ) in DMgm(k).

Proposition 2.15. Let X and Y be smooth schemes, and f : Y → X be an étale
cover.

Then, f∗ = tf∗.

Proof. Consider the cartesian square of smooth schemes

Y ×X Y
g //

f ′

��

Y
f��

Y
f // X.

We first prove that tf ′
∗f

∗ = g∗ tf∗. Choose a factorisation Y
i
−→ P

π
−→ X of f into a

closed immersion and the projection of a projective bundle. The preceding square
can be divided into two squares

Y ×X Y
j //

f ′

��

P ×X Y
q //

f ′′

��

Y
f��

Y
i // P

π // X.

The assertion then follows from the commutativity of the following diagram.

M(Y ×X Y )

(1)

M(P ×X Y )
j∗oo

(2)

M(Y )
q∗oo

M(Y )

tf ′
∗

OO

M(P )

tf ′′
∗

OO

i∗
oo M(X)

tf∗

OO

p∗
oo

The commutativity of part (1) follows from [Dég08b], prop. 2.5.2 (case 1) and that
of part (2) from [Dég08b], prop. 2.2.15 (case 3).

Then, considering the diagonal immersion Y
δ
−→ Y ×X Y , it suffices to prove

in view of Proposition 2.9 that δ∗ ◦ tf ′
∗ = 1. As Y/X is étale, Y is a connected

component of Y ×X Y . Thus, M(Y ) is a direct factor of M(Y ×X Y ). Then,
according to corollary 1.21, δ∗ is the canonical projection on this direct factor. One
can easily see that tf ′

∗ is the canonical inclusion and this concludes. �

2.3. Duality pairings, motive with compact support.

2.16. We first recall the abstract definition of duality in monoidal categories. Let
C be a symmetric monoidal category with product ⊗ and unit 1. An object X of
C is said to be strongly dualizable if there exists an object X∗ of C and two maps

η : 1→ X∗ ⊗X, ǫ : X ⊗X∗ → 1

such that the following diagrams commute:

X
X⊗η //

1X
%%LLLLLLLLLLLL X ⊗X∗ ⊗X

ǫ⊗X

��

X∗
η⊗X∗

//

1X∗
&&MMMMMMMMMMM X∗ ⊗X ⊗X∗

X∗⊗ǫ

��
X X∗



AROUND THE GYSIN TRIANGLE I 27

The object X∗ is called a strong dual of X . For any objects Y and Z of C , we then
have a canonical bijection

HomC (Z ⊗X,Y ) ≃ HomC (Z,X∗ ⊗ Y ).

In other words, X∗ ⊗ Y is the internal Hom of the pair (X,Y ) for any Y . In
particular, such a dual is unique up to a canonical isomorphism. If X∗ is a strong
dual of X , then X is a strong dual of X∗.

Suppose C is a closed symmetric monoidal triangulated category. Denote by
Hom its internal Hom. For any objects X and Y of C the evaluation map

X ⊗ Hom(X,1)→ 1

tensored with the identity of Y defines by adjunction a map

Hom(X,1)⊗ Y → Hom(X,Y ).

The object X is strongly dualizable if and only if this map is an isomorphism for
all objects Y in C . In this case indeed, X∗ = Hom(X,1).

2.17. Let X be a smooth projective k-scheme of pure dimension n and denote by
p : X → Spec(k) the canonical projection, δ : X → X×kX the diagonal embedding.

Then we can define morphisms

η : Z
p∗

−→M(X)(−n)[−2n]
δ∗−→M(X)(−n)[−2n]⊗M(X)

ǫ : M(X)⊗M(X)(−n)[−2n]
δ∗
−→M(X)

p∗
−→ Z.

One checks easily using the properties of the Gysin morphism these maps turn
M(X)(−n)[−2n] into the dual of M(X). We thus have obtained :

Proposition 2.18. Let X/k be a smooth projective scheme.
Then the couple of morphisms (η, ǫ) defined above is a duality pairing. Thus

M(X) is strongly dualizable with dual M(X)(−n)[−2n].

Remark 2.19. Using this duality in conjunction with the isomorphism (1.5.a), we
obtain for smooth projective schemes X and Y , d being the dimension of Y , a
canonical map:

CHd(X × Y ) ≃ HomDMeff
gm (k)(M(X)⊗M(Y ) ,Z(d)[2d])

→ HomDMgm(k)(M(X)⊗M(Y ) ,Z(d)[2d])

= HomDMgm(k)(M(X) ,M(Y )).

As the isomorphism (1.5.a) is compatible with products and pullbacks, we check
easily this defines a monoidal functor from Chow motives to mixed motives obtain-
ing a new construction of the stable version of the functor which appears in [FSV00,
chap. 5, 2.1.4]. Recall that the cancellation theorem of Voevodsky [Voe02] implies
this is a full embedding.

Note the Gysin morphism p∗ : Z(n)[2n] → M(X) defines indeed a homological
class ηX in HM

2n,n(X) = HomDMgm(k)(Z(n)[2n],M(X)).
The duality above induces an isomorphism

Hp,q
M (X)→ HM

p−2n,q−n(X)

which is by definition the cap-product by ηX . Thus our duality pairing implies the
classical form of Poincaré duality and the class ηX is the fundamental class of X .
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2.20. The last application of this section uses the stable version of the category of
motivic complexes as defined in [CD09a, 7.15] and denoted by DM(k). Remember
it is a triangulated symmetric monoidal category. Moreover, there is a canonical
monoidal fully faithful functor DMgm(k) → DM(k) (see [CD09b, 10.1.4]). The
idea of the following definition comes from [CD07, 2.6.3]:

Definition 2.21. Let X be a smooth scheme of dimension d.
We define the motive with compact support of X as the object of DM(k)

M c(X) = RHomDM(k)(M(X),Z(d)[2d]).

This motive with compact support satisfies the following properties:

(i) For any morphism f : Y → X of relative dimension n between smooth
schemes, the usual functoriality of motives induces:

f∗ : M c(X)(n)[2n]→M c(Y ).

(ii) For any projective morphism f : Y → X between smooth schemes, the
Gysin morphism of f induces:

f∗ : M c(Y )→M c(X).

(iii) Let i : Z → X be a closed immersion between smooth schemes, and j the
complementary open immersion. Then the Gysin triangle associated with
(X,Z) induces a distinguished triangle:

M c(Z)
i∗−→M c(X)

j∗

−→M c(U)
∂′
X,Z

−−−→M c(Z)[1].

(iv) If X is a smooth k-scheme of relative dimension d, p its structural morphism
and δ its diagonal embedding, the composite morphism

M(X)⊗M(X)
δ∗
−→M(X)(d)[2d]

p∗
−→ Z(d)[2d]

induces a map

φX : M(X)→M c(X)

which is an isomorphism when X is projective (cf 2.18). Moreover, for any
open immersion j : U → X , j∗ ◦ φX ◦ j∗ = φU (this follows easily from
2.10).

Remark 2.22. Note also that the formulas we have proved for the Gysin morphism
or the Gysin triangle correspond to formulas involving the data (i), (ii) or (iii) of
motives with compact support.

2.23. Consider a smooth scheme X of pure dimension d. According to Definition
2.21, as soon as M(X) admits a strong dual M(X)∨ in DM(k), we get a canonical
isomorphism:

(2.23.a) M c(X) = M(X)∨(d)[2d].

The same remark can be applied if we work in DM(k) ⊗ Q. Recall that duality
is known in the following cases (it follows for example from the main theorem of
[Rio05]):

Proposition 2.24. Let X be a smooth scheme of dimension d.

(1) Assume k admits resolution of singularities.
Then M(X) is strongly dualizable in DMgm(k).

(2) In any case, M(X)⊗Q is strongly dualizable in DMgm(k)⊗Q.
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Recall that Voevodsky has defined a motive with compact support (even without
the smoothness assumption). It satisfies all the properties listed above except that
(i) and (iii) requires resolution of singularities. Then according to the preceding
proposition and formula (2.23.a), our definition agrees with that of Voevodsky if
resolution of singularities holds over k (apply [FSV00, chap. 5, th. 4.3.7]). This
implies in particular that M c(X) is in DMgm(k) or, in the words of Voevodsky, it
is geometric. Moreover, we know from the second case of the preceding proposition
that M c(X)⊗Q is always geometric.
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[CD09b] D.-C. Cisinski and F. Déglise. Triangulated categories of mixed motives.

arXiv:0912.2110, 2009.
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[Dég09] F. Déglise. Modules homotopiques. arXiv:0904.4747v2, 2009.
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265(1):221–247, 2010.
[Lev98] Marc Levine. Mixed motives, volume 57 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, 1998.
[Rio05] J. Riou. Dualité de Spanier-Whitehead en géométrie algébrique. C. R. Math. Acad. Sci.
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