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TWO-DIMENSIONAL MARKOVIAN HOLONOMY

FIELDS

Thierry Lévy

Abstract. — We define a notion of Markov process indexed by curves drawn on a
compact surface and taking its values in a compact Lie group. We call such a process
a two-dimensional Markovian holonomy field. The prototype of this class of processes,
and the only one to have been constructed before the present work, is the canonical
process under the Yang-Mills measure, first defined by Ambar Sengupta [32] and later
by the author [21]. The Yang-Mills measure sits in the class of Markovian holonomy
fields very much like the Brownian motion in the class of Lévy processes. We prove
that every regular Markovian holonomy field determines a Lévy process of a certain
class on the Lie group in which it takes its values, and construct, for each Lévy
process in this class, a Markovian holonomy field to which it is associated. When
the Lie group is in fact a finite group, we give an alternative construction of this
Markovian holonomy field as the monodromy of a random ramified principal bundle.
This is in heuristic agreement with the physical origin of the Yang-Mills measure as
the holonomy of a random connection on a principal bundle.
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Résumé (Champs d’holonomie markoviens bidimensionnels)
Ce travail est consacré à la définition et à l’étude d’une classe de processus stochas-

tiques indexés par des chemins tracés sur une surface, qui prennent leurs valeurs dans
un groupe de Lie compact et qui satisfont une propriété d’indépendance condition-
nelle analogue à la propriété de Markov. Nous appelons ces processus des champs
d’holonomie markoviens bidimensionnels. L’exemple fondamental de cette sorte de
processus est le processus canonique sous la mesure de Yang-Mills, qui a été constru-
ite d’abord par Ambar Sengupta [32] puis plus tard par l’auteur [21]. C’est aussi le
seul champ d’holonomie markovien qui ait été construit avant ce travail. Le processus
canonique sous la mesure de Yang-Mills est assez exactement aux champs d’holonomie
markoviens ce que le mouvement brownien est aux processus de Lévy. Deux de nos
principaux résultats affirment qu’à tout champ d’holonomie markovien suffisamment
régulier est associé un processus de Lévy d’une certaine classe sur le groupe de Lie
dans lequel il prend ses valeurs et réciproquement que pour tout processus de Lévy
dans cette classe il existe un champ d’holonomie markovien auquel il est associé. Dans
le cas particulier où le groupe de Lie considéré est un groupe fini, nous parvenons à
réaliser ce champ d’holonomie markovien comme la monodromie d’un fibré principal
ramifié aléatoire. Ceci nous rapproche de l’interprétation originelle de la mesure de
Yang-Mills, issue de la théorie quantique des champs, comme mesure de probabilités
sur l’espace des connexions sur un fibré principal.
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INTRODUCTION

The elementary theory of Markov processes establishes a correspondence between

several types of objects among which transition semigroups and stochastic processes.

These stochastic processes can take their values in fairly general spaces, but they

are usually indexed by a subset of the real numbers, for the Markov property relies

on the distinction between past and future. In the present work, we investigate a

correspondence between certain transition semigroups and another kind of stochastic

processes, where the notions of past and future are replaced by the notions of inside

and outside. The processes that we consider are indexed by curves, or rather loops,

drawn on a surface, and they take their values in a compact Lie group. We call them

(two-dimensional) Markovian holonomy fields. They are Markovian in the following

sense: if some piece of a surface is bounded by a finite collection of loops, then the

values of the process on loops located inside this piece and outside this piece are

independent, conditionally on the value of the process on the finite collection of loops

which bounds this piece.

0.1. A 1-dimensional analogue

Let us start by discussing the 1-dimensional analogues of Markovian holonomy

fields, which are just Markov processes looked at from a slightly unusual point of

view. Let us choose a transition semigroup P = (Pt)t≥0 on some state space X . For

each t ≥ 0, Pt(x, dy) is a transition kernel on X ×X . Under suitable assumptions, we

can associate to P a homogeneous Markov process with values in X , which we denote

by X . This Markov process is not really a single stochastic process, it is rather a

collection of processes, essentially one for each initial condition at a specific time. In

fact, if we considerX restricted to segments, we can say that to each segment [a, b] ⊂ R

and each initial condition x ∈ X we associate a process (Xt)t∈[a,b] with values in X
such that Xa = x almost surely. Among the structure implied by the fact that [a, b]

is a subset of R, what we really use is the topological structure of this interval, its
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orientation and our ability to measure the distance between any two of its points. Of

course, in the present 1-dimensional setting, this structure suffices to characterize the

interval up to translation, and the last sentence may seem pointless. Its content should

however become clearer in the 2-dimensional setting. Let us push the abstraction a

little further and try to define, for all compact 1-dimensional manifold M , a process

(Xt)t∈M with values in X . As we have just observed, we need an orientation of M and

a way to measure distances. Moreover, if M is not connected, we want the restrictions

of our process to the connected components of M to be independent. So, let M be

an oriented compact connected Riemannian 1-dimensional manifold. There are not

so many choices: M is either homeomorphic to a segment or to a circle, it has a

certain positive total length, and this information characterizes it completely up to

orientation-preserving isometry. If M is a segment of length L, it is isometric to [0, L]

and there is no difficulty in defining the process (Xt)t∈M given an initial condition.

Before turning to the case of the circle, let us interpret the Markov property of X in

terms of these 1-dimensional manifolds.

Let M1 and M2 be two manifolds as above, isometric to segments. Let M1 ·M2

denote the manifold obtained by identifying the final point ofM1 with the initial point

of M2. It is still homeomorphic to a segment. Choose an initial condition x ∈ X . We

are able to construct two stochastic processes indexed by M1 ·M2. Firstly, we can

take M1 ·M2 as a segment on its own and simply consider the process (Xt)t∈M1·M2

with initial condition x. But we can also proceed as follows. For all segment M and

all x ∈ X , let L(x,M) denote the distribution of the process (Xt)t∈M with initial

condition x. Let us also denote by L(x,M, dy) the disintegration of L(x,M) with

respect to the value of X at the final point of M . Then the probability measure∫
X L(x,M1, dy)L(y,M2) is the distribution of a process indexed by the disjoint union

of M1 and M2 which takes the same value at the final point of M1 and the initial

point of M2. It can thus be identified with the distribution of a process indexed by

M1 ·M2. It is exactly the content of the Markov property of X that the two measures

that we have considered are equal:

(1)

∫

X
L(x,M1, dy)L(y,M2) = L(x,M1 ·M2).

This relation is an instance of the Kolmogorov-Chapman equation. This example

illustrates in the simplest possible way the fact that the Markov property can be nicely

formulated in terms of surgery of manifolds, in this case concatenation of intervals.

Manifolds of dimension 1 undergo another kind of surgery, when the two endpoints

of a single interval are glued together (see Figure 1). If we try to mimic (1), we are

tempted to define the distribution of a process indexed by the circle S1 of length L,

seen as the interval [0, L] of which the endpoints have been identified, by

(2) L(S1) =

∫

X
L(x, [0, L], dx),
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which unfortunately is meaningless. Still, this formula is consistent with the fact that

a circle has no boundary, so that there is no initial condition to specify. What we are

pretending to define here is a bridge, a probability measure on closed trajectories in

X , from the transition semigroup (Pt)t≥0.

M1 M2

M1 · M2

[0, L]

S1

Figure 1. The surgery of 1-dimensional manifolds.

Without aiming at the greatest possible generality, let us describe a situation in

which this is possible. We assume that X is a smooth finite-dimensional manifold,

for example a vector space or a Lie group, which carries a Borel probability measure

µ which is stationary for the semi-group P . Finally, we assume that for all t > 0

and all x ∈ X , the measure Pt(x, dy) has a continuous density with respect to µ,

which we denote by y 7→ Qt(x, y). In this situation, it is possible to define bridges

of the Markov process X between any two points of X . Hence, for each segment

[0, L], it is possible to define the finite measure L(x, [0, L], y) which is the conditional

distribution of (Xt)t∈[0,L] given X0 = x and XL = y, multiplied by the real number

QL(x, y). With this definition, L(x, [0, L], y) is not a probability measure in general

but the relation L(x, [0, L], dy) = L(x, [0, 1], y)µ(dy) holds. We can then define the

process indexed by a circle of length L by setting

(3) L(S1) =

∫

X
L(x, [0, L], x)µ(dx).

The identification of a process indexed by circle S1 with a process indexed by [0, L]

requires the choice of a base point on S1 but the stationarity of µ implies that the

resulting definition of L(S1) is independent of this choice.

Let us summarize this discussion of the 1-dimensional case. Starting with a Marko-

vian transition semigroup on X with good properties, we have been able to associate

to each compact oriented 1-dimensional Riemannian manifold, endowed with bound-

ary conditions if it is homeomorphic to a segment, a stochastic process with values

in X indexed by the points of this manifold. This collection of processes exhibits a

Markovian behaviour with respect to the operations of cutting or concatenation of

manifolds.
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0.2. The transition kernels of Markovian holonomy fields

A 2-dimensional Markovian holonomy field is a 2-dimensional analogue of the ob-

ject just described. It is a collection of stochastic processes, one for each compact

surface endowed with boundary conditions and some way of measuring areas. For each

such surface, the process is indexed by a set of loops drawn on this surface. Moreover,

these processes satisfy Markovian properties with respect to the operations of cutting

surfaces along curves or gluing them along boundary components.

Before explaining this more carefully, let us discuss the important fact that loops

can be concatenated when they have the same origin. We are interested in stochastic

processes which satisfy a property of additivity with respect to the concatenation of

loops. This requires that they take their values in a group and since this group will

usually not be assumed to be Abelian, and denoted multiplicatively, we will rather

call this a property of multiplicativity. Let us give a precise definition. If M is a 2-

dimensional manifold and m is a point of M , let Lm(M) be a set of loops on M based

at m. We will discuss later which loops exactly we wish to consider. To each loop

l ∈ Lm(M) we can associate the inverse loop l−1, which is simply l traced backwards.

Also, to each pair of loops l1, l2 ∈ Lm(M) we can associate their concatenation which

we denote by l1l2. Let G be a group, which plays the role of the space X above. A

stochastic process (Hl)l∈Lm(M) with values in G is said to be multiplicative if

∀l ∈ Lm(M), Hl−1 = H−1
l a.s.,(4)

∀l1, l2 ∈ Lm(M), Hl1l2 = Hl2Hl1 a.s.(5)

We will also explain later why we chose to reverse the order on the right-hand side of

this equality. For the moment, let us describe the transitions of a Markovian holonomy

field.

Just as an interval has two extremities, a surface has a boundary which is topo-

logically a disjoint union of circles. Let us consider a surface, with a certain number

of boundary components. In contrast with the 1-dimensional case, even if the sur-

face is oriented, its boundary components are indistinguishable from a topological

point of view: any permutation of the boundary components can be realized by an

orientation-preserving homeomorphism. So, let us arbitrarily declare that some of

these components are incoming and the other are outgoing. Then we have a pic-

ture of our surface as realizing a cobordism, that is, a topological transition, between

two sets of circles (see Figure 2). If the surface is oriented, then we orient incoming

boundary components negatively and outcoming boundary components positively.

This matters because, according to (4), the boundary conditions on the incoming

components are associated with oriented loops: to each oriented incoming boundary

component we associate an element of G.

The comparison with the 1-dimensional case indicates that we are lacking a measure

of time on our surface. The analogue of the ability to measure distances is the ability
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Figure 2. A surface seen as a topological transition between two collec-

tions of circles

to measure areas. On a surface, this requires much less than a Riemannian metric,

only a Borel measure with suitable regularity properties. We have now isolated the

necessary structure: a Markovian holonomy field takes its values in a group which

we denote by G, and its transitions occur along surfaces with distinguished incoming

and outgoing boundaries endowed with a measure of area. The associated transition

kernels describe the distribution of the process on the outgoing circles conditionally

on its values on the incoming ones.

There is a lot more variety of situations than in the 1-dimensional case, but fortu-

nately for us, this variety has been very well understood for about a century and is

easy to describe. Up to homeomorphism, a connected compact surface is character-

ized by the fact that it is orientable or not, by the number of connected components

of its boundary, and by a single other topological invariant called its genus which

can be any non-negative integer if the surface is orientable and any positive integer

if it is not. Moreover, the only invariant of a smooth measure of area under diffeo-

morphisms is its total area. It turns out that, when one deals with orientable and

non-orientable surfaces at the same time, the genus is not the most convenient way

to label the possible topological types of surfaces. We prefer to work with what we

call the reduced genus, which is simply the genus if the surface is not orientable, and

twice the classical genus if it is orientable. The main advantage of the reduced genus

is that it is additive with respect to the operation of connected sum.

Let us denote by M(Gp−q) the space of probability measures on Gp−q. Then the

transition kernel of a Markovian holonomy field can be listed as follows:

(6) P±
p,g,t(x1, . . . , xq, dxq+1, . . . , dxp) : Gq →M(Gp−q),

where the sign indicates the orientability of the surface, g is its reduced genus, t its

total area and p the number of its boundary components, of which q are incoming

and p− q outgoing.

If q = 0, then the transition kernel is a measure on Gp, if q = p it is a function

on Gp and if p = 0, it is a real number. In order to avoid the problems that we

have encountered with the circle in the 1-dimensional case, we will make fairly strong
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assumptions. Firstly, we will assume that G is a compact Lie group. Such a group

carries a unique probability measure invariant by translations, which we denote by

dx. We will also assume that the transition kernels of the Markovian holonomy field

that we consider can be put under the form

(7)

P±
p,g,t(x1, . . . , xq, dxq+1, . . . , dxp) = Z±

p,g,t(x
−1
1 , . . . , x−1

q , xq+1, . . . , xp)dxq+1 . . . dxp

for some functions Z±
p,g,t which are called the partition functions of the holonomy

field. The exponents that we have introduced take care of the issue of orientation.

They restore the symmetry between the boundary components of a surface, so that

the partition functions are invariant by permutation of their arguments.

The possibility of gluing together boundary components of one or two surfaces leads

to infinitely many variants of the Kolmogorov-Chapman equation which give as many

relations between the partition functions. For instance, consider a cylinder of area s

with one incoming circle and one outgoing circle. A cylinder has genus (both classical

and reduced) 0 and the transition kernel associated to this surface is P+
2,0,s(x, dy).

By gluing the incoming circle of this cylinder along an outgoing circle of an arbitrary

surface, we do not change this surface up to homeomorphism, we only increase its

area by s. Hence, we have the following relation between transition kernels:
∫

G

P±
p,g,t(x1, . . . , xq, dxq+1, . . . , dxp−1, dx)P

+
2,0,s(x, dxp) =

P±
p,g,t+s(x1, . . . , xq, dxq+1, . . . , dxp).(8)

As another example, let us consider an orientable surface with at least one incoming

and one outgoing circle. If we glue these circles one along the other in such a way

that the result is still orientable, then we obtain a surface with two less boundary

components, a classical genus increased by 1, hence a reduced genus increased by 2,

and the same area. This example is reminiscent of the situation where we obtained a

circle by identifying the two endpoints of a segment. It is thus not surprising that in

this case, the Markov property is best expressed in terms of the partition functions,

rather than the transition kernels. It reads

(9)

∫

G

Z+
p,g,t(x1, . . . , xp−2, x, x

−1) dx = Z+
p−2,g+2,t(x1, . . . , xp−2).

If we identify an outgoing circle with an incoming one in a non-orientable surface, then

the reduced genus of the surface is also increased by 2. In this case, the Kolmogorov-

Chapman equation is

(10)

∫

G

Z−
p,g,t(x1, . . . , xp−2, x, x

−1) dx = Z−
p−2,g+2,t(x1, . . . , xp−2).

A more unusual topological operation consists in identifying a boundary component

of a surface with itself by an orientation-preserving involution (see Figure 1 page 21).

Up to homeomorphism, this operation is equivalent to gluing a Möbius band along this
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boundary component. The resulting surface is always non-orientable and its reduced

genus is increased by one. The corresponding relation for partition functions is

(11)

∫

G

Z±
p,g,t(x1, . . . , xp−1, x

2) dx = Z−
p−1,g+1,t(x1, . . . , xp−1).

The equalities (8), (9), (10) and (11) essentially exhaust the types of relations

that hold between the partition functions. Using these relations, we will prove that

the whole set of partition functions of a Markovian holonomy field is determined by

just those associated to a disk, a Möbius band and a three-holed sphere of arbitrary

area. Indeed, any surface can be built from these three elementary bricks by a finite

number of gluings. In fact, if the Markovian holonomy field is regular enough, then

we will prove that all its transition kernels are determined by the sole transition

kernels associated to disks. These transition kernels (P+
1,0,t(dx))t>0 constitute a one-

parameter family of probability measures on G which turns out to form a continuous

convolution semi-group, hence the collection of 1-dimensional marginals of a Lévy

process on G.

We are now able to give an idea of two of our main results. After giving an

axiomatic definition of a 2-dimensional Markovian holonomy field with values in a

compact Lie group G (Definition 3.1.2), we will prove, under a suitable regularity

assumption, that there is a classical Lévy process with values inG associated with each

Markovian holonomy field (Proposition 4.2.1). This Lévy process is characterized by

the fact that its 1-dimensional distributions are the transition kernels of the holonomy

field associated to disks. Moreover, all partition functions of the holonomy field can

be expressed in terms of these 1-dimensional distributions (Proposition 4.1.10). Then,

we will prove that for all Lévy process which satisfies some regularity properties, there

exists a Markovian holonomy field to which this Lévy process is associated (Theorem

4.3.1). We do not settle in this work the question of the unicity of a Markovian

holonomy field with a given associated Lévy process.

0.3. Markovian holonomy fields and the Yang-Mills measure

The Yang-Mills measure is to Markovian holonomy fields what the Brownian mo-

tion is to Lévy processes. It is indeed a Markovian holonomy field, whose associated

Lévy process is the Brownian motion on G. It is also the only Markovian holon-

omy field to have been constructed before the present work. The Yang-Mills measure

has been the object of mathematical work since around 1990. It has been first con-

structed on an arbitrary compact surface by Ambar Sengupta [32]. The author has

later given a different construction of essentially the same measure in [21]. One of
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the by-products of the present work is to provide another construction of the Yang-

Mills measure, which really is very close to that given in [21]. Yet, we would like to

emphasize several aspects in which it differs from the previous ones.

The first difference is a slight shift of point of view which we have already illus-

trated. Instead of considering a surface, choosing boundary conditions and construct-

ing a process indexed by some class of loops on this specific surface, we now consider

as one single object a whole collection of processes indexed by loops on all possible

surfaces. The advantage of this view is that is leads quite naturally to an axiomatic

characterization of Markovian holonomy fields. The one that we propose is inspired

by the classical definition of a Markov process and by the axiomatic definition of a

topological quantum field theory.

Another difference lies in the class of loops that we consider on a surface. Indeed,

on a surface M endowed with boundary conditions, a measure of the area, and a base

point m, the Yang-Mills measure produces a G-valued stochastic process (Hl)l∈Lm(M)

for some class of loops Lm(M), of which we had promised a discussion earlier. In the

two previous constructions of the Yang-Mills measure mentioned above, the loops to

which one was able to attach a random variable were finite concatenations of very

special curves, for example segments of submanifolds in the author’s construction.

On the other hand, it was proved in [21] that the mapping l 7→ Hl is continuous in

L1 norm on the class of loops considered there endowed with the topology of uniform

convergence and convergence of the length. This suggested that it should be possible

to associate a random variable at least to each loop of finite length. This is indeed

what we achieve in the present construction, thus giving more coherence between

the regularity property of the stochastic process and the set of loops on which it is

defined. Let us point out that it is not necessary to be able to measure lengths in

order to decide if a loop has finite length. Indeed, a diffeomorphism does not alter

the fact that a curve has finite or infinite length. Thus, the definition of Lm(M) as

the set of loops on M with finite length based at m does not require the choice of a

Riemannian metric on M , a smooth structure is more than enough. It is natural to

wonder if one could define the Yang-Mills measure or any other Markovian holonomy

field for a significantly larger class of loops. We believe that this is not possible with

only the techniques used in this work, and probably very difficult anyway. We shall

discuss this in relation with the Brownian motion indexed by loops defined below.

The third important difference between this work and the existing constructions

of the Yang-Mills measure concerns the group in which the stochastic process takes

its values, which we have already denoted by G. Since the Yang-Mills measure is

associated with the Brownian motion on G, it was natural to assume that it was a

connected group. In the present work, the Brownian motion is replaced by a Lévy

process, thus a process with jumps. This opens the possibility of considering non-

connected compact Lie groups and in particular finite groups. In the case of finite
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groups, the Lévy processes have a very simple structure and we are able to give a

completely geometrical picture of Markovian holonomy fields, at least the ones that

we are able to construct. We will discuss this in more detail later after recalling briefly

the physical and geometrical motivation for the study of Markovian holonomy fields.

0.4. The real Brownian motion indexed by loops

In this paragraph, we present an example of a stochastic process which does not

exactly fit into our definition of Markovian holonomy fields, but is in a sense simpler

and should absolutely be kept in mind as a fundamental example. We will also take

this example as an opportunity to finish our introductory discussion of the role of

loops with finite length.

Consider the plane R2 endowed with the Lebesgue measure denoted by dx. Let

W : L2(R2, dx) → G be a white noise, that is, an isometry into a Hilbert space of

centred real Gaussian random variables. Let l : [0, 1]→ R2 be a continuous loop. For

each point x ∈ R2 − l([0, 1]), the topological index of l with respect to x is an integer

denoted by nl(x) and defined, if we identify R2 with C, by

(12) nl(x) =
1

2iπ

∮

l̃

dz

z − x,

where l̃ is any piecewise smooth loop which is uniformly close enough to l, for example

closer than the distance of x to the range of l. Let us say that the loop l winds mildly

if its range is negligible and nl ∈ L2(R2, dx). In this case, it is legitimate to define

(13) Bl = W (nl).

Definition 0.4.1. — The stochastic process {Bl : l winds mildly } is called the

Brownian motion indexed by loops on R2.

To each subset D of the plane, we may associate a σ-field FD which we define by

(14) FD = σ (Bl : l winds mildly, l([0, 1]) ⊂ D) .

If J is a Jordan curve in R2, then we denote respectively by int(J) and ext(J)

the bounded and unbounded connected components of R2 \ J , which we call the

interior and exterior of J . A basic property of the white noise W is that it associates

independent random variables to functions with disjoint supports. This implies the

following property of the Brownian motion indexed by loops.

Proposition 0.4.2. — Let J1 and J2 be two Jordan curves with disjoint interiors.

Then the σ-fields Fint(J1) and Fint(J2) are independent.

Proof. — If l is a loop whose range is contained in int(J1), then the support of nl is

also contained in int(J1). The same holds for J2 and the result follows.

Let us now prove a Markov property.
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Proposition 0.4.3. — Let J be a Jordan curve with negligible range. The σ-fields

Fint(J) and Fext(J) are independent conditionally on BJ .

Proof. — By the Jordan curve theorem, a Jordan curve with negligible range winds

mildly. Let L be the line in L2(R, dx) generated by nJ = 1int(J). Let Hin (resp. Hout)

be the closed linear subspace of L2(R, dx) generated by nl for l which winds mildly

and l([0, 1]) ⊂ int(J) (resp. l([0, 1]) ⊂ ext(J)). The inclusions Hin ⊂ {f ∈ L2(R, dx) :

supp(f) ⊂ int(J)} and Hout ⊂ {f ∈ L2(R, dx) : f is constant on int(J)} are straight-

forward. They are actually equalities but we do not need this fact. In particular,

Hin ∩Hout = L. Moreover, with the notation ⊖ for the orthogonal complement, we

have

Hin ⊖ L ⊂ {f ∈ L2(R, dx) : supp(f) ⊂ int(J) and

∫

J

f(x) dx = 0},

Hout ⊖ L ⊂ {f ∈ L2(R, dx) : f = 0 on int(J)}.
In particular, the orthogonality relation Hin ⊖ L ⊥ Hout ⊖ L holds and the result

follows.

It is illuminating to discuss the role of loops of finite length with the example of

the Brownian motion indexed by loops in mind. A loop with finite length admits a

Lipschitz continuous parametrization. Hence, its range has Hausdorff dimension 1,

unless it is constant. In any case, its range is negligible. The fact that its topological

index is square-integrable is not at all obvious. It is granted by a generalization of

the isoperimetric inequality discovered by T. Banchoff and W. Pohl. We denote the

length of l by ℓ(l).

Theorem 0.4.4 (Banchoff-Pohl). — Let l : [0, 1]→ R2 be a Lipschitz continuous

loop. Then

4π

∫

R2

nl(x)
2 dx ≤ ℓ(l)2.

The original reference for this theorem is the article of T. Banchoff and W. Pohl

[5]. They prove the inequality for a loop of class C2. An elementary proof of the

inequality for rectifiable curves can be found in a paper by A. Vogt [34].

Of course, there are many loops with infinite length whose topological index is

square-integrable, for instance fractal Jordan curves or simply loops of infinite length

whose range is contained in a line. It would probably be difficult to characterize

the set of loops which wind mildly in a way which differs significantly from its def-

inition. Nevertheless, on the scale of roughness given by the p-variation, as defined

by L.C. Young [39], the space of rectifiable loops is the largest which contains only

loops which wind mildly. Recall that the p-variation of a loop l : [0, 1] → R2 is

defined as the supremum over all subdivisions {t0 ≤ . . . ≤ tr} of [0, 1] of the quan-

tity (
∑

i ‖ l(ti+1)− l(ti) ‖p)
1
p . A loop has finite length if and only if it has finite

1-variation. A loop with finite p-variation for p < 2 has negligible range.
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Proposition 0.4.5. — There exists a loop l : [0, 1] → R2 such that l has finite

p-variation for all p > 1 and
∫

R2 nl(x)
2 dx = +∞.

1

1

2
1

3 1

4

Figure 3. This loop has finite p-variation for all p > 1 but its topological

index is not square-integrable.

Proof. — For each n ≥ 1, let ln be the loop based at the origin which goes once

along the circle of radius 1
n through the origin, tangent to the horizontal axis and

contained in the upper half-plane. Assume that ln is parametrized at constant speed

by an interval of length 2−n. Let l be the uniform limit of the finite concatenations

l1 . . . ln as n tends to infinity. This limit exists because the radii of the circles ln tend

to 0 as n tends to infinity. For all p > 1, the p-variation of l raised to the power p is

equal, up to some constant, to
∑

n≥1 n
−p, hence it is finite. On the other hand, the

squared L2 norm of nl is π
∑

n≥1 n
2(n−2 − (n+ 1)−2) = +∞.

0.5. Markovian holonomy fields and gauge fields

The original motivation for the study of processes indexed by loops is issued from

theoretical physics, indeed from quantum field theory and more precisely from quan-

tum gauge theories. Let us explain this with the example of electrodynamics. The

classical theory of electrodynamics, as established in the second half of the nineteenth

century, is summarized by the Lorentz law and Maxwell’s equations. Maxwell’s equa-

tions relate the electric and the magnetic field to the density of electric charge and the

density of electric current in space. In order to derive these equations from a principle

of least action, which is usually the first step in the procedure of quantization of a

physical theory, it is convenient to express the electric and magnetic fields in terms of

a scalar potential and a vector potential. These potentials are not uniquely defined

by the fields and this indeterminacy is called the gauge symmetry of the theory. It

turns out that the geometric nature of the pair formed by the scalar and vector poten-

tials is that of a connection on a principal bundle with structure group U(1) over the

space-time. At the level of rigour of this discussion, we do not make a serious mistake

by identifying this object with a differential 1-form on the space-time. This 1-form
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is usually denoted by A and called the gauge field. The exterior differential of the

gauge field is a mixture of the electric and magnetic fields called the electromagnetic

field and denoted by F . The relation F = dA implies the equality dF = 0, which

is equivalent to the two homogeneous Maxwell equations. The two inhomogeneous

equations can be put under the form ∗d ∗ F = J , where ∗ is the Hodge operator on

space-time associated with the Minkowski metric, and J is a differential 1-form built

from the densities of charge and current.

Most importantly for us, the gauge field, the object in terms of which the classical

electrodynamics is best described, is a differential 1-form on space-time. The most

natural way to evaluate a 1-form is to integrate it along paths. In the case of electro-

dynamics, the gauge symmetry of the theory implies that any two gauge fields which

differ by a total differential describe the same physics. This indicates that the natural

gauge-invariant functionals of the gauge field are in fact its integrals along loops.

If instead of doing quantum mechanics we prefer to do statistical mechanics, then

we turn the Minkowski space-time into a Euclidean space-time and put on the space of

gauge fields the Gibbs measure corresponding to the action which gives back Maxwell’s

equations through the least action principle. In an empty space-time, this action is

called the Yang-Mills action and it is essentially the squared L2 norm of the electro-

magnetic field. The natural way to study random gauge fields is to do so through

their integrals along loops, and this constitutes indeed a stochastic process indexed

by loops. The Markov property of such a process, in this physical context, reflects the

following property of locality of the Yang-Mills action: if the space-time is partitioned

into several regions, then each region contributes to the action by a quantity which

can be computed from the values of the field inside this region only.

In general, the random object that we are studying is thus an analogue of the

electromagnetic field, or rather of the gauge field formed by the scalar potential of

the electric field and the vector potential of the magnetic field. Let us give an idea

of the physical meaning of the gauge field A. This field interacts with particles which

carry an analogue of electric charge. In fact, the 1-form A takes its values in the

Lie algebra of a Lie group G and the charge of a particle is mathematically a linear

action of G on some vector space in which the wave function of the particle takes

its values. For example, in the case of electrodynamics, the group is U(1), the wave

functions take their values in C and for a particle of charge ne, where −e is the charge

of the electron, the group U(1) acts on C be the representation eiθ · z = einθz. The

exponential of the integral of the gauge field along a certain loop, as an element of

U(1), describes the modification of the phase of the wave function of a particle which

travels along l. More generally, let l : [0, 1] → M be a loop. Assume that G is a Lie

group and that A is a differential 1-form on M with values in the Lie algebra of G.
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Then, under fairly weak regularity assumptions, the differential equation

(15)

{
h0 = 1

ḣth
−1
t = −A(l̇t), t ∈ [0, 1]

has a unique solution h : [0, 1] → G. The element h1 determined by (15) is called

the holonomy of A along l and this is why we call our processes holonomy fields.

The action of this element h1 of G on the left on the vector space in which the wave

function of a particle takes its values determines how the state of a particle is modified

when it travels along l. The reversed order in the right-hand side of (5) is due to the

fact that the state of a particle travelling along the concatenation of l1 and l2 is

modified first by the transformation due to the displacement along l1 and then by the

transformation due to the displacement along l2.

0.6. Finite groups, gauge fields and ramified coverings

When the group G is finite, the interpretation that a Markovian holonomy field is

a reflection of a probability measure on a space of connections or differential 1-forms

with values in the Lie algebra of G becomes awkward. Indeed, this Lie algebra is the

null vector space. Topologically, a principal bundle with finite structure group is a

covering and it carries a unique connection, which is flat. If M is simply connected,

the holonomy along any loop is the unit element of G. On the other hand, there

exist Markovian holonomy fields with values in finite groups, which are non-trivial

processes indexed by loops, even on the sphere S2.

When G is finite, the correct geometric picture is the following: a Markovian

holonomy field with values in G is the monodromy of a random ramified G-bundle. By

a ramified G-bundle, we mean a ramified covering whose regular fibres are endowed

with a free transitive action of G, or equivalently, a principal G-bundle over the

complement of a finite set. There is still a unique connection on a ramified principal

bundle and this connection is flat at each point which is not a ramification point, but

each ramification point acts like a macroscopic amount of curvature concentrated at

a single point. For instance, if n ≥ 2 is an integer, then the mapping z 7→ zn from

C to itself is naturally a ramified Z/nZ-bundle. The group Z/nZ = {e 2ikπ
n : k ∈

{0, . . . , n − 1}} acts by multiplication on C∗, freely and transitively on the fibres of

the covering map z 7→ zn. Any loop which goes once positively around a disk which

contains 0 has monodromy e
2iπ
n , no matter how small this disk. This is consistent

with the picture of a concentration of curvature at 0.

The idea that the Yang-Mills measure, or a Markovian holonomy field, with values

in a connected Lie group is a probability measure on a space of connections looked

at through its holonomy is only a guide for the intuition and has no firm rigorous

ground. On the contrary, the fact that a large class of Markovian holonomy fields

with values in a finite group G can be realized as the monodromy of a random ramified
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G-bundle is a theorem that we will prove. In the intuitive picture of the Yang-Mills

measure, the curvature of the random connection is supposed to have the distribution

of a white noise. The correct distribution of the ramified G-bundles which correspond

with a given Markovian holonomy field can be roughly described as follows: first

choose the ramification locus by throwing a Poisson point process on the surface with

intensity the measure of area, then give a weight to every ramified G-bundle with this

ramification locus which depends on its monodromy at each ramification point and

the Lévy process associated to the Markovian holonomy field.

0.7. Organization

The present work consists of five chapters. In Chapters 1 and 2, we develop the

tools and prove most of the technical results that we use in our study of Markovian

holonomy fields. The first chapter covers the topology of surfaces and their surgery,

the topological space of paths on a surface, the fundamental notion of graph on a

surface, which we treat both topologically and combinatorially, and finishes with a

discussion of Riemannian metrics. The second chapter introduces the space of multi-

plicative functions of paths with its measurable structures and its uniform measure.

The last section is devoted to a study of the free group of loops in a graph in relation

with this uniform measure.

In Chapter 3, we define Markovian holonomy fields and their discrete analogues.

We prove the first central result of this work (Theorem 3.2.9) which encapsulates in an

abstract way and extends the procedure which allowed us, in our previous construction

of the Yang-Mills measure, to take the continuous limit of a discrete gauge theory. In

our present language, we prove that every regular discrete Markovian holonomy field

can be extended in a unique way to a regular Markovian holonomy field.

In Chapter 4, we prove that a regular Markovian holonomy field with values in

a compact Lie group G determines a classical Lévy process in G, which in turn

determines completely the partition functions of the holonomy field (Propositions

4.2.1 and 4.1.10). We then prove that each Lévy process of a wide class can be obtained

in this way (Theorem 4.3.1). Whether or not two distinct Markovian holonomy fields

can have the same associated Lévy process is a natural question which we do not

settle here.

In Chapter 5, we prove that when the group G is finite, the Markovian holonomy

field constructed in the previous chapter is the monodromy process of a random

ramified covering (Theorem 5.4.2). In fact, most of the chapter is devoted to the

construction of this random ramified covering.

The choice that we have made of concentrating to the extent possible the technical

results in the first two chapters has the obvious drawback that the results exposed

there often lack their real motivation, and that a linear reading of these two chapters
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may not be very rewarding. We hope that this is compensated by the fact that the

study of Markovian holonomy fields themselves is much more straightforward than it

would be if one had to constantly interrupt the exposition to prove technical results.

In order to allow as much as possible the possibility of jumping from a section to

another, we have included an index of notation which should be helpful in locating

the first occurrence of a notation or a symbol.
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CHAPTER 1

SURFACES AND GRAPHS

In this chapter, we introduce the tools of topology and geometry of surfaces that

we use in the rest of this work. We set up the notation, collect the necessary classical

results and prove less classical ones. After a short review of compact surfaces, we

describe their surgery and study in some detail the paths and graphs drawn on them.

In particular, we describe carefully the boundary of a face of a graph. Then we define

the group of reduced loops based at a point in a graph and recall why it is free. In

the next chapter, we will prove the existence of sets of generators of this group with

specific properties. Finally, we discuss Riemannian metrics on surfaces in relation

with our problem.

1.1. Surfaces

1.1.1. Classification of surfaces. — Let us start by recalling the definition of a

surface.

Definition 1.1.1. — A topological compact surface is a Hausdorff compact topo-

logical space in which every point admits a neighbourhood homeomorphic to R2 or to

R+ × R.

A smooth compact surface, or simply a compact surface, is a topological compact

surface equipped with a structure of smooth 2-dimensional manifold with boundary.

The distinction between topological and smooth surfaces is not essential, as the

following result shows.

Theorem 1.1.2. — Any topological compact surface is homeomorphic to a smooth

compact surface. Moreover, two smooth compact surfaces are diffeomorphic if and

only if they are homeomorphic.
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The classification theorem for compact surfaces is thus the same for smooth and

topological surfaces, and we describe it now. We warn the reader that we are using a

slightly unorthodox convention about the genus of a surface.

Let us describe two infinite series of surfaces. The first series is built from the torus,

which is the Cartesian product of two circles. For each even integer g ≥ 0 and each

integer p ≥ 0, let Σ+
p,g be the surface obtained by removing p pairwise disjoint open

disks from the connected sum of g
2 tori. For g = 0, the surface Σ+

p,0 is a sphere with

p holes. The second series is built from the projective plane, which is the quotient

of the unit sphere of R3 by the group of isometries {id,−id}. For each integer g ≥ 1

and each p ≥ 0, let Σ−
p,g be the surface obtained by removing p pairwise disjoint open

disks from the connected sum of g projective planes.

Recall that a smooth compact surface is orientable if it carries a non-vanishing

differential 2-form. We say that a topological compact surface is orientable if a smooth

compact surface to which it is homeomorphic is orientable.

Theorem 1.1.3. — Any connected orientable topological compact surface is home-

omorphic to one and exactly one of the surfaces {Σ+
p,g : p, g ≥ 0, g even}. Any

connected non-orientable compact surface is homeomorphic to one and exactly one of

the surfaces {Σ−
p,g : p ≥ 0, g ≥ 1}. Any oriented smooth compact surface admits an

orientation-reversing diffeomorphism.

We call the integer g which appears in this classification the genus of a surface.

For orientable surfaces, it is twice the number which is usually called the genus. The

advantage of our convention is illustrated by Proposition 1.1.4. We denote the genus

of a surface M by g(M) and the number of connected components of its boundary by

p(M)

With this notation, we have g(Σ±
p,g) = g and p(Σ±

p,g) = p. Let us define a binary

operation ∧ on {+,−} by setting +∧+ = + and +∧− = −∧+ = −∧− = −. If M1

and M2 are two compact topological surfaces, we denote by M1#M1 the connected

sum of M1 and M2 which is the surface obtained by removing a small disk from M1

and M2 and gluing the two resulting surfaces along the boundaries of these disks. Of

course, this surface is defined up to homeomorphism only.

Proposition 1.1.4. — Let Σεp,g and Σε
′

p′,g′ be two surfaces of the list described above.

Then

(16) Σεp,g#Σε
′

p′,g′ = Σε∧ε
′

p+p′,g+g′ .

Proof. — It is clear that Σεp,g#Σε
′

p′,g′ has p + p′ boundary components. Moreover,

the connected sum of two manifolds of the same dimension is orientable if and only

if both manifolds are. The only non-trivial point is that the value of the reduced

genus is correct when exactly one of the two surfaces Σεp,g and Σε
′

p′,g′ is orientable. In

this case, since the operation of connected sum is commutative and associative, this
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boils down to the fact that the connected sum of a projective plane and a torus is

homeomorphic to the connected sum of three projective planes. This is a classical

result, proved as Lemma 7.1 in [27].

It is useful to keep in mind that if M is a non-orientable compact topological

surface, then the connected sum of M with the torus Σ+
0,2 is homeomorphic to the

connected sum of M with the Klein bottle Σ−
0,2.

The fundamental groups of surfaces are most easily described by generators and

relations. We denote by 〈x1, . . . , xn|r1, . . . , rm〉 the group generated by x1, . . . , xn
subject to the relations r1, . . . , rm.

Theorem 1.1.5. — The fundamental groups of compact surfaces are, up to isomor-

phism, the following.

1. π1(Σ
+
0,0) = {1} and for all g ≥ 1,

π1(Σ
+
0,2g) = 〈a1, b1, . . . , ag, bg|[a1, b1] . . . [ag, bg] = 1〉.

2. For all g ≥ 0 and all p ≥ 1, π1(Σ
+
p,2g) is free of rank 2g + p− 1.

3. For all g ≥ 1, π1(Σ
−
0,g) = 〈a1, . . . , ag|a2

1 . . . a
2
g = 1〉.

4. For all g ≥ 0 and all p ≥ 1, π1(Σ
−
p,g) is free of rank g + p− 1.

It follows from this theorem that a compact surface is not characterized up to

homeomorphism by its fundamental group. For example, a sphere with three holes

and a torus with one hole both have a fundamental group which is free of rank 3.

However, closed surfaces, that is, surfaces without boundary, are indeed characterized

by their fundamental group.

If M is a closed compact surface, then the reduced genus of M is the minimal

number of generators in a presentation of the fundamental group of M . On the other

hand, if M has a non-empty boundary, then its fundamental group is free of rank

g(M) + p(M)− 1.

The boundary of a compact surface is a finite union of circles. If a surface is

oriented, then every connected component of ∂M carries an induced orientation, such

that the surface stays on the left of a person walking along the boundary in the

positive direction.

Definition 1.1.6. — Let M be a compact surface. We denote by B(M) the set

of connected components of the boundary of M , each taken twice, once with each

orientation. If M is oriented, we denote by B+(M) the subset of B(M) formed by

the oriented connected components of ∂M which bound M positively.

Any diffeomorphism of a compact surface induces a diffeomorphism of its bound-

ary. We need to know which diffeomorphisms of the boundary can be obtained in this

way. For this, observe that if the boundary of an oriented surface M has p connected
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components, then, among the 2p distinct orientations of ∂M , the 2 distinct orienta-

tions of M determine 2 preferred orientations. We say that a diffeomorphism of ∂M

is orientation-preserving if it preserves these orientations and orientation-reversing if

it exchanges them. Of course, if p ≥ 2, then there exist diffeomorphisms of ∂M which

are neither orientation-preserving nor orientation-reversing.

Theorem 1.1.7. — Let M be a smooth compact surface. If M is non-orientable,

then any diffeomorphism of ∂M can be extended to a diffeomorphism of M . If M

is orientable, then any orientation-preserving (resp. orientation-reversing) diffeo-

morphism of ∂M can be extended to an orientation-preserving (resp. orientation-

reversing) diffeomorphism of M .

1.1.2. Surgery of surfaces. — Surfaces undergo natural operations of surgery

such as cutting along a curve or gluing one or two boundary components. When one

performs gluings and wants to keep track of where they have occurred, one ends up

with surfaces which carry marks. On the other hand, when one cuts a surface along

one or several curves, a convenient way of keeping track of what has been done is to

maintain an involution of the set of boundary components of the current surface.

Definition 1.1.8. — A marked surface is a pair (M,C ), where M is a smooth

compact surface and C is a finite collection of pairwise disjoint oriented smooth 1-

dimensional submanifolds of the interior of M , such that an oriented curve belongs

to C if and only if the same curve with the opposite orientation belongs to C . The

elements of C are called marks.

The marked surface (M,C ) is said to be oriented if every connected component of

M is orientable and oriented.

Let us emphasize that on a marked surface, even an oriented one, the marks do

not carry a preferred orientation. The group Z/2Z acts on C ∪B(M) by reversing

the orientation, and we denote this action by b 7→ b−1.

Definition 1.1.9. — A tubular pattern is a triple (M,C , τ) where (M,C ) is a

marked surface and τ is an involution of B(M) which commutes to the orientation

reversal, that is, which satisfies τ(b−1) = τ(b)−1. If C = ∅, the tubular pattern is

said to be split.

Let (M,C , τ) be a tubular pattern. Choose b ∈ B(M). If τ(b) is a component

of ∂M distinct from b, then b is meant to be identified with τ(b) by an orientation-

preserving diffeomorphism. If τ(b) = b, then b is not meant to be glued or altered in

any way. Finally, if τ(b) = b−1, then b is meant to be glued on itself according to an

orientation-preserving involution. Of course, this way of encoding the possible gluing

operations is purely conventional.

We define now the basic operation of surgery, which is the operation of gluing.
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Definition 1.1.10. — Let (M,C , τ) and (M ′,C ′, τ ′) be two tubular patterns. A

smooth mapping f : M ′ → M is called an elementary gluing if one of the following

sets of conditions is satisfied.

1. The mapping f is the quotient map which identifies b′ with τ ′(b′) by an

orientation-preserving diffeomorphism for some b′ ∈ B(M ′) such that {b′, b′−1} 6=
{τ ′(b′), τ ′(b′)−1}. Moreover, f(C ′∪{b′, b′−1}) = C and, on B(M ′)−{b′, b′−1

, τ ′(b′), τ ′(b′)−1},
τ ◦ f = f ◦ τ ′. Such a gluing is called binary, and the pair of curves {f(b′), f(b′−1

)}
is called its joint.

2. The mapping f is the quotient map which identifies the points of b′ by pairs

according to an orientation-preserving smooth involution for some b′ ∈ B(M ′) such

that τ(b′) = b′−1
. Moreover, f(C ′∪{b′, b′−1}) = C and, on B(M ′)−{b′, b′−1}, τ ◦f =

f ◦ τ ′. In this case, the gluing is called unary and the pair of curves {f(b′), f(b′−1
)}

is called its joint.

A gluing is a map which can be written as the composition of several elementary

gluings. A gluing is complete if the involution of the set of boundary components of

the target surface is the identity.

Up to homeomorphism of the underlying surfaces and disregarding the markings,

performing a unary gluing along a boundary component is equivalent to gluing a

Möbius band along this boundary component. The result of this operation is never

orientable.

Figure 1. Binary and unary gluings.

The other basic surgery operation is that of splitting. It is really the same thing

as a gluing, looked at in the other direction.

Proposition 1.1.11. — Let (M,C , τ) be a tubular pattern with C 6= ∅. Choose

{l, l−1} ⊂ C . Then there exists a tubular pattern (Spll(M), Spll(C ), Spll(τ)), and an

elementary gluing f : Spll(M) → M such that the joint of f is {l, l−1}. Moreover,

this gluing is unique up to isomorphism: if (M ′,C ′, τ ′) and f ′ : M ′ → M satisfy

the same properties, then there exists a diffeomorphism ψ : Spll(M) → M ′ such that

ψ(Spll(C ))) = C ′, ψ ◦ τ = τ ′ ◦ ψ and f ′ ◦ ψ = f .
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This result is intuitively obvious and yet it lacks concise rigorous proof. Considering

that E. Moise, in the reference book [30], defines the splitting operation by a picture

(Figure 21.1), we feel excused for not trying what would be a lengthy and uninstructive

proof. Instead, let us make some comments on this result.

The surface Spll(M) can be defined as the topological space underlying the uni-

versal completion of the metric space (M \ l, d), where d is the restriction to M \ l of

an arbitrary Riemannian distance on M . The universal property of the completion

actually provides us with a continuous gluing map.

It is easy to determine from the pair (M, {l, l−1}) if the gluing is binary or unary. In

fact, the gluing is unary if and only if l does not admit an orientable neighbourhood,

which is equivalent to the fact that for every neighbourhood U of l there exists a

neighbourhood V ⊂ U such that V \ l is connected. Another equivalent statement is

that l admits a compact neighbourhood which is homeomorphic to a Möbius band of

which l is an equator.

When these equivalent properties do not hold and the gluing is binary, there is an

issue of orientation about the way in which the two boundary components of Spll(M)

which are glued together are identified. If M is orientable, then Spll(M) is also

orientable, because a gluing performed on a non-orientable surfaces always results in

another non-orientable surface, and the identification must be orientation-reversing. If

M is non-orientable, then two situations arise. Either Spll(M) is orientable, in which

case the identification must be orientation-preserving, or Spll(M) is non-orientable.

In this last case, any identification of the two boundary components is convenient.

This is not in contradiction with the uniqueness part of the statement, since thanks

to Theorem 1.1.7, any diffeomorphism of the boundary of a non-orientable compact

surface can be extended to the whole surface.

Let (M,C ) be a marked surface. By successively applying Proposition 1.1.11 to

the marks of M , one eventually gets a tubular pattern with no marks, from which

one can reconstruct (M,C ).

Proposition 1.1.12. — Let (M,C ) be a marked surface. Let (M,C , id) be the as-

sociated tubular pattern. There exists a tubular pattern (M ′,∅, τ ′) and a smooth

mapping f : M ′ → M which is a complete gluing in the sense of Definition 1.1.10.

This gluing is unique up to isomorphism. The pattern (M ′,∅, τ ′) is called a split

tubular pattern of (M,C ).

Definition 1.1.13. — Let (M,C ) be a marked surface. Let (M ′,∅, τ ′) be a split

tubular pattern of (M,C ). Assume that M ′ is connected. We define the split reduced

genus of (M,C ) as the reduced genus of M ′. We denote it by sg(M,C ).
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1.2. Curves and paths

1.2.1. Definitions. — In the theory of Markovian holonomy fields, curves and

paths on a surface play the role of points of a time interval for classical Markov

processes. We warn the reader that the words curve and path are not interchangeable

in this work: a path is a curve with finite length.

Definition 1.2.1. — Let M be a topological compact surface. A parametrized curve

on M is a continuous curve c : [0, 1]→M which is either constant on [0, 1] or constant

on no open sub-interval of [0, 1]. The set of parametrized curves is denoted by PC(M).

Two parametrized curves on M are said to be equivalent if they differ by an in-

creasing homeomorphism of [0, 1]. An equivalence class is simply called a curve and

the set of curves on M is denoted by C(M).

A continuous loop is a curve whose endpoints coincide. A continuous loop is said

to be simple if it is injective on [0, 1).

If c is a curve, then we denote respectively by c and c the starting and finishing

point of c. We denote its inverse by c−1. It is defined as the class of the parametrized

curve t 7→ c(1 − t), which does not depend on the particular parametrization of c.

The concatenation of curves is defined in the usual way. It is only partially defined

on C(M) but associative whenever this makes sense.

The space C(M) is too large for many of our purposes. Let us define another space

of curves which we call paths. Let M be a smooth compact surface endowed with a

Riemannian metric. Let c : [0, 1] → M be a Lipschitz continuous curve. Then the

derivative of c is defined almost-everywhere and its norm is bounded above. We are

going to consider curves whose speed is also bounded below by a positive constant.

Since the range of a curve is compact, this notion would be independent of the choice

of the Riemannian metric on any smooth manifold.

Definition 1.2.2. — Let M be a smooth compact surface. A parametrized path

on M is a continuous curve c : [0, 1] → M which is either constant or Lipschitz

continuous with speed bounded below by a positive constant. The set of parametrized

paths is denoted by PP(M).

Two parametrized paths on M are said to be equivalent if they differ by an increas-

ing bi-Lipschitz homeomorphism of [0, 1]. An equivalence class is simply called a path

and the set of paths on M is denoted by P(M).

A loop is a path whose endpoints coincide. The set of loops is denoted by L(M).

A loop is said to be simple if it is injective on [0, 1).

We use for paths the same notation as for curves. If c is a path, we denote its

endpoints by c and c, and its inverse by c−1. The concatenation of paths is also

associative whenever it is defined. When M is endowed with a specific Riemannian
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metric, we usually identify P(M) with the subset of PP(M) consisting of paths which

are parametrized at constant speed.

While the inclusion PP(M) ⊂ PC(M) does not determine an inclusion P(M) ⊂
C(M), because we are not using the same equivalence relation on parametrized curves

and parametrized paths, it is true that a path, as a set of parametrized curves, is a

subset of a unique curve. Moreover, two parametrized paths which are equivalent

as parametrized curves are also equivalent as parametrized paths. Hence, there is a

natural injection P(M) ⊂ C(M) which we use without further comment.

Let us define a relation on L(M) by saying that two loops l1, l2 are related if and

only if there exists c, d ∈ P(M) such that l1 = cd and l2 = dc. It is not difficult to

check that this is an equivalence relation.

Definition 1.2.3. — Let M be a smooth compact surface. A cycle is an equivalence

class of loops for the relation on L(M) just defined. We call non-oriented cycle a pair

{l, l−1} where l is a cycle. We say that a cycle is simple if one of its representatives

(hence all) are simple loops.

A cycle is simply a loop from which one has forgotten the origin. It is important to

observe that an oriented 1-dimensional submanifold of M determines a simple cycle.

Another definition derived from that of loops and that will be useful is the following.

Definition 1.2.4. — A path l ∈ P(M) is called a lasso if there exists a path s and

a simple loop m such that c = sms−1.

Lemma 1.2.5. — Let l be a lasso. There exist a unique path s and a unique simple

loop m such that l = sms−1. The path s is called the spoke of l and the simple loop

m the meander of l.

Proof. — Endow M with a Riemannian metric. Assume that l is parametrized at

constant speed by [0, 1]. Then the meander of l is the restriction of l to the largest

interval of the form [12 − t, 1
2 + t) on which l is injective.

We will use the topology of uniform convergence on C(M).

Definition 1.2.6. — Let M be a compact surface endowed with a Riemannian met-

ric, whose Riemannian distance we denote by d. Let c1, c2 be two curves of M . We

define

d∞(c1, c2) = inf
param

sup
t∈[0,1]

d(c1(t), c2(t)),

where the infimum is taken over all parametrizations of c1 and c2.

The distance d∞ depends on the Riemannian metric chosen on M . However, the

topology on C(M) does not.
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Lemma 1.2.7. — Let M be a compact surface. The distances on C(M) associated

with any two Riemannian metrics on M are equivalent.

Proof. — Since M is compact, the Riemannian distances on M determined by any

two Riemannian metrics are equivalent.

On P(M), we will use a topology which is stronger than the trace of the uniform

topology. We use an analogue of the topology of convergence in 1-variation of Lipschitz

continuous paths, for which a sequence of Lipschitz continuous paths in a Euclidean

space converges if it converges uniformly and the sequence of the derivatives of the

paths converges in L1. For the moment, we introduce a metric on P(M) which

depends on a Riemannian metric on M and is apparently weaker than the distance

in 1-variation.

When c is a path on a Riemannian surface, we denote by ℓ(c) its length.

Definition 1.2.8. — Let M be a compact surface endowed with a Riemannian met-

ric. Let c1, c2 be two paths on M . We define

dℓ(c1, c2) = d∞(c1, c2) + |ℓ(c1)− ℓ(c2)|.

It is not obvious, and we will prove in the next section, that the topology induced

by dℓ on P(M) does not depend on the Riemannian metric on M . Moreover, we will

prove that this topology can be metrized by a distance for which P(M) is a complete

metric space.

The topology on P(M) induced by the distance dℓ is the only one that we consider

in this work and it is always the one to which we refer when we say that a sequence of

paths converges. We will often add a condition on the endpoints of the paths which

we consider.

Definition 1.2.9. — Let (cn)n≥0 be a sequence of paths on M . Let c be a path on

M . We say that (cn)n≥0 converges to c with fixed endpoints if

1. dℓ(cn, c) −→ 0 as n→∞,

2. for all n ≥ 0, cn = c and cn = c.

When M is endowed with a Riemannian metric, we will also make use of piecewise

geodesic paths.

Definition 1.2.10. — Let M be a compact surface endowed with a Riemannian

metric γ. We define Aγ(M) as the subset of P(M) containing the piecewise geodesic

paths, that is, the finite concatenations of segments of geodesics.

The letter A stands for affine, instead of the letter G which will be used for a lot

of other things. We claim that Aγ(M) is dense in P(M). Indeed, there is an obvious

way to approximate an arbitrary path by piecewise geodesic ones. This definition will

be useful at a later time.
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Definition 1.2.11. — Let M be a compact surface endowed with a Riemannian

metric γ. Consider c ∈ P(M), identified with a path parametrized at constant speed.

Let n ≥ 0 be an integer. Assume that 2−nℓ(c) is smaller than the injectivity radius

of M . For each k ∈ {0, . . . , 2n − 1}, let σn,k be the minimizing geodesic which joins

c(k2−n) to c((k + 1)2−n). Then define Dn(c) by

Dn(c) = σn,0 . . . σn,2n−1.

Proposition 1.2.12. — Let M be a compact surface endowed with a Riemannian

metric γ. For all path c ∈ P(M), the sequence (Dn(c)) defined for n large enough

converges to c with fixed endpoints. In particular, the space Aγ(M) is dense in P(M)

for the convergence with fixed endpoints.

Proof. — Let n be large enough for the path Dn(c) to be defined. It has the same

endpoints as c by construction. Let us parametrize it in such a way that for each

k ∈ {0, . . . , 2n − 1}, the restriction of Dn(c) to [k2−n, (k + 1)2−n] is the minimizing

geodesic which joins c(k2−n) to c((k + 1)2−n). It is straightforward that

sup
t∈[0,1]

d(c(t),Dn(c)(t)) ≤ 2−n+1ℓ(c).

Hence, Dn(c) converges uniformly towards c. Since the length is lower semi-continuous

with respect to pointwise convergence, this implies that lim inf ℓ(Dn(c)) ≥ ℓ(c). On

the other hand, ℓ(Dn(c)) ≤ ℓ(c), hence ℓ(Dn(c)) converges to ℓ(c).

1.2.2. The complete metric space of rectifiable paths. — The goal of this

section is to prove that the topology that we have introduced on P(M) does not

depend on a particular choice of a Riemannian metric on M and can be metrized by

a complete distance. Let us start by a negative result.

Lemma 1.2.13. — Let M be a compact surface endowed with a Riemannian metric.

The metric space (P(M), dℓ) is not complete.

Proof. — Let c : [− 1
4 ,

5
4 ]→M be a segment of minimizing geodesic parametrized at

constant speed. For each n ≥ 1, define cn : [0, 1]→M by cn(t) = c(t+ 1
n sin(2πnt)).

For all n ≥ 1, d∞(cn, c|[0,1]) = 1
nℓ(c|[0,1]). Moreover, for all n ≥ 1, ℓ(cn) = 4ℓ(c|[0,1]).

Hence, the sequence (cn)n≥1 is a Cauchy sequence for dℓ which converges uniformly

to c|[0,1]. Its only possible limit is c|[0,1], but ℓ(cn) does not converge to ℓ(c|[0,1]).

The main result of this section is the following.

Proposition 1.2.14. — Let M be a compact surface.

1. The topologies induced on P(M) by the distances dℓ associated to any two Rieman-

nian metrics on M are the same.

2. Endow M with a Riemannian metric. There exists a metric d1 on P(M) which

induces the same topology as dℓ and such that (P(M), d1) is a complete metric space.
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In order to prove this theorem, we define a new distance on P(M), which is the

analogue of the distance in 1-variation between Lipschitz continuous paths. Let TM

denote the tangent bundle of M . The Levi-Civita connection of γ determines a

splitting of the tangent bundle to TM as T (TM) = T V (TM) ⊕ TH(TM). The

vertical part T V (TM) is the kernel of the derivative of the bundle map π : TM −→
M . It is canonically identified with TM by associating to X ∈ TmM the vector
d
dt |t=0

(Y + tX) ∈ TY (TmM). The horizontal part TH(TM) is mapped isomorphically

onto TM by the differential of π and the reciprocal mapping can be defined as follows.

Consider X,Y ∈ TmM . Let c : (−1, 1) → M be a smooth curve such that c(0) = m

and ċ(0) = X . Let Y (t) be the unique vector field along c such that Y (0) = Y and

∇ċ(t)Y (·) = 0 for all t. Then the element of THY (TmM) which is sent to X by Tπ is

Ẏ (0).

Since the tangent space to TM at each vector X ∈ TmM splits into the direct sum

of two subspaces isomorphic to TmM , there is a natural Riemannian metric on TM ,

which we denote by γ ⊕ γ. The corresponding Riemannian distance on TM can be

described as follows : if m and n are close enough on M to be joined by a unique

minimizing geodesic and if X ∈ TmM , Y ∈ TnM , then

dTM (X,Y ) =
(
d(m,n)2+ ‖ //[m,n](X)− Y ‖2

) 1
2 ,

where //[m,n] denotes the parallel transport along the unique minimizing geodesic

from m to n.

Definition 1.2.15. — Let M be a compact surface endowed with a Riemannian

metric γ. Let c1, c2 be two paths on M . We define

d1(c1, c2) = inf
param.

(
sup
t∈[0,1]

d(c1(t), c2(t)) +

∫ 1

0

dTM (ċ1(t), ċ2(t))

)
,

where the infimum is taken over all parametrizations of c1 and c2.

We define also

d1(c1, c2) = sup
t∈[0,1]

d(c1(t), c2(t)) +

∫ 1

0

dTM (ċ1(t), ċ2(t)),

where c1 and c2 are parametrized at constant speed.

It is clear that the inequalities dℓ ≤ d1 ≤ d1 hold. We are going to prove that these

three metrics induce the same topology on P(M). The main result is the following.

Proposition 1.2.16. — Let M be a compact surface endowed with a Riemannian

metric. Let c be a path on M and (cn)n≥1 a sequence of paths such that dℓ(cn, c)

tends to 0. Then d1(cn, c) tends to 0.

Let us start with two preparatory lemmas.
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Lemma 1.2.17. — Let M be a compact surface endowed with a Riemannian met-

ric. Let c be a path on M and (cn)n≥1 a sequence of paths such that dℓ(cn, c) tends

to 0. Then, the paths cn and c being parametrized at constant speed, the uniform

convergence holds:

sup
t∈[0,1]

d(cn(t), c(t)) −→
n→∞

0.

Proof. — Let us parametrize c and cn for all n ≥ 1 at constant speed. Let us

also choose for all n a parametrization c̃n of cn such that the uniform convergence

supt∈[0,1] d(c̃n(t), c(t)) → 0 holds as n tends to infinity. Consider t ∈ [0, 1]. Since

c̃n|[0,t] and c̃n|[t,1] converge uniformly respectively to c|[0,t] and c|[t,1], we have

lim inf ℓ(c̃n|[0,t]) ≥ ℓ(c|[0,t]) = tℓ(c) and lim inf ℓ(c̃n|[t,1]) ≥ ℓ(c|[t,1]) = (1− t)ℓ(c).
Since ℓ(c̃n) tends to ℓ(c), this implies that ℓ(c̃n|[0,t]) tends to tℓ(c) as n tends to

infinity. This convergence holds for all t ∈ [0, 1] and, since the functions t 7→ ℓ(c̃n|[0,t])

are non-decreasing, a classical result ensures that the convergence is uniform:

sup
t∈[0,1]

|ℓ(c̃n|[0,t])− tℓ(c)| −→
n→∞

0.

Now, for all t ∈ [0, 1], c̃n(t) = cn

(
ℓ(c̃n|[0,t])

ℓ(cn)

)
. Since cn is ℓ(cn)-Lipschitz continuous,

we have thus

d(c̃n(t), cn(t)) ≤ |ℓ(c̃n|[0,t])− tℓ(cn)| ≤ |ℓ(c̃n|[0,t])− tℓ(c)|+ t|ℓ(cn)− ℓ(c)|.
The result follows easily.

The second lemma is the Euclidean version of Proposition 1.2.16.

Lemma 1.2.18. — Let N ≥ 1 be an integer. Consider RN endowed with its usual

Euclidean structure, with norm ‖ · ‖. Let f and (fn)n≥1 be measurable functions from

[0, 1] to the unit sphere of RN . Assume that the primitives of fn converge uniformly

to the primitive of f as n tends to infinity, that is,

sup
t∈[0,1]

∥∥∥∥
∫ t

0

fn(s) ds−
∫ t

0

f(s) ds

∥∥∥∥ −→n→∞
0.

Then fn converges in L1 towards f , that is,
∫ 1

0

‖fn(t)− f(t)‖ dt −→
n→∞

0.

The difficulty of this lemma is that the assumptions do not imply that the sequence

(fn) converges almost-everywhere to f . For example, if f is constant, fn can be

constant except on a small interval, which wanders around [0, 1], and inside which fn
oscillates rapidly around the value of f .
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Proof. — Since all functions take their values in a bounded subset of RN , it suffices

to prove that the sequence (fn)n≥1 converges in measure to f , that is, denoting by

Leb the Lebesgue measure on [0, 1], to prove that

∀ε > 0, lim
n→∞

Leb({t ∈ [0, 1] : ‖fn(t)− f(t)‖ > ε}) = 0.

According to Lebesgue’s differentiation theorem,

(17)
1

2h

∫ t+h

t−h
f(τ) dτ −→

h→0
f(t) for a.e. t ∈ (0, 1).

Let p, q ≥ 1 be two integers. Set

Cp,q =

{
t ∈ [0, 1] : ∀h ≤ 1

p
,

∥∥∥∥∥
1

2h

∫ t+h

t−h
f(τ) dτ − f(t)

∥∥∥∥∥ ≤
1

q

}
.

The relation (17) is equivalent to the fact that for all q ≥ 1, Leb(
⋃
p≥1 Cp,q) = 1.

Hence, for all α > 0 and all q ≥ 1, there exists p ≥ 1 such that Leb(Cp,q) ≥ 1− α.

Let us fix ε > 0. Then, let us choose two reals α > 0, r > 0 and an integer q ≥ 1.

Let p(q, α) ≥ 1 be an integer such that Leb(Cp(q,α),q) ≥ 1 − α. Set h = 1
p(q,α) . Let

n0(r) ≥ 1 be an integer such that,

∀n ≥ n0(r), sup
t∈[0,1]

∥∥∥∥
∫ t

0

fn(s) ds−
∫ t

0

f(s) ds

∥∥∥∥ ≤
1

2r
.

Choose n ≥ n0(r) and t ∈ Cp(q,α),q. Then
∥∥∥∥∥

1

2h

∫ t+h

t−h
fn(τ) dτ − f(t)

∥∥∥∥∥ <
1

q
+

1

2hr
.

Since for all s ∈ [0, 1], ‖fn(s)‖ = ‖f(s)‖ = 1, we have

∀τ ∈ [t− h, t+ h], ‖fn(τ) − f(t)‖ > ε

2
⇒ 1− 〈fn(τ), f(t)〉 > ε2

8
.

Hence,

1

2h
Leb

({
τ ∈ [t− h, t+ h] : ‖fn(τ) − f(t)‖ > ε

2

})

≤ 8

ε2
1

2h

∫ t+h

t−h
〈f(t)− fn(τ), f(t)〉 dτ

≤ 8

ε2

(
1

q
+

1

2hr

)
.

The same inequality holds when fn is replaced by f . Hence,

(18)
1

2h
Leb ({τ ∈ [t− h, t+ h] : ‖fn(τ) − f(τ)‖ > ε}) ≤ 16

ε2

(
1

q
+

1

2hr

)
.

This inequality holds for every t ∈ Cp(q,α),q. Consider a subset T of Cp(q,α),q such

that any two distinct points of T are at distance at least h. Take T to be maximal for

inclusion among all subsets of Cp(q,α),q with this property. Then by the assumption
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of separation of the points of T , T has less than 1
h + 1 points and by the maximality

of T , the intervals [t − h, t + h] with t ∈ T cover Cp(q,α),q. By applying (18) at the

points of T , we find

Leb({t ∈ Cp(q,α),q : ‖fn(t)− f(t)‖ > ε}) ≤ 32(1 + h)

ε2

(
1

q
+

1

2hr

)
.

Since Leb(Cp(q,α),q) ≥ 1 − α, and since h = 1
p(q,α) ≤ 1, we have finally proved that

for all α > 0, r > 0 and all q ≥ 1, there exists n0(r) such that

∀n ≥ n0(r), Leb({t ∈ [0, 1] : ‖fn(t)− f(t)‖ > ε}) ≤ 64

ε2

(
1

q
+
p(q, α)

2r

)
+ α.

By choosing α sufficiently small and q sufficiently large, then r such that p(q,α)
2r is

sufficiently small, this proves that the left-hand side of this inequality can be made

arbitrarily small by choosing n sufficiently large. This is exactly the desired conver-

gence.

Let us now prove Proposition 1.2.16.

Proof of Proposition 1.2.16. — Let us parametrize the paths (cn)n≥1 and c at con-

stant speed. For each n ≥ 1, set Un = supt∈[0,1] d(cn(t), c(t)). By Lemma 1.2.17, Un

tends to 0 as n tends to infinity. Hence, we need to prove that
∫ 1

0
dTM (ċn(t), ċ(t)) dt

tends to 0. Let us choose n large enough for Un to be smaller than the injectivity

radius of M . Then
∫ 1

0

dTM (ċn(t), ċ(t)) =

∫ 1

0

(
d(cn(t), c(t))2 +

∥∥//[cn(t),c(t)]ċn(t)− ċ(t)
∥∥2
) 1

2

dt

≤ Un +

∫ 1

0

∥∥//[cn(t),c(t)]ċn(t)− ċ(t)
∥∥ dt.

Nash’s embedding theorem grants the existence of an isometric embedding of M in a

Euclidean space. Let i : M → RN be such an embedding. We denote its differential

by di and, using the natural identification TRN ≃ RN ×RN , we see di as a map from

TM to RN . For all X ∈ TM , we have ‖di(X)‖RN = ‖X‖. Hence,
∥∥//[cn(t),c(t)]ċn(t)− ċ(t)

∥∥ =
∥∥(di ◦ //[cn(t),c(t)])(ċn(t)) − di(ċ(t))

∥∥
RN

≤
∥∥(di ◦ //[cn(t),c(t)])(ċn(t)) − di(ċn(t))

∥∥
RN + ‖di(cn(t)) − di(c(t))‖RN .

Since M is compact, any smooth function on M ×M which vanishes on the diagonal

is dominated by the Riemannian distance. Let us apply this observation to a smooth

function which near the diagonal is defined by (m,n) 7→ sup{‖(di ◦ //[m,n])(X) −
di(X)‖RN : X ∈ TmM, ‖X‖ = 1}. We find a constant K > 0 such that for all

m,n ∈M and all X ∈ TmM ,

‖(di ◦ //[m,n])(X)− di(X)‖RN ≤ Kd(m,n)‖X‖.
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Since the lengths of the paths cn converge, L = sup{ℓ(cn) : n ≥ 1} is finite. Hence,

for n large enough, we have
∫ 1

0

dTM (ċn(t), ċ(t)) dt ≤ (1 +KL)Un +

∫ 1

0

‖di(ċn(t))− di(ċ(t))‖RN dt.

It suffices to prove that the last integral converges to 0. As a mapping between metric

spaces, i is 1-Lipschitz continuous. Hence, i(cn) converges uniformly to i(c) as n tends

to infinity. Since i is a Riemannian isometry, i(cn) and i(c) are also parametrized at

constant speed for all n ≥ 1, respectively ℓ(cn) and ℓ(c). For all n ≥ 1, define

fn : [0, 1] → RN by fn = 1
ℓ(cn)di(ċn). Define also f : [0, 1] → RN by f = 1

ℓ(c)di(ċ).

These functions take their values in the unit sphere of RN . Since i(cn) converges

uniformly to i(c) as n tends to infinity and ℓ(cn) tends to ℓ(c), the primitives of

(fn)n≥1 converge uniformly to the primitive of f . By Lemma 1.2.18, this implies that

(fn)n≥1 converges in L1 to f . Using again the fact that ℓ(cn) converges to ℓ(c), we

find that the derivative of i(cn) converges in L1 to the derivative of i(c):

(19)

∫ 1

0

‖di(ċn(t))− di(ċ(t))‖RN −→
n→∞

0.

This is the expected convergence.

Lemma 1.2.19. — Let M be a compact surface. The topology on P(M) induced by

the distances d1 associated to any two Riemannian metrics on M are the same.

Proof. — Consider two Riemannian metrics γ and γ′ on M . We will denote with a

prime the quantities associated with γ′.

Let c be a path and (cn)n≥1 a sequence of paths such that d1(cn, c), and thus also

dℓ(cn, c), tend to 0 as n tends to infinity. Let us parametrize c and each path cn at

constant speed with respect to γ. By Proposition 1.2.16, we have

sup
t∈[0,1]

d(cn(t), c(t)) +

∫ 1

0

dTM (ċn(t), ċ(t)) −→
n→∞

0.

Set L = sup{ℓ(cn) : n ≥ 1} ≥ ℓ(c). On the compact subset BL(TM) = {X ∈
TM : ‖X‖γ ≤ L} of TM , the distances dTM and d′TM are equivalent. Moreover, the

distances d and d′ on M are also equivalent. It follows that

sup
t∈[0,1]

d′(cn(t), c(t)) +

∫ 1

0

d′TM (ċn(t), ċ(t)) −→
n→∞

0

for some parametrization of c and the paths cn. Hence, d′1(cn, c) tends to 0.

Lemma 1.2.20. — Let M be a compact surface endowed with a Riemannian metric.

The metric space (P(M), d1) is complete.

Proof. — Let (cn)n≥1 be a Cauchy sequence of P(M) for the distance d1. Let us

parametrize all these paths at constant speed. They form a Cauchy sequence for the
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uniform distance between continuous mappings from [0, 1] to M , so they converge

uniformly to some continuous mapping c : [0, 1]→M .

Let us use Nash’s theorem again to find an isometric embedding i : M → RN .

Since i is 1-Lipschitz continuous, the sequence (i(cn))n≥1 of paths in RN converges

uniformly to i(c).

The sequence (cn)n≥1 is in particular Cauchy for the distance dℓ, so that the

sequence (ℓ(cn))n≥1 converges to some real l. Set L = sup{ℓ(cn) : n ≥ 1} < +∞.

The restriction to the compact set BL(TM) = {X ∈ TM : ‖X‖ ≤ L} of the smooth

mapping di : TM → RN is Lipschitz continuous. Hence, the sequence (i(cn))n≥1 of

paths in RN is also a Cauchy sequence for the L1 distance of the derivatives. Hence,

the derivatives di(ċn) converge in L1 to some function f : [0, 1]→ RN which takes its

values in the sphere of radius limn→∞ ℓ(cn) = l. Passing the equality
∫ t
0
di(ċn(s)) =

i(cn(t))− i(cn(0)) to the limit, we find that f is the derivative of i(c). Hence, i(c) is a

Lipschitz continuous path parametrized at constant speed l, and so is c. In particular,

l = ℓ(c).

Finally, the sequence (cn)n≥1 satisfies dℓ(cn, c) → 0 as n tends to infinity. By

Proposition 1.2.16, this implies that d1(cn, c) tends to 0 as n tends to infinity.

Let us collect the results that we have proved and deduce Proposition 1.2.14.

Proof of Proposition 1.2.16. — Since dℓ ≤ d1 ≤ d1 and by Proposition 1.2.16, the

three distances dℓ, d1 and d1 induce the same topology on P(M). By Lemma 1.2.19,

this topology does not depend on the Riemannian metric on M . By Lemma 1.2.20,

it is the topology of a complete metric space.

1.3. Graphs

1.3.1. Graphs and the sewing of patterns. — A graph on a surface is a finite

set of paths or curves called edges and which satisfy several conditions. For Markovian

holonomy fields, these finite sets of paths play the role of the finite sets of points in a

time interval along which one considers the finite-dimensional marginals of a Markov

process. The fact that most finite collections of paths are not the set of edges of

graph leads to quite a lot of technical complication: Markovian holonomy fields are

stochastic processes of which only a small number of finite-dimensional marginals can

be described by a simple formula.

Definition 1.3.1. — Let M be a topological compact surface. A curve on M which is

injective or a simple continuous loop is called a continuous edge. The set of continuous

edges on M is denoted by CE(M).

Let M be a smooth compact surface. A path on M which is injective or a simple

loop is called an edge. The set of edges on M is denoted by E(M).
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When we consider an edge or a continuous edge e, we will often abusively denote

the range of e by e instead of e([0, 1]).

Definition 1.3.2. — Let M be a connected compact surface (resp. a topological

compact surface). A pre-graph on M is a triple G = (V,E,F), where

1. V is a finite subset of M ,

2. E is a non-empty finite subset of E(M) (resp. CE(M)), stable by inversion, such

that V =
⋃
e∈E
{e, e}, and such that two edges of E which are not each other’s inverse

meet, if at all, only at some of their endpoints,

3. F is the set of the connected components of M −⋃e∈E
e([0, 1]).

The elements of V,E,F are called the vertices, edges and faces of the pre-graph.

A graph on M is a pre-graph which satisfies the following condition:

4. Each face of G is homeomorphic to an open disk of R2.

The skeleton of a pre-graph G is the subset of M defined by Sk(G) =
⋃
e∈E

e([0, 1]).

The set of paths (resp. curves) that can be obtained by concatenating edges of G is

denoted by P(G) (resp. C(G)). The subset of P(G) (resp. C(G)) consisting of loops

is denoted by L(G) (resp. CL(G)).

If M is homeomorphic to a sphere and m is a point of M , we include the exceptional

triple ({m},∅, {M − {m}}) in the set of graphs.

A graph on a non-connected surface is defined as the data of a graph on each

connected component of this surface.

Let (M,C ) be a marked surface. Let G be a graph on M . We say that G is a graph

on (M,C ) if each cycle of C is represented by a loop of L(G).

In the terminology of Mohar and Thomassen [29], what we call a graph on a

topological surface is a cellular embedding of a combinatorial multigraph. It was

proved by Radó in 1925 that every surface can be triangulated. In particular, on

every topological compact surface there exists a graph. On a Riemannian surface,

the proof of the fact that there exists a triangulation given in [29] is still valid if one

uses only piecewise geodesic paths. Hence, a Riemannian surface admits a piecewise

geodesic triangulation. This triangulation is a graph and, by adding some vertices,

one may assume that the edges of this graph are geodesic. Finally, a Riemannian

surface admits a graph with geodesic edges.

In order to analyze a pre-graph or a graph, an effective method consists in splitting

it along some of its edges. This is very similar to the surgery of smooth marked

surfaces described in Section 1.1.2. The operations described here are however less

regular and best defined in the category of topological surfaces.

Definition 1.3.3. — A pattern is a triple (M,G, ι), where M is a topological sur-

face, G is a pre-graph on M and ι is an involution of the set E of edges of G such that

for all edge e ∈ E, ι(e) 6= e−1, ι(e−1) = ι(e)−1 and e 6⊂ ∂N ⇒ ι(e) = e. A pattern

(M,G, ι) is split if Sk(G) ⊂ ∂M .
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Two patterns (M,G, ι) and (M ′,G′, ι′) are isomorphic if there exists a homeomor-

phism ψ : M →M ′ such that ψ(G) = G′ and ψ ◦ ι = ι′ ◦ ψ.

A pattern is meant to be sewed according to the identifications determined by

its involution. Our convention here is slightly simpler than in the case of tubular

patterns, in that we exclude the case ι(e) = e−1 which was the purely conventional

encoding of unary gluings. Here, an edge e is always meant to be identified by an

orientation-preserving homeomorphism with ι(e).

When f : M ′ → M is a continuous mapping between two surfaces and e′ is a

continuous edge on M ′, we denote by f(e′) the curve f ◦ e′.

Definition 1.3.4. — Let (M,G, ι) and (M ′,G′, ι′) be two patterns. A continuous

mapping f : M ′ → M is called an elementary sewing if it is the quotient map which

identifies e′ with ι′(e′) by an orientation-preserving homeomorphism for some e′ ∈ E′.

Moreover, it is required that f(E′) = E and, on E′ − {e′, e′−1
, ι(e′), ι(e′)−1}, ι ◦ f =

f ◦ ι′.
The unoriented edge {f(e′), f(e′)−1} is called the joint of the elementary sewing.

A sewing is a map which can be written as the composition of several elementary

sewings. A sewing is complete if the involution of the set of edges of the target surface

is the identity.

We have results for sewings which are similar to those we had for gluings. In

particular, sewings can always be performed and a surface can always be split along

an edge, provided the interior of the edge does not meet the boundary of the surface.

Proposition 1.3.5. — 1. Let (M ′,G′, ι′) be a pattern. Consider e′ ∈ E′ such that

ι(e′) 6= e′. There exists a pattern (M,G, ι) and an elementary sewing f : M ′ → M

such that the joint of f is {f(e′), f(e′)−1}. Moreover, this gluing is unique up to

isomorphism: if (M ′′,G′′, ι′′) and f ′′ : M ′ → M ′′ satisfy the same properties, then

there exists an isomorphism ψ : (M,G, ι)→ (M ′′,G′′, ι′′) such that ψ ◦ f = f ′′.

2. Let (M,G, ι) be a pattern. Choose {e, e−1} ⊂ E such that e ∩ ∂M ⊂ {e, e}.
Then there exists a pattern (M ′,G′, ι′) and an elementary sewing f : M ′ → M such

that the joint of f is {e, e−1}. Moreover, this gluing is unique up to isomorphism:

if (M ′′,G′′, ι′′) and f ′′ : M ′′ → M satisfy the same properties, then there exists an

isomorphism ψ : (M ′,G′, ι′)→ (M ′′,G′′, ι′′) such that f ′′ ◦ ψ = f .

Just as Proposition 1.1.11, this result is obvious at a certain intuitive level but lacks

a concise proof. The first assertion relies on the fact that the result of the identification

of e with ι(e) is always a compact surface. This fact is explained in [29], at the

beginning of Section 3.1. The second assertion relies on the Jordan curve theorem and

on Schönfliess’ theorem, which asserts that the group of homeomorphisms of R2 acts

transitively on the set of parametrized Jordan curves. A self-contained exposition

of the theorems of Jordan and Schönfliess and of results which are very close to



1.3. GRAPHS 35

the forthcoming Proposition 1.3.8 can be found in the book of B. Mohar and C.

Thomassen [29].

Let us only discuss the second assertion when the edge e is a simple loop and

the equator of a Möbius band. In this case, the surface M ′ has one more boundary

component than M and this boundary component is covered by two unoriented edges

e′1 and e′2, which we may assume to be oriented in such a way that the concatenation

e′1e
′
2 makes sense. In this case, e′1e

′
2 is a loop which represents the new boundary

component of M ′ and the involution ι exchanges e′1 and e′2.

Since a gluing is a special case of a sewing, Proposition 1.3.5 implies that a pre-

graph can be lifted through a splitting, in a way which is unique up to homeomor-

phism. It also implies the following result.

Lemma 1.3.6. — Let M be a compact topological surface. The group of homeomor-

phisms of M acts transitively on the set of injective continuous edges contained in the

interior of M .

Proof. — An injective continuous edge contained in the interior of M determines a

pre-graph on M . The associated split pattern is simply M to which a disk has been

removed. The boundary of this disk is the concatenation of two edges which are

identified with each other’s inverse by the involution. Hence, this split pattern does

not depend, up to homeomorphism, on the edge.

Corollary 1.3.7. — Let M be a topological compact surface. Let e be an injective

continuous edge contained in the interior of M . There exists a graph on M of which

e is an edge.

Proof. — Let G be a graph on M . If M is a disk and Sk(G) ⊂ ∂M , let us add to

G a continuous edge whose interior is contained in the interior of M . In any other

case, G contains an edge whose interior is contained in the interior of M . By adding

vertices to G if necessary, we may assume that it has an edge, say e1, contained in

the interior of M . The image of G by a homeomorphism of M which sends e1 to e is

a graph on M of which e is an edge.

By successively applying Proposition 1.3.5 in order to split all the edges of a pre-

graph which are not located on the boundary, we end up with a split pattern.

Proposition 1.3.8. — Let M be a topological compact surface. Let G = (V,E,F)

be a pre-graph on M . Assume that each edge of G is either contained in ∂M or has

no interior point on ∂M . Endow E with the identity involution. There exists a split

pattern (M ′,G′, ι) and a sewing f : M ′ → M such that f(E′) = E. For each face

F of G, f−1(F ) is the interior of a connected component of M ′ which we denote by

M ′
F . The sewing map f applies M ′

F \ (Sk(G′) ∩M ′
F ) homeomorphically onto F and

Sk(G′) ∩M ′
F continuously onto the topological boundary of F . We call (M ′,G′, ι, f)

a split pattern of the pair (M,G).
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If (M ′′,G′′, ι′′) is another split pattern and f ′′ : M ′′ →M a sewing which sends G′′

to G, then there exists an isomorphism of patterns ψ : M ′ →M ′′ such that f ′′◦ψ = f .

Finally, if M is oriented, then M ′ can be oriented and the sewing map can be assumed

to be orientation-preserving.

One of the simplest consequences of this result is that a pre-graph has a finite

number of faces. Let us identify a simple condition under which the assumption on

the edges of pre-graph made in Proposition 1.3.8 are satisfied.

Lemma 1.3.9. — Let M be a topological compact surface. Let G be a pre-graph on

M . Let c be a subset of M homeomorphic to a circle. Then c is the image of a simple

loop of CL(G) if and only if c ⊂ Sk(G). Moreover, if c ⊂ Sk(G), then for each edge e

of G, either e is contained in c or e has no interior point on c.

Proof. — One implication in the first assertion is obvious. Assume that c ⊂ Sk(G).

The image of (0, 1) by an edge is homeomorphic to (0, 1), hence it cannot contain

a subset homeomorphic to a circle. Thus, there is at least one vertex on c. Let

us choose a continuous parametrization of c by [0, 1], injective on [0, 1), such that

c(0) = c(1) ∈ V. The set c ∩ V is finite and its complement in c is a finite union

of open intervals. Let (a, b) be such an interval. Each point of (a, b) belongs to one

single edge of G. Assume that there exists u, v with a < u < v < b, such that u and v

do not belong to the same edge. Since for each given edge, the subset of [0, 1] covered

by that edge is closed, there must be a point between u and v which is covered by at

least two distinct edges. Hence, (a, b) is covered by a single edge. Both a and b must

be vertices of this edge and the result follows.

Let e be an edge which has an interior point on c. Let us choose a parametrization

of e and t ∈ (0, 1) such that e(t) ∈ c. Let I ⊂ [0, 1] be the largest segment containing

t such that e(I) ⊂ c, that is, the connected component of t in {s ∈ [0, 1] : e(s) ∈ c}.
Assume first that I = {t}. In this case, since c is contained in Sk(G), e(t) belongs

to the closure of another edge of G, hence to another edge, and it is a vertex of G.

This is impossible since t /∈ {0, 1} by assumption. Let us now assume that I = [a, b]

with a < b. Since e is an edge, the equality e(a) = e(b) can occur only if a = 0 and

b = 1, in which case e is contained in c. Actually, in this case, e is a simple loop whose

range is c. Assume now that e(a) 6= e(b). Then e(I) is a subset of c homeomorphic

to a segment. Since c ⊂ Sk(G), each endpoint of this segment belongs to the range

of another edge of G. Hence e(a) and e(b) are vertices. This forces a = 0, b = 1 and

in particular the fact that e is contained in c.

In our definition of graphs, the focus is put on edges: a graph is a set of edges which

satisfies certain properties. It is important that we find a robust criterion which tells

us when a pre-graph satisfies the topological condition which makes it a graph. By a

robust criterion, we mean a criterion which makes it obvious that a pre-graph whose
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edges are close to those of a graph is also a graph. Let us apply Proposition 1.3.8 to

establish such a criterion.

Proposition 1.3.10. — Let M be a connected topological surface. Let G be a pre-

graph on M . The following properties are equivalent.

4. Each face of G is homeomorphic to an open disk of R2.

4’. The skeleton of G is connected, contains ∂M , and there exists v ∈ Sk(G) such

that any loop in M based at v is homotopic to a loop whose image is contained in

Sk(G).

In particular, if G is a graph, then each connected component of ∂M is the image

of a loop of CL(G).

Of course, if 4′ is satisfied for some v ∈ Sk(G), it is satisfied for all such v. In the

course of the proof, we use the following lemma.

Lemma 1.3.11. — Let M be a topological surface. Let G be a topological pre-graph

on M . Assume that Sk(G) is connected and contains ∂M . Let v be a point of Sk(G).

Consider the quotient topological space M/Sk(G), in which all the points of Sk(G) are

identified. Then the natural mapping π1(M, v)→ π1(M/Sk(G), [v]) is onto.

Proof. — Let (M ′,G′, ι, f) be a split pattern of (M,G). Since Sk(G) contains ∂M ,

we have Sk(G′) = ∂M ′. Hence, the ill-defined mapping f−1 : M → M ′ descends

to a well-defined mapping f−1 : M/Sk(G) → M ′/∂M ′, which is a homeomorphism.

In particular, [v] admits a neighbourhood homeomorphic to a finite bunch of disks

whose centres are identified, thus a contractible neighbourhood in M/Sk(G). Hence,

any loop in M/Sk(G) based at [v] is homotopic to a finite product of loops based at

[v] and whose interior does not visit [v]. Choose a loop l based at [v] on M/Sk(G).

Assume that l is homotopic to l1 . . . ln and the interiors of l1, . . . , ln do not visit [v].

Each loop li corresponds via f−1 to a loop in the space M ′
F /∂M

′
F for some F ∈ F.

Such a loop can be lifted to a path ci on M ′
F which starts and finishes on ∂M ′

F and

stays in the interior of M ′
F in between. Since Sk(G) contains ∂M , the paths f(ci) are

paths on M which start and finish in f(∂M ′) = Sk(G)∪∂M = Sk(G). Since Sk(G) is

connected, it is possible to connect their endpoints inside Sk(G) and thus to produce

a loop in M based at v whose image in the quotient M/Sk(G) is l1 . . . ln.

Proof of Proposition 1.3.10. — 4 ⇒ 4′. Let us assume that the assumption 4 is sat-

isfied. Since the faces of G are homeomorphic to open disks, they contain no point of

∂M . Hence, the skeleton of G contains ∂M . Let (M ′,G′, ι, f) be a split pattern of

(M,G). By Proposition 1.3.8, the interior of M ′
F is homeomorphic to an open disk for

each F , so that M ′
F is a closed disk. In particular, ∂M ′

F is connected. By Proposition

1.3.8 again, it follows that the boundary of each face is connected. If Sk(G) was not

connected, there would exist a face whose boundary meets two distinct connected
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components of Sk(G). The boundary of this face would not be connected : this is

impossible.

For each face F of G, choose a point xF in F . Choose v ∈ Sk(G). It is well

known that any continuous loop in M based at v is homotopic to a loop which avoids

the points xF , F ∈ F. To see this, endow M with a Riemannian metric. Then, any

two loops which are closer in uniform distance than the convexity radius of M are

homotopic to each other. In particular, any loop is homotopic to a piecewise geodesic

loop and it is possible to choose this loop such that it avoids the points xF , F ∈ F. By

Proposition 1.3.8, the skeleton of G is a retract by deformation of M −{xF : F ∈ F}.
Hence, any loop based at v is homotopic in M to a loop which stays in the skeleton

of G.

4′ ⇒ 4. Let (M ′,G′, ι, f) be a split pattern of (M,G). Let [v] denote the class of v in

the quotient topological space M/Sk(G). This class is nothing but Sk(G). The third

part of assumption 4’ implies that the homomorphism π1(M, v)→ π1(M/Sk(G), [v])

induced by the quotient mapping is trivial. By Lemma 1.3.11 below, this homo-

morphism is surjective. Hence, the assumption 4′ implies that M/Sk(G) is simply

connected. Hence, it implies that M ′/∂M ′ is simply connected. The fundamental

group of this space is isomorphic to the free product of the fundamental groups of

the spaces M ′
F /∂M

′
F . Hence, the assumption 4′ implies that each space M ′

F /∂M
′
F is

simply connected. Up to homeomorphism, there exist only two connected compact

surfaces which, when all their boundary points are identified to a single point, are

simply connected : the sphere and the disk. Finally, the assumption 4′ implies that

all the surfaces M ′
F are homeomorphic to disks, that is, the assertion 4.

The last assertion follows from Lemma 1.3.9 and the fact that the skeleton of a

graph covers ∂M .

Corollary 1.3.12. — Let M be a topological compact surface. Let G = (V,E,F) be

a graph on M . For each n ≥ 0, let Gn = (V,En,Fn) be a pre-graph on M equipped

with a bijection Sn : E → En such that for all e ∈ E, Sn(e
−1) = Sn(e)

−1. Assume

that for all n ≥ 0 and all edge e such that e ⊂ ∂M , Sn(e) = e. Assume also that

for all e ∈ E, the sequence (Sn(e))n≥0 converges uniformly to e with fixed endpoints.

Then, for n large enough, Gn is a graph on M .

Proof. — We need to check that Gn satisfies the condition 4′ of Proposition 1.3.10

for n large enough. Firstly, for all n ≥ 0, the skeleton of Gn contains ∂M because the

skeleton of G does and every edge of G located on ∂M is also an edge of Gn. Then,

for all n ≥ 0, the skeleton of Gn is connected. Indeed, let m and m′ be two points of

Sk(Gn). They can be respectively joined inside Sk(Gn) to two vertices v and v′, which

are also vertices of G. Since Sk(G) is connected, there exist a curve e1 . . . ek in C(G)

which joins v to v′. The curve Sn(e1) . . . Sn(ek) joins v to v′ inside Sk(Gn). Finally,

for n large enough and for all e ∈ E, Sn(e) is homotopic with fixed endpoints to e.



1.3. GRAPHS 39

By choosing a point of V as base point, we find that any loop in Sk(G) is homotopic

to a loop in Sk(Gn). This finishes the proof.

1.3.2. The boundary of a face. — Although a face in a graph is, by definition,

homeomorphic to an open disk, its closure needs not be homeomorphic to a closed

disk and even when it is the case, the topological boundary of the face may not be

homeomorphic to a circle. The boundary of a face of a graph can in fact be defined

as a cycle in the graph and this is the notion which matters for us. The appropriate

intuitive picture is that of someone walking in the interior of the face, keeping her

right hand on the boundary. If the surface is non-orientable, the boundary of the face

is a non-oriented cycle.

Figure 2. The closure of the white face of the first graph is not home-

omorphic to a closed disk. The closure of the unique face of the second

graph is homeomorphic to a closed disk, but its topological boundary is

not homeomorphic to a circle.

The following definition makes sense thanks to Proposition 1.3.8, in particular the

statement of uniqueness.

Definition 1.3.13. — Let M be a topological compact surface. Let G be a graph on

M . Let (M ′,G′, ι, f) be a split pattern of (M,G). Let F be a face of G. Let M ′
F be

the connected component of M ′ such that f(M ′
F ) = F .

If M is oriented, then the boundary of F is defined as the cycle ∂F = f(∂M ′
F )

in CL(G). If M is not oriented, we may still orient M ′
F and the boundary of F is

defined as the unoriented cycle ∂F = {f(∂M ′
F ), f(∂M ′

F )−1}.
A cycle of the form ∂F for some face F is called a facial cycle of (M,G).

This definition allows us to make sense of an edge adjacent to a face.

Definition 1.3.14. — Let M be a topological compact surface endowed with a graph

G. Let (M ′,G′, ι, f) be a split pattern of (M,G). Let F be a face of G and M ′
F the

corresponding connected component of M ′. Let e be an edge of G. We say that the

unoriented edge {e, e−1} is adjacent to F if there exists an edge e′ of G′ such that

e′ ⊂ ∂M ′
F and f(e′) ∈ {e, e−1}.
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If M is oriented and M ′ is oriented accordingly, we say that e is adjacent to F if

there exists an edge e′ with the same properties as above and e′ bounds M ′
F positively.

An unoriented edge is adjacent to a face if and only if it is contained in its topolog-

ical closure. When M is oriented, it follows from Proposition 1.3.8 that each oriented

edge is adjacent to exactly one face. It may however occur that e and e−1 are adjacent

to the same face.

The content of the next result is that an edge which is adjacent to two distinct

faces can be removed from a graph.

Proposition 1.3.15. — Let (M,C ) be a marked surface. Let G = (V,E,F) be a

graph on (M,C ).

1. Let e be an edge of G which is not contained in any curve of C . Assume that

e is adjacent to two distinct faces F1 and F2. Write ∂F1 = ce and ∂F2 = e−1d for

some c, d ∈ P(G).

Then E \ {e, e−1} is the set of edges of a graph on (M,C ), denoted by G \ e,
with the same faces as G, except for the faces F1 and F2 which are replaced by F =

F1 ∪ F2 ∪ e((0, 1)). Moreover, ∂F = cd.

2. Let e be an edge of G which finishes at a vertex of degree 1, that is, such that the

terminal point of e is the terminal point of no other edge of G. Let F be the unique

face adjacent to e. Let c ∈ P(G) be such that ∂F = cee−1 or ∂F = ce−1e.

Then E \ {e, e−1} is the set of edges of a graph on (M,C ), denoted by G \ e, with

the same faces as G, except for the face F which is replaced by F ∪e((0, 1]). Moreover,

∂F = c.

Proof. — The proofs of the two assertions are very similar. We prove only the first

one. Let (M ′,G′, ι, f) be a split pattern of (M,G). By suitably orienting M ′, we

may assume that e is the image by f of an edge e′1 which bounds M ′
F1

positively

and e−1 the image of an edge e′2 = ι(e′1) which bounds M ′
F2

positively. Let us write

∂M ′
F1

= c′e′1 and ∂M ′
F2

= e′2d
′, where c′ and d′ are curves in G′ which satisfy f(c′) = c

and f(d′) = d.

Let us assume first that either c′ or d′ is not the constant curve, that is, that either

∂M ′
F1
6= e′1 or ∂M ′

F2
6= e′2. In this case, sewing e′1 and e′2 results in a new surface M ′

F

which is still homeomorphic to a closed disk.

By removing the inner edge of this disk, we obtain a new split pattern (M ′′,G′′, ι′′)

with one connected component less than M ′. The mapping f ′′ : M ′′ → M induced

by f is a complete sewing of this pattern, so that (M ′′,G′′, ι′′, f ′′) is a split pattern

of (M,G \ e). It follows on one hand that G \ e is a graph and on the other hand that

the boundary of the new face F is f ′′(c′d′) = f(c′)f(d′) = cd.

It remains to check that each curve of C is represented by a loop of G \ e. By

Lemma 1.3.9, it suffices to check that each curve of C is contained in Sk(G \ e).
Consider l ∈ C . By the second assertion of Lemma 1.3.9, the assumption that e is
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M
′

F1
M

′

F2

Figure 3. This picture illustrates the case ∂M ′

F1
= c′e′1 and ∂M ′

F2
= e′2

with c′ non-constant.

not contained in any curve of C ensures that e has at most some of its endpoints on

l. Hence, Sk(G \ e) contains at least the complement of a finite set in l, hence l itself

because it is closed. This finishes the proof.

Let us now treat the case where ∂M ′
F1

= e′1 and ∂M ′
F2

= e′2. In this case, the

image of M ′
F1
∪ M ′

F2
by f is a sphere of which e is an equator. This sphere is a

connected component of M and, ignoring possible other connected components, we

have E = {e, e−1} and C = ∅. Hence, G \ e is indeed a graph, the exceptional graph

with no edge and a single vertex. It has a unique face whose boundary is the constant

curve at this vertex.

The difficulty with the definition of the boundary of a face given by Definition

1.3.13 is the same that we encountered about the topological condition on the faces

of a graph and that led us to state Proposition 1.3.10. It is not obvious from this

definition that a small deformation of the edges of a graph cannot affect essentially

the facial cycles. Since there will come a point in this work at which we will need

to compare graphs with close edges, we need to be able to extract in a fairly explicit

and robust way the amount of combinatorial structure of a graph which determines

its facial cycles.

The content of Schönfliess theorem is that there is no local topological invariant of a

simple curve in a surface. Hence, in a graph, the only place where some local structure

arises is at the vertices. This structure at a given vertex is completely described by

the cyclic order of the edges which share this vertex as an endpoint. When the

surface is orientable, the information of these cyclic orders is in fact sufficient to

determine completely the facial cycles of the graph, hence, by Proposition 1.3.8, the

pair (M,G) up to homeomorphism. When the surface is not orientable, a small

amount of global information is needed to recover the facial cycles. Before explaining

this, let us describe precisely what we mean by the cyclic order of the edges at a

vertex. The characterization of this order which we establish now will be useful later.

In the next lemma, the surface is equipped with a differentiable structure because

we need to consider a Riemannian metric on it. Nevertheless, the graph is allowed to

have continuous edges. Also, the result is stated on a surface without boundary. If
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M has a boundary, then the cyclic order of the edges at a vertex should be computed

after a disk has been glued along each boundary component of M .

Lemma 1.3.16. — Let M be a smooth surface without boundary. Let G be a graph

on the topological surface underlying M . Let v ∈ V be a vertex. Let e1, . . . , en be n

parametrized curves which represent the edges of G which share v as their starting

point. Let γ be a Riemannian metric on M , whose Riemannian distance is denoted

by d. Let R be the injectivity radius of γ. Set r0 = min({R} ∪ {d(v, ei(1
2 )) : i ∈

{1, . . . , n}}). For each r ∈ (0, r0) and each i ∈ {1, . . . , n}, define si(r), ti(r) ∈ [0, 1
2 ]

by

si(r) = inf

{
t ∈

[
0,

1

2

]
: d(v, ei(t)) = r

}
, ti(r) = sup

{
t ∈
[
0,

1

2

]
: d(v, ei(t)) = r

}
.

If M is not oriented, choose an orientation of the ball B(v, r0). For each r ∈ (0, r0),

let ωfirst(r) be the cyclic permutation of {e1, . . . , en} corresponding to the cyclic order

of the points e1(s1(r)), . . . , en(sn(r)) on the circle C(v, r), oriented as the boundary

of the ball B(v, r). Similarly, let ωlast(r) be the cyclic permutation of {e1, . . . , en}
corresponding to the cyclic order of the points e1(t1(r)), . . . , en(tn(r)) on the circle

C(v, r). Then the following properties hold.

1. The cyclic order ωfirst(r) does not depend on r ∈ (0, r0). We denote it simply by

ωfirst.

2. There exists r1 ∈ (0, r0) such that for all r ∈ (0, r1), ωlast(r) = ωfirst.

In the proof of this lemma, we take the following fact (which can be deduced

from Proposition 1.3.8) for granted. On the compact cylinder [0, 1] × S1, consider

n injective continuous curves c1, . . . , cn which do not meet each other. Assume that

each curve starts at a point of {0} × S1 and finishes at a point of {1} × S1. Assume

that no point of these curves other than their endpoints is located on the boundary

of the cylinder. Then there exists an orientation-preserving homeomorphism of the

cylinder onto itself which sends each curve to a set of the form [0, 1]× {z} for some

z ∈ S1. In particular, the cyclic order of the initial points of c1, . . . , cn on the circle

{0}×S1 is the same as the cyclic order of their terminal points on the circle {1}×S1.

Proof. — Let us choose r ∈ (0, r0) and r′ ∈ (0, r). For each i ∈ {1, . . . , n}, let us

define

ui(r
′, r) = sup{t ∈ [0, si(r)] : d(v, ei(t)) = r′}.

Thus, ci = ei([ui(r
′, r), si(r)]) is an injective curve which joins C(v, r′) to C(v, r) and

stays in the annulus r′ ≤ d(v, ·) ≤ r. Moreover, only the endpoints of ci lie on the

boundary of the annulus. This annulus is homeomorphic to a cylinder and the curves

c1, . . . , cn do not meet each other. According to the remark made before the proof, the

cyclic order of the points e1(u1(r
′, r)), . . . , en(un(r′, r)) on the circle C(v, r′), which
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we denote by ωmixed(r
′, r), is the same as the cyclic order of e1(s1(r)), . . . , en(sn(r))

on C(v, r), which is by definition ωfirst(r).

Set r1(r) = min({r} ∪ {d(v, ei([si(r), 1
2 ])) : i ∈ {1, . . . , n}}). Since the edges

e1, . . . , en are injective paths, r1(r) is a positive number and, for all r′ < r1(r),

ui(r
′, r) = ti(r

′). Hence, for all r ∈ (0, r0) and r′ ∈ (0, r1(r)),

ωlast(r
′) = ωmixed(r

′, r) = ωfirst(r).

Both assertions follow from this equality.

Let us describe informally the algorithm which one uses to computes the facial

cycles of a graph. First, one has to land somewhere on the surface, near the boundary

of a face and to grasp the nearest edge with either hand. Then, one walks forward

to the next vertex without breaking the contact with the edge. There, one performs

two operations. The first consists in changing the hand which holds the edge and

turning one’s body of a half-turn. One has now the vertex in one’s back. The second

operation consists in grasping with one’s free hand the only outcoming edge at this

vertex that one is not already holding and that is accessible without crossing any

edge, and finally releasing the first edge. When one reaches a vertex at which there

is only one outcoming edge, one turns around this vertex and walks back along the

same edge, on the other side and holding it with the other hand. This process has to

be iterated until one comes back to one’s initial position.

Formally, the facial cycles arise as the cycles of a certain permutation on a set

which corresponds to the possible ways of our explorer holding an edge. We call this

set a framing of the graph.

Definition 1.3.17. — Let M be a compact topological surface. Let G be a graph on

M . An orientation of the vertices of G is a collection (Uv)v∈V of pairwise disjoint

open subsets of M such that for all vertex v ∈ V, Uv is an orientable and oriented

neighbourhood of v.

Given an orientation of the vertices of G, and for each edge e, we use the orientation

of Ue to determine a left and a right of e, at least in the vicinity of e. If e is located

on the boundary of M , we say that is bounds M positively if M is on the left of e.

Definition 1.3.18. — Let M be a topological compact surface. Let G be a graph on

M . Let (Uv)v∈V be an orientation of the vertices of G. For each e ∈ E, set

fr(e) =





{−1, 1} if e is not contained in ∂M,

{1} if e ⊂ ∂M and e bounds M positively,

{−1} if e ⊂ ∂M and e bounds M negatively.

The framing of E is the subset fr(E) of E× {−1, 1} defined by

fr(E) =
⋃

e∈E

{e} × fr(e).
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We have already mentioned that, without the assumption that M is orientable,

some amount of global information is needed to determine the facial cycles.

Definition 1.3.19. — Let M be a compact topological surface. Let G be a graph

on M . Let (Uv)v∈V be an orientation of the vertices of G. The signature of this

orientation is the collection of signs (λe)e∈E ∈ {−1, 1}E defined as follows. For each

edge e which is a simple loop, set λe = 1 if e admits an orientable neighbourhood and

λe = −1 otherwise. Then, for each edge e such that e 6= e, consider an orientable

neighbourhood Ue of e and set λe = 1 if there exists an orientation of Ue compatible

with the orientations of Ue and Ue, and λe = −1 otherwise.

If M is orientable, then it is possible to choose an orientation of the vertices of

G which is induced by an orientation of M . The signature of such an orientation is

simply given by λe = 1 for all e ∈ E.

We are now ready to define the permutation on fr(E) which determines the facial

cycles.

Definition 1.3.20. — Let M be a compact topological surface. Let G be a graph on

M . Let (Uv)v∈V be an orientation of the vertices of G. Let fr(E) be the associated

framing of G. Let (λe)e∈E be the signature of this orientation.

The collection of the cyclic orders of the outcoming vertices at each vertex relatively

to the orientation specified by the collection (Uv)v∈V is the the set of cycles of a

unique permutation of E which we denote by σ. The involution e 7→ e−1 is another

permutation of E which we denote by α.

We define now three permutations ᾱ, σ̄ and ϕ̄ of fr(E) as follows. Firstly, we set

∀(e, ε) ∈ fr(E), ᾱ(e, ε) = (e−1,−λeε) and σ̄(e, ε) = (σε(e),−ε).
Then, we define ϕ̄ by the relation ϕ̄ᾱσ̄ = id. Hence,

∀(e, ε) ∈ fr(E), ϕ̄(e, ε) = (σ−λeε(e−1), λeε).

It is easy to check that σ̄ and ᾱ, hence ϕ̄ take indeed their valued in fr(E). The

permutations ᾱ and σ̄ are both involutions. They correspond respectively to the

first and second operations performed by our explorer after reaching a vertex. The

permutation ϕ̄ is the one whose cycles give the facial cycles of the graph.

Proposition 1.3.21. — Let M be a connected topological surface. Let G be a graph

on M . Let (Uv)v∈V be an orientation of the vertices of G. Let fr(E) be the associated

framing of G. Let ϕ̄ be the permutation of fr(E) defined in Definition 1.3.20.

The range of the mapping which to each cycle ((e1, ε1) . . . (en, εn)) of the permuta-

tion ϕ̄ associates the cycle e1 . . . en in G is exactly the set of the facial cycles of G,

taken once with each orientation.

If M is orientable and oriented, and if the orientation of the sets Uv is induced by

the orientation of M , then ϕ̄ leaves fr(E) ∩ (E × {1}) globally invariant. Moreover,
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the set of cycles of the restriction of ϕ̄ to fr(E) ∩ (E × {1}) determines exactly the

set of facial cycles which bound positively a face. These cycles are also those of the

permutation ϕ = σ−1 ◦ α−1 on E.

The best proof of this result is probably the one which the reader will make for

himself by drawing pictures. Another option is to read the section 3.3 of the book by

B. Mohar and C. Thomassen [29], although their description of the permutations is

slightly less formal than ours. This whole discussion is also a variation on the theme

of ribbon graphs or maps, which are discussed extensively in [20].

Let us apply Proposition 1.3.21 to prove a result in the same vein as Corollary

1.3.12. If A and B are two subsets of a same set, we use the notation A ∔ B =

(A ∪B) \ (A ∩B).

Proposition 1.3.22. — Let M be a connected compact topological surface. Let G =

(V,E,F) be a graph on M . For each n ≥ 0, let Gn = (Vn,En,Fn) be a graph on M

equipped with a bijection Sn : V → Vn and a bijection Sn : E → En such that for all

e ∈ E, Sn(e) is the starting point of Sn(e) and Sn(e
−1) = Sn(e)

−1. We assume that

for all n ≥ 0 and all edge e such that e ⊂ ∂M , Sn(e) = e. We assume also that for all

e ∈ E, the sequence (Sn(e))n≥0 converges uniformly to e. Finally, we assume that for

all n ≥ 0 and for some orientation (Uv)v∈V of the vertices of G such that Sn(v) ∈ Uv
for all n ≥ 0 and all v ∈ V, the cyclic order of the outcoming edges at every vertex is

preserved by the bijection Sn.

Then for all n ≥ 0, there exists a unique bijection Sn : F → Fn such that for all

F ∈ F, ∂Sn(F ) = Sn(∂F ). Moreover, for all F ∈ F, one has

lim sup
n→∞

(F ∔ Sn(F )) =
⋂

n≥0

⋃

m≥n
(F ∔ Sm(F )) ⊂ Sk(G).

We use the following simple lemma.

Lemma 1.3.23. — Let M be a connected compact surface endowed with a graph G.

If M is non-orientable, then two faces cannot have the same bounding unoriented

cycle, and if M is oriented, then two faces cannot have the same oriented bounding

cycle.

More specifically, assume that there exist two faces of G whose boundaries are equal

as unoriented cycles. Then M is homeomorphic to a sphere and Sk(G) is homeomor-

phic to a circle. In particular, after choosing an orientation of M , the boundaries of

the two faces as oriented cycles are each other’s inverse.

Proof. — Let F1 and F2 denote two faces of G which share the same unoriented

bounding cycle. Let c be a simple loop which represents this cycle, oriented in an

arbitrary way. Consider, in a split pattern (M ′,G′, ι, f) of (M,G), the two disks M ′
1

and M ′
2 corresponding to F1 and F2 respectively. They are bounded by the same

number of edges, which is also the combinatorial length of c. Let e′1,1, . . . , e
′
1,n and
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e′2,1, . . . , e
′
2,n denote respectively the set of edges located on the boundary of M ′

1 and

M ′
2, in such a way that ∂M ′

1 = e′1,1 . . . e
′
1,n and ∂M ′

2 = e′2,1 . . . e
′
2,n. Each edge on

the boundary of M ′
1 is sent by f to an edge of G which is also adjacent to F2, hence

is identified by ι with an edge bounding M ′
2. We may assume that ι(e′1,1) = e′2,1.

We may also assume that f(e′1,1) = f(e′2,1) is the first edge traversed by c and this

characterizes fully c among all representatives of the unoriented cycle ∂F1. Indeed, c

traverses each unoriented edge of G at most once, for ι does never identify two distinct

edges of the boundary of M ′
1, or M ′

2. Hence, c = f(e′1,1, . . . , e
′
1,n) = f(e′2,1, . . . , e

′
2,n),

so that ι(e′1,i) = e′2,i for all i ∈ {1, . . . , n}. The result follows.

Proof of Proposition 1.3.22. — In the case where M is a disk and Sk(G) ⊂ ∂M ,

Gn = G for all n and the result is true. In any other case, each face of G is bounded

by at least one edge which is not contained in ∂M . For each face F of G, let us choose

a point mF ∈ F and a point vF in the interior of an edge eF adjacent to F and not

contained in ∂M . Let us choose a continuous edge f̃F which crosses Sk(G) exactly

once at vF , and finishes at mF . We assume that vF is not the initial point of f̃F .

We denote by fF the portion of f̃F which joins vF to mF . For n ≥ 0 large enough,

f̃F meets Sk(Gn), more precisely the edge Sn(eF ) and only this edge. For such n, let

vF,n be the last exit point of f̃F from Sk(Gn). It is an interior point of Sn(eF ). Let

Sn(fF ) be the portion of f̃F which joins vF,n to mF .

Let us perform this construction for each face F , with the edges f̃F chosen to be

pairwise disjoint. Let us define G′ as the graph obtained from G by subdividing the

edges eF at vF and adding the edges fF . Also, for all n ≥ 0, let G′
n be the graph

obtained from Gn by subdividing the edges Sn(eF ) at vF,n and adding the edges

Sn(fF ). We extend Sn : V → Vn to S′
n : V′ → V′

n by setting Sn(vF ) = vF,n, and

extend also Sn : E → En to S′
n : E′ → E′

n in the obvious way. It is not difficult to

check that vF,n tends to vF as n tends to infinity, and hence that S′
n(fF ) converges

uniformly to fF . By considering a small ball around vF , one checks also that the

bijections S′
n still preserve the cyclic order at each vertex, including vF and mF .

The faces of G and G′ (respectively Gn and G′
n) are obviously in bijective corre-

spondence which we denote simply with a prime. For instance, for all F ∈ F, the

cycle which bounds F ′ is deduced from ∂F by the insertion of a sequence fF f
−1
F . In

particular, F and F ′ have the same topological closure. The boundary of F ′ is the

only facial cycle of G′ which involves the edge fF and it involves no other edge of

G′ which is not contained in the skeleton of G. Hence, any facial cycle of G′ which

involves fF must be the boundary of F ′.

The advantage of this tedious construction is that for all F ∈ F, F ′ is the only face

of F′ whose closure contains the edge fF and in particular the vertex mF .

Consider now n ≥ 1 and a face F of G. Since Sn preserves the cyclic order of the

edges at each vertex, it follows from Proposition 1.3.21 that the cycle Sn(∂F ) is a

facial cycle of Gn. By Lemma 1.3.23, two faces of Gn cannot have the same boundary.
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mF

vF

vF,n

fF

eF

F

Sn(eF )

Figure 4. The construction of the graphs G
′ and G

′
n.

Hence, Sn(∂F ) is the boundary of a unique face of Gn which we denote by Sn(F ).

By construction, the equality ∂Sn(F ) = Sn(∂F ) holds for all F ∈ F.

The same construction provides us with a bijection S′
n between F′ and F′

n. Now

consider F ∈ F. By definition, S′
n(F

′) is the face of G′
n whose boundary is the cycle

Sn(∂F ) in which S′
n(fF )S′

n(fF )−1 has been inserted at the occurrence of the vertex

vF,n. Hence, mF belongs to the closure of S′
n(F

′) and, by the discussion a few lines

above, S′
n(F

′) = Sn(F )′.

Now this implies that mF belongs to the closure of Sn(F )′, which is equal to the

closure of Sn(F ). Since mF does not lie on the skeleton of Gn, this implies that

mF ∈ Sn(F ).

For each face F of G, let us choose a connected open subset UF of F which contains

mF and such that the closure of UF is contained in F . The last assumption implies

that for n large enough, Sk(Gn) is disjoint from UF . Hence, UF is contained in a

unique face of Gn, which must be Sn(F ).

In particular, F ∔Sn(F ) is contained in (F ∪Sn(F ))\UF . Since F nor Sn(F ) meet

another subset of the form UF1 for some F1 ∈ F, we deduce from this inclusion that,

for n large enough, F∔Sn(F ) is contained inM \⋃F∈F
UF . Hence, lim sup(F∔Sn(F ))

is contained in the same set. This inclusion holds for any choice of the sets UF and

the result follows.

1.3.3. Adjunction of edges. — Proposition 1.3.15 gives us a way of removing

some edges from a graph. We will also need a way of adding edges to a graph. The

typical problem is the following: we are given a compact surface M endowed with a

graph G, we consider a face F of this graph, two vertices v1 and v2 on the boundary

of F and we would like to join them by a new edge whose interior is contained in F .
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If we are working in the category of topological surfaces and graphs with continuous

edges, then Proposition 1.3.8 suffices to guarantee the existence of a continuous edge

with the desired properties. However, if we are working with a graph with rectifiable

edges and insist that the new edge be rectifiable too, then we need something more.

The problem is a purely local one and we loose nothing by formulating it in the

plane. The difficulty is that it seems not to be known whether a rectifiable edge

can be straightened, even locally, by a bi-Lipschitz continuous homeomorphism of the

plane (see for instance [25]).

In this section and in this section only, we use the symbol ∂ to denote the topological

boundary of a set. We denote by H
1 the 1-dimensional Hausdorff measure on R2.

Proposition 1.3.24. — Let K be a compact subset of R2. Assume that ∂K is con-

nected and satisfies H
1(∂K) < +∞. Let v be a point of ∂K. Let m be a point of

R2−K. Assume that v is curve-accessible from m, that is, that there exists a contin-

uous curve c : [0, 1]→ R2 such that c(0) = m, c(1) = v and c([0, 1)) ∩K = ∅. Then

there exists an injective Lipschitz-continuous curve with the same properties as c.

We start by proving an intermediary result, whose content is that two points of

the bounded connected component of the complement of a Jordan curve with finite

length can be joined inside this component by a path with finite length controlled by

the length of the Jordan curve.

Proposition 1.3.25. — Let U be a non-empty bounded connected open subset of R2

with connected boundary. Assume that H 1(∂U) < +∞. For all a, b ∈ U , there exists

a rectifiable path c which joins a to b and such that ℓ(c) = H 1(c) ≤ 100H 1(∂U).

Proof. — Since U is connected and open, it is arcwise connected. Let γ be a continu-

ous curve which joins a to b inside U . Set ε = 1
4 min(d(γ([0, 1]), ∂U), diam(∂U)) > 0.

Let X be a maximal subset of ∂U such that for all x, y ∈ X with x 6= y, d(x, y) ≥ 2ε.

The assumptions on U imply that ∂U is compact, so that X is finite. Write X =

{x1, . . . , xn}.
Let us say that a finite set of circles are in generic position if no two distinct of

them are tangent and no three pairwise distinct of them have a common point. We

claim that it is possible to choose n positive real number r1, . . . , rn in the interval

(2ε, 4ε) such that the boundaries of the balls Bi = B(xi, ri) are in generic position.

Indeed, let us choose r1 = 3ε. There are only a finite number of values of r2
(actually, two values) for which ∂B2 is tangent to ∂B1. Thus, we can choose r2 ∈
(2ε, 4ε) such that ∂B1 and ∂B2 are not tangent. Assume that r1, . . . , rk have been

chosen such that ∂B1, . . . , ∂Bk are in generic position. Then there are only a finite

number of values of rk+1 for which ∂B1, . . . , ∂Bk+1 would not be in generic position.

Hence, we can choose rk+1 in (2ε, 4ε) such that this does not happen.

Set K =
⋃n
i=1B(xi, ri). This is a compact set which contains ∂U , by maximality

of X . Moreover, each connected component of K meets ∂U , which is connected by
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assumption. Hence, K itself is connected. Finally, K does not meet γ, so that a and

b are in the same connected component of R2 \K.

Consider x ∈ ∂K. Then x is on the boundary of one or two of the balls B1, . . . , Bn.

In any case, x admits a neighbourhood in which ∂K is a simple curve composed of one

or two arcs of circle. It follows that the boundary of K is a compact set each point

of which admits a neighbourhood homeomorphic to R. Hence, it is homeomorphic to

a finite union of pairwise disjoint circles.

Figure 5. A path with controlled finite length between two points of the

interior of a Jordan curve with finite length.

We have proved that K is bounded by a finite collection of pairwise disjoint Jordan

curves. Let us call interior of a Jordan curve the bounded connected component of

its complement. Since K is bounded and connected, ∂K is necessarily the union of a

Jordan curve J0 such that K is contained in the interior of J0, and a certain number

of Jordan curves J1, . . . , Jk whose interiors are disjoint and contained in the interior

of J0. Since a and b belong to the same bounded connected component of R2 \ K,

they both lie in the interior of one of the curves J1, . . . , Jk, say J1.

Let us give a bound on the length of J1 by bounding the total length of ∂K. Since

2ε < diam(∂U), none of the balls B(xi, ε) contains ∂U . Let us choose i ∈ {1, . . . , n}
and set, for y ∈ R2, πi(y) = d(xi, y). Then πi(∂U) is not contained in (0, ε), it is

connected, and it contains 0. Hence, πi(∂U) ⊃ (0, ε) and in fact πi(∂U ∩B(xi, ε)) ⊃
(0, ε). It follows that H 1(∂U ∩ B(xi, ε)) ≥ ε, so that n ≤ 1

εH
1(∂U) and finally

H 1(∂K) ≤ 8πH 1(∂U).

Let s be the straight path from a to b. Its length is smaller than diam(U) ≤
diam(∂U) ≤ H 1(∂U). If s does not meet K, the result is proved. Otherwise, let

a′ and b′ be respectively the first and the last point at which s meets ∂K. Let c be

the path obtained by concatenating the straight path from a to a′, then an arc of J1

from a′ to b′ and finally the straight path from b′ to b. The length of c is bounded by

ℓ(c) ≤ ℓ(s) + ℓ(J1) ≤ 100H
1(∂U) as expected.

Proof of Proposition 1.3.24. — Since H 1 is a σ-additive measure, H 1(K ∩B(v, r))

tends to H 1({v}) = 0 as r tends to 0. Let (rn)n≥0 be a decreasing sequence of
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positive reals such that

(20)
∑

n≥0

(H 1(K ∩B(v, 2rn)) + 4πrn) < +∞.

By shifting the sequence (rn) if necessary, we may assume that B(v, 2r0) does not

contain K. Hence, for all n ≥ 0, K ∩ ∂B(v, rn) 6= ∅.

Let c be a continuous curve which joins m to v and meets K only at v. For

each n ≥ 0, let mn be the last point of the curve c which is on ∂B(v, rn). Choose

n ≥ 0. Consider the compact set Kn = (K ∩ B(v, 2rn)) ∪ ∂B(v, 2rn). It is con-

nected, as the image of the connected set K ∪ ∂B(v, 2rn) by the projection on the

closed convex set B(v, 2rn). The points mn and mn+1 belong to the same connected

component of the complement of Kn (see Figure 6). Let Un denote this connected

component. As a bounded connected component of the complement of a connected

compact subset of R2, Un has a connected boundary (see [35] p.47, where this prop-

erty is called the Brouwer property of the sphere). Moreover, ∂Un is contained in Kn,

hence H 1(∂Un) ≤H 1(K ∩B(v, 2rn))+4πrn. So, by Proposition 1.3.25, there exists

a path cn+1 which joins mn to mn+1 and has length smaller than 100H 1(∂Un).

v

mn

mn+1

c

K

m

Un

Figure 6. The path cn+1 will join mn to mn+1 inside Un.

Finally, let c0 be a path of finite length which joins m to m0. Set C = {v} ∪⋃
n≥0 cn([0, 1]). It is not difficult to check that C is closed. It contains m and v, and

satisfies C ∩K = {v}. By (20), H 1(C) < +∞. However, C needs not be an injective

path. However, by a classical result (see [8], Proposition 14), there exists an injective

Lipschitz-continuous path which joins m to v in C. Such a path is exactly what we

were looking for.
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We will make use of this result under the following form.

Proposition 1.3.26. — Let M be a compact surface. Let G be a graph on M . Let

F be a face of G. Let v1 and v2 be two vertices which lie on the boundary of F . There

exists an edge e such that e = v1, e = v2 and e((0, 1)) ⊂ F . In particular, E∪{e, e−1}
is the set of edges of a graph on M .

In this statement, the assumption that the vertices lie on the boundary of the face

F can be understood in the topological sense or, as it is equivalent, in the sense that

they are traversed by the facial cycle associated to F .

Proof. — Let us endow M with a Riemannian metric. By the same result used at the

end of the previous proof ([8], Proposition 14), it suffices to prove that there exists a

compact subset C of M with finite 1-dimensional Hausdorff measure which contains

v1 and v2 and such that C \ {v1, v2} ⊂ F . Since F is arcwise connected by paths of

finite length (for instance piecewise geodesic paths), it suffices to prove that v1, hence

v2, can be joined to at least one point of F by a curve of finite length which has only

its starting point outside F .

For this, choose a point n in F and choose a continuous curve c which joins n to

v and has only its finishing point outside F . That such a curve exists is obvious in a

split pattern of G. Choose also r > 0 such that the metric ball B(v, r) is diffeomorphic

to a disk and each edge starting from v1 crosses the circle ∂B(v1, r). Choose a point

m on c which c traverses after its last entry time in the ball B(v1, r). By applying

Proposition 1.3.24 to m and (Sk(G) ∩ B(v1, r)) ∪ ∂B(v1, r) inside the ball B(v1, r)

smoothly identified with a ball in R2, we find the desired curve with finite length.

1.3.4. The group of loops in a graph. — The concatenation of paths is not a

group operation, even when it is restricted to a set of loops based at the same point,

in which case all pairs of loops can be concatenated. The obstruction is the fact that

if c is a non-constant path, then there is no path c′ such that cc′ is constant. However,

the path cc−1 is equivalent to the constant path for a natural equivalence relation.

Definition 1.3.27. — Let M be a compact topological compact surface. Two curves

c, c′ ∈ C(M) are elementarily equivalent if there exist three curves a, b, d such that

{c, c′} = {ab, add−1b}. We say that c and c′ are equivalent and write c ≃ c′ if there

exists a finite chain c = c0, . . . , cn = c′ of curves such that ci is elementarily equivalent

to ci+1 for each i ∈ {0, . . . , n− 1}.

This relation is an equivalence relation on C(M) similar to the equality of words

in a free group, with the important difference that for the relation ≃, there is no

analog of the reduced form of a word, even if we restrict ourselves to rectifiable paths.

For example, the class of the rectifiable infinite polygonal path in the complex plane
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which joins the points 0, eiπ, 0, 2−1e2
−1iπ , 0, . . . , 0, 2−ne2

−niπ, 0, . . . contains no path

of minimal length.

Figure 7. The equivalence class of this rectifiable path contains no short-

est element.

B. Hambly and T. Lyons have defined in [18] an equivalence relation on rectifiable

paths for which the path described above is equivalent to the constant path equal to

0. This relation is strictly less fine than ≃ and each class contains a unique element

of minimal length. We plan to investigate in a future work the importance of this

equivalence relation in the framework of the present theory.

On a graph however, these subtleties do not arise. Until the end of this section,

we work on smooth surfaces and consider paths instead of curves but all our results

apply to graphs on topological surfaces.

Lemma 1.3.28. — Let M be a compact surface endowed with a graph G. Let c and

c′ be two elements of P(G). Assume that c and c′ are elementarily equivalent. Then

there exist a, b, d in P(G) such that {c, c′} = {ab, add−1b}.

Proof. — Let a, b, d be given by the definition of the fact that c and c′ are elementarily

equivalent. Let us assume that c = ab and c′ = add−1b. Since a, b, d are pieces of a

path in G, it suffices to show that their endpoints are vertices of G to show that they

are themselves paths in G. This is clear for a = c and b = c.

Let us say that the curve c backtracks at a point m ∈ M if there exists t, ε > 0

such that (t− ε, t+ ε) ⊂ [0, 1] and a parametrization of c such that c(t) = m and for

all h ∈ [0, ε), c(t+ h) = c(t− h). A point at which a path in G backtracks must be a

vertex, hence d, which is a point at which c′ backtracks, is a vertex. There remains

to prove that m = a = d = b is a vertex.

Let G′ be the graph obtained by addingm to the set of vertices of G and subdividing

the edges of G accordingly. The graph G′ has the same skeleton as G. We claim that

either m is a backtracking point for c or c′, or G′ has at least three distinct outgoing

edges at m. In both cases, it follows that m is a vertex of G.

Let e−1
a denote the last edge of a as a path in G′, and ed and eb the first edges of

d and b as paths in G′. Let us assume that c does not backtrack at m. Then ea 6= eb.

Let us assume that c′ does not backtrack at m either. Then ad and d−1b do not

backtrack at m, so that ea 6= ed and ed 6= eb. The claim is proved.

If c is a path in a graph, we call combinatorial length of c and denote by length(c)

the number of edges which constitute c. A path is said to be reduced if it contains no
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sequence ee−1 for some e ∈ E. Equivalently, a path is reduced if it is not elementarily

equivalent to a combinatorially shorter path.

Corollary 1.3.29. — Let M be a compact surface endowed with a graph G. Ev-

ery class of equivalence of P(G) contains a unique element of shortest combinatorial

length, which is characterized by the fact that it is reduced.

Proof. — By Lemma 1.3.28, two paths in a graph which are equivalent differ by a

finite number of insertions or erasures of sequences ee−1, where e is an edge of G.

Let us consider an equivalence class of paths for the equivalence. This class contains

paths of minimal combinatorial length. These paths are necessarily reduced. Thus,

it suffices to prove that the given class contains only one reduced path. Assume

that there are two distinct reduced paths, say c and c′. Consider a chain of paths

c = c0, . . . , cn = c′ obtained by successive erasures and insertions of sequences ee−1

where e ∈ E. Assume that this chain minimizes max{length(c0), . . . , length(cn)}
among all chains from c to c′ and that, among those minimizers, it also minimizes the

number of intermediate paths of maximal length. Consider an integer k such that ck
has maximal length among c0, . . . , cn. Since c0 and cn are reduced, c1 is deduced from

c0 by an insertion and cn from cn−1 by an erasure. Thus, k ∈ {1, . . . , n− 1}. So, ck
is deduced from ck−1 by an insertion of, say, ee−1 and ck+1 from ck by an erasure of

ff−1. Let us assume that e /∈ {f, f−1}. Then the sequence ff−1 is already present in

ck−1 and could have been removed before the insertion of ee−1, thus diminishing the

number of intermediate paths of maximal length. By assumption, this is impossible.

Hence, e = f . Moreover, for the same reason, the sequence ee−1 removed between

ck and ck+1 is not present in ck−1. It cannot be the sequence ee−1 inserted between

ck−1 and ck+1, for then ck−1 = ck+1 and by removing ck and ck+1 from the chain, we

would again diminish the number of intermediate paths of minimal length. Hence,

exactly one of the letters inserted in ck is removed between ck and ck+1. There are

two cases and in both, it appears that ck−1 = ck+1. This is again impossible. Finally,

there is exactly one reduced path in each tree-equivalence class of paths.

We can now define the group of reduced loops.

Definition 1.3.30. — Let M be a smooth surface endowed with a graph G. Let v

be a vertex of G. We denote by RL(G) (resp. RLv(G)) the subset of L(G) formed by

reduced loops (resp. reduced loops based at v).

The set RLv(G) is a group for the operation of concatenation-reduction, which to

two loops l1 and l2 associates the unique reduced loop equivalent to l1l2.

It is a classical fact that the group RLv(G) is free. At a later stage, we will spend

some effort to find families of generators of this group which satisfy special properties.

For the moment, let us simply recall why it is a free group, by using spanning trees.
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Definition 1.3.31. — Let M be a compact surface endowed with a graph G.

A spanning tree of G is a subset T ⊂ E such that T = T−1 and such that by

concatenating edges of T , one may construct a path from any vertex to any other but

no simple cycle.

For all vertices v1, v2 of G, we denote by [v1, v2]T the unique injective path in

T which joins v1 to v2. For each edge e of E, we define the loop le,T by setting

le,T = [v, e]T e[e, v]T .

If e ∈ T , then le,T is equivalent to the constant loop. Otherwise, it is reduced and

in fact a lasso. Indeed, the paths [v, e]T and [v, e]T can be written in a unique way

as [v, w]T [w, e]T and [v, w]T [w, e]T with [w, e]T ∩ [w, e]T = {w}. Then le is the lasso

with spoke [v, w]T and meander [w, e]T e[e, w]T .

Definition 1.3.32. — Let M be a compact surface endowed with a graph G. An

orientation of G is a subset E+ of E such that for all e ∈ E, exactly one of the two

edges e and e−1 belongs to E+. If M is oriented, e is an edge which lies on the

boundary of M and which bounds M positively, we insist that e ∈ E+.

Given an orientation E+ of G and a subset Q ⊂ E, we use the notation Q+ =

Q ∩ E+.

Given a graph G, we set v(G) = #V, e(G) = 1
2#E and f(G) = #F. The following

lemma is classical.

Lemma 1.3.33. — Let M be a compact surface endowed with a graph G. Let v be a

vertex of G. Let T ⊂ E be a spanning tree of G. Let E+ be an orientation of G. The

group RLv(G) is freely generated by the loops {le,T : e ∈ (E \T )+}. In particular, it is

free of rank e(G)− v(G) + 1. Moreover, the natural mapping Lv(G) −→ π1(Sk(G), v)

descends to a group isomorphism i : RLv(G)
∼−→ π1(Sk(G), v).

Proof. — If l = e1 . . . en belongs to Lv(G), then l ≃ le1,T . . . len,T . Hence, the loops

le,T , e ∈ E \ T generate RLv(G). Since le−1,T = l−1
e,T for all e ∈ E, this implies

that the loops le,T , e ∈ (E \ T )+ generate RLv(G). Now let X be a group. Let

x = {xe : e ∈ E \ T } be a collection of elements of X such that xe−1 = x−1
e for

all e ∈ E − T . Complete the collection x by setting xe = 1 for all e ∈ T . The

mapping from Lv(G) to X which sends the loop l = e1 . . . en to x1 . . . xn descends to

a group homomorphism from RLv(G) to X which sends le,T to xe for all e ∈ E. Thus,

RLv(G) satisfies the universal property which characterizes freeness. Finally, since T

has v(G) vertices, it has v(G) − 1 unoriented edges. Hence, RLv(G) is free of rank

e(G)− v(G) + 1.

It is obvious that two equivalent loops are homotopic in Sk(G). Hence, the

morphism i is well defined. Let us use the letter T to denote the subset
⋃
e∈T e

of Sk(G). This subset is contractible and it is easy to check that Sk(G) has the

same homotopy type as Sk(G)/T , the topological space obtained from Sk(G) by
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identifying all the points of T . This topological space is a bunch of circles, one

for each element of (E \ T )+. Moreover, each loop le,T , composed with the con-

tinuous projection Sk(G) −→ Sk(G)/T , becomes a loop which goes once around

the circle corresponding to e. Thus, the composition of i with the isomorphism

π1(Sk(G), v) −→ π1(Sk(G)/T, v) is an isomorphism, and i is also an isomorphism.

1.3.5. Graphs with one face. — By Proposition 1.3.8, a graph with a single face

on a connected surface determines a way of realizing this surface as the quotient of

a disk by a suitable identification of its boundary. On the other hand, many non-

isomorphic patterns with a single face give rise, when they are completely sewed,

to homeomorphic surfaces. In this section, we discuss this fact in relation with the

classical proof of the theorem of classification of surfaces (see Theorem 1.1.3) by

cut-and-paste.

It is convenient to represent a pattern with one face by a word in a free group. This

is what we explain now. For each integer n ≥ 1, let us call n-gon the split pattern

(D,Gn) formed by a closed disk D and a graph Gn with n unoriented edges on the

boundary of D. This split pattern is unique up to homeomorphism.

Definition 1.3.34. — Consider a set X and let 〈X〉 denote the free group over X.

1. Let w be a an element of 〈X〉. Write w as a reduced word x1 . . . xn with

x1, . . . , xn ∈ X ∪X−1. We say that w is admissible if w is cyclically reduced, that is,

if xn 6= x−1
1 and each letter of X appears at most twice in w, that is, for each x ∈ X,

#{i ∈ {1, . . . , n} : xi ∈ {x, x−1}} ≤ 2.

We say that an admissible word w is closed if no letter appears exactly once in w.

The fact that a word is admissible is not changed if this word is submitted to a

circular permutation of its letters nor if it is replaced by its inverse. Of course, it is not

changed either by changing the names of the letters: the set X plays no special role

and we identify two words which differ only by relabelling the letters which constitute

them. We define now a correspondence between admissible words and graphs with

one face.

Definition 1.3.35. — 1. Let M be a compact surface endowed with a graph G.

Assume that G has a single face and that each vertex of G is the starting point of

at least two distinct edges. Let E+ be an orientation of G. Then each cycle which

represents the boundary of the unique face of G is a cyclically reduced word in the

letters of E+, that is, an element of 〈E+〉. We define

W (M,G) = {w ∈ 〈E+〉 : w is a facial cycle of G}.

2. Let w = x1 . . . xn be an admissible word of length n. Let (D,Gn) be an n-gon.

Write En = {e±1
1 , . . . , e±1

n } in such a way that e1 . . . en represents ∂D. Let ιw be the
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involution of En defined as follows:

∀i ∈ {1, . . . , n}, ιw(ei) =

{
eεj if there exists j 6= i and ε = ±1 such that xi = xεj
ei otherwise.

The closed compact surface obtained by completely sewing the pattern (D,Gn, ιw) is

said to be associated with w and we denote it by Σ(w).

Let M be a compact surface. It follows from the definitions that for all graph G

with a single face on M and for all w ∈W (M,G), the surface Σ(w) is homeomorphic

to M . On the other hand, there are in general many admissible words which are not

in W (M,G) whose associated surface is homeomorphic to M . Ignoring the precise

set to which the letters of the words that we consider belong, we define a set of words

as follows:

W (M) = {w admissible word : M(w) is homeomorphic to M}.

Each word of W (M) belongs to W (M,G) for some graph G, for instance the graph

constructed by sewing the pattern associated to this word.

Proposition 1.3.36. — Let M be a compact surface. Let G1 and G2 be two graphs

on M . There exists a homeomorphism f : M → M which preserves each connected

component of ∂M , and which is orientation-preserving if M is oriented, and a finite

sequence of graphs G1,0, . . . ,G1,r such that G1,0 = G1 and G1,r = f(G2), and such

that for all i ∈ {0, . . . , r−1}, G1,i+1 is deduced from G1,i by erasure of an edge in the

sense of Proposition 1.3.15 or by adjunction of an edge in the sense of Proposition

1.3.26.

Proof. — By erasing enough edges of G1 and G2, we can transform them into two

graphs with a single face and of which every vertex is the initial point of at least two

distinct edges. Such graphs determine two words which we denote by w1 and w2.

The theorem of classification of surfaces as it is proved in [27] asserts that, by

repeated operations of cutting and pasting, w1 and w2 can be put under one of the

standard words [a1, a2] . . . [ag−1, ag] or a2
1 . . . a

2
g if M is closed of genus g, or the same

words multiplied by a word of the form d1c1d
−1
1 . . . dpcpd

−1
p if M has a boundary, with

c1, . . . , cp corresponding to the p boundary components of M .

The general operation of cutting and pasting, described at the level of a split

pattern (M ′,G′) of G, consists in choosing two vertices v1 and v2 on the boundary of

M ′ and a pair of edges e, ι(e) which are identified by ι and separated by v1 and v2.

One then adds to G′ an edge inside M ′ which joins v1 to v2, identifies e and ι(e) and

removes the joint of this identification (see Figure 1.3.5). Seen on M , these operations

can be described simply as follows: add an edge to G1 joining v1 to v2, thanks to

Proposition 1.3.26, thus creating two faces, and remove the edge e, thus retrieving a

graph with a single face.
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eι(e)

v1

v2

Figure 8. The basic operation of cutting and pasting

Thus, by successively adding and erasing edges to G1 and G2, we may arrive at

a point where W (M,G1) = W (M,G2). Then, by Proposition 1.3.8, there exists a

homeomorphism of M which sends G1 to G2.

1.4. Riemannian metrics

1.4.1. Measured and Riemannian marked surfaces. — In the setting of

Markovian holonomy fields, the scale of time is provided by a means to measure areas

on each surface that one considers.

Definition 1.4.1. — Let M be a smooth compact surface. A measure of area on M

is a smooth non-vanishing density on M , that is, a Borel measure which has a smooth

positive density with respect to the Lebesgue measure in any coordinate chart.

A gluing is a diffeomorphisms outside a negligible subset. Hence, a measure of area

on a surface determines a measure of area on any other surface obtained by splitting

this surface along a curve.

Definition 1.4.2. — Let M be a smooth compact surface endowed with a measure

of area denoted by vol. Let l be a mark on M and let Spll(M) be the surface obtained

by splitting M along l. Let f : Spll(M)→M be the associated gluing. Then vol ◦ f is

a measure of area on Spll(M) which we denote by Spll(vol).

On an oriented surface, a measure of area is also the same thing as a non-vanishing

differential 2-form. We are going to work with surfaces endowed with a specific

measure of area, on which we will choose Riemannian metrics. We would like these

two structures to be compatible. In fact, we have the following result.

Proposition 1.4.3. — Let (M,C ) be a marked surface. Let vol be a measure of area

on M . There exists a Riemannian metric on M whose Riemannian volume is vol and

such that the curves of C ∪B(M) are closed geodesics.

Before we prove this proposition, let us state a definition.
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Definition 1.4.4. — A marked Riemannian surface is a quadruple (M, vol, γ,C ),

where (M, vol,C ) is a marked surface endowed with a smooth density and γ is a

Riemannian metric on M with Riemannian volume vol and such that the curves of

C ∪B(M) are closed geodesics.

Proof. — In this proof, we denote by volγ the Riemannian volume of a Riemannian

metric γ on M . Let us first assume that M is orientable and has no boundary. We

write C = {l±1
1 , . . . , l±1

p }.
Let γ0 be any Riemannian metric on M . Let f be the smooth real function on M

such that vol = efvolγ0 . Set γ1 = efγ0. The Riemannian volume of γ1 is vol.

For each i ∈ {1, . . . , p}, let Ti denote a neighbourhood of li diffeomorphic to

[−1, 1]×R/2πZ such that li corresponds to {0}×R/2πZ. We assume that T1, . . . , Tp
are pairwise disjoint. For each i ∈ {1, . . . , p}, we denote by (r, θ)i the natural coordi-

nates in Ti.

Let ϕ : [−1, 1] −→ [0, 1] be a smooth function such that ϕ([−1,− 3
4 ] ∪ [ 34 , 1]) = {0}

and ϕ([− 1
2 ,

1
2 ]) = {1}. Let Φ be the smooth real function on M defined by

Φ(m) =

{
ϕ(r) if m = (r, θ)i for some i ∈ {1, . . . , p}
0 otherwise.

For each i ∈ {1, . . . , p}, consider the Riemannian metric (dr2 + dθ2)i in Ti and set

γ2,i =

∫
Ti

Φ volγ1∫
Ti

Φ vol(dr2+dθ2)i

(dr2 + dθ2)i.

Finally, define γ2 by γ2 = (1 − Φ)γ1 + Φ
∑p

i=1 γ2,i. The Riemannian volume of γ2

coincides with vol outside the set
⋃p
i=1{(r, θ)i ∈ Ti : |r| ≤ 3

4}. Moreover, the total

volume of Ti is the same for vol and volγ2 . Finally, l1, . . . , lp are geodesic for γ2.

For each i ∈ {1, . . . , p}, and all r ∈ [−1, 1], set Vi(r) =
∫ r
0

∫ 2π

0 vol. It is understood

that Vi(r) < 0 when r < 0. Similarly, set Vi,γ2(r) =
∫ r
0

∫ 2π

0
volγ2 . The functions

Vi and Vi,γ2 are both smooth, increasing, equal to 0 at r = 0 and they coincide on

[−1,− 3
4 ] ∪ [34 , 1]. Define a diffeomorphism ρ of M by setting

ρ(m) =

{
(V −1
i (Vi,γ2(r)), θ)i if m = (r, θ)i for some i ∈ {1, . . . , p}

m otherwise.

The metric γ3 = (ρ−1)∗γ2 satisfies volγ3 = ρ∗volγ2 . Hence, the volume of any cylinder

[−r, r]×R/2πZ, r ∈ [0, 1] is the same for volγ3 and for vol. Moreover, since ρ preserves

the curves l1, . . . , lp, they are still geodesic for γ3.

Let D and D3 be the two smooth functions defined on T1 ∪ . . . ∪ Tp such that

vol = Ddr ∧ dθ and volγ3 = D3dr ∧ dθ. For each i ∈ {1, . . . , p}, define

Ai(r, θ) =

∫ θ

0

D((r, ξ)i) dξ and Ai,γ3(r, θ) =

∫ θ

0

D3((r, ξ)i) dξ.
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By construction of γ3, we have for each i ∈ {1, . . . , p} and all r ∈ [−1, 1] the equality

Ai(r, 2π) = Ai,γ3(r, 2π). It is easy to check that the mapping α from M to itself

defined by

α(m) =

{
(r, A−1

i (Ai,γ3(θ)))i if m = (r, θ)i for some i ∈ {1, . . . , p}
m otherwise

is a diffeomorphism. Set γ4 = (α−1)∗γ3. Then by construction, volγ4 and vol give the

same volume to any subset of Ti which is a rectangle in the coordinates (r, θ)i. Hence,

they agree on T1 ∪ . . .∪ Tp, hence on M . Since α preserves the curves l1, . . . , lp, they

are still geodesic for γ4. Thus, γ4 has the desired properties.

Let us explain how the result extends to surfaces with boundary and non-orientable

surfaces. Let M be a non-orientable surface without boundary. Then there exists an

orientable double of M , that is, an orientable surface D(M) and a smooth mapping

f : D(M) → M which is a covering of degree 2. This surface D(M) can for in-

stance be constructed as the unitary frame bundle of the real line bundle
∧2

T ∗M for

some Riemannian metric on M . The density vol and the marks of M can be lifted

through f . This yields an orientable marked surface (D(M), D(C )) endowed with a

density D(vol) whose total area is equal to twice that of vol. The result that we have

proved above applied on D(M) yields a Riemannian metric γ with Riemannian vol-

ume D(vol) and such that the curves of D(C ) are geodesics. Let α be the non-trivial

automorphism of the covering f : D(M)→ M , that is, the diffeomorphism of D(M)

which exchanges the sheets of the covering. Then the Riemannian metric α∗γ has

Riemannian volume α∗D(vol) = D(vol) and makes the curves of α−1(D(C )) = D(C )

geodesics. Since the equations of geodesics are linear in the metric, the curves of D(C )

are also geodesic for the metric 1
2 (γ+α∗γ). This metric has also Riemannian volume

D(vol). Moreover, it is invariant by α, hence descends to a Riemannian metric on M

with the desired properties.

Finally, if M has a boundary, then we may glue a disk along each boundary com-

ponent of M and extend vol to a measure of area on the surface without boundary

thus obtained.

1.4.2. Partially ordered sets of graphs. — The set of graphs on a compact

surface carries a natural partial order.

Definition 1.4.5. — Let M be a topological compact surface. Let G1 and G2 be two

graphs on M . We say that G2 is finer than G1 and write G1 4 G2 if C(G1) ⊂ C(G2).

It is straightforward that G2 is finer than G1 if and only if E1 ⊂ C(G2). The

inclusion E1 ⊂ E2 implies G1 4 G2 but the converse is false.

As a poset, the set of graphs on a surface has few good properties. In particular,

it is not directed, which means that it contains pairs without upper bound.
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Lemma 1.4.6. — Let M be a topological compact surface. The set of graphs on

M endowed with the partial order 4 is not directed. In other words, there exist two

graphs G1 and G2 on M such that no third graph G satisfies G1 4 G and G2 4 G.

Proof. — Let U be an open subset of M identified through a homeomorphism with

the disk of R2 centred at the origin and of radius 2. Let e1 and e2 be the parametrized

curves defined by

∀t ∈ [0, 1], e1(t) = (t, 0) and e2(t) =
(
t, t2 sin

π

t

)
.

For all k ≥ 1, let Ak denote the open domain of R2 delimited by the restrictions of e1
and e2 to [ 1

k+1 ,
1
k ]. The sets Ak, k ≥ 1 are also the bounded connected components of

the complement of the union of the ranges of e1 and e2 in the plane.

The curves e1 and e2 are edges, so by Lemma 1.3.7, there exist two graphs G1

and G2 on M such that e1 is an edge of G1 and e2 is an edge of G2. Assume that

there exists a graph G such that G1 4 G and G2 4 G. Then Sk(G) would contain

the union of the ranges of e1 and e2. Since the range of an edge has an empty

topological interior, none of the sets Ak would be contained in Sk(G). Hence, G

would have infinitely many faces. We have observed after Proposition 1.3.8 that this

is impossible.

This fact will be a serious problem for us at a later stage. A better-behaved

substitute for the set of graphs is the set of graphs with piecewise geodesic edges.

Definition 1.4.7. — Let (M,C ) be a marked surface endowed with a Riemannian

metric γ. We define Grγ(M,C ) as the set of graphs on (M,C ) with piecewise geodesic

edges, that is

Grγ(M,C ) = {G = (V,E,F) graph on (M,C ) : E ⊂ Aγ(M)}.
The set Grγ(M,C ) can be non-empty only if the marks on M are geodesic curves.

We know by Proposition 1.4.3 that it is always possible to choose a Riemannian metric

on M for which this is the case.

The next result states that Grγ(M,C ) is indeed a better set of graphs than the set

of all graphs.

Proposition 1.4.8. — Let (M,C ) be a marked surface endowed with a Riemannian

metric for which the marks are geodesic curves. Any finite family of piecewise geodesic

paths on M is a subset of P(G) for some graph G on (M,C ) with geodesic edges.

In particular, the poset (Grγ(M,C ),4) is directed.

Proof. — We have observed after the definition of a graph (Definition 1.3.2) that

there exists a graph on M with geodesic edges. Now, by induction on the number of

curves in the finite family of curves that we consider, it suffices to prove that, given

a piecewise geodesic path c and a graph G0 with geodesic edges, there exists a graph

G with geodesic edges such that P(G) ⊃ P(G0) ∪ {c}.
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For this, let us subdivide c into a product of geodesic edges e = e1 . . . em in such

a way that each edge ek either is contained in one edge of G0 or has its interior

contained in the interior of a face. By adding finitely many vertices to G0, which

means subdividing some of its edges, we produce a new graph G1 which is such that

each ek which is contained in an edge of G0 is an edge of G1. Each other ek has its

interior contained in a single face of G1. By lifting the curves e1, . . . , em to a split

pattern of G1, we reduce the problem to the case of a finite collection of geodesic

segments contained in the interior of a disk with piecewise geodesic boundary. In

this case, since the skeleton of G1 contains the boundary of the disk, it follows from

Proposition 1.3.10 that any pre-graph obtained by adding edges to G1 and whose

skeleton is connected is a graph. Thus, it suffices to join one endpoint of each of the

curves e1, . . . , em to a point on the boundary of the disk by a geodesic segment and

then to add a vertex at every point where two distinct geodesic curves meet. Hence,

G1 can be refined into a graph G with geodesic edges such that e1, . . . , em belong to

P(G).

In order to prove that Grγ(M,C ) is directed, consider two graphs G1 and G2 with

piecewise geodesic edges. The property that we have just proved applied to E1 ∪ E2

provides us with a graph which is finer than both G1 and G2.

1.4.3. Approximation of graphs. — In this section, we prove that any graph can

be approximated in a strong sense by a sequence of graphs with piecewise geodesic

edges. We start by defining the lasso decomposition of a piecewise geodesic path,

which is a variant of the more familiar operation of loop-erasure. Recall the definition

of equivalence of paths and lassos (see Section 1.3.4).

Proposition 1.4.9. — Let (M,γ) be a Riemannian compact surface. Let c be an

element of Aγ(M) such that c 6= c. There exists in Aγ(M) a finite sequence of lassos

l1, . . . , lp with meanders m1, . . . ,mp and an injective path d with the same endpoints

as c such that

1. c ≃ l1 . . . lp d,
2. ℓ(c) ≥ ℓ(m1) + . . .+ ℓ(mp) + ℓ(d).

If c is a loop, the same decomposition holds with the single difference that d is a simple

loop. In both cases, we call d the loop-erasure of c and denote it by LE(c).

Proof. — By Lemma 1.4.8, we may assume that c is a path in a graph. By adding

vertices to this graph, we may also assume that no edge of this graph is a simple loop.

Let us write c as a product of edges: c = ei1 . . . ein . We proceed by induction on n.

If n = 1, then c is its own loop-erasure. Now assume that n > 1. If c is not reduced,

that is, if it contains at least one sequence ee−1, then we reduce it. This can only

shorten c. Now set m = min{j > 1 : ∃k ∈ {1, . . . , j − 1}, eij = eik}. This is the first

time at which c hits itself. Assume that eim = eip with 1 ≤ p < m. By definition of
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m, p is uniquely determined by this relation. Set t = ei1 . . . eip−1 , m = eip . . . eim and

c′ = teim+1 . . . ein . Then c ≃ tmt−1c′. By construction, m is a simple loop and c′ is

a path shorter than c with the same endpoints. Moreover, ℓ(c) = ℓ(c′) + ℓ(m). The

result follows.

Proposition 1.4.10. — Let (M, vol, γ,C ) be a marked Riemannian surface. Let

G = (V,E,F) be a graph on (M,C ). Let ε > 0 be a real number. There exists a

graph G′ = (V′,E′,F′) on (M,C ) with piecewise geodesic edges and two bijections

S : E → E′ and S : F → F′, denoted by the same letter, such that the following

properties hold.

1. V′ = V.

2. The bijection S : E→ E′ commutes with the inversion and preserves the endpoints

: for all e ∈ E, S(e−1) = S(e)−1, S(e) = e and S(e) = e.

3. The bijection S : P(G)→ P(G′) induced by S is such that for all F ∈ F, ∂(S(F )) =

S(∂F ).

4. For all e ∈ E, dℓ(e, S(e)) < ε and for all F ∈ F, vol((F ∪S(F ))− (F ∩S(F ))) < ε.

Notice that it is not possible to simply take S(e) = LE(Dn(e)) for some large

n. Indeed, the new edges thus produced may behave badly near the vertices. For

example, several edges may form a complicated spiral near a vertex that they share.

In this case, it is neither certain that their loop-erased dyadic piecewise geodesic

approximations do not intersect each other nor that they leave the vertex in the same

cyclic order as the original edges.

If x, y ∈ M and d(x, y) is smaller than the injectivity radius of (M,γ), we denote

by [x, y] the segment of minimizing geodesic joining x to y.

Proof. — Let R be the injectivity radius of M . Let r0 ∈ (0, R) be such that the

balls B(v, r0), v ∈ V are pairwise disjoint, an edge e meets a ball B(v, r0) only if v

is an endpoint of e, and the cyclic order of the outcoming edges at every vertex v is

the cyclic order of their last exit points from the ball B(v, r) for all r ∈ (0, r0). The

existence of such an r0 is granted by Lemma 1.3.16. Let us choose an orientation of

each ball B(v, r0), v ∈ V.

For all real r ∈ (0, r0) and all e ∈ E, define te(r) = sup{t ∈ [0, 1] : d(e, e(t)) = r}.
Observe that 1− te−1 = inf{t ∈ [0, 1] : d(e(t), e) = r}. Define

Ar(e) = [e, e(te(r))]e|[te(r),1−t
e−1(r)][e(1− te−1(r)), e].

The path Ar(e) is the concatenation of three injective paths which meet only at their

endpoints, so that it is injective. Thus, Ar(e) is an edge with the same endpoints as

e. Let e and e′ be two edges such that e′ /∈ {e, e−1}. The central portions of Ar(e)

and Ar(e
′) are contained in e and e′ respectively, so that they are disjoint. By the
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assumption made on r, they do not enter any ball B(v, r), v ∈ V. Hence, Ar(e) and

Ar(e
′) meet, if at all, in one of these balls and this can occur only at one of their

endpoints.

Let e be an edge. The continuity and injectivity of e imply that te(r) → 0 as

r → 0. Since dℓ(Ar(e), e) ≤ 2(te(r) + te−1(r))ℓ(e), this implies that Ar(e) tends to e

as r tends to 0. Moreover, one always has the inequality ℓ(Ar(e)) ≤ ℓ(e).
Let r ∈ (0, r0) be fixed. Let n0 ≥ 1 be an integer such that for all e ∈ E,

2−n0ℓ(e) < r < R. For all integer n ≥ n0, define

Cr,n(e) = Dn(Ar(e)).

The path Cr,n(e) is piecewise geodesic, with the same endpoints as e, but it may

not be injective, even for large n. On the other hand, it coincides with Ar(e) near

its endpoints, more precisely, on a segment of length at least r − 2−nℓ(e). When n

tends to infinity, Cr,n(e) converges to Ar(e). We claim that for all e, e′ ∈ E such that

e′ /∈ {e, e−1}, the paths Cr,n(e) and Cr,n(e
′) intersect only at some of their endpoints

for n large enough. Indeed, consider for all e ∈ E the segment

A′
r(e) = {m ∈ Ar(e) : d(m, e) ≥ r

2
, d(m, e) ≥ r

2
}.

Choose n1 ≥ n0 such that 2−n1 max{ℓ(e) : e ∈ E} < min( r2 ,
1
2 min{d(Ar(e), A′

r(e
′)) :

e, e′ ∈ E, e′ /∈ {e, e−1}}). Choose e, e′ ∈ E such that e′ /∈ {e, e−1}. For all n ≥
n1, Cr,n(e) and Cr,n(e

′) are respectively contained in the sets Ar(e) ∪ {m ∈ M :

d(m,A′
r(e)) < 2−nℓ(e)} and Ar(e

′) ∪ {m ∈ M : d(m,A′
r(e

′)) < 2−nℓ(e)}, whose

intersection is the same as the intersection of e and e′.

For each integer p ≥ 1, choose r ∈ (0, r0) such that dℓ(e,Ar(e)) <
1
2p for all e ∈ E.

Then choose n ≥ n1 such that dℓ(Ar(e), Cr,n(e)) < 1
2p for all e. Set S0

p(e) = Cr,n(e).

Then for each e ∈ E, the sequence (S0
p(e))p≥1 converges to e with fixed endpoints,

and satisfies ℓ(S0
p(e)) ≤ ℓ(e). For each e ∈ E and each p ≥ 1, set S1

p(e) = LE(S0
p(e)).

We claim that a subsequence of the sequence (S1
p(e))p≥1 tends to e when p tends to

infinity.

Indeed the sequence (S1
p(e))p≥1 is uniformly bounded in length by ℓ(e). Hence, the

paths being parametrized at constant speed, it is relatively compact in the uniform

topology and we can extract a sequence (S1
pq

(e))q≥1 which converges uniformly to a

path ẽ. The image of ẽ is contained in the image of e and it joins e to e. Hence, the

images of ẽ and e coincide. In particular, ℓ(ẽ) ≥ ℓ(e). Using the lower semi-continuity

of the length with respect to the uniform convergence, we find

ℓ(e) ≤ ℓ(ẽ) ≤ lim inf ℓ(S1
pq

(e)) ≤ sup ℓ(S1
pq

(e)) ≤ ℓ(e).

It follows from these inequalities that ℓ(S1
pq

(e)) converges to ℓ(e), hence S1
pq

(e) to e,

as q tends to infinity. Let us choose a subsequence (pq)q≥0 such that the convergence

holds for each edge e ∈ E and define Sq(e) = S1
pq

(e) for all q ≥ 0.



64 CHAPTER 1. SURFACES AND GRAPHS

For all e ∈ E and all q ≥ 0, Sq(e) is a piecewise geodesic edge with the same

endpoints as e. Moreover, by construction, Sq(e
−1) = Sq(e)

−1. If e is geodesic, then

Sq(e) = e. Finally, the set Eq = {Sq(e) : e ∈ E} is the set of edges of a pre-graph

on (M,C ). By Corollary 1.3.12, Eq is in fact the set of edges of a graph on (M,C ),

which we denote by Gq.

By construction, the bijection Sq between E and Eq preserved the cyclic order at

every vertex of V. Let us apply Proposition 1.3.22. Since vol(Sk(G)) = 0, the graph

Gq satisfies all the desired properties for q large enough.



CHAPTER 2

MULTIPLICATIVE PROCESSES INDEXED BY PATHS

In this chapter, we begin the study of the class of objects to which Markovian

holonomy fields belong: stochastic processes indexed by paths on a compact surface

and with values in a compact Lie group which satisfy a condition of multiplicativity.

We discuss the canonical space of such processes, two distinct σ-fields on it, and

prove the version of Kolmogorov’s theorem that is best suited to our situation. We

then study a kind of uniform measure on the canonical space, thus providing the first

example of what will be called in the next chapter a discrete Markovian holonomy

field. We conclude by constructing a set of generators of the group of reduced loops

in a graph for which we are able to determine the finite-dimensional marginal of the

uniform Markovian holonomy field.

From now on, the expression compact surface will mean smooth compact surface.

2.1. Multiplicative functions

Let G be a group, on which we make for the moment no assumption at all.

Definition 2.1.1. — Let M be a compact surface. Let P be a subset of P(M). A

function h : P → G is said to be multiplicative if h(c−1) = h(c)−1 for all c ∈ P such

that c, c−1 ∈ P and h(c1c2) = h(c2)h(c1) for all c1, c2 ∈ P such that c1 = c2 and

c1c2 ∈ P . The set of multiplicative functions from P to G is denoted by M(P,G).

For an explanation of the reversed order in this definition, see the introduction,

Section 0.5.

The gauge group is the symmetry group of the physical theory from which our

objects are issued.

Definition 2.1.2. — The group GM of all mappings from M to G is called the

gauge group of M and it acts by gauge transformations on the space M(P(M), G),
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as follows. If j = (jm)m∈M belongs to GM and h belongs to M(P(M), G), then j · h
is defined by

∀c ∈ P(M), (j · h)(c) = j−1
c h(c)jc.

More generally, given a subset P of P(M), the group GV acts on M(P,G) in the

same way, where V is defined as the set of endpoints of the paths of P .

Example 2.1.3. — Assume that l1, . . . , ln are n simple loops based at the same point

m of M . Write L = {l1, . . . , ln}. The concatenation of two loops of L is never a simple

loop, hence never an element of L. If we assume moreover that the inverse of a loop of

L is never in L, then any G-valued function on L is multiplicative, so thatM(L,G) =

GL. The action of the gauge group on M(L,G) is simply the action of G = G{m} on

GL by simultaneous conjugation of each factor. This fundamental example should be

kept in mind when one reads Lemma 2.1.5. It explains the importance of this action

of G in our context.

We cannot do much if we do not make a few assumptions on G. For the rest of this

section, we assume that it is a compact topological group. We do not assume that it

is connected, so that it can in particular be finite. Also, for the moment, we do not

assume that it is a Lie group. The group G carries its normalized Haar measure and

we denote simply by
∫
G f(x) dx the integral of a function f : G→ R with respect to

this measure.

Let P be a subset of P(M). The object of this paragraph is to discuss two natural

σ-fields on M(P,G). The simplest one is the cylinder σ-field, denoted by C, which

is defined as the smallest σ-field which makes the evaluation mapping h 7→ h(c)

measurable for all c ∈ P . The gauge group acts by bi-measurable transformations

and it makes sense to speak of measures onM(P,G) which are invariant under gauge

transformations.

It is also natural to consider a smaller σ-field which consists in events which are

invariant under the action of the gauge group. In order to discuss this σ-field, let us

first associate an abstract graph to each subset of P(M).

Definition 2.1.4. — An abstract graph is a pair of finite sets (V,E), whose ele-

ments are called vertices and edges, endowed with two mappings s, t : E → V , called

respectively source and target.

Let P be a subset of P(M). The configuration graph of P is the abstract graph

(V,E, s, t) defined by setting V =
⋃
c∈P{c} ∪ {c} ⊂ M , E = P and, for each e ∈ E,

s(e) = e and t(e) = e.

In what follows, we will make use of the diagonal adjoint action of G on Gn defined

by g · (x1, . . . , xn) = (gx1g
−1, . . . , gxng

−1).

Lemma 2.1.5. — Let M be a compact surface. Let P be a subset of P(M). Assume

that P is stable by concatenation and inversion, and the configuration graph of P
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is connected. Let m be a vertex of this configuration graph. Let c1, . . . , cn be n

elements of P . Let f : Gn → R be a continuous function such that the function

h 7→ f(h(c1), . . . , h(cn)) is gauge-invariant on M(P,G). Then there exists n loops

l1, . . . , ln in P all based at m and a continuous function f̃ : Gn → R invariant under

the diagonal action of G such that

∀h ∈ M(P,G), f(h(c1), . . . , h(cn)) = f̃(h(l1), . . . , h(ln)).

Proof. — Consider the configuration graph of {c1, . . . , cn}. If it is not connected, let

us choose one vertex in each connected component not containing m and add to the

collection {c1, . . . , cn} a path of P joining m to this vertex. That such a path exists

follows from the assumptions made on P . The collection has become {c1, . . . , cr} for

some r ≥ n. We denote the configuration graph of this enlarged collection by (V,E).

Let T ⊂ E be a spanning tree of (V,E). For each i ∈ {1, . . . , n}, the path

[m, ci]T ci[ci,m]T is a loop based atm. When written as a product of edges, it becomes

a word in c1, . . . , cr and this word makes sense as an element of P . More precisely, it

is a loop of P based at m, which we denote by li.

Let h be an element ofM(P,G). Let us define a gauge transformation j ∈ GM by

setting j(p) = 1 if p /∈ V and, for all v ∈ V , j(v) = h([m, v]T ). If e is an edge which

belongs to T , then it is easy to check that (j ·h)(e) = 1. Hence, for all i ∈ {1, . . . , n},
(j · h)(li) = (j · h)(ci) and, by the invariance property of f , f(h(c1), . . . , h(cn)) =

f(h(l1), . . . , h(ln)).

Choose g ∈ G. Since the loops l1, . . . , ln are all based at m, the action of the

gauge transformation j defined by j(p) = 1 if p 6= m and j(m) = g−1 transforms

h(l1), . . . , h(ln) into gh(l1)g
−1, . . . , gh(ln)g

−1. Let us define f̃ : Gn → R by

f̃(x1, . . . , xn) =

∫

G

f(gx1g
−1, . . . , gxng

−1) dg.

Then f(h(l1), . . . , h(ln)) = f̃(h(l1), . . . , h(ln)) and f̃ is invariant under the diagonal

action of G. The result is proved.

This result motivates the following definition.

Definition 2.1.6. — Let P be a subset of P(M) stable by concatenation and inver-

sion. The invariant σ-field on M(P,G), denoted by I, is the smallest σ-field such

that for all m ∈ M , all integer n ≥ 1, all finite collection l1, . . . , ln of loops based at

m and all continuous function f : Gn → R invariant under the diagonal action of G,

the mapping h 7→ f(h(l1), . . . , h(ln)) is measurable.

If P can be written as the disjoint union of P1 and P2 which are both stable

by concatenation and inversion and whose configuration graphs are disjoint, then

M(P,G) is canonically isomorphic toM(P1, G)×M(P2, G) and the invariant σ-filed

onM(P,G) is the tensor product of the invariant σ-fields onM(P1, G) andM(P2, G).
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Let M and M ′ be two surfaces. Let ψ : M ′ → M be a smooth mapping. Let P ′

be a subset of P(M ′) and P = ψ(P ′). Then ψ induces a map from P ′ to P , hence a

map from M(P,G) to M(P ′, G).

Lemma 2.1.7. — Let M and M ′ be two surfaces. Let ψ : M ′ → M be a smooth

mapping. Let P ′ be a subset of P(M ′) and P = ψ(P ′). Then the induced map

ψ :M(P,G)→M(P ′, G) is measurable with respect to the cylinder σ-fields, and also

with respect to the invariant σ-fields.

Proof. — Let f : G → R be continuous and consider c′ ∈ P ′. The function h 7→
f(ψ(h)(c′)) onM(P,G) is equal to the function h 7→ f(h(ψ(c′))), which is measurable

with respect to C because ψ(c′) belongs to P . This proves the first assertion.

Now let f : Gn → R be continuous and invariant under the diagonal action of

G by conjugation. Let l′1, . . . , l
′
n be n loops of P ′ based at the same point. Then

ψ(l1), . . . , ψ(ln) are n loops of P based at the same point and the function h 7→
f(ψ(h)(l′1), . . . , ψ(h)(l′n)) = f(h(ψ(l1), . . . , ψ(ln))) on M(P,G) is measurable with

respect to I. This proves the second assertion.

Let us conclude this paragraph by discussing the case of a graph. Let M be a

surface endowed with a graph G. Let E+ be an orientation of G. It is plain that a

multiplicative function on P(G) is determined by its values on the edges E or even

just those of E+. More precisely, the natural surjective mapping M(P(G), G) →
M(E+, G) induced by the inclusion E+ ⊂ P(G) is one-to-one. Indeed, if c belongs to

P(G), then c = eε11 . . . eεn
n for some e1, . . . , en ∈ E+ and ε1, . . . , εn ∈ {−1, 1}. Then,

for all multiplicative function h, one has h(c) = h(en)
εn . . . h(e1)

ε1 .

Since the interior of an edge contains no vertex, the concatenation of at least two

edges is never an edge. Hence, every mapping from E+ to G is multiplicative. We

will often make the identifications

M(P(G), G) =M(E, G) =M(E+, G) = GE
+

without further comment. In particular, we will sometimes use a collection (ge)e∈E+

of elements of G to denote an element ofM(P(G), G).

Proposition 2.1.8. — Let M be a compact surface endowed with a graph G. Let

v be a vertex of G. Let {l1, . . . , lr} be a generating subset of the group RLv(G) of

reduced loops in G based at v. The invariant σ-field I on M(P(G), G) is generated

by the functions of the form f(h(l1), . . . , h(lr)) where f : Gr → R is continuous and

invariant by diagonal conjugation.

Proof. — By definition of the invariant σ-field and by Lemma 2.1.5, it suffices to

prove that for all l′1, . . . , l
′
n ∈ Lv(G) and all continuous f ′ : Gn → R invariant by

diagonal conjugation, the function f ′(h(l′1), . . . , h(l
′
n)) can be put under the form

f(h(l1), . . . , h(lr)) for some invariant function f . This is easily done by expressing,
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modulo the equivalence relation on paths, the loops l′1, . . . , l
′
n as words in the gen-

erators l1, . . . , lr. One then uses the multiplicativity of the elements of M(P(G), G)

and the fact that the multiplication map G2 → G is equivariant with respect to the

diagonal actions of G by conjugation.

2.2. Multiplicative families of random variables

Let M be a compact surface and P a subset of P(M). A probability measure on

(M(P,G), C) determines a family of G-valued random variables (Hc)c∈P which are

just the evaluation functions on M(P,G), defined by Hc(h) = h(c). These random

variables form a multiplicative family in the sense that Hc−1 = H−1
c and Hc1c2 =

Hc2Hc1 almost surely whenever this makes sense. If P is countable, then the converse

is true since one can dismiss the negligible event on which the equalities do not hold.

We prove in this section that the converse is in fact true even if P is not countable.

Let us recall the definition of a projective family of probability spaces.

Definition 2.2.1. — A projective family of probability spaces is the data of the fol-

lowing ingredients.

• A partially ordered set (Λ,4).

• For each λ ∈ Λ, a probability space (Ωλ, Cλ,mλ).

• For each pair (λ, µ) ∈ Λ2 such that λ 4 µ, a measurable mapping ρλµ : Ωµ → Ωλ.

These ingredients are assumed to satisfy the following conditions.

1. The poset (Λ,4) is directed : for all λ, µ ∈ Λ, there exists ν ∈ Λ such that λ 4 ν

and µ 4 ν.

2. For all λ, µ, ν ∈ Λ such that λ 4 µ 4 ν, one has the equality ρλµ ◦ ρµν = ρλν .

3. For all λ, µ ∈ Λ such that λ 4 µ, one has mµ ◦ ρ−1
λµ = mλ.

Let us state a general result of existence and uniqueness.

Proposition 2.2.2. — We keep the notation of Definition 2.2.1. Let Ω denote the

set-theoretic projective limit of the family ({Ωλ}, {ρλµ}), endowed for each λ ∈ Λ with

the canonical mapping ρλ : Ω → Ωλ. Let C denote the smallest σ-field on Ω which

makes all the mappings ρλ measurable.

Assume that for each λ ∈ Λ, (Ωλ, Cλ) is a compact metric space endowed with the

Borel σ-field. Assume also that for all λ, µ ∈ Λ such that λ 4 µ, the mapping ρλµ is

continuous.

Then there exists a unique probability measure m on C such that for all λ ∈ Λ, one

has m ◦ ρ−1
λ = mλ.

This result belongs to a wide family of theorems whose prototype is due to

Kolmogorov and whose common ground is Caratheodory’s extension theorem. The

most common versions assert the existence and uniqueness of m under less restrictive

conditions on the probability spaces but more restrictive conditions on the poset.
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Typically, Λ is a subset of a finite-dimensional Euclidean space and the probability

spaces are Polish space. The form which we have stated is in fact fairly easy to prove

due to the strong assumptions which we make on the probability spaces. We think

wiser to give a proof than to refer to several places in the literature from which the

reader would have to collect the various pieces of the argument.

Proof. — Let ΠΛ denote the Cartesian product of the sets Ωλ, λ ∈ Λ. Recall that

the set-theoretic projective limit of the family ({Ωλ}, {ρλµ}) is, by definition, the set

Ω = {(ωλ)λ∈Λ ∈ ΠΛ : ∀λ, µ ∈ Λ, λ 4 µ⇒ ρλµ(ωµ) = ωλ} .

The set ΠΛ, endowed with the product topology, is a compact topological space

of which Ω, as intersection of closed sets, is a compact topological subspace. It is

endowed with the continuous coordinate mappings ρλ : Ω→ Ωλ, λ ∈ Λ.

For each λ ∈ Λ, let Sλ denote the closed support of the probability mea-

sure mλ. It is a non-empty compact subset of Ωλ. Consider λ 4 µ. The

equality mµ ◦ ρ−1
λµ = mλ implies that ρλµ(Sµ) = Sλ. We claim that for all

ξ ∈ Λ, ρξ(Ω) ⊃ Sξ. Indeed, choose ξ ∈ Λ and sξ ∈ Sξ. Define, for all

µ 4 ν, Ω(µ, ν; ξ) = {(ωλ)λ∈Λ ∈ ΠΛ : ρµν(ων) = ωµ, ωξ = sξ}. Then on one hand,⋂
µ4ν Ω(µ, ν; ξ) = ρ−1

ξ (sξ). On the other hand, the discussion above implies that no

finite intersection of the sets Ω(µ, ν; ξ) is empty. Since these sets are compact, their

intersection is non-empty. Hence sξ ∈ ρξ(Ω).

Define a collection CΛ of subsets of Ω by setting CΛ =
⋃
λ∈Λ ρ

−1
λ (Cλ). The col-

lection CΛ is not a σ-field, but it is stable by complementation, finite unions and

finite intersections. Consider A ∈ CΛ. Assume that A = ρ−1
λ (Aλ) and A = ρ−1

µ (Aµ)

for some λ, µ ∈ Λ and Aλ ∈ Cλ, Aµ ∈ Cµ. Let ν be such that λ 4 ν and µ 4 ν.

Then A = ρ−1
ν (ρ−1

λν (Aλ)) = ρ−1
ν (ρ−1

µν (Aµ)). Since ρν(Ω) ⊃ Sν , this equality implies

ρ−1
λν (Aλ) ∩ Sν = ρ−1

µν (Aµ) ∩ Sν . Hence,

mλ(Aλ) = mν(ρ
−1
λν (Aλ)) = mν(ρ

−1
λν (Aλ) ∩ Sν) =

mν(ρ
−1
µν (Aµ) ∩ Sν) = mν(ρ

−1
µν (Aµ)) = mµ(Aµ).

We have proved that ρ−1
λ (Aλ) = ρ−1

µ (Aµ) implies mλ(Aλ) = mµ(Aµ). Hence, for all

A ∈ CΛ, it is legitimate to call m(A) the common value of all mλ(Aλ) for λ ∈ Λ and

Aλ ∈ Cλ such that A = ρ−1
λ (Aλ). Thus, we have defined m : CΛ → [0, 1]. It is not

difficult to check that m is finitely additive.

We claim that m is σ-additive on CΛ. In order to prove this, it is sufficient to prove

that if (An)n≥1 is a decreasing sequence of elements of CΛ such that
⋂
n≥1An = ∅,

then limm(An) = 0. Let us choose such a sequence (An)n≥1. Let us also choose

ε > 0. For each n, let us write An = ρ−1
λn

(Aλn
) for some λn ∈ Λ and some Aλn

∈ Cλn
.

For each n, the inner regularity of the measure mλn
implies the existence of a compact

subset Kλn
of Aλn

such that mλn
(Aλn

− Kλn
) ≤ ε2−n. Since Ω endowed with the
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trace of the product topology of ΠΛ is compact, the sets Kn = ρ−1
λn

(Kλn
), n ≥ 0

are compact. Since Kn ⊂ An for all n ≥ 1, the intersection
⋂
n≥1Kn is empty.

Hence, there exists N ≥ 1 such that
⋂N
n=1Kn = ∅. Now, for each ω ∈ AN , there

exists at least one n ∈ {1, . . . , N} such that ω /∈ Kn, so that ω ∈ An −Kn. Hence,

m(AN ) ≤∑N
n=1m(An −Kn) ≤ ε. This proves that m(An) tends to 0 when n tends

to infinity.

Carathéodory’s extension theorem asserts that m admits a unique σ-additive ex-

tension to the σ-field generated by CΛ, which is by definition the smallest σ-field on

Ω such that the mappings ρλ are measurable. This extension of m, which we still

denote by m, satisfies m ◦ ρ−1
λ = mλ for all λ ∈ Λ by definition.

In our setting, this theorem can be applied as follows.

Proposition 2.2.3. — Let P be a subset of P(M). Let F be a collection of fi-

nite subsets of P whose union is P and which, when ordered by the inclusion, is

directed. For all J ∈ F , let mJ be a probability measure on (M(J,G), C). Assume

that the probability spaces (M(J,G), C,mJ) endowed with the restriction mappings

ρJK :M(K,G)→M(J,G) defined for J ⊂ K form a projective system. Then there

exists a unique probability measure m on (M(P,G), C) such that for all J ⊂ P , the

image of m by the restriction mapping ρJ :M(P,G)→M(J,G) is mJ .

In particular, if (Hc)c∈P is a collection of G-valued random variables such that

1. ∀c ∈ P, c−1 ∈ P ⇒ Hc−1 = H−1
c a.s.,

2. ∀c1, c2 ∈ P, c1c2 ∈ P ⇒ Hc1c2 = Hc2Hc1 a.s.,

then there exists a unique probability measure m on (M(P,G), C) such that the dis-

tribution of the canonical process under m is the same as the distribution of (Hc)c∈P .

Proof. — Let J,K be elements of F such that J ⊂ K. Then M(J,G) is a compact

subset of GJ , actually a smooth compact submanifold. The evaluation mappings on

M(J,G) generate both the topology and the σ-field C. Hence, C is the Borel σ-field.

Moreover, the restriction mapping M(K,G)→M(J,G) is continuous.

Proposition 2.2.2 ensures the existence of a probability measure on the projective

limit of the sets underlying our probability spaces, endowed with a certain σ-field. In

the present case, the projective limit of the setsM(J,G) is easily identified with the

set M(P,G) in such a way that the mappings ρJ : M(P,G) → M(J,G) are simply

the restrictions. Through this identification, the σ-field on which Proposition 2.2.2

constructs a measure is the usual cylinder σ-field. The first assertion follows.

Let (Hc)c∈P be a collection of random variables which satisfies the assumptions 1

and 2. For each finite subset J of P , the distribution of (Hc)c∈J is a Borel probability

measure on GJ , which we denote by mJ and which is actually supported byM(J,G).

By applying the first assertion to the collection of probability spaces (M(J,G), C,mJ)

where J spans the collection of finite subsets of P , we find the desired probability

measure m onM(P,G).
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2.3. Uniform multiplicative functions on a graph

Let M be a compact surface. Let G = (V,E,F) be a graph on M . In this para-

graph, we discuss the uniform measure on M(P(G), G) and some of its natural dis-

integrations. The disintegrations that we have in mind are associated with random

variables associated to marking curves or boundary components. Before we define the

measures, let us set up some notation.

2.3.1. Constraints on marked surfaces. — Let us denote by Conj(G) the set of

conjugacy classes of G. The inversion map x 7→ x−1 on G descends to an involution

of Conj(G) which determines an action of Z/2Z on Conj(G). Recall that if (M,C )

is a marked surface, then Z/2Z acts on C ∪B(M) by reversing the orientation.

Definition 2.3.1. — Let (M,C ) be a marked surface. A set of G-constraints on

(M,C ) is a Z/2Z-equivariant mapping C : C ∪B(M)→ Conj(G).

A set of G-constraints on a marked surface determines a set of G-constraints on

any splitting of this surface. In the case of unary splittings, we need the following

observation. If O is a conjugacy class of G, then the set of squares of elements of O
is also a conjugacy class, which we denote by O2.

Definition 2.3.2. — Let (M,C , C) be a marked surface endowed with a set of G-

constraints. Consider l ∈ C . Let f : Spll(M) → M be the elementary gluing with

joint {l, l−1}. The marked surface (Spll(M), Spll(C )) carries the set of G-constraints

Spll(C) defined by Spll(C)(l′) = C(f(l′)) for all l′ ∈ Spll(C ), with the following

exception: if f is a unary gluing and f(l′) = l±1, then Spll(C)(l′) = C(l)±2.

Consider a marked surface (M,C , C) with G-constraints. Given h ∈M(P(M), G),

we say that h satisfies the constraints C if

(21) ∀l ∈ C ∪B(M), h(l) ∈ C(l).

The set of elements of M(P(M), G) which satisfy the constraints C is globally

invariant under the action of the gauge group.

2.3.2. Uniform measures. —

Definition 2.3.3. — Let M be a compact surface. Let G = (V,E,F) be a graph on

M . Let E+ be an orientation of G. The Haar measure on GE
+

, seen as a probability

measure on (M(P(G), G), C), is called the uniform measure and denoted by UG

M,∅.

Plainly, the uniform measure does not depend on the choice of E+. The reason

for the subscript ∅ will become apparent soon. We would like now to incorporate

boundary conditions and constraints along marking curves into the uniform measure

UG

M,∅.
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Let O ⊂ G be a conjugacy class. Let n ≥ 1 be an integer. The set

O(n) = {(x1, . . . , xn) ∈ Gn : x1 . . . xn ∈ O}
is a Gn-homogeneous space under the action

(g1, . . . , gn) · (x1, . . . , xn) = (g1x1g
−1
2 , . . . , gnxng

−1
1 ).

Let δO(n) denote the extension to Gn of the unique Gn-invariant probability measure

on O(n) ⊂ Gn. In particular, O(1) = O and δO(1) is the G-invariant probability

measure on O, which we also denote simply by δO. For each element x of G, we

denote by Ox the conjugacy class of x.

Lemma 2.3.4. — Consider f ∈ C0(Gn), g ∈ C0(Gn−1), u ∈ C0(G) and a contin-

uous map h : Gn−1 → G. Let O be a conjugacy class of G. The following relations

hold.

(22)

∫

Gn

f dδO(n) =

∫

Gn

f(x1, . . . , xn−1, (x1 . . . xn−1)
−1y) dx1 . . . dxn−1δO(dy).

∫

Gn

u(h(x1, . . . , xn−1)x1 . . . xnh(x1, . . . , xn−1)
−1)g(x1, . . . , xn−1) δO(n)(dx1 . . . dxn) =

∫

G

u dδO

∫

Gn−1

g(x1, . . . , xn−1) dx1 . . . dxn−1.(23)

(24)

∫

Gn+1

f(x1x2, x3, . . . , xn) δO(n+1)(dg1 . . . dgn+1) =

∫

Gn

f δO(n).

(25)

∫

Gn

f(x2, . . . , xn, x1) δO(n)(dx1 . . . dxn) =

∫

Gn

f δO(n).

(26)

∫

G

[∫

Gn

f(x1, . . . , xn) δOy(n)(dx1 . . . dxn)

]
dy =

∫

Gn

f(x1, . . . , xn) dx1 . . . dxn.

Proof. — The right-hand side of (22) defines a measure supported by O(n) and in-

variant under the action of Gn. Hence, it is δO(n). The relation (23) follows easily

from (22). The right-hand sides of (24) and (25) are equal to
∫

Gn

f(g1z1g
−1
2 , . . . , gnzng

−1
1 ) dg1 . . . dgn

for all (z1, . . . , zn) ∈ O(n). The relation (24) follows because the map (x1, . . . , xn+1) 7→
(x1x2, x3, . . . , xn+1) maps O(n + 1) into O(n), and (25) also follows because the set

O(n) is stable by circular permutation of the variables. The relation (26) follows also

from this description of δO(n) and a simple change of variables.

Let (M,C , C) be a marked surface with a set of G-constraints, endowed with a

graph G. Let us choose q simple loops l1, . . . , lq in L(G) which represent the unoriented

cycles of C ∪B(M), that is, such that C ∪B(M) = {l1, l−1
1 , . . . , lq, l

−1
q }. Recall that

for the sake of simplicity, we denote in the same way a cycle and the corresponding
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simple loop. We label the elements of E in such a way that li = ei,1 . . . ei,ni
for

i ∈ {1, . . . , q}. Let E+ be an orientation of G such that ei,j ∈ E+ for all i ∈ {1, . . . , q}
and j ∈ {1, . . . , ni}. Let us label e1, . . . , em the other edges of E+.

Lemma 2.3.5. — Let (M,C , C) be a marked surface with G-constraints. Let G =

(V,E,F) be a graph on (M,C ). The uniform measure on GE
+

with G-constraints C

is defined as the probability measure

dg1 ⊗ . . .⊗ dgm ⊗ δC(l1)(n1)(dg1,n1 . . . dg1,1)⊗ . . .⊗ δC(lq)(nq)(dgq,nq
. . . dgq,1).

It is denoted by UG

M,C ,C(dg). The corresponding probability measure on M(P(G), G),

also denoted by UG

M,C ,C , depends neither on the choice of the simple loops which

represent the marking of M nor on the choice of E+.

Proof. — The invariance of the measures δO(n) by cyclic permutation of the variables,

granted by (25), ensures that the measure UG

M,C ,C does not depend on the simple

loops which we have chosen to represent the cycles of the marking of M . Since the

Haar measure on G is invariant by inversion, the measure induced onM(P(G), G) by

UG

M,C ,C does not depend on the choice of E+.

Let us state two basic properties of the measure UG

M,C ,C .

Proposition 2.3.6. — Recall the notation of Lemma 2.3.5.

1. The event N = {∃l ∈ C ∪B(M), h(l) /∈ C(l)} satisfies UG

M,C ,C(N ) = 0.

2. The action of the group GV on M(P(G), G) preserves the probability measure

UG

M,C ,C.

Proof. — 1. By definition of UG

M,C ,C , the support of UG

M,C ,C is contained in the closed

set {∀l ∈ C ∪B(M), h(l) ∈ C(l)} = N c.

2. Choose v ∈ V and x ∈ G. Set jw = 1 if w 6= v and jv = x. If v is not located

on a curve of C , then the translation invariance of the Haar measure implies that j

leaves the measure UG

M,C ,C invariant. Assume now that v is on the curve l1 which is

represented by the cycle e1 . . . en. Assume that e1 is outcoming at v and en is incom-

ing. Then the action of j translates the variables associated to the edges adjacent to v

other than e1 and en and it replaces (en, . . . , e1) by (x−1en, . . . , e1x). This leaves the

measure δC(l1)(n)(dgn . . . dg1) invariant. Finally, the action of j preserves the measure

UG

M,C ,C . Since the group GV is generated by elements which are equal to 1 at all

vertices but one, the result follows.

Let us state precisely the fact that the measures UG

M,C ,C disintegrate each other.

We use the notation C = {l1, l−1
1 , . . . , lq, l

−1
q }. This set does not include the bound-

ary components of M anymore. Let us define C0 = ∅ and for each r ∈ {1, . . . , q},
Cr = {l1, l−1

1 , . . . , lr, l
−1
r }. For each r ∈ {1, . . . , q}, any collection (O1, . . . ,Or) of r
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conjugacy classes of G determines the set of G-constraints on Cr which maps li on Oi
for all i ∈ {1, . . . , r}. We denote this set of constraints simply by (O1, . . . ,Or).

The following lemma is a direct consequence of the definition of UG

M,C ,C and (26). It

shows that the measures UG

M,C ,(O1,...,Or,Oxr+1
,...,Oxq ) provide a regular disintegration

of UG

M,Cr ,(O1,...,Or) with respect to the random variables h(lr+1), . . . , h(lq).

Lemma 2.3.7. — Let r be an integer between 0 and q − 1. Let O1, . . . ,Or be r

conjugacy classes of G. Let f : Gq−r −→ R be a continuous function. Then
∫

M(P(G),G)

f(h(lr+1), . . . , h(lq)) UG

M,Cr,(O1,...,Or)(dh) =

∫

Gq−r

f(xr+1, . . . , xq) dxr+1 . . . dxq.(27)

(28) UG

M,Cr,(O1,...,Or) =

∫

Gq−r

UG

M,C ,(O1,...,Or,Oxr+1
,...,Oxq ) dxr+1 . . . dxq.

2.3.3. Surgery of uniform measures. — Let us investigate the behaviour of the

uniform measures that we have just defined under the basic operations of surgery. So

far, we have used the letter f to denote gluing maps and also test functions on G. In

the proof of the next result, we need to use both. This is why we change our notation

for gluings.

Proposition 2.3.8. — Let (M,C , C) be a marked surface with G-constraints en-

dowed with a graph G. Let (M ′,C ′, C′) be a splitting of M and let ψ : M ′ → M

denote the gluing map. Let G′ be the graph on M ′ obtained by lifting G. Then the

mapping ψ : (M(P(G), G), I)→ (M(P(G′), G), I ′) induced by ψ satisfies

(29) UG
′

M ′,C ′,C′ = UG

M,C ,C ◦ ψ−1.

In this proposition, it is crucial that we consider the invariant σ-fields, not only

for the general reason that one should consider only gauge-invariant quantities,

but because the equality (29), although meaningful with cylinder σ-fields thanks to

Lemma 2.1.7, would simply be false. For instance, consider a binary gluing along two

curves b′1 and b′2 with joint b = f(b′1) = f(b′2). Then the event {h′ : h′(b′1) = h′(b′2)}
belongs to C′ and has measure zero. On the other hand, the pull-back by ψ of this

event is the event {h : h(b) = h(b)} of C which has full measure. The point is that

the first event does not belong to I ′.

Proof. — Let f : M(P(G′), G) → R be a continuous function invariant under the

action of GV
′

. Then f induces a continuous function f̃ : M(P(G), G) → R and we

need to prove that the following relation holds.

(30)

∫

M(P(G),G)

f̃ dUG

M,C ,C =

∫

M(P(G′),G)

f dUG
′

M ′,C ′,C′ .
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We treat separately the cases of binary and unary gluings.

1. Binary gluing – Let {b, b−1} be the joint of the gluing. Let b′1 and b′2 be the two

boundary components of M ′ which are identified by f , oriented in such a way that

f(b′1) = f(b′2) = b.

Let Eb, E′
1 and E′

2 denote respectively the set of edges located on b, b′1 and b′2.

These three sets are naturally identified by the gluing. Set E′
◦ = E′ − (E′

1 ∪ E′
2) and

E◦ = E−Eb = f(E′
◦). The gluing identifies naturally E′

◦ with E◦. With this notation,

we have the partitions

(31) E = E◦ ∪ Eb and E
′ = E

′
◦ ∪ E

′
1 ∪ E

′
2.

The partition of E above determines the equalityM(E, G) =M(E◦, G)×M(Eb, G),

according to which we denote by g = (g◦, gb) the generic element of M(E, G). Simi-

larly, we have the decompositionM(E′, G) =M(E′
◦, G)×M(E′

1, G)×M(E′
2, G) and

we write g′ = (g′◦, g
′
1, g

′
2) for the generic element ofM(E′, G).

With this notation and these identifications, the function f̃ is defined by the equal-

ity f̃(g◦, gb) = f(g◦, gb, gb).

Since each curve of C is covered either by E◦ or by Eb, the decomposition of

M(E, G) above determines a decomposition of the measure UG

M,C ,C as the tensor

product of two measures U◦ and Ub on M(E◦, G) and M(Eb, G) respectively, each

of which is invariant under the action of the gauge group GV. Let us assume that b

is the product of n edges of E. Then M(Eb, G) can be identified with Gn and the

measure Ub corresponds to δC(b)(n) under this identification.

Similarly, the measure UG
′

M ′,C ′,C′ splits as the tensor product of three measures U ′
◦,

U ′
1 and U ′

2, onM(E′
◦, G),M(E′

1, G) andM(E′
2, G) respectively. The last two spaces

can be identified with Gn and the measures U ′
1 and U ′

2 correspond to δC(b)(n) under

this identification.

The measures U◦ and U ′
◦ correspond to each other via the identification of

M(E◦, G) and M(E′
◦, G). Hence, the equality which we need to prove is the

following:

∫

M(P(G),G)

f(g◦, gb, gb) U◦(dg◦)Ub(dgb) =

∫

M(E◦,G)×M(Eb,G)2
f(g◦, g1, g2) U◦(dg◦)Ub(dg1)Ub(dg2).

Let V′
2 denote the subset of V′ consisting of the vertices which lie on b′2. The group

GV
′
2 is a compact Lie group and the invariant measure of its transitive action on the

subset C(b)(n) of M(E′
2, G) is the measure δC(b)(n) = U ′

2. Let us denote by j′2 the

generic element of GV
′
2 and by dj′ the Haar measure on this group. Since f is invariant

under the action of the gauge group, we have for all (g′◦, g
′
1, g

′
2) in M(P(G′), G) the

equality f(j′2 · g′◦, g′1, j′2 · g′2) = f(g′◦, g
′
1, g

′
2). Observe that some edges of E′

◦ have some
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of their endpoints in V′
2, so that the term g′◦ is affected by the gauge transformation

j′2. On the contrary, the term g′1 is not affected because b′1 and b′2 are disjoint. Hence,

with the identifications made earlier,

∫

M(P(G),G)

f(g◦, gb, gb) U◦(dg◦)Ub(dgb) =

∫

M(P(G),G)×GV′
2

f(j′2 · g◦, gb, j′2 · gb) U◦(dg◦)Ub(dgb)dj
′
2.

Since the measure U◦ is invariant under the action of GV, the last term is equal to

∫

M(P(G),G)×GV′
2

f(g◦, gb, j
′
2 · gb) U◦(dg◦)Ub(dgb)dj

′
2.

It suffices now to prove an equality about the function
∫
M(E◦,G) f(g◦, ·, ·) U◦(dg◦) on

G2n. Indeed, let us denote this function by u : G2n → R. All we need to prove is

that, for all conjugacy class O,

∫

G2n

u(g1, . . . , gn, j1g1j
−1
2 , . . . , jngnj

−1
1 ) δO(n)(dg1 . . . dgn)dj1 . . . djn =

∫

G2n

u d(δO(n) ⊗ δO(n)).

But the left-hand side is equal to

∫

Gn

∫

Gn

u(g1, . . . , gn, gn+1, . . . , g2n)δOg1...gn (n)(dgn+1 . . . dg2n)δO(n)(dg1 . . . dgn),

hence to the right-hand side.

2. Unary gluing – Let {b, b−1} be the joint of the gluing. Let b′ be the component

of the boundary of M ′ such that f(b′) = b. Let us write b = e1 . . . en and b′ =

e′1,1 . . . e
′
n,1e

′
1,2 . . . e

′
n,2 in such a way that f(b′i,1) = f(b′i,2) = bi for all i ∈ {1, . . . , n}.

Let Eb denote the set of edges located on b. Set E′
1 = {e′1,1±1

, . . . , e′n,1
±1} and

E′
2 = {e′1,2±1

, . . . , e′n,2
±1}. Set E′

◦ = E′ − (E′
1 ∪ E′

2) and E◦ = E − Eb = f(E′
◦). We

will identify freely E◦ with E′
◦.

With this notation, the equalities (31) hold, as well as the subsequent decomposi-

tions of M(E, G) and M(E′, G). The function f̃ is also still defined by the equality

f̃(g◦, gb) = f(g◦, gb, gb).

The decomposition UG

M,C ,C = U◦ ⊗ Ub is valid just as in the binary case, but the

decomposition of UG
′

M ′,C ′,C′ is now different. Indeed, this measure splits into the tensor

product of U ′
◦ and a measure U ′

12 onM(E′
1, G)×M(E′

2, G) which is δC(b)2(2n) under

the natural identification ofM(E′
1, G)×M(E′

2, G) with G2n. The formula which we
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need to prove is the following:
∫

M(P(G),G)

f(g◦, gb, gb) U◦(dg◦)Ub(dgb) =

∫

M(E◦,G)×M(E′
1∪E′

2,G)

f(g◦, g1, g2) U◦(dg◦)U
′
12(dg1, dg2).

Let V′
12 denote the set of vertices which lie on b′. By using the invariance of f under

the action of the subgroup GV
′
12 of the gauge group and the invariance of the measure

U◦ under the same action, we find just as in the binary case that the left-hand side

of the equality to prove is equal to
∫

M(E◦,G)×M(Eb,G)×GV′
12

f(g◦, j
′
12 · gb, j′12 · gb) U◦(dg◦)Ub(dgb)dj

′
12.

The notation here is misleading, since the two occurrences of j′12 ·gb do not denote the

same object. Indeed, the two occurrences of gb in the arguments of f are identified

respectively with an element of M(E′
1, G) and an element of M(E′

2, G), on which

GV
′
12 acts differently.

Now what we have to prove is really an equality about the function
∫

M(E◦,G)

f(g◦, ·, ·) U◦(dg◦)

on G2n. Let us call this function u : G2n → R. We need to prove that for all conjugacy

class O in G the following equality holds:
∫

G3n

u(j−1
0 g1j1, . . . , jn−1gnjn, j

−1
n g1jn+1, . . . , j

−1
2n−1gnj0) δO(n)(dg1 . . . dgn)dj0 . . . dj2n

=

∫

G2n

u δO2(2n).

Recall that O2 is the conjugacy class constituted by the squares of the elements of O.

We claim that this equality holds for all continuous function u. Indeed, the integral
∫

G2n

u(j−1
0 g1j1, . . . , jn−1gnjn, j

−1
n g1jn+1, . . . , j

−1
2n−1gnj0) dj0 . . . dj2n

is the integral of u with respect to the measure δO(g1...gn)2 (2n), by the very defini-

tion of this measure as the invariant measure under the natural action of G2n on

O(g1...gn)2(2n). Hence, by a simple particular case of (23), the integral that we are

computing is equal to
∫

Gn

(∫

G2n

u(x)δO(g1...gn)2 (2n)(dx)

)
δO(n)(dg1 . . . dgn) =

∫

G2n

u(x)

(∫

G

δOg2(2n)δO(dg)

)
(dx).

The measure δO2
g(2n) is equal to δO2(2n) for δO-almost all g. Hence, the measure

between the brackets is δO2(2n). This concludes the proof.
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Let us conclude this section by a much simpler result, which is the simplest instance

of invariance under subdivision.

Proposition 2.3.9. — Let (M,C , C) be a marked surface with G-constraints. Let

G1 and G2 be two graphs on (M,C ). Assume that G1 4 G2. Then the inclu-

sion P(G1) ⊂ P(G2) induces a measurable restriction map r : M(P(G2), G) →
M(P(G1), G) which satisfies

UG2

M,C ,C ◦ r−1 = UG1

M,C ,C .

Proof. — Let us choose an orientation for G1 and G2. The restriction map, seen as a

map from GE
+
2 to GE

+
1 , multiplies the components which correspond to the edges of E2

which constitute each edge of E1 and forgets about the components which correspond

to edges which do not lie in the skeleton of E1.

Since the product of independent uniform variables on G is still uniform, the only

non-trivial thing to check is what happens along the marking curves or the boundary

components. There, the invariance follows from (24).

2.4. Tame generators of the group of reduced loops

Consider a surface (M,∅, C) with G-constraints along its boundary, endowed with

a graph G. Our objective in this section is to exhibit a family of lassos which generates

the group of reduced loops in G and to compute the distribution of the G-valued

random variables associated with these lassos under the constrained uniform measure

defined in the previous section. Moreover, we are going to do this in a way which is

consistent with the partial order on the set of graphs.

Definition 2.4.1. — Let M be a compact surface endowed with a graph G. Let v be

a vertex of G. A lasso l ∈ RLv(G) is said to be facial if its meander represents a facial

cycle of G. It is said to be bounding if its meander covers a connected component of

∂M .

We want to prove the existence of systems of generators of RLv(G) which consist

in one bounding lasso for each connected component of ∂M , one facial lasso for each

face of G, and as many supplementary lassos with non-contractible meander as the

genus of M (see Section 1.1.1).

Recall the notation W (M) from Section 1.3.5. If w is a word in some set of letters,

we denote by ←−w the word obtained by reversing the order of the letters of w.

Proposition 2.4.2. — Let M be a connected compact surface. Let g = g(M) denote

the reduced genus of M . Let p = p(M) be the number of connected components of

∂M . Write B(M) = {b1, b−1
1 , . . . , bp, b

−1
p }. If M is oriented, we assume that b1, . . . , bp

bound M positively. Let G be a graph on M . Let v be a vertex of G. Let f denote the

number of faces of G.
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1. There exists, in the group RLv(G), g lassos a1, . . . , ag; p bounding lassos

c1, . . . , cp whose meanders are equivalent to b1, . . . , bp up to permutation; f facial

lassos l1, . . . , lf whose meanders bound the f faces of G, positively if M is oriented;

and there exists an word w in the letters a1, . . . , ag which belongs to W (M) such that

the group RLv(G) admits the presentation

〈a1, . . . , ag, c1, . . . , cp, l1, . . . , lf |w(a1, . . . , ag)c1 . . . cp = l1 . . . lf〉
and, for all continuous function f : Gg+p+f → R and all set C of G-constraints along

the boundary components of G,∫

M(P(G),G)

f(h(a1), . . . , h(ag), h(c1), . . . , h(cp), h(l1), . . . , h(lf)) UG

M,∅,C(dh)

=

∫

Gg+p+f−1

f(x1, . . . , xg, y1, . . . , yp, z1, . . . , zf−1, zf)

dx1 . . . dxgδC(b1)(dy1) . . . δC(bp)(dyp)dz1 . . . dzf−1,

where we have set zf = yp . . . y1
←−w (x1, . . . , xg)(zf−1 . . . z1)

−1.

A collection of lassos such as {a1, . . . , ag, c1, . . . , cp, l1, . . . , lf} will be called a tame

system of generators associated with the word w.

2. Let G1 and G2 be two graphs on M such that G1 4 G2. Set f1 = f(G1). Let v be

a vertex of G1. Let {a1, . . . , ag, c1, . . . , cp, l1, . . . , lf1} be a tame system of generators

of RLv(G1) associated with the word w. Assume that the faces of G1 are labelled

F1 = {F 1
i : i ∈ {1, . . . , f1}} in such a way that for all i ∈ {1, . . . , f1}, the meander of

the lasso li bounds F 1
i . For all i ∈ {1, . . . , n}, let F2,i = {F 2 ∈ F2 : F 2 ⊂ F 1

i } be the

set of faces of G2 contained in F 1
i and set f2,i = #F2,i.

Then there exists a set of facial lassos {li,j : i ∈ {1, . . . , f1}, j ∈ {1, . . . , f2,i}} in

RLv(G2) such that for all i, j, the meander of the lasso li,j bounds a face of F2,i, for

all i the equality li = li,1 . . . li,f2,i
holds and

{a1, . . . , ag, c1, . . . , cp, l1,1, . . . , lf1,f2,f1
}

is a tame system of generators of RLv(G2) associated with the word w.

We will use the notation g = g(M), p = p(M), and f = f(G) until the end of this

chapter.

By Lemma 1.3.33, we know that RLv(G) is free of rank e(G)−v(G)+1. By Euler’s

relation for the graph G, which writes v(G)−e(G)+f(G) = χ(M) = 2−g−p, the rank

of RLv(G) can also be written as g + p + f − 1. In order to find families of generators

whose cardinal decomposes naturally as g + p + f − 1, we introduce the dual graph of

G.

Definition 2.4.3. — Let M be a compact surface endowed with a graph G. Let

(M ′,G′, ι, f) be a split pattern of (M,G). Let V̂ denote the set of connected compo-

nents of M ′, which is in canonical bijection with F. Then, set Ê = {{e′, e′−1} : e′ ∈
E′}. For each element ê = {e′, e′−1} of Ê, define the source s(ê) of ê as the connected
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component of M ′ which contains e′ and the target t(ê) of ê is the connected component

of M ′ which contains ι(e′).

The abstract graph Ĝ = (V̂, Ê, s, t) is called the dual graph of G.

Properly speaking, the dual graph of G depends on the choice of the split pattern

of G and it is unique only up to an obvious notion of isomorphism. We shall in fact

choose a split pattern and work with the associated dual graph.

The involution ι of the split pattern induces an involution on Ê, which we still

denote by ι. This involution is similar to an orientation reversal, but one should

observe that it may have fixed points. For example, if an edge e′ ∈ E′ is sent by f

on a boundary component of M , then ι(e′) = e′ and the dual edge ê = {e′, e′−1} also

satisfies ι(ê) = ê.

The orbits of ι on Ê, which we call unoriented edges of the dual graph, correspond

bijectively by f with the unoriented edges of the graph G, that is, the pairs {e, e−1}
for e ∈ E.

Definition 2.4.4. — Let M be a compact surface endowed with a graph G. Let

(M ′,G′, ι, f) be a split pattern of (M,G). Recall that a spanning tree of the dual

graph (V̂ , Ê, s, t) is a subset T̂ ⊂ Ê stable by the involution ι and such that any two

vertices of the dual graph are joined by a unique injective path made with edges of T̂ .

Let T̂ be a spanning tree of the dual graph. An orientation of M ′ is said to be

adapted to T̂ if for all ê = {e, e−1} ∈ T̂ , the edges e and ι(e) are neither both

positively oriented nor both negatively oriented with respect to this orientation of M ′.

Assume that M ′ is endowed with an orientation adapted to T̂ . Then we define the

image by f of an edge ê = {e′, e′−1} of T̂ as an edge of G by setting f(ê) = f(e′) if

e′ is positively oriented as a subset of ∂M ′ and f(ê) = f(e′−1
) otherwise.

It is not difficult to check that there are exactly two orientations of M ′, among

the 2f possible, which are adapted to any given spanning tree in the dual graph.

Moreover, for all ê ∈ T̂ , we have the equality f(ι(ê)) = f(ê)−1 in E.

It follows from Proposition 1.3.15 that E \ f(T̂ ) is the set of edges of a graph G0

on M with a single face. This graph has e0 = e(G)− (f(G) − 1) edges, so by Euler’s

relation, it still has v0 = v(G) vertices. Moreover, its skeleton contains ∂M and every

edge of G which lies on ∂M is also an edge of G0. Let B+ ⊂ E0 be a collection

of edges comprising exactly one edge on each connected component of ∂M . If M is

oriented, we assume that the edges of B bound M positively. The set of edges of

G0 located on ∂M and which do not belong to B = B+ ∪ (B+)−1 form a cycle-free

subgraph of G0. Hence, it is possible to extend this subgraph to a spanning tree T of

G0 such that T ∩B = ∅ (see Figure 1).

Lemma 2.4.5. — With the notation above, for each edge e ∈ B, the lasso le,T is a

bounding lasso whose meander covers the connected component of ∂M on which e lies

and whose spoke contains no edge lying on this connected component.
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Proof. — Let b be the connected component of ∂M on which e lies. If the base point

v is located on b, then le,T is a simple loop which represents the cycle b. Otherwise,

since any two vertices located on b can be joined by a path in T which stays in b,

there exists a unique vertex w on b which is joined to the base point v by a path in T

with no edge lying on b. Hence, le,T = [v, w]T ([w, e]T e[e, w]T )[w, v]T . The three paths

between the brackets form the meander of the lasso, which is a simple loop covering

b.

Let us carry on with our construction. We have a partition E0 = T ∪B ∪R, where

R = E0\(T∪B). It follows from Euler’s relation that R contains exactly g′ unoriented

edges. From the fact that E0 has v(G) vertices, we deduce that T is in fact a spanning

tree of G. Hence, Lemma 1.3.33 implies the first assertion of the following result.

Proposition 2.4.6. — Let M be a compact surface endowed with a graph G. Let

(M ′,G′, ι, f) be a split pattern of (M,G). Let T̂ be a spanning tree of the dual graph

of G. Let B+ be a collection of edges comprising exactly one edge on each connected

component of ∂M , which we assume to be positively oriented if M is oriented. Set

B = B+ ∪ (B+)−1. Let T be a spanning tree of E \ f(T̂ ) such that T ∩ B = ∅. Set

R = E \ (f(T̂ ) ∪B ∪ T ). Choose an orientation E+ of G such that B+ ⊂ E+. Write

B+ = {e1, . . . , ep}. Let b1, . . . , bp be the boundary components of M enumerated in

such a way that for all i ∈ {1, . . . , p}, bi is the meander of the lasso lei,T . Then R+,

B+ and f(T̂ )+ contain respectively g, p and f − 1 edges and the following properties

hold.

1. The group RLv(G) is freely generated by the loops {le,T : e ∈ R+∪B+∪f(T̂ )+}.
2. Under the probability measure UG

M,∅,C onM(P(G), G), the collection of random

variables {h(le,T ) : e ∈ R+ ∪ B+ ∪ f(T̂ )+} is a collection of independent variables.

For all e ∈ R+ ∪ f(T̂ )+, the variable h(le,T ) is uniformly distributed on G and for all

i ∈ {1, . . . , p}, the variable h(lci,T ) has the distribution δC(bi).

f(T̂ )

B

T

R

Figure 1. An example of a partition of E as R ∪ B ∪ f(T̂ ) ∪ T

Proof. — Let us prove the second assertion. By definition of the measure UG

M,∅,C ,

the random variables {h(e) : e ∈ R+∪f(T̂ )+} are independent, uniformly distributed

on G, and independent of {h(e) : e ∈ E+ \ (R+ ∪ f(T̂ )+)}. Hence, the variables
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{h(le,T ) : e ∈ R+ ∪ f(T̂ )+} are independent, uniformly distributed and independent

of the variables {h(le,T ) : e ∈ B+}, which do not involve any edge of R ∪ f(T̂ ).

Now choose i ∈ {1, . . . , p}. Consider the loop lei,T and the corresponding bounding

cycle bi. By Lemma 2.4.5, the spoke of the lasso lei,T does not involve any edge lying

on the boundary component bi of M . However, it may involve edges located on other

boundary components of M .

We claim that for every subset I ⊂ {1, . . . , p}, there exists i0 ∈ I such that for all

j ∈ I − {i0}, the spoke of lej ,T does not involve edges located on bi0 . Assume to the

contrary that for some subset I there does not exist such an i0. Then there would

exist i1, . . . , ik−1 ∈ I all distinct and ik = i1 such that for all j ∈ {1, . . . , k − 1}, the

spoke of the lasso leij+1
,T involves an edge which lies on the boundary component bij .

This would in particular imply that for each j ∈ {1, . . . , k − 1} there exists a path in

T from bij to bij+1 and, since ik = i1, that T contains a cycle.

By relabelling the boundary components of M , we may assume that for all k ∈
{1, . . . , p}, the element k of the subset {k, . . . , p} ⊂ {1, . . . , p} has the property de-

scribed above. Since under UG

M,∅,C , the random variable h(bk) has the distribution

δC(bk) and is independent of the variables h(e) for e ∈ E not located on bk, the variable

h(lek,T ) itself has the distribution δC(bk) and is independent of h(lek+1,T ), . . . , h(lep,T ).

This implies easily the result.

With the proof of Proposition 2.4.2 in mind, the next step is to express the loops

le,T for e ∈ f(T̂ ) in function of facial lassos. The exact way in which these lassos

decompose into products of facial lassos depends on, and in fact encodes completely,

the geometry of the tree T̂ .

Let M ′ be endowed with an orientation adapted with T̂ . Let v̂ = M ′
F be a vertex

of Ĝ which corresponds to a face F . The set of edges of Ĝ whose source is v̂ is in

one-to-one correspondence with the set of edges of G′ located on the boundary of M ′
F

and which bound it positively. This set carries a natural cyclic order, which is the

order in which the edges are traversed by a cycle bounding M ′
F . By restriction, the

set of edges of T̂ which share v̂ as their source is endowed with a cyclic order.

Let us root T̂ by not only choosing a reference vertex but also by choosing among

the edges issued from this vertex which one is the first. The simplest way to do this is

to choose a vertex of G′. This determines a root vertex for T̂ , namely the connected

component of M ′ which carries this vertex, and this also breaks the cyclic symmetry

of the edges issued from this connected component, which are now totally ordered.

The object that we are now contemplating is a tree (that is, an abstract graph

without simple cycle) endowed with a distinguished vertex, a total order on the edges

issued from this distinguished vertex and a cyclic order on the set of edges issued

from any other vertex. Such an object is called a rooted planar tree and it has a

canonical representation as a set of words of integers, according to a formalism due to



84 CHAPTER 2. MULTIPLICATIVE PROCESSES INDEXED BY PATHS

J. Neveu. Let us simply describe how the vertices are labelled by words of integers,

that is, finite sequences of non-negative integers.

The root vertex is labelled by the empty word ∅. Let k(∅) be the number of

children of ∅, that is, the number of vertices to which it is joined by an edge. These

vertices are labelled by words of length 1, namely 1, 2, . . . , k(∅), according to the total

order on these edges.

Then, consider a vertex labelled by a word u = u1 . . . un. The integer n is called the

height of u and it is denoted by h(u). Let π(u) = u1 . . . un−1 denote the predecessor of

u and let k(u) denote the number of vertices other than π(u) to which u is joined by

an edge. Then the edge from u to π(u), denoted by uπ(u), breaks the cyclic symmetry

among the edges issued from u and determines a total order on the k(u) other edges

issued from u. The k(u) targets of these edges are labelled u1 . . . un1, . . . , u1 . . . unk(u)

in this order.

Thus, the choice of a rooting of T̂ and an adapted orientation of M ′ determines a

labelling of F by words of integers (see Figure 2). As we shall see now, it determines

also a specific facial lasso for each face of G and one of the loops le,T for each face

distinct from the root face.

1

2

3

11

111

3112

112

3111

311
31

21

∅

v
′

Figure 2. The labelling of the faces of a graph by words of integers. The

vertex v′ determines the rooting of T̂ .

Definition 2.4.7. — Let M be a compact surface endowed with a graph G. Let

(M ′,G′, ι, f) be a split pattern of (M,G). Let T̂ be a spanning tree of the dual graph

of G. Endow M ′ with an orientation adapted to T̂ . Choose a root for T̂ . Label the

faces of G with words of integers accordingly.

Consider a face F of G labelled by the word u. If u = ∅, let ∂T̂F be the unique rep-

resentative of ∂M ′
F which starts at the root vertex chosen in V′ and bounds positively
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∂M ′
F . Otherwise, consider the edge uπ(u) of T̂ , which we identify with an edge of G′

which bounds M ′
F positively. Let ∂T̂F be the unique simple loop representing ∂M ′

F

which starts with this edge. Write ∂T̂F as a product of edges e1 . . . er. We define the

facial lasso lu ∈ RLv(G) by lu = le1,T . . . ler ,T .

Consider a face distinct from the face labelled by u 6= ∅. The edge uπ(u) of T̂

determines the edge f(uπ(u)) of G and we define lu,π(u) = lf(uπ(u)),T . We also define

l∅,π(∅) as the constant loop at v.

Let u and u′ be two vertices of T̂ . We say that u is a prefix of u′ if there exists a

word of integers u′′ such that u′ = uu′′, the concatenation of u and u′′. Genealogically,

this can be phrased by saying that u is an ancestor of u′.

Lemma 2.4.8. — Recall the notation of Definition 2.4.7. Let F be a face of G

labelled by u. There exist k(u) + 1 elements tu,π(u), tu,u1, . . . , tu,uk(u) of the subgroup

of RLv(G) generated by {le,T : e ∈ R ∪B} such that

(32) lu = lu,π(u)t
−1
u,π(u)l

−1
u1,ut

−1
u,u1 . . . l

−1
uk(u),ut

−1
u,uk(u).

Moreover, there exists an element t of the subgroup of RLv(G) generated by {lv :

u prefix of v} and {le,T : e ∈ R ∪B} such that

(33) lu = lu,π(u)t.

Proof. — Let us write ∂T̂F = e1 . . . en. By definition, e1 is the edge of G which

corresponds to the edge uπ(u) of T̂ . Hence, le1,T = lu,π(u). Then, the list (e2, . . . , en)

consists of the images by f of the edges of T̂ which join u to u1, . . . , uk(u), in this

order, intermixed with some edges of T and some edges of R ∪ B. The claimed

expression for lu follows. In the case where F is the root of T̂ , the edge e1 does not

play a special role, it is either the image by f of the edge which joins ∅ to 1 in T̂ , or

an edge of T ∪R ∪B.

We say that a vertex u of T̂ is a leaf if k(u) = 0. The second expression of lu
reduces to the first if u is a leaf. Let us now consider a vertex u and assume that

(33) holds for each vertex of which u is the predecessor, that is, for u1, . . . , uk(u). For

every vertex v, the fact that uj is a prefix of v for some j ∈ {1, . . . , k(u)} implies that

u is a prefix of v. Hence, by applying (32) to u and then (33) to u1, . . . , uk(u), we

find that (33) holds for u.

By induction along T̂ , the second expression of lu holds for all u ∈ T̂ .

Corollary 2.4.9. — Recall the notation of Proposition 2.4.6 and Definition 2.4.7.

The group RLv(G) is freely generated by {le,T : e ∈ R+∪B+} and {lu : u 6= ∅}. More-

over, under UG

M,∅,C, the random variables {h(lu) : u 6= ∅} are mutually independent,

uniformly distributed and independent of {h(le,T ) : e ∈ R+ ∪B+}.
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Proof. — Let us call the height of T̂ and denote by h(T̂ ) the maximal height of a

vertex of T̂ , which is necessarily a leaf. We claim that for all integer n ≥ 1, RLv(G)

is freely generated by the set X(n) defined by

X(n) = {le,T : e ∈ R+ ∪B+} ∪ {lu,π(u) : h(u) < n} ∪ {lu : h(u) ≥ n}.

For n = 1, it is the statement which we wish to prove. For n > h(T̂ ), it is the

content of Proposition 2.4.6. The fact that the claim is true for all n is easily proved

by descending induction. Indeed, for all n ≥ 1, the set X(n) is deduced from X(n+1)

by replacing, for all labels u of T̂ such that h(u) = n, the loop lu,π(u) by the facial

lasso lu. If X(n+ 1) is a basis of RLv(G), then it follows immediately from (33) that

X(n) is another basis of RLv(G).

Since the sets {v : u prefix of v} are disjoint for the distinct labels u of height n,

the assertion on the distribution of the variables {h(l) : l ∈ X(n)} follows easily from

(33) and the distribution of {h(l) : l ∈ X(n+ 1)}.

At this point, we have proved most of the first assertion of Proposition 2.4.2. We

have exhibited a family of generators of the group RLv(G) which generate it freely.

We know that if we add one element to this family, we get a presentation of RLv(G)

with one relation. The next result helps us to get a relation of the form that we

expect.

Lemma 2.4.8 defines tu,v for each ordered pair of adjacent vertices (u, v) in T̂ , and

also an extra element t∅,π(∅). Now for each pair of vertices (u, u′) of T̂ , not necessarily

adjacent, let us define tu,u′ = tv1,v2 . . . tvm−1,vm
, where u = v1, . . . , vm = u′ is the

unique injective path in T̂ from u to u′.

Lemma 2.4.10. — Endow the set of vertices of T̂ with the lexicographic order as-

sociated to the reversed order on N. Enumerate its elements accordingly: F = {u1 ≤
. . . ≤ uf}. Then

(34) lu1tu1,u2 lu2tu2,u3 . . . tuf−1,uf
luf
tuf ,∅t∅,π(∅) = 1.

Moreover, the loop (tu1,u2tu2,u3 . . . tuf−1,uf
tuf ,∅t∅,π(∅))

−1 is the boundary of the unique

face of G0. It is equal to a word in the lassos {le,T : e ∈ R+ ∪ B+} where each lasso

of the set {le,T : e ∈ R+} appears exactly twice, possibly sometimes with exponent −1,

and each lasso of the set {le,T : e ∈ B+} appears exactly once, possibly with exponent

−1. If M is oriented, then each lasso of the set {le,T : e ∈ B+} appears with exponent

1.

Proof. — The equation (32) can be rewritten as

lu,π(u) = lutu,uk(u)luk(u),u . . . tu,u1lu1,utu,π(u).

Let us apply this relation to u = ∅. We find

(35) 1 = l∅t∅,k(∅)lk(∅),∅ . . . t∅,1l1,∅t∅,π(∅).
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Let us define, for all integer n ≥ 1 and all vertex u of T̂ such that h(u) ≤ n an element

l̃
(n)
u of RLv(G) by setting

l̃(n)
u =

{
lu if h(u) < n

lu,π(u) if h(u) = n.

Also, for each n, let un1 ≤ . . . ≤ unrn
be the vertices of T̂ of height at most n listed in

the lexicographic order corresponding to the reversed order on N. Then (35) can be

written as

1 = l̃
(1)

u1
1
tu1

1,u
1
2
l̃
(1)

u1
2
. . . tu1

r1−1,u
1
r1
l̃
(1)
u1

r1

t∅,π(∅).

By applying (32) iteratively to the terms of the form lu,π(u) in this equality, one

finds that the equality

1 = l̃
(n)
un
1
tun

1 ,u
n
2
l̃
(n)
un
2
. . . tun

r1−1,u
n
r1
l̃
(n)
un

rn
t∅,π(∅)

holds for all n ≥ 1. Here, tu,u′ has the meaning explained before the statement of

Lemma 2.4.10. For n larger than the height of T̂ , this formula is exactly what we

wanted to prove.

Finally, (tu1,u2tu2,u3 . . . tuf−1,uf
tuf ,∅t∅,π(∅))

−1 is the product of the loops le,T where

e goes around the unique face of the pattern of G0 obtained from M ′ by sewing the

edges of T̂ . The result follows.

We are now ready to prove the main result of this section.

Proof of Proposition 2.4.2. — Let us consider the relation given by Lemma 2.4.10.

Let us define, for all i ∈ {1, . . . , f},
li = (tui,ui+1 . . . tuf−1,uf

tuf ,∅t∅,π(∅))
−1lui

(tui,ui+1 . . . tuf−1,uf
tuf ,∅t∅,π(∅)).

Then the relation (34) becomes

(36) (tu1,u2 . . . tuf−1,uf
tuf ,∅t∅,π(∅))

−1 = l1 . . . lf .

By Corollary 2.4.9, RLv(G) is freely generated by {le,T : e ∈ R+∪B+}∪{l1, . . . , lf−1}
and, under UG

M,∅,C , the variables h(l1), . . . , h(lf−1) are independent, uniformly dis-

tributed and independent of {h(le,T ) : e ∈ R+ ∪B+}.
Let us write B+ = {b1, . . . , bp}. By the last part of Lemma 2.4.10, there exists

p + 1 elements t0, . . . , tp of the subgroup generated by {le,T : e ∈ R+}, p signs

ε1, . . . , εp ∈ {−1, 1}, and a permutation σ ∈ Sp such that

(tu1,u2 . . . tuf−1,uf
tuf ,∅t∅,π(∅))

−1 = t0l
ε1
bσ(1),T

t1 . . . tp−1l
εp

bσ(p),T
tp,

with ε1 = . . . = εp = 1 if M is oriented.

By Lemma 2.4.10 again, the loop t0 . . . tp can be written as a word in {le : e ∈ R+}
where each loop appears exactly twice, possibly sometimes with exponent −1. Let

us name a1, . . . , ag the loops {le : e ∈ R+} and let w denote the element of the free
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group of rank g = #R+ such that w(a1, . . . , ag) = t0 . . . tp. Let us also define, for all

k ∈ {1, . . . , p}, ci = (ti . . . tp)
−1lεi

bσ(i),T
(ti . . . tp). Then the relation (36) becomes

(37) w(a1, . . . , ag)c1 . . . cp = l1 . . . lf .

The first assertion result now from Proposition 2.4.6, Corollary 2.4.9 and the

definition of l1, . . . , lf and c1, . . . , cp.

2. Let us prove the second assertion. By adding vertices to G1, we do not change

the group RLv(G1) nor the distribution of the associated random variables, according

to Lemma 2.3.9. Hence, we may add to G1 the vertices of G2 located on Sk(G1) and,

without loss of generality, assume that E1 ⊂ E2.

For the sake of simplicity, let us treat the case where only one face of G1 contains

the interior of an edge of E2 \ E1. Once the result is proved under this restrictive

assumption, the general result follows by iteration.

Let us assume that only the face F1 contains the interior of some edges of G2.

The choice of the face F1 is a simple matter of convenience, we do not use anything

specific to this face.

Let (M ′,G′
1, ι, f) be a split pattern of (M,G1). Let M ′

F1
be the closure of the

preimage by f of F1. Let G′
2 be the restriction to M ′

F1
of the lift to M ′ of G2. Let

v1 be the finishing point of the spoke of the lasso l1. Let us choose a vertex v′1 of G′
2

which is sent by f on v1.

The first assertion of the proposition that we are proving applied to the graph G′
2

on the disk M ′
F1

, whose reduced genus is 0, provides us with f1 facial lassos l′1, . . . , l
′
f2,1

based at v′1 which bound the faces of G′
2 and such that such that l′1 . . . l

′
f2,1

bounds

M ′
2. By projecting these lassos on M by f and conjugating them by the spoke of l1,

we get lassos based at v which we denote by l1,1, . . . , l1,f2,1 .

Let G1 denote the tame set of generators of RLv(G1) that we are given. Let us

prove that the set G2 of loops obtained by replacing l1 by l1,1, . . . , l1,f2,1 in G1 is a

set which generates RLv(G2). Let c be a loop based at v in G2. Let us split c into

a concatenation of paths which are either paths in G1 or concatenation of edges of

E2 \E1. We get an expression of the form c = c1d1 . . . cndn, where the paths c1, . . . , cn
are in G1 and the paths d1, . . . , dn are concatenations of edges of E2 \ E1. Choose

k ∈ {1, . . . , n} and consider the path dk. It can be lifted in a unique way to a path in

G′
2, which we denote by d′k. Even if dk is a loop, d′k needs not be a loop. However,

there exist two paths a′k and b′k in G′
2 which stay on the boundary of M ′

F1
and such

that a′kd
′
kb

′
k is a loop based at v′1. Let us write ak = f(a′k) and bk = f(b′k), and denote

the spoke of the lasso l1 by s1. Finally, let fk be a path in G1 from dk to v. We have

the equality in RLv(G2)

c = (c1a
−1
1 s−1

1 )[s1a1d1b1s
−1
1 ](s1b

−1
1 f1) . . . (f

−1
n−1cna

−1
n s−1

1 )[s1andnbns
−1
1 ](s1b

−1
n ).
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The loops between brackets are loops of RLv(G1) and the loops between square brack-

ets are the image by f of loops in G′
2, conjugated by the spoke of l1, hence, equal

to words in the loops l1,1, . . . , l1,f2,1 . Hence, the loops of G2 generate RLv(G2). They

satisfy the equation

w(a1, . . . , ag)c1 . . . cp = l1,1 . . . l1,f1 l2 . . . lf1 .

In particular, the set G2\{l1,1} for instance has cardinal g+p+f(G2)−1 and generates

RLv(G2) which is free of rank g + p + f(G2)− 1. Hence, it is a free basis of this group

(see Proposition 2.7 in Chapter 1 of [26]).

There remains to determine the distribution of {h(l) : l ∈ G2} under UG2

M,∅,C .

It follows from the way in which the loops l1,1, . . . , l1,f2,1 were constructed that the

random variables h(l1,1), . . . , h(l1,f2,1−1) are independent, uniformly distributed, and

independent of σ(h(l) : l ∈ G1). Moreover, h(l1) is independent of σ(h(l) : l ∈
G1 \ {l1}). Hence, the three σ-fields

σ(h(l1,1), . . . , h(l1,f2,1−1)), σ(h(l1)), σ(h(l) : l ∈ G1 \ {l1})
are independent. Since h(l1,1), . . . , h(l1,f2,1−1) and h(l1) are uniformly distributed,

and l1,f2,1 = (l1,1 . . . l1,f2,1−1)
−1l1, it follows that h(l1,1), . . . , h(l1,f2,1) are uniformly

distributed and independent of σ(h(l) : l ∈ G2 \ {l1,1, . . . , l1,f2,1}).





CHAPTER 3

MARKOVIAN HOLONOMY FIELDS

In this chapter, which is the core of this work, we define Markovian holonomy fields

and their discrete analogues. We prove in full generality that the partition functions

of a discrete Markovian holonomy field do not depend on the graph in which they are

computed. We then prove the first main result of this work, which asserts that any

discrete Markovian holonomy field which satisfies some regularity conditions can be

extended in a unique way to Markovian holonomy field.

3.1. Definition

Definition 3.1.1. — A measured marked surface with G-constraints is a quadru-

ple (M, vol,C , C) where (M,C ) is a marked surface, vol is a smooth non-vanishing

density on M and C is a set of G-constraints on (M,C ).

Two measured marked surfaces (resp. orientable measured marked surfaces) with

G-constraints (M, vol,C , C) and (M ′, vol′,C ′, C′) are isomorphic if there exists a

diffeomorphism (resp. an orientation preserving diffeomorphism) ψ : M → M ′ such

that ψ∗vol = vol′, ψ sends each curve of C to a curve of C ′ and, for all l ∈ C ,

C′(ψ(l)) = C(l).

From now on, we will make the assumption that G is a compact Lie group, not

necessarily connected. If dimG ≥ 1, we endow G with a bi-invariant Riemannian

metric which we normalize in such a way that the Riemannian volume of G is 1. In

this way, the Riemannian density coincides with the normalized Haar measure on G.

If G is finite, we endow it with the distance dG(x, y) = δx,y and with the uniform

probability measure.

The set Conj(G) of conjugacy classes of G inherits the quotient topology from G

and the corresponding Borel σ-field. The space of G-constraints on a marked surface

(M,C ), which we denote by ConstG(M,C ), is a subset of Conj(G)C∪B(M) and thus

carries the trace topology and σ-field.
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Let us introduce some more notation. Let (M, vol,C , C) be a measured marked

surface with G-constraints. Let l be a curve which belongs to C ∪ B(M). Let x

be an element of G. We define a new set of G-constraints Cl 7→x as follows: we set

Cl 7→x(l) = Ox, Cl 7→x(l
−1) = Ox−1 and Cl 7→x = C on C ∪B(M)− {l, l−1}. The main

definition of this work is the following.

Definition 3.1.2. — A G-valued two-dimensional Markovian holonomy field is

the data, for each quadruplet (M, vol,C , C) consisting of a marked surface endowed

with a density and a set of G-constraints, of a finite measure HFM,vol,C ,C on

(M(P(M), G), I) such that the following properties are satisfied.

A1. For all (M, vol,C , C), HFM,vol,C ,C (∃l ∈ C ∪B(M), h(l) /∈ C(l)) = 0.

A2. For all (M, vol,C ) and all event Γ in the invariant σ-field of M(P(M), G),

the function C 7→ HFM,vol,C ,C(Γ) is a measurable function on the set ConstG(M,C ).

A3. For all (M, vol,C , C) and all l ∈ C ,

HFM,vol,C−{l,l−1},C|B(M)∪C−{l,l−1}
=

∫

G

HFM,vol,C ,Cl 7→x
dx.

A4. Let ψ : (M, vol,C , C) → (M ′, vol′,C ′, C′) be a homeomorphism such that

vol ◦ψ−1 = vol′, ψ(C ) = C ′ and C = C′ ◦ψ. Let l1, . . . , ln be loops based at the same

point on M . Assume that their images l′1, . . . , l
′
n by ψ are also rectifiable loops. Then,

for all continuous function f : Gn → G invariant under the diagonal action of G by

conjugation,
∫

M(P(M),G)

f(h(l1), . . . , h(ln)) HFM,vol,C ,C(dh) =

∫

M(P(M ′),G)

f(h′(l′1), . . . , h
′(l′n)) HFM ′,vol′,C ′,C′(dh′).

In particular, if ψ is a diffeomorphism, then the mapping from M(P(M ′), G)

to M(P(M), G) induced by ψ sends the measure HFM ′,vol′,C ′,C′ to the measure

HFM,vol,C ,C.

A5. For all (M1, vol1,C1, C1) and (M2, vol2,C2, C2), one has the identity

HFM1∪M2,vol1∪vol2,C1∪C2,C1∪C2 = HFM1,vol1,C1,C1 ⊗ HFM2,vol2,C2,C2 .

A6. For all (M, vol,C , C), all l ∈ C and all gluing ψ : Spll(M)→M along l, one

has

HFSpll(M),Spll(vol),Spll(C ),Spll(C) = HFM,vol,C ,C ◦ ψ−1.
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A7. For all (M, vol,∅, C) and for all l ∈ B(M),
∫

G

HFM,vol,∅,Cl 7→x
(1) dx = 1.

A G-valued two-dimensional oriented Markovian holonomy field is the data, for

each quadruplet (M, vol,C , C) consisting of an oriented marked surface endowed with

a density and a set of G-constraints, of a finite measure HFM,vol,C ,C on the measurable

space (M(P(M), G), I) such that the seven properties above are satisfied.

It is important to notice that the measures HF are not probability measures in

general. They are finite measures, whose masses carry a lot of information about the

holonomy field. It is actually possible that they characterize it completely, but this

is a question which has yet to be answered.

Let us discuss briefly the significance of these axioms. The axioms A1, A2 and A3

express the fact that the measure HFM,vol,C ,C , seen as a function of the G-constraints,

provides a regular disintegration of HFM,vol,∅,C|B(M)
with respect to the value of the

holonomy field along the curves of C . The simple expression of A3 is permitted

by the fact that we consider finite measures rather than probability measures. The

axiom A4 expresses the invariance of the field under area-preserving diffeomorphisms.

The axioms A5 and A6 express the Markov property of the field. Finally, A7 is a

normalization axiom. Without it, if HF was a given Markovian holonomy field, then

for any real α, the measures eαvol(M)HFM,vol,C ,C would constitute another Markovian

holonomy field.

Our purpose is not to study Markovian holonomy fields in full generality. In the

rest of this paper, we are going to make strong regularity assumptions and investigate

the corresponding fields.

Recall that dG denotes a bi-invariant distance on G. Let c and c′ be two

paths with the same endpoints. Then, although hc and hc′ are not measur-

able with respect with the invariant σ-field I, unless c and c′ are loops, the

function h 7→ dG(h(c), h(c′)) is I-measurable, because it can also be written as

h 7→ dG(1, h(c)−1h(c′)) = dG(1, h(c′c−1)) and c′c−1 is a loop.

Definition 3.1.3. — Let HF be a G-valued two-dimensional Markovian holonomy

field.

1. We say that HF is stochastically continuous if, for all (M, vol,C , C) and for

all sequence (cn)n≥0 of elements of P(M) which converges with fixed endpoints to

c ∈ P(M), ∫

M(P(M),G)

dG(h(cn), h(c)) HFM,vol,C ,C(dh) −→
n→∞

0.

2. We say that HF is Fellerian if, for all (M, vol,C ), the function

(t, C) 7→ HFM,tvol,C ,C(1)
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defined on R∗
+ × ConstG(M,C ) is continuous.

3. We say that HF is regular if it is both stochastically continuous and Fellerian.

In the definition of stochastic continuity, we use L1 convergence ofG-valued random

variables. Since G is compact, this is equivalent to convergence in probability and to

convergence in Lp for any p ∈ [1,+∞).

From now on, the expression (regular) Markovian holonomy field will stand for

two-dimensional G-valued (regular) Markovian holonomy field.

3.2. Discrete Markovian holonomy fields

It is not easy to construct a Markovian holonomy field. Indeed, one has to construct

a stochastic process indexed by loops. To do this, one must naturally specify the finite-

dimensional marginals of this process. Thus, to each finite collection of loops, one has

to associate a probability measure on some power of G. But unlike points on a time

interval, loops on a surface may form a very complicated picture. In fact, in most

cases, it is impossible to determine a probability measure from a finite set of loops.

A way around this problem is to start by describing a restriction of the process to a

class of loops which are nice enough, like piecewise geodesic loops, and then to extend

the process by continuity. In fact, the very first step is to build a process indexed

by the set of loops in a graph for every graph on a surface. This is what we call a

discrete holonomy field.

Definition 3.2.1. — A G-valued two-dimensional discrete Markovian holonomy

field is the data, for each measured marked surface (M, vol,C , C) with G-constraints,

and each graph G on (M,C ), of a finite measure DFG

M,vol,C ,C on (M(P(G), G), I)
such that the following properties hold.

D1. For all (M, vol,C , C) and all G, DFG

M,vol,C ,C (∃l ∈ C ∪B(M), h(l) /∈ C(l)) =

0.

D2. For all (M, vol,C ), all G and all event Γ in the invariant σ-field of

M(P(G), G), the function C 7→ DFG

M,vol,C ,C(Γ) is a measurable function on

ConstG(M,C ).

D3. For all (M, vol,C , C), all G and all l ∈ C ,

DFG

M,vol,C−{l,l−1},C|B(M)∪C−{l,l−1}
=

∫

G

DFG

M,vol,C ,Cl 7→x
dx.

D4. Consider (M, vol,C , C) and (M ′, vol′,C ′, C′), endowed respectively with G

and G′. Let ψ : M → M ′ be a homeomorphism. Assume that vol ◦ ψ−1 = vol′,

ψ(C ) = C ′, C′ ◦ ψ = C and ψ(G) = G′. Then the mapping from M(P(G′), G) to
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M(P(G), G) induced by ψ satisfies

DFG
′

M ′,vol′,C ′,C′ ◦ ψ−1 = DFG

M,vol,C ,C .

D5. For all (M1, vol1,C1, C1) and (M2, vol2,C2, C2), endowed respectively with two

graphs G1 and G2 one has the identity

DFG1∪G2

M1∪M2,vol1∪vol2,C1∪C2,C1∪C2
= DFG1

M1,vol1,C1,C1
⊗ DFG2

M2,vol2,C2,C2
.

D6. For all (M, vol,C , C), all G, all l ∈ C and all gluing ψ : Spll(M)→M along

l, one has

DF
Spll(G)

Spll(M),Spll(vol),Spll(C ),Spll(C) = DFG

M,vol,C ,C ◦ ψ−1.

D7. For all (M, vol,∅, C), all G and all l ∈ B(M),
∫

G

DFG

M,vol,∅,Cl 7→x
(1) dx = 1.

DI . For all (M, vol,C , C), all G1 and G2 graphs on (M,C ) such that G1 4 G2,

the restriction map r :M(P(G2), G)→M(P(G1), G) satisfies

DFG2

M,vol,C ,C ◦ r−1 = DFG1

M,vol,C ,C .

A G-valued two-dimensional discrete oriented Markovian holonomy field is the

data, for each oriented measured marked surface (M, vol,C , C) with G-constraints

and all graph G on (M,C ), of a finite measure DFG

M,vol,C ,C on (M(P(G), G), I) such

that the properties above are satisfied.

The axiom DI is specific to discrete holonomy fields. It is an axiom of consistency

and is usually called the property of invariance under subdivision.

Lemma 3.2.2. — Any (oriented) Markovian holonomy field determines a discrete

(oriented) Markovian holonomy field.

Proof. — For all surfaceM endowed with a graph G, the set P(G) is a subset of P(M).

Hence, a Markovian holonomy field determines by restriction a discrete Markovian

holonomy field, except perhaps for the axiom DI . In fact, this axiom is satisfied by the

restriction of a Markovian holonomy field because the finite dimensional marginals of

a stochastic process constitute a consistent system of probability measures.

Our main goal in this chapter is to prove a result in the other direction and to

extend, when it is possible, a discrete holonomy field to a continuous one. For the

moment, let us discuss briefly the discrete holonomy fields for themselves. It turns

out that we have already constructed a fundamental example of discrete Markovian

holonomy field.

Proposition 3.2.3. — The family of measures UG

M,C ,C is a discrete Markovian

holonomy field. We call it the uniform G-valued discrete holonomy field.
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Proof. — The measure UG

M,C ,C is a probability measure on the cylinder σ-field of

M(P(G), G). By restriction, it defines a measure on the invariant σ-field. The axiom

D1 is satisfied by Proposition 2.3.6. By Proposition 2.1.8 and the definition of the

measures δO(n), it is possible to write UM,C ,C(Γ) as an expression which is explicitly

measurable with respect to theG-constraints. Hence, the axiom D2 is satisfied. Axiom

D3 is satisfied by (26). That axioms D4, D5 and D7 hold is straightforward. Axiom

D6 is satisfied thanks to Proposition 2.3.8. The invariance property DI holds by

Proposition 2.3.9.

This discrete Markovian holonomy field is very special in that is consists only in

probability measures.

Definition 3.2.4. — Let DF be a collection of finite measures as in Definition 3.2.1,

which does not necessarily satisfy any of the axioms listed in this definition. To each

(M,C , vol, C) and each graph G, we associate the number

ZG

M,vol,C ,C = DFG

M,vol,C ,C(1),

which is called the partition function.

We have said earlier that these numbers carry a lot of information about the field.

A crucial property is that they do not depend on the graph G.

Proposition 3.2.5. — Let DF be a collection of finite measures as in Definition

3.2.1, which satisfies the axioms D4, D5, D6 and DI . Consider (M, vol,C , C) and

two graphs G1 and G2 on (M,C ). Then

(38) ZG1

M,vol,C ,C = ZG2

M,vol,C ,C .

If there exists a graph G3 such that G1 4 G3 and G2 4 G3, then the equality

(38) is a straightforward consequence of the axiom DI . Unfortunately, by Lemma

1.4.6, the set of graphs onM is not directed and such a graph G3 does not always exist.

Proof. — By Proposition 1.1.12, it is possible to split M along each of the curves

of C . Thus, there exists a measured surface (M ′, vol′,∅, C′) with G-constraints and

no marks and a gluing f : M ′ → M whose joint is C . We can lift G1 to a graph

G′
1 on M ′ and the axiom D6 enforces the equality Z

G
′
1

M ′,vol′,∅,C′ = ZG1

M,vol,C ,C . Since

we can do the same for the graph G2, it suffices to prove the result when C = ∅.

Then, the axiom D5 implies that the partition function associated to G1 (resp. G2)

is the product of the partition functions associated to the connected components of

M endowed with the corresponding restrictions of G1 (resp. G2).

Hence, it suffices to prove the result when M is connected and C = ∅. In this

case, the axiom DI implies that we can remove or add edges to G1, in the sense of

Propositions 1.3.15 and 1.3.26, without altering the partition function.
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By Proposition 1.3.36, by such transformations we can go from G1 to a graph which

is sent to G2 by a homeomorphism of M . By D4, this implies the result.

Let DF be a discrete holonomy field. In order to produce a Markovian holonomy

field from DF, the first natural step is to apply Proposition 2.2.2 to put together the

measures which DF associates to a directed subset of the set of graphs on a surface.

For this, we need to consider Riemannian metrics.

Let (M, vol, γ,C ) be a Riemannian marked surface (see Definition 1.4.4). The

axiom DI and Proposition 2.2.3 imply that the collection of the measures DFG

M,vol,C ,C ,

where G spans the set Grγ(M,C ) of graphs with piecewise geodesic edges, determines

a finite measure onM(Aγ(M), G), where Aγ(M) is the set of piecewise geodesic paths

on M .

Definition 3.2.6. — Let DF be a discrete holonomy field. Let (M, vol, γ,C , C) be

a Riemannian measured marked surface with G-constraints. The finite measure on

M(Aγ(M), G) obtained by taking the projective limit of the measures DFG

M,vol,C ,C

where G spans Grγ(M,C ) is denoted by DF
γ
M,vol,C ,C.

At this point, there are two things to do. Firstly, one needs to extend the measure

DF
γ
M,vol,C ,C to M(P(M), G) for all (M, vol,C , C) and secondly, one needs to prove

that the result of this procedure would have been the same with another Riemannian

metric. The first step requires some regularity from the holonomy field.

Definition 3.2.7. — Let DF be a discrete holonomy field. We say that DF is

stochastically 1
2 -Hölder continuous if the following property holds.

Let (M, vol, γ,C , C) be a Riemannian marked surface with G-constraints. Then

there exists a constant K > 0 such that for all graph G on M and all simple loop

l ∈ P(G) with ℓ(l) ≤ K−1 bounding a disk D,
∫

M(P(G),G)

dG(1, h(l)) DFG

M,vol,C ,C(dh) ≤ K
√

vol(D).

Our unique example so far of a discrete holonomy field, the uniform holonomy

field, does unfortunately not satisfy this property. Indeed, it assigns uniform random

variables to arbitrary small simple loops. We will construct other more regular discrete

holonomy fields later.

The second step of the program outlined above requires another regularity condi-

tion, which is more global but less quantitative.

Definition 3.2.8. — Let DF be a discrete holonomy field.

1. We say that DF is continuously area-dependent if the following property holds.

Let (M, vol,C , C) be a marked surface with G-constraints. Let (Gn)n≥0 be a se-

quence of graphs on (M,C ). Let (ψn)n≥0 be a sequence of homeomorphisms of M .

Assume that ψn(G) = Gn for all n ≥ 0 and, for all face F of G, vol(ψn(F )) tends to

vol(F ) as n tends to infinity.
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Then, denoting by ψn the induced map M(P(Gn), G)→M(P(G), G), we have the

weak convergence

DFGn

M,vol,C ,C ◦ ψ−1
n =⇒

n→∞
DFG

M,vol,C ,C .

2. We say that that DF is Fellerian if for all measured marked surface (M, vol,C ),

the mapping which to a set of G-constraints C associates the number ZM,vol,C ,C is

continuous on ConstG(M,C ).

3. We say that DF is regular if it is stochastically 1
2 -Hölder continuous, continu-

ously area-dependent and Fellerian.

It is tempting to conjecture that a stochastically 1
2 -Hölder continuous discrete

Markovian holonomy field is continuously area-dependent. At least, the two properties

are not equivalent, as our unique example so far shows. For the moment, let us state

our main result concerning the construction of Markovian holonomy fields.

Theorem 3.2.9. — Every regular discrete Markovian holonomy field is the restric-

tion of a unique regular Markovian holonomy field.

The proof of this theorem occupies the rest of this chapter.

3.3. An abstract extension theorem

The core of the proof of Theorem 3.2.9 is the next result, which we formulate in a

way which is mostly independent of the context of Markovian holonomy fields.

Theorem 3.3.1. — Let (M,γ) be a compact Riemannian surface. Let vol denote the

Riemannian volume of γ. Let (Γ, d) be a complete metric group on which translations

and inversion are isometries. Let H ∈ M(Aγ(M),Γ) be a multiplicative function.

Assume that there exists K > 0 such that for all simple loop l ∈ Aγ(M) bounding a

disk D and such that ℓ(l) ≤ K−1, the inequality d(1, H(l)) ≤ K
√

vol(D) holds.

Then H admits a unique extension to an element ofM(P(M), G), also denoted by

H, such that if a sequence (cn)n≥0 of paths converges with fixed endpoints to a path

c, then H(cn) −→
n→∞

H(c).

Let us state right now the application of this theorem to the extension of holonomy

fields.

Corollary 3.3.2. — Let DF be a stochastically 1
2 -Hölder continuous discrete

Markovian holonomy field. Let (M, vol, γ,C , C) be a Riemannian marked sur-

face with G-constraints. There exists a unique probability measure DF
(γ)
M,vol,C ,C

on (M(P(M), G), C) whose image by the restriction mapping M(P(M), G) →
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M(Aγ(M), G) is the measure DF
γ
M,vol,C ,C and such that for all sequence (cn)n≥0 of

paths which converges with fixed endpoints to a path c, one has
∫

M(P(M),G)

dG(h(cn), h(c)) DF
(γ)
M,vol,C ,C(dh) −→

n→∞
0.

Proof. — The canonical process (Hc)c∈Aγ(M) on (M(Aγ(G), G), C,DF
γ
M,vol,C ,C) can

be seen as a mapping from Aγ(M) to the set Γ = L1(M(Aγ(M), G), C,DF
γ
M,vol,C ,C ;G).

In general, the set L1(Ω,A,P;G) of G-valued random variables on any probability

space (Ω,A,P) is a group for the multiplication of random variables. The metric

d(H1, H2) = E[dG(H1, H2)] makes it a complete metric space. Both structures are

compatible in that the product and inverse mappings are continuous. Moreover, the

translations and the inversion map are isometries.

The assumption of stochastic Hölder continuity ensures that the regularity condi-

tion is satisfied by the family (Hc)c∈Aγ(M). Hence, we can apply Theorem 3.3.1. It pro-

duces a family of random variables (Hc)c∈P(M) which is multiplicative and continuous

with respect to the convergence of paths with fixed endpoints. Proposition 2.2.3 ap-

plied to this family asserts that there exists a probability measure on (M(P(M), G), C)
under which the canonical process has the distribution of (Hc)c∈P(M).

The uniqueness of the measure DF
(γ)
M,vol,C ,C follows from Proposition 1.2.12 which

asserts that Aγ(M) is dense in P(M) for the convergence with fixed endpoints.

The rest of this section is devoted to the proof of Theorem 3.3.1. A basic tool for

this proof is the lasso decomposition of a piecewise geodesic path (see Proposition

1.4.9).

Proposition 3.3.3. — Under the assumptions of Theorem 3.3.1, there exists a con-

stant K > 0 such that for every loop l ∈ Aγ(M) with ℓ(l) ≤ K−1, d(1, H(l)) ≤ Kℓ(l).

Proof. — Assume first that l is a simple loop. If ℓ(l) is small enough, then l bounds

a disk, which we denote by D. Moreover, a local isoperimetric inequality holds on

M : if ℓ(l) is small enough, say ℓ(l) < L, then
√

vol(D) ≤ K1ℓ(l) for some constant

K > 0. Then, if K denotes the constant given by the assumptions of Theorem 3.3.1,

d(1, H(l)) ≤ K
√

vol(D) ≤ KK1ℓ(l). The result is proved in this case.

Let us now treat the general case. Let us apply Proposition 1.4.9 to find the lasso

decomposition l = l1 . . . lpd of l. By the multiplicativity of H , which is part of the

assumptions of Theorem 3.3.1, H(l) = H(d)H(lp) . . . H(l1). Since the distance d on

Γ is invariant by left translations and inversion, we have

∀x, y ∈ Γ, d(1, xy) = d(x−1, y) ≤ d(1, x−1) + d(1, y) = d(1, x) + d(1, y).

Hence, d(1, H(l)) ≤ d(1, H(d))+
∑p
i=1 d(1, H(li)) ≤ Kℓ(d)+K

∑p
i=1 ℓ(li). By Propo-

sition 1.4.9, ℓ(d) +
∑p
i=1 ℓ(li) ≤ ℓ(l) and the result follows.
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This result tells us that if l is a simple piecewise geodesic loop close to the constant

loop, then H(l) is close to the image by H of the constant loop. Our next generalizes

this statement to the case of a piecewise geodesic path which is close to a geodesic

segment.

Proposition 3.3.4. — Under the assumptions of Theorem 3.3.1, there exists a con-

stant K > 0 such that the following property holds. Let s ∈ Aγ(M) be a segment of

minimizing geodesic. Let c be a piecewise geodesic path with the same endpoints as s.

Assume that ℓ(c) ≤ K−1. Then

d(H(c), H(s)) ≤ Kℓ(c) 3
4 |ℓ(c)− ℓ(s)| 14 .

The assumptions imply that s is shorter than c. If we take ℓ(s) = 0, then c is a

loop and we recover the estimate of Proposition 3.3.3.

In order to prove this proposition, we use a decomposition result similar to the

lasso decomposition and the following isoperimetric inequality. Needless to say, the

constant π
3
√

2
which appears in this Euclidean case is not optimal.

Lemma 3.3.5. — Let R, r ≥ 0 be real numbers. Let J be a rectifiable Jordan curve

of length 2R+ r in the Euclidean plane such that a piece of this curve is a segment of

length R. Then the area A of the bounded component of R2 \J satisfies the inequality

A ≤ π

3
√

2
r

1
2 (R + r)

3
2 .

Let M be a compact Riemannian surface. There exists a constant K > 0 such that

the following property holds. Let J be a rectifiable Jordan curve of length 2R+r < K−1

such that a piece of this curve is a segment of minimizing geodesic of length R. Then

the area A of the smallest disk bounded by J satisfies the inequality

A ≤ Kr 1
2 (R+ r)

3
2 .

R

α

ρ

R + r

R

R + rR + r

ρ

R

α

Figure 1. The generic case and two optimal cases.
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Proof. — The Riemannian case can easily be deduced from the Euclidean case by

working in normal coordinates at one end point of the geodesic part of J . The

compactness of M ensures that the resulting distortions of lengths and areas are

bounded.

Let us consider the Euclidean case. Under the constraints on J , A is maximal

when J is the concatenation of a segment of length R and an arc of circle of length

R + r. In this case, let ρ be the radius of this circle and α ∈ [0, 2π) the angle under

which the arc of circle is seen from the centre of the circle. Then R + r = ρα and

R = 2ρ sin α
2 . Now one has the relations

A =
ρ2

2
(α− sinα) ≤ ρ2α3

12
=

α

12
(R+ r)2,(39)

sin α
2

α
2

=
R

R+ r
.(40)

One checks easily that for all x ∈ [0, π], sin x
x ≤ 1− x2

π2 . Hence, (40) implies α ≤ 2π
√

r
R ,

and since α ∈ [0, 2π), we have α ≤ 2π
(√

r
R ∧ 1

)
. Combining this with (39), we find

A ≤ π

6
(R + r)

3
2
√
r

(√
1 +

r

R
∧
√

1 +
R

r

)
≤ π

3
√

2
r

1
2 (R+ r)

3
2 .

This is the expected result.

The generalization of the lasso decomposition that we need is the following.

Proposition 3.3.6. — Let M be a Riemannian compact surface. Let s be a geodesic

segment on M and c an injective piecewise geodesic path with the same endpoints as s.

It is possible to decompose c and s as concatenations c = c1 . . . cp and s = s1 . . . sp in

such a way that, for each k = 1, . . . , p, ck = sk or cks
−1
k is a simple loop. In particular,

if we set lk = (c1 . . . ck−1)cks
−1
k (c1 . . . ck−1)

−1, then lk is a lasso and cs−1 ≃ l1 . . . lp.

Proof. — Consider the set c([0, 1]) ∩ s([0, 1]). It is a reunion of isolated points and

closed subintervals of s([0, 1]). Let V be the reunion of these isolated points and

the end points of these intervals. The set V contains the two end points of s. Set

n = #V −1. Then V dissects both c and s into n edges: c = e1 . . . en and s = f1 . . . fn.

For each i ∈ {1, . . . , n}, define j(i) by the relation ei = fj(i). Since c is injective,

the mapping j from {1, . . . , n} to itself is one-to-one. Hence, it is a permutation. We

look for the records in the sequence j(1), j(2), . . . , j(n). Define I = {i, 1 ≤ i ≤ n :

j(i) = max(j(1), . . . , j(i))} and write I = {i1 ≤ . . . ≤ ip}. Set J = j(I) = {j(i1) ≤
. . . ≤ j(ip)}. Observe that ip = n = j(ip). Set i0 = j(i0) = 0. For each k = 1, . . . , p,

set ck = eik−1+1 . . . eik and sk = fj(ik−1)+1 . . . fj(ik). By construction, c = c1 . . . cp
and s = s1 . . . sp.

Choose k ∈ {1, . . . , p} and consider ck = eik−1+1 . . . eik . Assume first that ik =

ik−1 + 1. Then ck = eik . Either this edge is contained in s, in which case ck = eik =

fj(ik) = sk, or it meets s only at its endpoints, which are also those of sk. In this
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case, cks
−1
k is a simple loop. Assume now that ik ≥ ik−1 + 2. We claim that any

point of ck other than one of its end points which is located on s is in fact located on

one of the edges f1, . . . , fj(ik−1). Indeed, if this was not the case, there would exist

l ∈ {ik−1 + 1, . . . , ik − 1} 6= ∅ such that el is located on s between eik and s. But

then we would have j(l) > j(ik) which contradicts the definition of ik. Hence, in this

case, cks
−1
k is a simple loop.

We are now ready to prove Proposition 3.3.4.

Proof of Proposition 3.3.4. — Assume that c and s are shorter than the bound K−1

of Proposition 3.3.3. Let LE(c) be the loop-erasure of c. By the properties of the

lasso decomposition of c (Proposition 1.4.9) and Proposition 3.3.3,

d(H(c), H(LE(c))) ≤ K(ℓ(c)− d(c(0), c(1))) = K|ℓ(c)− ℓ(s)|.

Now we are reduced to consider c′ = LE(c) which is an injective path. Let c′ = c′1 . . . c
′
p

and s = s1 . . . sp be the decomposition given by Proposition 3.3.6. We have

d(H(c′), H(s)) ≤
p∑

i=1

d(1, H(c′is
−1
i )) ≤ K

p∑

i=1

√
Ai,

where Ai is the area enclosed by c′is
−1
i . By Lemma 3.3.5 and since ℓ(s) ≤ ℓ(c′) ≤ ℓ(c),

Ai ≤ Kℓ(ci)
3
2 |ℓ(ci)− ℓ(si)|

1
2 .

By Hölder inequality, it follows that

d(H(c′), H(s)) ≤ Kℓ(c) 3
4 |ℓ(c)− ℓ(s)| 14 .

Hence,

d(H(c), H(s)) ≤ K
(
|ℓ(c)− ℓ(s)|+ ℓ(c)

3
4 |ℓ(c)− ℓ(s)| 14

)

≤ 2Kℓ(c)
3
4 (ℓ(c)− ℓ(s)) 1

4 .

The estimate given by Proposition 3.3.4 will allow us to associate an element of

Γ to every element of P(M). Recall the definition of the dyadic piecewise geodesic

approximation of a path (Definition 1.2.11). For a given path c, Dn(c) is in general

only defined for n larger than a certain integer n0(c). Nevertheless, by Proposition

1.2.12, the sequence (Dn(c))n≥n0(c) converges to c in 1-variation.

Proposition 3.3.7. — Let c ∈ P(M). Under the assumptions of Theorem 3.3.1, the

sequence (H(Dn(c)))n≥n0(c) is a Cauchy sequence in Γ.
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Proof. — Let K be the constant given by Proposition 3.3.4. Let n1(c) be an in-

teger such that 2−n1(c)ℓ(c) < K−1. Choose m ≥ n ≥ max(n0(c), n1(c)). Write

Dn(c) = σ0 . . . σ2n−1 according to the notation of Definition 1.2.11. Write also

Dm(c) = η0 . . . η2n−1, where for each k ∈ {0, . . . , 2n−1}, ηk = Dm−n(c|[k2−n,(k+1)2−n]).

By Proposition 3.3.4, for all k ∈ {0, . . . , 2n − 1}, d(H(ηk), H(σk)) ≤ Kℓ(ηk)
3
4 |ℓ(ηk)−

ℓ(σk)| 14 . Hence, by Hölder inequality, and since ℓ(Dn)(c) ≤ ℓ(Dm(c)) ≤ ℓ(c),
d(H(Dn(c)), H(Dm(c))) ≤ Kℓ(c) 3

4 |ℓ(c)− ℓ(Dn(c))|
1
4 .

The result follows now from the fact that ℓ(Dn(c)) converges to ℓ(c).

By Proposition 3.3.7 and the assumption that (Γ, d) is complete, it is now legitimate

to set the following definition.

Definition 3.3.8. — For each c ∈ P(M)− Aγ(M), we define H(c) by

H(c) = lim
n→∞

H(Dn(c)).

Proposition 3.3.9. — The mapping H : P(M) −→ Γ thus defined is continuous at

fixed endpoints.

Notice that we have not proved yet that H is continuous even on Aγ(M).

Proof. — Take c ∈ P(M) and consider a sequence (cn)n≥0 in Aγ(M) converging to

c with fixed endpoints. We claim that H(cn) converges to H(c). An elementary

argument shows that this implies the continuity of H with fixed endpoints on P(M).

Choose ε > 0. Choose an integer m ≥ 0 such that d(H(Dm(c)), H(c)) < ε
2 . Such

an integer exists by definition of H(c). Now for each n ≥ 0 and each k ∈ {0, . . . , 2m},
let ηn,k be the geodesic segment joining cn(k2

−m) to c(k2−m). If k 6= 2m, let us also

denote by cn,k the portion of cn parametrized by the interval [k2−m, (k + 1)2−m].

Observe that ηn,0 and ηn,2m are constant paths. The simple equivalence

cn = cn,0 . . . cn,2m ≃ (η−1
n,0cn,0ηn,1) . . . (η

−1
n,kcn,kηn,k+1) . . . (ηn,2m−1cn,2m−1ηn,2m)

implies the following inequality:

d(H(cn), H(Dm(c))) ≤
2m−1∑

k=0

d(H(η−1
n,kcn,kηn,k), H(σk)),

where Dm(c) = σ0 . . . σ2m−1 is the decomposition given by the definition of Dm(c).

The path η−1
n,kcn,kηn,k is piecewise geodesic and shares the same endpoints as the

segment σk. Hence we can apply Proposition 3.3.4 to find

d(H(η−1
n,kcn,kηn,k), H(σk)) ≤K(ℓ(cn,k) + 2d∞(cn, c))

3
4 (ℓ(cn,k)− ℓ(σk) + 2d∞(cn, c))

1
4 .

By Hölder inequality again,

d(H(cn), H(Dm(c))) ≤ K
(
ℓ(cn) + 2m+1d∞(cn, c)

) 3
4
(
ℓ(cn)− ℓ(c) + 2m+1d∞(cn, c)

) 1
4 .
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Since ℓ(cn) converges to ℓ(c) and d∞(cn, c) tends to 0, the right hand side tends to

zero as n tends to infinity. For n large enough, it is smaller than ε
2 . For such n,

d(H(cn), H(c)) < ε.

Remark 3.3.10. — The factors 2m+1 in the last expression are very unpleasant,

because they give the feeling that H is not uniformly continuous on P(M). In fact,

the last proof reveals that, on P(M) endowed with the distance dℓ, H is uniformly

continuous on subsets where ℓ ◦Dn converges uniformly to ℓ. It is likely that a much

better result can be achieved by considering the stronger distance d1 on P(M). Ideally,

one could expect H to be 1
4 -Hölder continuous on (P(M), d1). I have not been able to

prove or disprove this statement.

3.4. Extension of discrete holonomy fields

Let (M, vol, γ,C , C) be a Riemannian marked surface with G-constraints. Starting

from a discrete Markovian holonomy field DF satisfying a regularity condition, we have

constructed a measure DF
X,(γ)
M,vol,C ,C on (M(P(M), G), C) (see Corollary 3.3.2). The

construction of this measure involves a Riemannian metric and we must now prove

that the result is independent of this choice. We start by identifying the distribution

of (Hc)c∈P(G) under DF
X,(γ)
M,vol,C ,C for an arbitrary graph G.

Proposition 3.4.1. — Let DF be a stochastically 1
2 -Hölder continuous and contin-

uously area-dependent discrete Markovian holonomy field. Let (M, vol, γ,C , C) be a

Riemannian marked surface with G-constraints. Let G = (V,E,F) be a graph on

(M,C ). Recall the notation DF
(γ)
M,vol,C ,C from Corollary 3.3.2.

1. The distribution of (He)e∈E under DF
(γ)
M,vol,C ,C is DFG

M,vol,C ,C .

2. The measure DF
(γ)
M,vol,C ,C does not depend on the Riemannian metric γ. We de-

note it by DFM,vol,C ,C .

3. The distribution of (He)e∈E under DFM,vol,C ,C is DFG

M,vol,C ,C .

Proof. — 1. For each n ≥ 1, let Gn be the graph produced by Proposition 1.4.10 with

ε = n−1. Let Sn : E −→ En denote the corresponding bijection. By the stochastic

continuity of the process (Hc)c∈P(M) under DF
(γ)
M,vol,C ,C , which follows from Theorem

3.3.1, the distribution of (He)e∈E is the limit of the distributions of the families

(HSn(e))e∈E as n tends to infinity.

Since Sn preserves the cyclic order at each vertex of G, there exists for each n a

homeomorphism of M which preserves C and which sends G on Gn and which induces

the bijection Sn. Let ψn be such a homeomorphism. Since for each face F of G, the

boundary of ψn(F ) is ψn(∂F ) = Sn(∂F ) = ∂Sn(F ), the face ψn(F ) is Sn(F ).

Moreover, the distribution of the family (HSn(e))e∈E under DF
(γ)
M,vol,C ,C is the distri-

bution of the same family under DFGn

M,vol,C ,C , hence the distribution of (He)e∈E under
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DFGn

M,vol,C ,C ◦ ψ−1
n , where ψn denotes the map induced by ψn from M(P(Gn), G) to

M(P(G), G).

By the fourth assertion of Proposition 1.4.10, vol(ψn(F )) tends to vol(F ) as n

tends to infinity for all F ∈ F. Hence, the assumption that DF is continuously area-

dependent implies that the distribution of the family (HSn(e))e∈E under DF
(γ)
M,vol,C ,C

converges weakly to DFG

M,vol,C ,C as n tends to infinity.

2. Let γ and γ′ be two Riemannian metrics on (M, vol,C ). By Lemma 1.4.8 and the

property that we have just proved, the distributions of (Hc)c∈Aγ(M) under DF
X,(γ)
M,vol,C ,C

and DF
X,(γ′)
M,vol,C ,C agree. Since Aγ(M) is dense in P(M) for the convergence with fixed

endpoints (see Proposition 1.2.12), the continuity property granted by Theorem 3.3.1

implies that DF
X,(γ)
M,vol,C ,C = DF

X,(γ′)
M,vol,C ,C .

3. This property follows immediately from the first two.

We can now finish the proof of the main theorem of this section.

Proof of Theorem 3.2.9. — Let DF be a regular discrete Markovian holonomy

field. By applying Corollary 3.3.2 and Proposition 3.4.1, we get for all measured

marked surface with G-constraints (M, vol,C , C) a finite measure DFM,vol,C ,C on

(M(P(M), G), C) which by restriction produces a measure on the invariant σ-field.

The total mass of the measure DFM,vol,C ,C is the common value of the masses of

the measures DFG

M,vol,C ,C for all graph G on (M,C ), which we have denoted by

ZM,vol,C ,C . In particular, this mass is finite.

Now, we check that the seven axioms of Definition 3.1.2 are satisfied. We choose

a measured marked surface with G-constraints (M, vol,C , C). We endow (M,C , C)

with a Riemannian metric γ and use without further comment the fact, granted by

Proposition 3.4.1, that DFM,vol,C ,C = DF
(γ)
M,vol,C ,C .

A1. Let N denote the event {∃l ∈ C ∪B(M), h(l) /∈ C(l)}. Let G be a graph on

(M,C ). By Proposition 3.4.1 and the axiom D1 for DF,

DFM,vol,C ,C(N ) = DFG

M,vol,C ,C(N ) = 0.

A2. The set of bounded measurable functions from (M(P(M), G), I) to R whose

integral against DFM,vol,C ,C depends measurably of the G-constraints C is a vec-

tor space which contains the constant functions and is stable by uniformly bounded

monotone limit. Thus, by a monotone class argument, and by definition of the in-

variant σ-field I, in order to show that this space contains all bounded functions

measurable with respect to I, it suffices to show that it contains all functions of the

form h 7→ f(h(l1), . . . , h(ln)) where l1, . . . , ln are loops based at the same point and

f : Gn → G is continuous and invariant under the diagonal action ofG by conjugation.
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Let us choose l1, . . . , ln and f as above. For each i ∈ {1, . . . , n} and all m ≥ 1

large enough, let Dm(li) denote the dyadic piecewise geodesic approximation of li
of order m. Let us define a function F and a sequence of functions Fm on the set

ConstG(M,C ) of G-constraints on (M,C ) as follows :

F (C) =

∫

M(P(M),G)

f(h(l1), . . . , h(ln)) DFM,vol,C ,C(dh)

and, for all m ≥ 1,

Fm(C) =

∫

M(P(M),G)

f(h(Dm(l1)), . . . , h(Dm(ln))) DFM,vol,C ,C(dh).

Our goal is to prove that the function F is measurable. For all C ∈ ConstG(M,C ),

the fact that Dm(li) converges to li with fixed endpoints implies, according to the

conclusion of Theorem 3.3.1, that HDm(li) converges in probability to Hli , so that

Fm(C) tends to F (C) as m tends to infinity. Hence, it suffices to prove that Fm is

measurable for m large enough. In fact we claim that Fm is continuous as soon as

it is defined. Indeed, for each m, Fm(C) can be computed in a piecewise geodesic

graph. There, the dependence in C can be made explicit and all functions in the

integrand are continuous. The result follows.

A3. Just as in the last point, it suffices to check the equality when it integrates a

function of the form h 7→ f(h(l1), . . . , h(ln)), where l1, . . . , ln are piecewise geodesic

and f is invariant by diagonal conjugation. Hence, it suffices to prove the equality

for DFG

M,vol,C ,C for any graph G with piecewise geodesic edges. In this last case, the

property follows from the axiom D3 satisfied by DF.

A4. The metric γ′ = (ψ−1)∗γ is a Riemannian metric on (M ′, vol′,C ′) in the sense

of Proposition 1.4.3. We need to prove that the image measure of DF
(γ)
M,vol,C ,C by the

mapping induced by ψ is DF
(γ′)
M ′,vol′,C ′,C′ . Again, we may restrict ourselves to functions

of the form h 7→ f(h(l1), . . . , h(ln)), where l1, . . . , ln are piecewise geodesic, hence to

the discrete measures associated to graphs with piecewise geodesic edges. Let G be

a graph on (M,C ) with piecewise geodesic edges. Then G′, the graph constituted by

the images by ψ of the edges of G, is a graph on (M ′,C ′) with piecewise geodesic

edges and, by the axiom D4 for DF, the distribution of (He)e∈E under DFG

M,vol,C ,C is

the same as the distribution of (He′)e′∈E′ under DFG
′

M ′,vol′,C ′,C′ . The property follows.

A5, A6 and A7 follow respectively from the axiom D5, D6 and D7 satisfied by DF

and the same approximation argument as in the previous points.
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The fact that the new Markovian holonomy field DF is stochastically continuous is

a part of the conclusion of Theorem 3.3.1. Finally, the Feller property follows from

the Feller property of DF.





CHAPTER 4

LÉVY PROCESSES AND MARKOVIAN HOLONOMY

FIELDS

In this chapter, we apply the extension theorem proved in the previous chapter to

construct a whole family of Markovian holonomy fields. Before that, we study the

partition functions of an arbitrary regular Markovian holonomy field and prove that

they are completely determined by a Lévy process on the group G with some nice

properties, essentially a continuous density. We then construct a Markovian holonomy

field for each such Lévy process. The case of the Brownian motion on a connected

Lie group yields the Yang-Mills measure.

4.1. The partition functions of a Markovian holonomy field

In this section, we establish some fundamental properties satisfied by the masses

of the finite measures which constitute a Markovian holonomy field.

To start with, we describe the isomorphism classes of connected surfaces with G-

constraints on the boundary. If M is oriented, we denote by B+(M) the subset of

B(M) which consists in the curves which have the orientation induced by that of M .

Proposition 4.1.1. — Let (M, vol,∅, C) and (M ′, vol′,∅, C′) be two connected

measured marked surfaces with G-constraints. If M and M ′ are orientable, we

assume that they are oriented. They are isomorphic if and only if the following

conditions hold simultaneously.

1. M and M ′ are homeomorphic.

2. vol(M) = vol′(M ′).

3. If M and M ′ are oriented, there exists a bijection ψ : B+(M) → B+(M ′) such

that C = C′ ◦ ψ on B+(M).

3’. If M and M ′ are non-orientable, there exists a Z/2Z-equivariant bijection

ψ : B(M)→ B(M ′) such that C = C′ ◦ ψ.

We use this result to associate to every Markovian holonomy field a family of

functions of one or several variables in Conj(G).
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Let HF be a Markovian holonomy field. Let g and p be two non-negative integers,

with g even. Let t be a positive real number. Recall the notation of Section 1.1.

Let M be a surface homeomorphic to Σ+
p,g, endowed with a density vol of total area

t. Let b1, . . . , bp denote the positively oriented connected components of ∂M . Let

x1, . . . , xp be p elements of G. Let C be the unique set of G-constraints on (M,∅)

such that, for all i ∈ {1, . . . , p}, C(bi) = Oxi
. By Proposition 4.1.1 and the axiom

A4, the number HF(M,vol,∅,C)(1) depends on M , vol and C only through g, p, t, the

unordered list Ox1 , . . . ,Oxp
and the fact that M is orientable. Hence, it is legitimate

to set

Z+
p,g,t(x1, . . . , xp) = HF(M,vol,∅,C)(1).

This defines a symmetric function Z+
p,g,t of p conjugacy classes of G. If the Markovian

field is Fellerian, then this function is continuous with respect to (t, x1, . . . , xp). If

p = 0, Z+
0,g,t is just a number, namely the total mass of the measure HF(M,vol,∅,∅)

where M is the connected sum of g tori endowed with a density of total area t.

Similarly, let g and p be two integers, respectively positive and non-negative. Let

M be a surface homeomorphic to Σ−
p,g, endowed with a density vol of total area

t. Let b1, . . . , bp denote the disjoint connected components of ∂M endowed with an

arbitrary orientation. Let x1, . . . , xp be p elements of G. Let C be the unique set of

G-constraints on (M,∅) such that, for all i ∈ {1, . . . , p}, C(bi) = Oxi
. When HF is

not oriented, we define

Z−
p,g,t(x1, . . . , xp) = HF(M,vol,∅,C)(1).

Again, if p = 0, Z−
0,g,t is just the total mass of the measure HF(M,vol,∅,∅) where M is

the connected sum of g projective planes endowed with a density of total area t.

Definition 4.1.2. — Let HF be a Markovian holonomy field. The functions

Zεp,g,t : Gp → R
∗
+,

where (ε, p, g, t) spans ({+} × N × 2N × R∗
+) ∪ ({−} × N × N∗ × R∗

+), are called the

partition functions of the field HF.

In the rest of this section, we fix a Markovian holonomy field HF and study its

partition functions. They are infinitely many but the Markov property of the field

implies that they satisfy an infinite set of relations and that they are in fact completely

determined by a small number of them.

Let us introduce several operations on functions of conjugacy classes of G. Firstly,

we identify functions of a conjugacy class of G and functions on G which are constant

on the conjugacy classes. Thus, we may speak of continuous or integrable functions

of a conjugacy class. This point of view is consistent with our previous definition of a

topology and σ-field on Conj(G) (see Section 3.1). Of particular interest is the space

of square-integrable functions of one conjugacy class of G, which we identify with the

space L2(G)G of conjugation-invariant square-integrable functions on G. If p ≥ 1 is an
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integer, we identify the elements of the p-th symmetric tensor power Symp
(
L2(G)G

)

with symmetric functions of p conjugacy classes. We use the shorthand notation

Sp(G) for Symp
(
L2(G)G

)
.

Definition 4.1.3. — For all integers p, q, r ≥ 1 and s ≥ 2, the three linear mappings

υ : Sr(G)→ Sr−1(G) , β1 : Ss(G)→ Ss−2(G) and β2 : Sp(G)⊗ Sq(G)→ Sp−1(G)⊗
Sq−1(G) are defined by

∀f ∈ Sr(G), (υf)(x1, . . . , xr−1) =

∫

G

f(x1, . . . , xr−1, x
2) dx,(41)

∀f ∈ Ss(G), (β1f)(x1, . . . , xs−2) =

∫

G

f(x1, . . . , xs−2, x, x
−1) dx,(42)

and, for all f ∈ Sp(G) and all f ′ ∈ Sq(G),

(43)

(β2(f⊗f ′))(x1, . . . , xp−1, y1, . . . , yp−1) =

∫

G

f(x1, . . . , xp−1, z)f
′(y1, . . . , yq−1, z

−1) dz.

We will now use these linear mappings to formulate the relations between the par-

tition functions of the holonomy field. The operation υ expresses the transformation

of the partition function under a unary gluing, and the contractions β1 and β2 corre-

spond to binary gluings, respectively of two boundary components which lie on the

same connected component of the surface and two boundary components which lie

on two distinct connected components.

Recall that we use the notation ε∧ ε′ for ε, ε′ ∈ {−,+} with the following meaning

: ε ∧ ε′ = + if ε = ε′ = + and ε ∧ ε′ = − in all other cases.

Proposition 4.1.4. — Let (Z±
p,g,t)p,g≥0,t>0 be the partition functions of a Markovian

holonomy field HF.

1. For all (ε, g) ∈ ({+} × 2N)∪ ({−}×N∗), all integers p ≥ q ≥ 1 and all real t > 0,

the function Zεp,g,t is square-integrable with respect to any q of its variables for any

value of the p− q other.

2. The following equality holds:

(44) υ(Zεp,g,t) = Z−
p−1,g+1,t.

Moreover, if p ≥ 2, then

(45) β1(Z
ε
p,g,t) = Zεp−2,g+2,t.

Finally, for all (ε′, g′) ∈ ({+} × 2N) ∪ ({−} × N∗), all p′ ≥ 1 and all real t′ > 0, the

following equality holds:

(46) β2(Z
ε
p,g,t ⊗ Zε

′

p′,g′,t′) = Zε∧ε
′

p+p′−2,g+g′,t+t′ .

Proof. — Let us start by proving the second assertion. Choose ε, p, g, t as above. It

follows from the axiom A2 that Zεp,g,t : Gp → R∗
+ is a measurable function. Since it
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takes non-negative values, the integral which defines υ(Zεp,g,t) is well defined, possibly

infinite. Let us prove that the identity (44) holds.

Let M be a surface homeomorphic to Σεp,g, endowed with a surface measure vol

of total area t. Consider b ∈ B(M) and let f : M → M1 be a unary gluing along

b, with joint {l, l−1} = {f(b), f(b−1)}. Thus, M = Spll(M1). The surface M1 is not

orientable and it has p−1 boundary components. According to the observation made

after Definition 1.1.10, it is homeomorphic to the connected sum of a projective plane

and the surface obtained by gluing a disk along one boundary component of M . Thus,

it is homeomorphic to Σ−
p−1,g+1. Finally, vol induces on M1 a surface measure vol1

with total area t.

Let C be a set of G-constraints on (M, {l, l−1}). Applying axioms A3 and then A6

gives us the relation

HFM1,vol1,∅,C(1) =

∫

G

HFM1,vol1,{l,l−1},Cl 7→x
(1) dx

=

∫

G

HFM,vol,∅,Spll(Cl 7→x)(1) dx.

Recall from Definition 2.3.2 that, since we are considering a unary gluing,

Spll(Cl 7→x) puts the constraint Ox2 on b ∈ B(M). Translating the last relation in

terms of the partition functions gives (44).

The proofs of the relations (45) and (46) are very similar. For the relation (45),

one considers a binary gluing in which one identifies two boundary components of

a connected surface. If the surface is orientable, the two boundary components are

identified by an orientation-reversing diffeomorphism. The result of this gluing can

be described as the connected sum of a torus and the surface obtained by gluing

two disks along two boundary components of the original surface. Thus, it has two

boundary components less, and reduced genus increased by 2. For the relation (46),

one considers a binary gluing in which one identifies two boundary components located

on two distinct connected components of a surface. Proposition 1.1.4 settles the issue

of orientation and reduced genus of the resulting surface.

The assertion of square-integrability follows from (45) and (46) as we shall see

now. Firstly, observe that Theorem 1.1.7 and the axiom A4 imply that the value of

a partition function is not affected by simultaneously replacing each argument by its

inverse. Now, for all xq+1, . . . , xp ∈ G,

∫

Gq

Zεp,g,t(x1, . . . , xp)
2 dx1 . . . dxq

=

∫

Gq

Zεp,g,t(x1, . . . , xp)Z
ε
p,g,t(x

−1
1 , . . . , x−1

p ) dx1 . . . dxq

= (βq−1
1 ◦ β2)(Z

ε
p,g,t ⊗ Zεp,g,t)(xq+1, x

−1
q+1, . . . , xp, x

−1
p )

= Zε2(p−q),2(g+q−1),2t(xq+1, x
−1
q+1, . . . , xp, x

−1
p ).
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The last number is indeed finite and the assertion is proved.

Corollary 4.1.5. — The partition functions of a Markovian holonomy field are com-

pletely determined by the functions (Z+
1,0,t)t>0 and (Z+

3,0,t)t>0.

Proof. — For all non-negative p and g, such that g is even and p+g > 0, the following

identity holds:

(47) Z+
p,g,t = (β

g
2
1 ◦ βp+g−1

2 )
(
Z+

1,0, t
p+g

⊗ Z+
3,0, t

p+g

⊗(p+g−1)
)
.

Then, the equalities

(48) ∀p, g ≥ 0 , Z−
p,2g+1,t = υ(Z+

p+1,2g,t) and Z−
p,2g+2,t = υ2(Z+

p+2,2g,t)

determine all non-orientable partition functions. Finally, the equality

Z+
0,0,t = β2(Z

+
1,0, t

2

⊗ Z+
1,0, t

2

)

determines the only remaining partition function.

An important consequence of Proposition 4.1.4 is that for all ε, p, g, t, the function

Zεp,g,t is the density with respect to the Haar measure of a measure on Gp. By the

axiom A7, it is a probability measure. In the next proposition, we start to study the

behaviour of these probability measures as t tends to 0, under the assumption that

the holonomy field is stochastically continuous. Recall that we denote by 1 the unit

element of G and that we use the notation δOx
for the unique G-invariant probability

measure on Ox.

Proposition 4.1.6. — Let (Z±
p,g,t)p,g,t be the partition functions of a stochastically

continuous Markovian holonomy field. Then, as t tends to 0, one has the following

weak convergences of measures on G.

1. Z+
1,0,t(x) dx =⇒

t→0
δ1.

2. ∀x, y ∈ G,Z+
3,0,t(x, y, z

−1) dz =⇒
t→0

δOx
∗ δOy

=
∫
G2 δvxv−1wyw−1 dvdw.

Proof. — 1. Let M be the disk of radius 1 centred at the origin in R2 endowed with

the Lebesgue measure, which we denote by vol. We denote by ∂M the positively

oriented boundary of M . For each r ∈ [0, 1], let sr be the path which goes straight

from the origin to the point (r, 0) and let cr be the loop based at (r, 0) which goes once

counterclockwise around the circle of radius r centred at the origin. For all y ∈ G, we

denote by (hc)c∈P(M) the canonical process onM(P(M), G), we consider the measure

HFM,vol,∅,∂M 7→y onM(P(M), G) and we denote by Ey the corresponding expectation.

Let f be a continuous invariant function on G. We compute Ey[f(hsrcrs
−1
r

)]. By the

multiplicativity property of h, it is equal to Ey[f(h−1
sr
hcr

hsr
)] = Ey[f(hcr

)]. By the

axiom A3, we can disintegrate this expectation with respect to the value of h(cr). We
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find

Ey [f(hcr
)] =

∫

G×M(P(M),G)

f(h(cr))HFM,vol,{cr,c
−1
r },(∂M 7→y,cr 7→x)(dh)dx

=

∫

G

f(x)HFM,vol,{cr,c
−1
r },(∂M 7→y,cr 7→x)(1)dx.

We use now the axioms A6 and A5 to split M along cr and we find

Ey[f(hcr
)] =

∫

G

Z+
1,0,πr2(x)f(x)Z+

2,0,π(1−r2)(x
−1, y) dx.

By integrating over y and using the axiom A7, we find

(49)

∫

G

Ey[f(hcr
)] dy =

∫

G

Z+
1,0,πr2(x)f(x).

Our goal is now to prove that the left-hand side tends to f(1) as r tends to 0. For

this, we use the stochastic continuity of the holonomy field. Indeed, as r tends to 0,

the loop srcrs
−1
r converges with fixed endpoints to the constant loop c0 at the origin.

Hence, for all y ∈ G, Ey[f(hcr
)]→ Ey[f(hc0)] as r tends to 0. By the multiplicativity

of h and the fact that c0 = c0c
−1
0 , the mapping hc0 : P(M) → G is identically equal

to 1. Hence, Ey [f(hcr
)] −→
r→0

f(1)Z+
1,0,π(y). In order to integrate this convergence with

respect to y, we use the fact that

|Ey [f(hcr
)]| ≤‖ f ‖∞ Z+

1,0,π(y)

and the right-hand side is continuous, hence integrable, with respect to y. Hence, the

dominated convergence theorem applies and we deduce that the left-hand side of (49)

tends to f(1) as r tends to 0.

2. Let M be the closed disk of radius 4 centred at the origin in R2 from which

one has removed the two open disks of radius 1 centred respectively at the points

α = (2, 0) and β = (−2, 0). We endow M with some density denoted by vol. Let a

(resp. b) be the loop which starts at (1, 0) (resp. (−1, 0)) and goes once around the

circle of radius 1 centred at α (resp. β), counterclockwise. Let d be the path which

goes straight from (1, 0) to (−1, 0). Choose r ∈ (0, 1). Consider the union of the two

closed disks of radius 1+ r centred at α and β and the rectangle [−1, 1]× [−r, r]. Let

cr be the loop which starts at (2−
√

1 + 2r, r) and bounds this domain with positive

orientation. Let sr be the path which goes straight from (1, 0) to (2 −
√

1 + 2r, r).

As r tends to 0, the loop srcrs
−1
r converges with fixed endpoints to the loop dbd−1a.

However, in order to apply our axioms, we need to replace cr by a loop based at the

same point and whose image is a smooth submanifold of M . We do this in such a

way that the convergence of srcrs
−1
r to dbd−1a is preserved.

We consider the measure HFM,vol,∅,Cx,y,z
onM(P(M), G), where Cx,y,z is charac-

terized by the fact that C(a) = x, C(b) = y and C maps the circle of radius 4 centred

at the origin to z. We denote the corresponding expectation by Ex,y,z. Let f be a
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continuous invariant function on G. For all r ∈ (0, 1), we have

Ex,y,z[f(hsrcrs
−1
r

)] =

∫

G

Z+
3,0,tr

(x, y, v)f(v)Z+
2,0,T−tr (v

−1, y) dv,

where tr is the area of the domain delimited by a, b and cr and T is the total area of

M . By the same arguments as in the previous proofs, the left-hand side converges as

r tends to 0 to Ex,y,z[f(hdbd−1a)] and the convergence is dominated with respect to z.

Since the two endpoints of d are distinct and the measure HFM,vol,∅,Cx,y,z
is invariant

under gauge transformations, the distribution of hd is both left and right-invariant

on G. Thus, hd has the uniform distribution on G. Hence, Ex,y,z[f(hdbd−1a)] =∫
G
f(xwyw−1) dw. By integrating with respect to z, we find

∫

G

Z+
3,0,tr

(x, y, z)f(z) dz −→
r→0

∫

G

f(xwyw−1) dw.

We will use this result to prove that the partition functions a stochastically continu-

ous Markovian holonomy field are completely determined by the functions (Z+
1,0,t)t>0.

Let us introduce two probability measures on G.

Definition 4.1.7. — Let η and κ be the two invariant probability measures on G

defined respectively by the fact that for all continuous function f on G,

(50)

∫

G

f dη =

∫

G2

f(aba−1b−1) dadb and

∫

G

f dκ =

∫

G

f(a2) da.

The letters η and κ correspond to the words handle and cross-cap. We start by

proving some important properties of these measures.

Let Irr(G) denote the set of isomorphism classes of irreducible representations

of G over C. Given α ∈ Irr(G) with character χα and a measure µ on G, the

Fourier coefficient µ̂(α) is defined by µ̂(α) =
∫
G
χα dµ. Recall that an irreducible

representation is said to be complex if its character is not real valued, otherwise

real (resp. quaternionic) if it preserves a non-degenerate symmetric (resp. skew-

symmetric) complex bilinear form.

If µ is a measure on G, we denote by µ∨ the measure defined by
∫
G f dµ∨ =∫

G
f(g−1) µ(dg). By an invariant measure we mean a measure which is invariant by

conjugation.

Lemma 4.1.8. — Let µ, ν, ξ be three invariant probability measures on G. If µ̂(α) =

0 for every complex representation α, then µ ∗ ν = µ ∗ ν∨. In particular, κ ∗ ξ ∗ ν =

κ ∗ ξ ∗ ν∨. Moreover, κ ∗ η = κ∗3.
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Proof. — The Fourier coefficients of η and κ can be computed easily by using the

elementary theory of characters:

∀α ∈ Irr(G), η̂(α) =
1

dimα
and κ̂(α) =





1 if α is real,

0 if α is complex,

−1 if α is quaternionic.

The Fourier coefficients of the convolution product of two measures is given by the

relation µ̂ ∗ µ′(α) = µ̂(α)µ̂′(α)/ dimα. Moreover, the Fourier coefficients of ν∨ are

the complex conjugate of those of ν. Hence, on real and quaternionic representations,

whose character is real, the Fourier coefficients of ν are real and agree with those of

ν∨. Hence, µ ∗ ν and µ ∗ ν∨ have the same Fourier coefficients. Since they are both

invariant, they are equal. The equality κ ∗ ξ ∗ ν = κ ∗ ξ ∗ ν∨ follows immediately. The

last assertion is proved by computing the Fourier coefficients of both sides.

Remark 4.1.9. — We invite the reader to compare the equality κ ∗ η = κ∗3 with the

fact that the connected sum of a projective plane and a torus is homeomorphic to the

connected sum of three projective planes (or the connected sum of a projective plane

and a Klein bottle).

In the next proposition, we use the notation µ(f) for the integral of a function f

against a measure µ and we denote by ∗ the convolution of probability measures.

Proposition 4.1.10. — The partition functions of a regular Markovian holonomy

field are completely determined by the functions Z+
1,0,t for t > 0. One has the following

explicit formulas.

For all p ≥ 0, all g ≥ 0 even, all t > 0 and all x1, . . . , xp ∈ G, one has

(51) Z+
p,g,t(x1, . . . , xp) = η∗

g
2 ∗ δOx1

∗ . . . ∗ δOxp
(Z+

1,0,t).

Moreover, for all p ≥ 0, all g > 0, all t > 0 and all x1, . . . , xp ∈ G, one has

(52) Z−
p,g,t(x1, . . . , xp) = κ∗g ∗ δOx1

∗ . . . ∗ δOxp
(Z+

1,0,t).

Proof. — Let us start by proving (51) when g = 0 and p > 0, by induction on p. For

p = 1, it is a consequence of the fact that Z+
1,0,t is invariant by conjugation. Assume

that p > 1 and the result has been proved for Z+
p−1,0,t. Then, for all x1, . . . , xp ∈ G

and all s ∈ (0, t), (46) yields

Z+
p,0,t =

∫

G

Z+
p−1,0,t−s(x1, . . . , xp−2, y)Z

+
3,0,s(xp−1, xp, y

−1) dy.

Since the Markovian holonomy field that we consider is Fellerian, the function

(s, x1, . . . , xp−2, y) 7→ Z+
p−1,0,t−s(x1, . . . , xp−2, y)

is continuous on the compact set [0, t2 ]×Gp−1. Hence, when s tends to 0, it converges

uniformly as a function onGp−1 towards Z+
p−1,0,t. Thus, using the convergence proved
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in Proposition 4.1.6, we find

Z+
p,0,t =

∫

G

Z+
p−1,0,t(x1, . . . , xp−2, y) (δOxp−1

∗ δOxp
)(dy).

Using the induction hypothesis, we find

Z+
p,0,t =

∫

G

(∫

Gp−1

Z+
1,0,t(w1 . . . wp−2z)

p−2∏

i=1

δOxi
(dwi)δOy

(dz)

)
(δOxp−1

∗ δOxp
)(dy)

=

∫

Gp

Z+
1,0,t(w1 . . . wp)

p∏

i=1

δOxi
(dwi)

because δOxp−1
∗ δOxp

is already an invariant measure on G. This is the expected

result.

Let us now treat the case where p+ g > 0. We have

Z+
p,g,t(x1, . . . , xp) = β

g
2
1 (Z+

p+g,0,t)(x1, . . . , xp)

=

∫

G
g
2

Z+
p+g,0,t(x1, . . . , xp, y1, y

−1
1 , . . . , y g

2
, y−1

g
2

) dy1 . . . dy g
2

=

∫

Gp+
3g
2

Z+
1,0,t(w1 . . . wpz1z

′
1 . . . z g

2
z′g

2
)

p∏

i=1

δOxi
(dwi)

g
2∏

i=1

δOyi
(dzi)δO

y
−1
i

(dz′i)

g
2∏

i=1

dyi.

The result follows now from the equality
∫
G δOy

∗ δO
y−1 dy = η which one checks

easily using the elementary properties of the Haar measure.

In order to prove (51), we still have to prove that Z+
0,0,t = Z+

1,0,t(1). This follows

from the equality Z+
0,0,t =

∫
G
Z+

1,0,t−s(y)Z
+
1,0,s(y

−1) dy, Proposition 4.1.6 and the

argument of uniform convergence that we have already used above.

By (4.1) and the first part of this proof, we have for all p, g ≥ 0, all t > 0 and all

x1, . . . , xp ∈ G,

Z−
p,2g+1,t(x1, . . . , xp) = η∗g ∗ δOx1

∗ . . . ∗ δOxp
∗
(∫

G

δOy2 dy

)
(Z+

1,0,t)

= κ ∗ η∗g ∗ δOx1
∗ . . . ∗ δOxp

(Z+
1,0,t),

and

Z−
p,2g+2,t(x1, . . . , xp) = η∗g ∗ δOx1

∗ . . . ∗ δOxp
∗
(∫

G2

δO
y2
1

∗ δO
y2
2

dy1dy2

)
(Z+

1,0,t)

= κ∗2 ∗ η∗g ∗ δOx1
∗ . . . ∗ δOxp

(Z+
1,0,t).

The result is now a consequence of the last assertion of Proposition 4.1.8.

It is now easy to complete the result obtained in Proposition 4.1.6. We leave the

proof of the following corollary to the reader.

Corollary 4.1.11. — Let (Z±
p,g,t)p,g,t be the partition functions of a regular Marko-

vian holonomy field. Then, as t tends to 0, one has the following weak convergences
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of measures on G.

1. For all p ≥ 0, all g ≥ 0 even and all x1, . . . xp−1 ∈ G,

Z+
p,g,t(x1, . . . , xp−1, x

−1) dx =⇒
t→0

η∗
g
2 ∗ δOx1

∗ . . . ∗ δOxp−1
.

2. For all p ≥ 0, all g > 0 and all x1, . . . xp−1 ∈ G,

Z−
p,g,t(x1, . . . , xp−1, x

−1) dx =⇒
t→0

κ∗g ∗ δOx1
∗ . . . ∗ δOxp−1

.

Remark 4.1.12. — In the proofs so far, we have used the axiom A7 only for cylin-

ders. Let us call A′
7 the axiom A7 restricted to cylinders. By using Propositions

4.1.6 and 4.1.10, one could easily prove now that A7 could be replaced by A′
7 without

affecting the notion of regular Markovian holonomy field.

4.2. The Lévy process associated to a Markovian holonomy field

In the previous section, we have reduced the description of the partition functions

of a regular Markovian holonomy field to the description of the one-parameter family

of functions Z1
1,0,t : G→ [0,+∞), t > 0. This allows us to state a classification result.

Proposition 4.2.1. — Let HF be a regular Markovian holonomy field. Then the

probability measures (Z+
1,0,t(x)dx)t>0 on G are the one-dimensional distributions of

a unique conjugation-invariant Lévy process issued from the unit element. If the

Markovian field is not oriented, then the distribution of this Lévy process is invari-

ant by inversion. Moreover, this Lévy process determines completely the partition

functions of HF.

It is conceivable that a regular Markovian holonomy field is completely determined

by its associated Lévy process, but we have warned the reader in the introduction

that we are not yet able to settle this question.

Proof. — It suffices to prove that the probability measures νt = Z+
1,0,t(x) dx form

a convolution semigroup. Let us fix s, t > 0. By (51), we have Z+
2,0,s(x, y) =∫

G
Z+

1,0,t(xwyw
−1). Now,

νt ∗ νs =

∫

G

Z+
1,0,t(x)Z

+
1,0,s(x

−1y) dx dy

=

∫

G2

Z+
1,0,t(wxw

−1)Z+
1,0,s(w

−1x−1wy) dwdx dy

=

∫

G

Z+
1,0,t(x)Z

+
2,0,s(x

−1, y) dx dy

= β2(Z
+
1,0,t ⊗ Z+

2,0,s)(y)

= Z+
1,0,s+t(y) dy = νt+s.
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Proposition 4.1.6 ensures that νt tends to the Dirac mass at the unit element as t

tends to 0. Moreover, the conjugation invariance of the partition functions implies

that the measure νt is invariant for all t ≥ 0.

If the Markovian field is not orientable, then for all t, it follows from the axiom A4

applied to an orientation-reversing diffeomorphism of a disk of area t that Z+
1,0,t(x) =

Z+
1,0,t(x

−1). It follows that the 1-dimensional distributions of the Lévy process are

invariant by inversion, hence the distribution of the process itself.

The fact that the measures (νt)t≥0 determine the partition functions is the content

of Proposition 4.1.10.

Let us recall some classical facts about Lévy processes in compact Lie groups and

use them to prove that the function Z+
1,0,t is positive on the connected component of

the identity of G for all t > 0. Our constant reference in this section is the book of

M. Liao [24].

Let X be an arbitrary Lévy process on G with a conjugation-invariant distribution.

Let us describe briefly the generator of X . Let g be the Lie algebra of G. Let

A : G −→ g be a smooth mapping such that A(1) = 0, d1A = idg and, for all

x, y ∈ G, A(xyx−1) = Ad(x)A(y). For example, let r > 0 be such that the exponential

mapping is a diffeomorphism from the ball B(0, r) in g to the ball B(1, r) in G. Let

log denote the inverse mapping. Let ϕ : [0,+∞) −→ [0, 1] be a smooth function with

compact support contained in [0, r/2] and equal to 1 in a neighbourhood of 0. Then

A(x) = log(x)ϕ(dG(1, x)) satisfies the required properties.

In what follows, we identify the elements of g with left-invariant vector fields on

G.

Proposition 4.2.2. — Let X be a Lévy process on G whose distribution is invari-

ant by conjugation. Let {A1, . . . , Ad} denote a basis of g. Let z denote the cen-

tre of g. There exists a symmetric non-negative definite matrix (ajk)j,k∈{1,...d}, an

element A0 ∈ z, and a Borel measure Π on G which satisfies Π({1}) = 0 and∫
G dG(1, x)2 Π(dx) < +∞, such that the generator L of X is the following : for

all f ∈ C2(G), all g ∈ G,

Lf(g) =
1

2

d∑

j,k=1

ajk(AjAkf)(g) + (A0f)(g) +

∫

G

[f(gh)− f(g)− (A(h)f)(g)] Π(dh).

The differential operator LD = 1
2

∑d
j,k=1 ajkAjAk and the measure Π are both invari-

ant by conjugation. They are called respectively the diffusive part of the generator of

X and the Lévy measure of X. Both are independent of the choice of the mapping

A : G −→ g.

Proof. — The unique point in which this presentation differs from that of [24] is the

fact that A0 ∈ z. The mapping A : G −→ g has been chosen to be equivariant under



120 CHAPTER 4. LÉVY PROCESSES AND MARKOVIAN HOLONOMY FIELDS

the adjoint action of G. This makes the third term of the generator invariant by

conjugation. Since LD is also invariant, the second term must be invariant as well.

This implies that A0 belongs to the invariant subspace of g under the adjoint action,

that is, z.

Let us now assume that, for all t > 0, the distribution of Xt has a density with

respect to the Haar measure onG, which we denote byQt. The functionQt is a central

function and, if X is invariant by inversion, it satisfies the relation Qt(x) = Qt(x
−1)

for all t > 0 and all x ∈ G.

Let Irr(G) denote the set of isomorphism classes of irreducible representations of

G. For each α ∈ Irr(G), let χα : G −→ C denote the character of α. Also, set

(53) λα = − (LDχα)(1)

χα(1)
, δα = − (A0χα)(1)

χα(1)
and πα =

∫

G

(
1− χα(x)

χα(1)

)
Π(dx).

The results of [24, Chapter 4] show that Qt is square-integrable for all t > 0 if and

only if, for all t > 0,

(54)
∑

α∈Irr(G)

e−(λα+δα+πα)t χα(1)2 < +∞.

It is also proved in [24] that Qt is square-integrable for all t > 0 if and only if

(t, x) 7→ Qt(x) is continuous on (0,+∞) × G. Let us assume that these equivalent

properties are satisfied. In this case, the following expansion is uniformly absolutely

convergent on [η,+∞)×G for all η > 0:

(55) Qt(x) =
∑

α∈Irr(G)

e−(λα+δα+πα)t χα(1)χα(x).

In the following result, we use the compactness of G to prove that, in this situation,

Qt is positive for all t > 0.

Proposition 4.2.3. — Let G be a compact connected Lie group. Let (Xt)t≥0 be a

Lévy process on G issued from 1 and invariant in law by conjugation. Assume that,

for all t > 0, the distribution of Xt has a square-integrable density Qt with respect to

the Haar measure on G. Then (t, x) 7→ Qt(x) is a continuous function on (0,+∞)×G
and

∀t > 0, ∀x ∈ G, Qt(x) > 0.

Proof. — The continuity property follows from the results presented above. We focus

on the assertion of positivity.

We claim that there exists t0 > 0 such that Qt(x) > 0 for all x ∈ G and all t ≥ t0.
Indeed, since

∫
GQ1(x) dx = 1, there is an open subset U of G on which Q1 is positive.

Hence, for all n ≥ 1, Qn is positive on Un. Since G is a compact topological group,

there exists n0 > 1 such that Un0 = G. Then t0 = n0 satisfies the expected property.
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Let L = LD+A0+LJ be the generator ofX written as the sum of the diffusive part,

a drift and the jump part. Since A0 belongs to z and LD is invariant by conjugation,

these three operators commute to each other. Let XD and XJ be independent Lévy

processes on G with respective generators LD and LJ . Then we have the identity in

distribution

(56) ∀t > 0, Xt
(d)
= exp(tA0)X

D
t X

J
t .

The term exp(tA0) modifies the subset of G where Qt is positive by a simple trans-

lation. Hence, we may and will assume that A0 = 0.

The topological support of the distribution ofXD
t does not depend on t. We denote

it by D. It is the closure of the exponential of a Lie subalgebra of g which depends

on LD. Since LD is invariant by conjugation, D is a closed normal subgroup of G.

The topological support of the distribution of XJ
t does not depend on t either and

we denote it by J . It is the closure of the submonoid of G generated the topological

support of Π. Since G is compact, the closure of the submonoid generated by any

element of G contains the inverse of this element. Hence, J is also the closed subgroup

generated by the support of Π. Since Π is invariant, J is also a closed normal subgroup

of G. In particular, DJ = JD is a closed subgroup of G.

For each t > 0, set St = {x ∈ G : Qt(x) > 0}. We claim that St = DJSt. Indeed,

consider x ∈ St, d ∈ D and j ∈ J . Let U, V,W be three open neighbourhoods of x, d, j

respectively. We claim that
∫
UVW Qt(y) dy > 0. Since (t, x) 7→ Qt(x) is continuous,

there exists ε > 0 such that Qt−ε(x) > 0. Now, P(XD
ε ∈ V ) > 0 and P (XJ

ε ∈W ) > 0.

Hence, by (56), P(Xε ∈ VW ) > 0 and
∫

UVW

Qt(y) dy ≥
∫

U

Qt−ε(x) dx

∫

VW

Qε(y) dy > 0.

Since this holds for any choice of U, V,W , the integral of Qt over any neighbourhood

of xdj is positive. Hence, xdj ∈ St. The claimed equality follows.

Now, it follows from (56), after the simplification A0 = 0, that P(∀t ≥ 0, Xt ∈
DJ) = 1. If the inclusion DJ ⊂ G was a strict one, we would find a contradiction

with the fact that Qt is eventually everywhere positive on G. Hence, DJ = G.

Putting our results together, we find St = G for all t > 0. Now choose t > 0, x ∈ G
and consider the mapping y 7→ Qt/2(y)Qt/2(y

−1x). It vanishes on (G−St/2)∪x(G−
St/2)

−1 which is the union of two closed sets with empty interior. This set has thus

empty interior, so the mapping which we consider is continuous, non-negative and

not identically zero. By integrating it with respect to y, we find Qt(x) > 0.

If G is not connected, let G0 denote the connected component of 1. It is a normal

subgroup of G and the quotient group G/G0 is finite. The measure Π induces a

measure on the group G/G0 which is finite excepted possibly on the unit element.

This measure, restricted to the complement of the unit element, is the jump measure

of the projection of X on this finite group.
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Corollary 4.2.4. — Let G be a compact Lie group. Let (Xt)t≥0 be a Lévy process on

G which satisfies the assumptions of Proposition 4.2.3. Let G0 denote the connected

component of the unit element of G. Let H be the subgroup of G generated by G0 and

the support of Π. Then for all t ≥ 0, Xt ∈ H almost surely and for all t > 0, all

x ∈ H, Qt(x) > 0.

Proof. — Let Π0 denote the restriction of Π to G0. Since G0 is a normal subgroup of

G, both Π0 and Π−Π0 are Lévy measures on G invariant by conjugation. Moreover,

Π−Π0 is a finite measure. Let X0 be the Lévy process whose generator is that of X

in which Π is replaced by Π0. It is a Lévy process in G0. Let XJ be the pure jump

process with jump measure Π−Π0. Then the generators of X0 and XJ commute, so

that we have in distribution, for all t ≥ 0, Xt
d
= X0

tX
J
t .

For all α ∈ Ĝ, we have supx∈G |χα(x)| = χα(1). Hence, changing the measure Π

by adding or subtracting to it a finite measure of mass m changes each coefficient πα
by at most 2m. The condition (54) is not affected by such a change, so neither is the

existence of a square-integrable density. This proves that the process X0 satisfies the

assumptions, hence the conclusions, of Proposition 4.2.3.

The set of connected components of G visited by the process XJ is the set of

the connected components of the elements of the submonoid of G generated by the

support of Π−Π0. Since G is compact, this submonoid is also the subgroup generated

by the same set. The conclusion follows easily.

Corollary 4.2.5. — Let HF be a regular Markovian holonomy field. There exists a

subgroup H of G which contains the connected component of the unit element and

such that

(57) ∀t > 0, ∀p, g ≥ 0, ∀x1, . . . , xp ∈ H,Z+
p,g,t(x1, . . . , xp) > 0.

Proof. — By Propositions 4.2.1 and 4.1.4, the Lévy process associated with HF sat-

isfies the assumptions of Corollary 4.2.4. Hence, (57) holds for Z+
1,0,t. The general

case follows by Proposition 4.1.10.

From now on, we will always assume that H = G.

Definition 4.2.6. — Let (Xt)t≥0 be a Lévy process on G. We say that X is admis-

sible if it is issued from 1, invariant in law by conjugation, and if for all t > 0 the

distribution of Xt admits a continuous density Qt with respect to the Haar measure

on G, such that the function (t, x) 7→ Qt(x) is continuous and positive on R∗
+ ×G.

Let us discuss briefly the existence of a square-integrable density for the distribution

of X . If G is a finite group, this condition is always satisfied. An admissible Lévy

process in this case is simply a continuous-time Markov chain on G whose jump

distribution is invariant by conjugation and has a support which generates G. In the

case of the symmetric group, where every element is conjugated to its inverse, this
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invariance property implies that the jump distribution, hence the distribution of X ,

is also invariant by inversion.

If G is connected and dimG ≥ 1, an assumption under which the condition (54) is

always satisfied is the ellipticity of X . In general, the hypoellipticity is sufficient to

ensure the existence of a density, but a conjugation-invariant hypoelliptic process is

necessarily elliptic. Indeed, if G is Abelian, hypoellipticity is equivalent to ellipticity

and if G is simple, the invariance of X implies that the diffusive part of the generator

of X must be a non-negative multiple of the Laplace operator, hence elliptic or zero.

The general case is a combination of these two.

In the case where the process is not elliptic, the distribution of X may or may

not have a density, depending on the jumps of X . The discussion of ellipticity and

hypo-ellipticity above implies that if X is not elliptic and has no jumps, then X has

no square-integrable density. The remark made in the course of the proof of Corollary

4.2.4 implies that this is still true if the Lévy measure of X is finite.

Let us conclude this section by giving an example of an admissible pure jump

processes. Let us work on SU(2). Choose a real s and consider the measure Π(dx) =

d(1, x)s dx. Since the dimension of SU(2) is 3, the integral
∫
SU(2) d(1, x)

2 Π(dx)

converges if and only if s > −5 and Π is a finite measure for s > −3. The irreps of

SU(2) are labelled by their dimension which can be any positive integer. Accordingly,

the Fourier coefficient πn, which is given, thanks to Weyl’s integration formula, by

πn =
2

π

∫ π

0

(
1− sin(nθ)

n sin θ

)
sin2(θ)θs dθ,

is non-negative and grows faster than a constant times n−s−3. In particular, if s < −3,

the series
∑

n≥1 e
−πnt converges and the condition (54) is satisfied. Finally, for all

s ∈ (−5,−3), the pure jump process on SU(2) with Lévy measure Π(dx) = d(1, x)s dx

is admissible.

4.3. A Markovian holonomy field for each Lévy process

In this section, we prove the following theorem, which is one of the main results of

the present work. Recall Definitions 3.1.3 and 4.2.6, and Proposition 4.2.1.

Theorem 4.3.1. — Every admissible Lévy process is the Lévy process associated to

a regular Markovian holonomy field.

Whether this regular Markovian holonomy field is unique is a natural question

which we hope to be able to answer in a future work.

In order to prove this theorem, we use the results of the previous chapter. We

start by constructing a discrete Markovian holonomy field, prove that it is regular

and extend it to a Markovian holonomy field.
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4.3.1. A discrete Markovian holonomy field. — Let X be an admissible Lévy

process. Let Qt denote the density of the distribution of Xt. Let (M, vol,C , C) be a

connected measured marked surface with G-constraints. Let G be a graph on (M,C ).

For each face F of G, recall that ∂F is a cycle, oriented or non-oriented depending on

the orientability of M . Assume first that M is orientable. For each h ∈M(P(G), G),

different choices of the origin of ∂F lead to different elements h(∂F ) of G, but these

elements belong to the same conjugacy class of G. Hence, for all t > 0, the assumption

that the distribution of Xt is invariant by conjugation makes the positive real number

Qt(h(∂F )) well-defined.

If M is non-orientable, then h(∂F ) is defined only up to conjugation and inversion.

In this case, we make the further assumption that the distribution of X is invariant

by inversion. Then, for all t > 0, the non-negative real number Qt(h(∂F )) is also

well-defined.

Definition 4.3.2. — Let X be an admissible Lévy process. Let (M, vol,C , C) be a

measured marked surface with G-constraints. Let G be a graph on (M,C ). We define

the following measure on (M(P(G), G), C):

DF
X,G
M,vol,C ,C(dh) =

∏

F∈F

Qvol(F )(h(∂F )) UG

M,C ,C(dh).

We denote the collection of these measures by DFX .

Proposition 4.3.3. — Let X be an admissible Lévy process. The collection of mea-

sures DFX satisfies the axioms D1 to D6 of a discrete Markovian holonomy field.

Proof. — For each quadruple (M, vol,C , C), DF
X,G
M,vol,C ,C is a measure on the invari-

ant σ-field of M(P(G), G). It has a bounded density with respect to the probability

measure UG

M,C ,C , so that it is a finite measure. Let us prove that the axioms D1 to

D6 are satisfied.

The fact that the discrete Markovian holonomy field U satisfies D1 and D3 implies

immediately that DFX also satisfies them. The argument used for U in the proof

of Proposition 3.2.3 shows that DFX satisfies D2. Let ψ be a homeomorphism as

in the statement of the axiom D4. The measure DF
X,G
M,vol,C ,C depends only on the

combinatorial structure of the graph G, on the cycles which represent the curves of

C , on the set of G-constraints and finally the boundaries and the areas of the faces

of G. These characteristics are all preserved by the homeomorphism ψ. The axiom

D5 is obviously satisfied. Let us finally check that DFX satisfies D6.

Let us denote by M ′ the surface Spll(M) and by G′ the graph Spll(G). Let us

also denote by D′ :M(P(G′), G)→ R the density of the measure DF
X,G′

M ′,vol′,C ′,C′ with

respect to UG
′

M ′,C ′,C′ . Then D′ ◦ ψ : M(P(G), G) → R is the density of DF
X,G
M,vol,C ,C

with respect to UG

M,C ,C . Hence, the property follows from Proposition 2.3.8.
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We prove now that the collection of measures that we consider satisfies the property

of invariance under subdivision.

Proposition 4.3.4. — Let X be an admissible Lévy process. The collection of mea-

sures DFX satisfies the axiom DI of a discrete Markovian holonomy field.

Proof. — Consider (M, vol,C , C) endowed with two graphs G1 and G2 such that

G1 4 G2. Let r : M(P(G2), G) → M(P(G1), G) denote the restriction map. Let us

first make the assumption that E1 ⊂ E2 and choose orientations E
+
1 and E

+
2 of G1 and

G2 such that E
+
1 ⊂ E

+
2 . The restriction map r can be thought of as a map from GE

+
2

to GE
+
1 . Let us write E

+
2 = E

+
1 ∪ (E+

2 \ E1)
+ and decompose the generic element of

GE
+
2 as g = (g1, g2) accordingly. With this notation, r(g1, g2) = g1. Let f : GE

+
1 → R

be a continuous function. We need to prove that∫

GE
+
2

f(g1) DF
X,G2

M,vol,C ,C(dg1, dg2) =

∫

GE
+
1

f(g1) DF
X,G1

M,vol,C ,C(dg1)

We are going to perform the integration on the left-hand side with respect to dg2.

For this, let us observe that the curves of C belong to P(G1), so that the measure

UG2

M,vol,C ,C(dg1, dg2) on GE
+
2 can be written as UG1

M,vol,C ,C(dg1)dg2. This is in fact an

instance of Proposition 2.3.9. Hence, if we put together the faces of G2 according to

the face of G1 in which they are contained, we find the following expression for our

integral:

(58)

∫

GE
+
1

f(g1)
∏

F1∈F1



∫ ∏

F2∈F2
F2⊂F1

Qvol(F2)(g(∂F2))
∏

e∈E
+
2 \E

+
1

e⊂F1

dge


 UG1

M,C ,C(dg1).

The integral between the brackets is over G{e∈E
+
2 \E

+
1 :e⊂F1}. It suffices to prove that

this integral is equal to Qvol(F1)(h∂F1(g)).

We proceed then by induction on the number of faces of G2 contained in F1. Let us

assume first that this number is 1 and denote by F2 the unique face of G2 contained

in F1. In order to treat this case, we proceed by induction on the number of edges of

G2 whose interior is contained in F1. If this number is zero, then F1 = F2 and the

expression between the brackets is exactly Qvol(F1)(g(∂F1)). Now let us assume that

there is at least one edge of G2 whose interior is contained in F1. Let us consider a split

pattern M ′ of (M,G1) and let M ′
F1

denote the connected component corresponding

to F1. Let G′
2 be the graph on M ′ induced by G2. The restriction of G′

2 to M ′
F1

is

a graph with a single face on a disk. By Euler’s formula, this graph has the same

number of edges and vertices. By assumption, there is at least one vertex of degree

at least 3 on the boundary of M ′
F1

. Hence, G′
2 has at least one vertex of degree 1,

which must be in the interior of M ′
F1

and hence is sent to a vertex of G2 of degree

1 contained in F1. Let e be an edge of G2 adjacent to a vertex v of degree 1. The

cycle ∂F2 contains either the sequence ee−1 or the sequence e−1e. This sequence can
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be removed without affecting the value of the expression between the brackets. The

cycle ∂F2 with the sequence removed is the boundary of the face F2 ∪ e((0, 1)) ∪ {v}
of the graph whose set of edges is E2 \ {e, e−1}. This graph has one edge less inside

F1 than G2 and the result follows by induction.

Let n ≥ 2 be an integer and let us assume that the result has been proved when

F1 contains at most n − 1 faces of G2. Consider the case where F1 contains n faces

of G2.

Let F2, F
′
2 be two distinct adjacent faces of G2 which are both contained in F1. The

boundaries of F2 and F ′
2 are respectively of the form e1 . . . eke

′′ and (e′′)−1e′1 . . . e
′
l,

where {e1, . . . , ek, e′1, . . . , e′l} ⊂ E
+
2 and e′′ ∈ E

+
2 \E+

1 . When we integrate with respect

to the component of g corresponding to e′′ between the brackets in (58), we find
∫

G

Qvol(F2)(ge′′gek
. . . ge1)Qvol(F ′

2)(ge′
l
. . . ge′1(ge′′)

−1) dge′′ ,

which, by the Markov property of X , is equal to Qvol(F∪F ′)(g
′
l . . . g

′
1gk . . . g1). We are

thus reduced to the graph obtained from G2 by merging F2 and F ′
2 along the edge e′′.

By Proposition 1.3.15, the result of this operation is indeed a graph. The induction

hypothesis applied to this new graph yields the desired result.

Finally, let us treat the case where E1 6⊂ E2. In this case, there are vertices of G2

located on the edges of G1 which are not vertices of G1. Adding these vertices to G1

and splitting its edges accordingly produces a new graph G such that G1 4 G 4 G2

and E ⊂ E2. It remains to prove that the restriction r :M(P(G), G)→M(P(G1), G)

sends the measure DF
X,G
M,vol,C ,C to DF

X,G1

M,vol,C ,C . This follows at once from (24).

Combining Propositions 3.2.5, 4.3.3 and 4.3.4, we find the following result.

Proposition 4.3.5. — Let X be an admissible Lévy process. Let ZX,GM,vol,C ,C de-

note the partition functions associated with the collection of measures DFX . Let

(M, vol,C , C) be a measured marked surface with G-constraints. Then ZX,GM,vol,C ,C

does not depend on the graph G. We denote it by ZXM,vol,C ,C.

We are now going to compute this partition function. For this, we start by as-

sociating a probability measures on G to each connected surface (M,∅, C) with G-

constraints along the boundary. Recall the definition of the measures η and κ from

Definition 4.1.7 and the properties that they satisfy proved in Proposition 4.1.8.

Definition 4.3.6. — Let (M,∅, C) be a connected surface with G-constraints along

the boundary. If M is oriented, write B+(M) = {b1, . . . , bp} and set

mM,∅,C = η∗
g(M)

2 ∗ δC(b1) ∗ . . . ∗ δC(bp).

If M is non-orientable, write B(M) = {b±1
1 , . . . , b±1

p } and set

mM,∅,C = κ∗g(M) ∗ δC(b1) ∗ . . . ∗ δC(bp).
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Remark 4.3.7. — 1. The second definition is meaningful thanks to Lemma 4.1.8.

Indeed, the orientation chosen on the boundary components of M does not affect the

definition of mM,∅,C.

2. Assume that (M,∅, C) is an oriented surface with G-constraints. Write M∨ for

the same surface with the opposite orientation. Then mM∨,∅,C = m∨
M,∅,C.

Lemma 4.3.8. — Let M be a connected compact surface.

1. The mapping which to a set C of G-constraints on B(M) associates the probability

measure mM,∅,C on G is continuous from ConstG(M,∅) to the space of probability

measures on G endowed with the topology of weak convergence.

2. For all b ∈ B(M), the measure
∫
G mM,C ,Cb→x

dx is the Haar measure on G.

Proof. — 1. This property follows from the continuity of the mapping x 7→ δOx
and

the continuity of the convolution of measures.

2. This assertion follows from the fact that
∫
G δOx

dx is the Haar measure on

G.

Proposition 4.3.9. — Let X be an admissible Lévy process. Consider the collection

of measures DFX . Let (M, vol,C , C) be a connected measured marked surface. Let

(M ′, vol′,∅, C′) be a split tubular pattern of (M,C , C) endowed with the induced G-

constraints. Let M ′
1, . . . ,M

′
s be the connected components of M ′ and for each i ∈

{1, . . . , s}, let (M ′
i ,∅, C

′
i) be the associated connected surface with constraints. If M

is oriented, then M ′ carries the induced orientation. If M is non-orientable, then

let us assign an arbitrary orientation to each orientable connected component of M ′.

Then the following equality holds :

(59) ZXM,vol,C ,C =
s∏

i=1

∫

G

Qvol′(M ′
i)
dmM ′

i
,∅,C′

i
.

Proof. — When M is non-orientable, there is a choice made in assigning an ori-

entation to each orientable connected component of M ′. However, in this case, the

distribution of X , hence the function Qt for all t > 0, is invariant by inversion. Hence,

by the second part of Remark 4.3.7, the right-hand side of (59) is well defined.

The proof of this equality is of the same vein as that of Proposition 3.2.5. By

A6, Z
X
M,vol,C ,C = ZXM ′,vol′,∅,C′. Then, by A5, Z

X
M ′,vol′,∅,C′ =

∏s
i=1 Z

X
M ′

i ,vol
′,∅,C′

i
. The

problem is thus reduced to the case of a connected surface with G-constraints along

the boundary.

Let us assume that M is connected and C = ∅. In order to compute the partition

function in this case, we choose a graph on M with a single face and, by cutting and

pasting, transform it so that the boundary of its unique face has a canonical form.

Then, we find, for instance if M is non-orientable of reduced genus g ≥ 1 with p
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boundary components,

ZXM,vol,∅,C =

∫

Gg+2p

Qvol(M)(a
2
1 . . . a

2
gu1c1u

−1
1 . . . upcpu

−1
p )

da1 . . . dagdu1 . . . dupδC(b1)(dc1) . . . δC(bp)(dcp)

=

∫

Gg+p

Qvol(M)(a
2
1 . . . a

2
gc1 . . . cp)da1 . . . dagδC(b1)(dc1) . . . δC(bp)(dcp)

=

∫

G

Qvol(M)dmM,∅,C .

The other cases are similar.

We can summarize our results.

Proposition 4.3.10. — Let X be an admissible Lévy process. The collection of

measures DFX defined in Definition 4.3.2 is a discrete Markovian holonomy field.

Proof. — For all (M, vol,C , C), the measure DF
X,G
M,vol,C ,C is a measure on the cylinder

σ-field ofM(P(G), G), hence it determines by restriction a measure on the invariant

σ-field. By Proposition 4.3.9, it is a finite measure.

The collections of these measures satisfies the axioms D1 to D6 by Proposition

4.3.3, DI by Proposition 4.3.4 and D7 by the combination of Proposition 4.3.9, the

second assertion of Lemma 4.3.8 and the fact that for all t > 0,
∫
G
Qt(x) dx = 1.

4.3.2. A Markovian holonomy field. — Our next goal is to prove that the dis-

crete Markovian holonomy field DFX is regular in the sense of Definition 3.2.8.

Proposition 4.3.11. — Let X be an admissible Lévy process. The discrete Marko-

vian holonomy field DFX is continuously area-dependent and Fellerian.

Proof. — Recall the notation of Definition 3.2.8. For each n ≥ 0, we have on

M(P(G), G) the equality of measures

DF
X,Gn

M,vol,C ,C ◦ ψ−1
n (dh) =

∏

F∈F

Qvol(ψn(F ))(h(∂F )) UG

M,C ,C(dh).

By assumption, vol(ψn(F )) tends to vol(F ) for each F ∈ F. Moreover, for all segment

[s, t] ⊂ R∗
+, the mapping (t, x) 7→ Qt(G) is uniformly continuous on [s, t]×G. Hence,

for all face F ∈ F, Qvol(ψn(F )) converges uniformly to Qvol(F ) as n tends to infinity.

The fact that DFX is continuously area-dependent follows.

The fact DFX is Fellerian, that is, that the partition function ZXM,vol,C ,C depends

continuously on C ∈ ConstG(M,C ), follows at once from Proposition 4.3.9 and the

first assertion of Corollary 4.3.8.

In order to prove that DFX is stochastically 1
2 -Hölder continuous, we need to

establish the corresponding property for the Lévy process X .
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Proposition 4.3.12. — Let (Xt)t≥0 be a Lévy process on the compact Lie group G

issued from 1. Then there exists a constant K such that

∀t ≥ 0, E [dG(1, Xt)] ≤ K
√
t.

This property follows from Lemma 3.5 in the book of M. Liao [24], but we still

offer a short proof.

Proof. — We use the Itô formula for Lévy process on Lie groups, which has been

proved by Applebaum and Kunita [3]. We borrow the statement from [24, Section

1.4]. In fact we use the following weak statement. Let L be the generator of X . Let

f be a smooth function on G. Then f belongs to the domain of L and there exists a

L2 martingale Mf such that, for all t ≥ 0,

(60) f(Xt) = f(X0) +Mf
t +

∫ t

0

Lf(Xs) ds.

This is the equation (1.18) of [24]. We apply it to a function f which is close to the

function dG(1, ·)2.
Let {A1, . . . , Ad} be a basis of the Lie algebra of G, which we identify with the

space of left-invariant vector fields on G. Let a1, . . . , ad be smooth functions on G

such that for all i, j ∈ {1, . . . , d}, ai(1) = 0 and Aiaj(1) = δij . Set δ =
∑d

i=1 a
2
i . It

follows readily from the definition of δ and the fact that G is compact that there exists

a constant K1 such that for all x ∈ G, dG(1, x)2 ≤ K1δ(x). Now (60) implies that

E[δ(Xt)] ≤‖Lδ ‖∞ t. Hence, by Jensen’s inequality, E[dG(1, Xt)]
2 ≤ K1 ‖Lδ ‖∞ t for

all t ≥ 0.

In order to deduce the stochastic Hölder continuity of DFX from this property,

we need to be able to compare the values of some integrals with and without G-

constraints. Actually, we introduce random holonomy fields with free boundary con-

ditions. Recall the definition of the uniform measure UG

M,∅ (Definition 2.3.3).

Definition 4.3.13. — Let X be an admissible Lévy process. Let (M, vol) be a mea-

sured surface endowed with a graph G. We define the measure DF
X,G
M,vol,∅,∅ by setting

DF
X,G
M,vol,∅,∅(dh) =

∏

F∈F

Qvol(F )(h(∂F )) UG

M,∅(dh).

In the following proofs, we use the fact that the functions t 7→ sup{Qt(x) : x ∈ G}
and t 7→ inf{Qt(x) : x ∈ G} are respectively non-increasing and non-decreasing. This

follows from (Qt)t>0 being a convolution semigroup of positive continuous functions.

Lemma 4.3.14. — Let (M, vol,C , C) be a measured marked surface with G-

constraints. Let G be a graph on (M,C ). Consider E1 ⊂ E and F1 ⊂ F. Assume

that E1 = E1
−1. Assume that for each l ∈ C ∪ B(M), at least one edge of E1 is
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located on l, and each face adjacent to an edge of E1 belongs to F1. Set r = ♯F1 and

A = min{vol(F ) : F ∈ F1}. Set K = sup
{
QA(x)
QA(y) : x, y ∈ G

}
.

Let f :M(E, G)→ [0,+∞) be a non-negative continuous function. Assume that f

factorizes through the restriction map M(E, G)→M(E \ E1, G). Then

K−r
∫

M(E,G)

f dDF
X,G
M,vol,∅,∅ ≤

∫

M(E,G)

f dDF
X,G
M,vol,C ,C ≤ Kr

∫

M(E,G)

f dDF
X,G
M,vol,∅,∅.

Proof. — Increasing the number of edges in E1 can only increase F1, hence make A

smaller and K larger. So, without loss of generality, we may assume that E1 contains

exactly one non-oriented edge on each curve l ∈ C ∪B(M) and F1 is exactly the set

of faces adjacent to these non-oriented edges.

Let us choose an orientation E+ of G and identify M(E, G) with GE
+

. Let us

enumerate F1 as {F1, . . . , Fr}. Let us denote the generic element ofGE
+

as g = (g1, g2)

according to the partition E = E1 ∪ (E \ E1). The assumption on f expresses that

f(g1, g2) depends only on g2.

By (22), the integration against UG

M,C ,C can be decomposed into the integration

with respect to the Haar measure onM(E\E1, G) and then with respect to the explic-

itly known conditional distribution of g1 given g2, which we denote by UG

M,C ,C(dg1|g2).
∫

M(E,G)

f DF
X,G
M,vol,C ,C =

∫

M(E,G)

f(g)
∏

F∈F

Qvol(F )(g(∂F )) UG

M,C ,C(dg) =

∫

G(E\E1)+
f(g2)

∏

F∈F\F1

Qvol(F )(g2(∂F ))

[∫

GE
+
1

∏

F∈F1

Qvol(F )(g(∂F )) UG

M,C ,C(dg1|g2)
]
dg2.

Changing the probability measure with respect to which the integral between the

brackets is taken can at most multiply the integral by maxu
minu and most divide it by the

same number, where u denotes the integrand. In the present situation, the definition

of K implies that maxu
minu ≤ Kr.

Hence, focusing for example on the upper bound, we have
∫

M(E,G)

f DF
X,G
M,vol,C ,C ≤ Kr

∫

GE+
f(g2)

∏

F∈F

Qvol(F )(g(∂F )) dg1dg2

=

∫

M(E,G)

f dDF
X,G
M,vol,∅,∅.

The derivation of the lower bound is similar.

Proposition 4.3.15. — Let X be an admissible Lévy process. The discrete Marko-

vian field DFX is stochastically 1
2 -Hölder continuous.

Proof. — Let (M, vol, γ,C , C) be a measured marked surface with G-constraints.

Write C ∪B(M) = {l1, l−1
1 , . . . , lq, l

−1
q }. Let M1, . . . ,Ms denote the connected com-

ponents of M \ C . Set A = 1
2 min{vol(Mi) : i ∈ {1, . . . , s}}. For each i ∈ {1, . . . , q},
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let us write li as the product of three edges: li = ei,1ei,2ei,3. Let L > 0 be such

that any Riemannian ball of radius smaller than L intersects at most one curve of

C ∪B(M) and at most two of the edges {ei,j : i ∈ {1, . . . , q}, j ∈ {1, 2, 3}}, and has

a Riemannian area smaller than A.

Let l be a piecewise geodesic loop such that ℓ(l) < L and l bounds a disk which

we denote by D. If l bounds two disks, we choose the one included in the ball of

radius L centred at the basepoint of l. By assumption on L, there is at most one

i ∈ {1, . . . , q} such that l meets one of the edges ei,1, ei,2, ei,3 and it does not meet

the three of them. We may assume that l meets none of the edges ei,j except possibly

e1,2 and e1,3.

Let G be a graph on (M,C ) such that the edges ei,j are edges of G. By repeated

applications of Proposition 1.3.15, we may assume that G has exactly one face in each

connected component of M \ (C ∪{l}). The number of these components depends on

the relative position of l and the curve l1. Nevertheless, G has the following property:

each face adjacent to one of the edges e1,1, . . . , ep,1 or their inverses has an area greater

or equal to A.

Let us define E1 = {e1,1, e−1
1,1, . . . , eq,1, e

−1
q,1} and F1 as the subset of F consist-

ing of all faces adjacent to an edge of E1. We have ♯F1 ≤ 2q. Set KX,A =

sup
{
QA(x)
QA(y) : x, y ∈ G

}
. Then, by Lemma 4.3.14,

(61)∫

M(P(G),G)

dG(1, h(l)) DF
X,G
M,vol,C ,C(dh) ≤ K2q

X,A

∫

M(P(G),G)

dG(1, h(l)) DF
X,G
M,vol,∅,∅(dh).

By the axiom DI , we can remove edges from G so that it becomes a graph G1 with

only two faces, D and another one, denoted by F , of area vol(M \D), without altering

the value of the integral above. Hence, by proposition 4.3.12,

l.h.s. of (61) ≤ K2q
X,A

∫

M(P(G1),G)

dG(1, h(l))Qvol(D)(h(l))Qvol(M−D)(h(∂F )) UG

M,∅(dh)

≤ K2q+1
X,A

∫

G

dG(1, x)Qvol(D)(x) dx

= K2q+1
X,A E

[
dG(1, Xvol(D))

]

≤ KK2q+1
X,A

√
vol(D).

This is the expected result.

We can conclude this chapter by proving Theorem 4.3.1.

Proof of Theorem 4.3.1. — Let X be an admissible Lévy process. Let DFX be de-

fined by Definition 4.3.2. By Proposition 4.3.10, it is a discrete Markovian holonomy

field. By Propositions 4.3.11 and 4.3.15, it is regular. By theorem 3.2.9, DFX is

the restriction of a regular Markovian holonomy field, which we denote by HFX . By

Proposition 4.3.9, the Lévy process associated with HFX is indeed X .





CHAPTER 5

RANDOM RAMIFIED COVERINGS

In this chapter, we investigate the Markovian holonomy field that we have associ-

ated to a Lévy process in the case where G is a finite group. In this case, the structure

of the Lévy process is particularly simple. It is a continuous time Markov chain with

a jump distribution invariant by conjugation and, depending on the orientation issue,

by inversion.

It turns out that in this case, the canonical process associated to the Markovian

holonomy field is the process of monodromy in a random ramified covering picked un-

der a probability measure which depends in a simple way on the Lévy process. This

is consistent with the usual heuristic interpretation of the Yang-Mills measure as a

probability measure on the space of connections on a principal bundle. Indeed, ram-

ified coverings can be naturally interpreted as discrete models for principal bundles,

endowed with a connection which is flat everywhere but at the ramification points,

where it is concentrated.

5.1. Ramified G-bundles

Let us choose once for all a finite group G. Let (M, vol,∅, C) be a measured

surface with G-constraints on the boundary. For the sake of simplicity, we treat the

case C = ∅.

Let Y ⊂M \ ∂M be a finite subset. A principal G-bundle over M −Y is a smooth

covering π : P →M \ Y of M \ Y by a surface P on which G acts freely on the right,

by smooth automorphisms of covering and transitively on each fibre. The surface P

is not compact unless Y = ∅ and in general it is not connected. Two G-bundles

π : P → M \ Y and π′ : P ′ → M \ Y are isomorphic if there exists a G-equivariant

diffeomorphism h : P → P ′ such that π′ ◦ h = π.

A ramified bundle over M with ramification locus Y is a continuous mapping

π : P → M from a surface P such that the restriction of π to π−1(M \ Y ) is a

covering and, for all y ∈ Y and all p ∈ π−1(y), there exists a neighbourhood U of p
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and an integer n ≥ 1 such that the mapping π|U : (U, p)→ (π(U), y) is conjugated to

the mapping z 7→ zn : (C, 0)→ (C, 0). The integer n is called the order of ramification

of p. We assume that for all y ∈ Y , there exists p ∈ π−1(y) whose order of ramification

is at least 2. Two ramified coverings π : P → M and π′ : P ′ → M are isomorphic if

there exists a homeomorphism h : P → P ′ such that π′ ◦ h = π.

From the classical fact that the only connected coverings of finite degree of C∗ are,

up to isomorphism, the mappings z 7→ zn : C∗ → C∗ for n ≥ 1, it follows that a

principal G-bundle π : P →M \ Y can always be extended to a ramified covering of

M by a suitable compactification of P , and that any two such extensions give rise to

isomorphic ramified coverings. Moreover, it is possible to endow the total space of

the ramified covering with a differentiable structure in such a way that the covering

map is smooth.

Definition 5.1.1. — A ramified principal G-bundle over M with ramification locus

Y is a smooth ramified covering π : R→M of M with ramification locus Y , together

with an action of G on π−1(M \ Y ) which endows the restriction of π to π−1(M \ Y )

with the structure of a principal G-bundle.

Two ramified principal G-bundles π : R → M and π : R′ → M with ramification

locus Y are isomorphic if their restrictions to M − Y are isomorphic as principal

G-bundles.

Remark 5.1.2. — By the discussion before the definition, two isomorphic ramified

G-bundles are also isomorphic as ramified coverings. However, an isomorphism of

ramified coverings between two ramified G-bundles is not necessarily an isomorphism

of ramified G-bundles. Consider for example, for n ≥ 3, the trivial Z/nZ-bundle

R = M×Z/nZ. The group Sn acts on R by permuting the sheets and this is an action

by automorphisms of covering. Nevertheless, only a cyclic permutation of the sheets

is an isomorphism of Z/nZ-bundle. In general, the group of covering automorphisms

of a principal G-bundle is bigger than G. This is related to the fact that the total space

of the covering is not always connected, so that the group of covering automorphisms

does not always act freely.

Remark 5.1.3. — In the case where G is the symmetric group Sn, ramified G-

bundles are the same thing as ramified coverings of degree n. Indeed, let π : P →M

be a principal Sn-bundle, ramified over Y . The group Sn acts naturally on {1, . . . , n}
and the associated bundle P ×Sn

{1, . . . , n}, which is the quotient of P × {1, . . . , n}
by the relation

(p, k) ≃ (p′, k′)⇔ ∃σ ∈ Sn, (p
′, k′) = (pσ, σ−1(k)),

is a ramified covering of M of degree n with ramification locus Y .

Conversely, let π : R −→ M be a ramified covering of degree n with ramification

locus Y . Let m be a point of M \ Y . By a labelling of R at m we mean a bijection
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between π−1(m) and the set {1, . . . , n}. For each m ∈M \Y , let Labm(R) denote the

set of labellings of R at m. The group Sn acts on the right, transitively and freely

on Labm(R). Then Lab(R) = ∪m∈MLabm(R) endowed with the natural topology and

projection on M , is a principal Sn-bundle over M ramified over Y . At a point y ∈ Y ,

the ramification type of R is a partition of n and the monodromy of Lab(R) around

y is the corresponding conjugacy class of Sn.

It is easy to check that, if P is a Sn-bundle, then Lab(P ×Sn
{1, . . . , n}) is canon-

ically isomorphic to P .

Let R(M) (resp. R(M,Y )) denote the set of isomorphism classes of ramified

principal G-bundles over M (resp. with ramification locus Y ).

Definition 5.1.4. — A based ramified G-bundle is a pair (R, p) where π : R→M

is a ramified bundle and p ∈ R is a point such that π(p) does not belong to the

ramification locus of R. The pair (R, p) is said to be based at π(p).

Two based ramified G-bundles (R, p) and (R′, p′) are isomorphic if there exists an

isomorphism f : R→ R′ of ramified G-bundles such that f(p) = p′.

The importance of this notion comes from the face that the automorphism group

of a based ramified bundle is trivial.

Let m be a point of M . We denote by Rm(M) (resp. Rm(M,Y )) the set of

isomorphism classes of based ramified G-bundles based at m (resp. with ramification

locus Y ).

5.2. Monodromy of ramified G-bundles

Consider R ∈ R(M,Y ). Choose m ∈ M \ Y . Choose p ∈ π−1(m). For each loop

l ∈ Lm(M) which does not meet Y , the lift of l starting at p finishes at pg for a

unique g ∈ G, called the monodromy of R along l with respect to p. This monodromy

depends only on the homotopy class of l in M − Y . Hence, the choice of p deter-

mines a group homomorphism monp : π1(M \ Y,m) −→ G, which characterizes the

based ramified G-bundle (R, p) up to isomorphism. Another choice of p would lead to

another homomorphism, which differs from monp by composition by an inner auto-

morphism of G. The class of the homomorphism monp modulo inner automorphisms

of G characterizes the ramified G-bundle R up to isomorphism (see [33]).

The words monodromy and holonomy are synonymous in this work, but we use the

first in the context of ramified bundles and the second in the framework of Markovian

holonomy fields.

An automorphism of the ramified G-bundle R is completely determined by the

point to which it sends p. This point is of the form pg for a unique g, hence the

choice of p allows us also to identify Aut(R) with a subgroup of G which we denote by

Autp(R). Let Monp(R) be the image of the homomorphism monp : π1(M \Y,m)→ G.
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Then Autp(R) is the centralizer of Monp(R). Again, changing p to ph for some h ∈ G
conjugates Monp(R) and Autp(R) by h.

In order to study R(M,Y ), it is convenient to choose a system of generators of

π1(M \Y,m). To do this, let us first assume that Y is not empty and set k = #Y . Let

us choose on M a graph G such that m is a vertex of G and each face of G contains

exactly one point of Y . Throughout this chapter, we use the notation g = g(M), p =

p(M), and f = f(G) when there is no ambiguity. In the present situation, f = k. By

Lemma 1.3.33, the group RLv(G) is naturally isomorphic to π1(M \ Y,m). According

to Proposition 2.4.2, let us choose a tame system G = {a1, . . . , ag, c1, . . . , cp, l1, . . . , lk}
of generators of RLv(G), associated with a certain word w in the free group of rank

g. For all ramification point y ∈ Y , we denote by O(R, y) the conjugacy class of

the monodromy along the facial lasso whose meander goes around y. This is also the

conjugacy class of the monodromy along any small loop which circles once around y,

positively if M is oriented. In particular, it does not depend on the choice of G.

Recall that the surface M is endowed with a set C of G-constraints along its

boundary. Thus, to each oriented connected component b of ∂M , the G-constraints

C associate a conjugacy class C(b) of G. Let us write B(M) = {b1, b−1
1 , . . . , bp, b

−1
p }

and, for all i ∈ {1, . . . , p}, Oi = C(bi). We define the setsR(M,C), (resp. R(M,Y,C),

Rm(M,C), Rm(M,Y,C)) as the sets of isomorphism classes of ramified G-bundles

(resp. with ramification locus Y , based at m, based at m with ramification locus Y )

such that the monodromy along bi belongs to Oi for all i ∈ {1, . . . , p}.
Let us use the information gathered so far to build concrete models for the various

spaces of isomorphism classes of ramified G-bundles. Let us define

H(M,k,C,w) =
{
(a1, . . . , ag, c1, . . . , cp, d1, . . . , dk) ∈ Gg ×O1 × . . .×Op × (G \ {1})k :

w(a1, . . . , ag)c1 . . . cpd1 . . . dk = 1
}
.

We denote by ai, ci, di : H(M,k,C,w)→ G the obvious coordinate mappings.

If Y is empty, then we choose G with a single face. Then the appropriate concrete

model is the following space:

H(M, 0, C, w) =

{(a1, . . . , ag, c1, . . . , cp) ∈ Gg ×O1 × . . .×Op : w(a1, . . . , ag)c1 . . . cp = 1} .

The group G acts on H(M,k,C,w) by simultaneous conjugation on each factor.

Let us consider the following diagram :

(62) Rm(M,Y,C)
∼

//

��

H(M,k,C,w)

��

R(M,Y,C)
∼

// H(M,k,C,w)/G
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The vertical arrow on the left is the map which forgets the base point. The vertical

arrrow on the right is the quotient map. The top horizontal arrow is given by the

monodromy with respect to the base point along the elements of G . The bottom

horizontal arrow is also given by this monodromy, but since no base point is specified,

it is defined up to global conjugation.

This diagram is commutative and, according to the discussion at the beginning of

this section, its horizontal arrows are bijections.

The preimage of an element R ∈ R(M,Y,C) by the vertical arrow consists in
#G

#Aut(R) elements. It follows that, for all function f : R(M,Y,C) −→ C, which can

alternatively be seen as an invariant function on H(M,k,C), we have the counting

formula

(63) ∑

R∈R(M,Y,C)

1

#Aut(R)
f(R) =

1

#G

∑

(R,p)∈Rm(M,Y,C)

f(R) =
1

#G

∑

h∈H(M,k,C,w)

f(h).

5.3. Measured spaces of ramified G-bundles

Let us start by putting a topology on the sets of ramified G-bundles. For each

based ramified G-bundle (R, p) based at π(p) = m with ramification locus Y , and

each open subset U of M \ {m} containing Y , we define

V((R, p), U) = {(R′, p′) ∈ Rm(M,C) : (R, p)|M\U ≃ (R′, p′)|M\U as G-bundles}.
The sets V((R, p), U) form a basis of a topology on Rm(M,C) and from now on we

consider this space endowed with that topology. Similarly, we endow R(M,C) with

the topology generated by the sets

V(R,U) = {R′ ∈ R(M,C) : R|M\U ≃ R′
|M\U},

where U contains the ramification locus of R. These topologies make the projection

Rm(M,C) → R(M,C) continuous. However, observe that the number of ramifica-

tion points is not a continuous function with respect to these topologies, it is only

lower semi-continuous. In fact, these topologies are the roughest which make the

monodromy along any loop on M a continuous functions on its definition set.

Let F(M) denote the set of finite subsets of M . For each k ≥ 0, let ∆k ⊂ Mk

denote the subset of Mk on which at least two components are equal. We endow

F(M) with the topology which makes the bijection F(M) ≃ ⊔k≥0(M
k \ ∆k)/Sk a

homeomorphism. Once again, the natural mapping Ram : R(M,C) −→ F(M) which

associates to a covering its ramification locus is not continuous.

It is now time to introduce the Lévy process. Let X be a continuous-time Markov

chain on G, with jump measure invariant by conjugation, and also invariant by inver-

sion if M is non-orientable. Its Lévy measure Π is a finite invariant measure supported

by G \ {1}.
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We denote by Π1 the probability measure Π
Π(G) on G. We define now the weight of

a ramified G-bundle with respect to Π. Recall that if R is ramified at y, then O(R, y)

denotes the conjugacy class of the monodromy of a small circle around y, positively

oriented if M is oriented.

Definition 5.3.1. — Consider R ∈ R(M). Let Y denote the ramification locus of

R. The Π-weight of R is the non-negative real number Π1(R)defined as follows :

Π1(R) =
∏

y∈Y

Π1(O(R, y))

#O(R, y)
.

If R is represented by an element h of H(M,k,C,w), then Π1(R) =
∏k
i=1 Π1({di(h)}).

The notion of weight of a ramified G-bundle allows us to define positive measures

on the spaces of bundles. The choice of the normalization will be justified by later

results.

Definition 5.3.2. — The Borel measure BBXM,m,Y,C on Rm(M,Y,C) is defined by

BBXM,m,Y,C =
#G1−g

#O1 . . .#Op

∑

(R,p)∈Rm(M,Y,C)

Π1(R) δ(R,p).

By the left vertical arrow of (62), this measure is projected on the Borel measure

RBXM,Y,C on R(M,Y,C) defined by

RBXM,Y,C =
#G2−g

#O1 . . .#Op

∑

R∈R(M,Y,C)

Π1(R)

#Aut(R)
δR.

Thanks to the counting formula (63), we can roughly bound above the total mass

of BBXM,m,Y,C by

(64) BBXM,m,Y,C(1) ≤ #G1−g

#O1 . . .Op
∑

h∈H(M,k,C)

Π1(h) ≤ #G.

Our next objective is to put measures onRm(M,C) andR(M,C), the sets in which

the ramification locus is not fixed. We have endowed both spaces with topologies.

Thus, they carry a Borel σ-field. LetM+(R(M,C)) andM+(Rm(M,C)) denote the

spaces of positive Borel measures on R(M,C) and Rm(M,C) respectively, endowed

with the topology of weak convergence.

Proposition 5.3.3. — The mapping from F(M) to M+(R(M,C)) which sends Y

to RBXM,Y,C is continuous. Similarly, the mapping from F(M) to M+(Rm(M,C))

which sends Y to BBXM,m,Y,C is continuous on its definition set.

Proof. — We prove only the first statement. The second one is very similar.

By definition of the topology on F(M), it suffices to prove that the mapping from

Mk −∆k to M+(R(M,C)) which sends Y = (y1, . . . , yk) to RBXM,Y,C is continuous
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for all k ≥ 0. Consider k ≥ 0, Y = {y1, . . . , yk} and a bounded continuous function

f : R(M,C) −→ R. Choose ε > 0. For simplicity, assume that M is endowed with a

Riemannian metric.

Since R(M,Y,C) is a finite set, the continuity of f implies the existence of r > 0

such that the balls B(yi, r) are contained in M \ ∂M , pairwise disjoint and such that

the neighbourhood U = B(y1, r) × . . .×B(yk, r) of Y in Mk \∆k satisfies

∀R ∈ R(M,Y,C), ∀R′ ∈ V(R,U), |f(R′)− f(R)| < ε

#R(M,Y,C) Π(G)
.

Let Y ′ = {y′1, . . . , y′k} be an element of U . Let φ be a diffeomorphism of M such

that φ|M\U = idM\U and φ(yi) = y′i for all i ∈ {1, . . . , k}. For each bundle π :

R −→ M belonging to R(M,Y,C), the bundle φ(R) = (φ ◦ π : R −→ M) belongs

to R(M,Y ′, C). Replacing φ by its inverse in the definition of φ : R(M,Y,C) −→
R(M,Y ′, C) yields the inverse mapping, hence φ is a bijection. Moreover, for each i ∈
{1, . . . , k}, O(φ(R), y′i) = O(R, yi), so that Π(φ(R)) = Π(R). Also, the conjugation

by φ determines an isomorphism between Aut(R) and Aut(φ(R)). Finally, R and

φ(R) are isomorphic outside U . Altogether,
∣∣∣RBXM,Y ′,C(f)− RBXM,Y,C(f)

∣∣∣ ≤
∑

R∈R(M,Y,C)

Π(R)

#Aut(R)
|f(φ(R))− f(R)| < ε.

Since k, Y , f and ε were arbitrary, the result follows.

We choose for the ramification locus a very simple probability distribution which

incorporates the measure vol on M . Let Ξ be the distribution of a Poisson point

process of intensity Π(G)vol on M . It is a Borel probability measure on F(M).

Moreover, for all m ∈ M , Ξ({Y : m ∈ Y }) = 0. According to Proposition 5.3.3, the

following definition is legitimate.

Definition 5.3.4. — The Borel measures RBXM,vol,C on R(M,C) and BBXM,m,vol,C

on Rm(M,C) are defined by

RBXM,vol,C =

∫

F(M)

RBXM,Y,C Ξ(dY ) =

∫

F(M)


 ∑

R∈R(M,Y,C)

Π(R)

#Aut(R)
δR


 Ξ(dY ),

BBXM,m,vol,C =

∫

F(M)

BBXM,m,C Ξ(dY )

=

∫

F(M)


 1

#G

∑

(R,p)∈Rm(M,Y,C)

Π(R) δ(R,p)


 Ξ(dY ).

Since Ξ({Y : m ∈ Y }) = 0, the subset of R(M,C) which consists in bundles rami-

fied over m is negligible for the measure RBXM,vol,C . Hence, the measure BBXM,m,vol,C

projects on RBXM,vol,C by the left vertical arrow of the diagram (62). In particular,

these measures have the same total mass. Thanks to (64), this total mass is finite.
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Hence, RBXM,vol,C and BBXM,m,vol,C are finite measures. We will denote by NRBXM,vol,C

and NBBXM,m,vol,C the corresponding probability measures.

Although this is not absolutely necessary, let us compute BBXM,m,vol,C(1). Recall

that (55) gives an expression of the density of the 1-dimensional marginals of the

Lévy process X with respect to the uniform measure on G: setting, for all α ∈ Irr(G),

Π̂(α) =
∑
x∈G χα(x)Π({x}), we have

(65) ∀t > 0, ∀x ∈ G, Qt(x) = e−tΠ(G)
∑

α∈Irr(G)

et
Π̂(α)

χα(1)χα(1)χα(x).

In the present context, this equality can be checked by an elementary computation,

using the following formula, which we will need again later and which is proved by

using the standard properties of characters.

Lemma 5.3.5. — For all k ≥ 1 and all x ∈ G, the following equality holds:

∑

x1,...,xk∈G
Π({x1}) . . .Π({xk})1x1...xk=x =

1

#G

∑

α∈Irr(G)

(
Π̂(α)

χα(1)

)k
χα(1)χα(x).

We can now compute the mass of BBXM,m,vol,C(1).

Proposition 5.3.6. — The total mass of the measure BBXM,m,vol,C is equal to

(66)
1

#Gg∏p

i=1 #Oi
∑

a1,...,ag∈G
c1∈O1,...,cp∈Op

Qvol(M)(w(a1 . . . ag)c1 . . . cp),

which, with the notation of Definition 4.3.6, is none other than
∫

G

Qvol(M) dmM,∅,C .

Proof. — Choose Y ∈ F(M). Set k = #Y . Choose a graph G, a vertex v of G and

a tame system of generators of RLv(G) associated with some word w, like we did

in Section 5.2. This determines a bijection Rm(M,Y,C) ≃ H(M,k,C,w). By the

counting formula (63),

BBXM,m,Y,C(1) =
#G1−g

∏p
i=1 #Oi

∑

h∈H(M,k,C,w)

k∏

i=1

Π1({di(h)})

=
#G1−g

∏p

i=1 #Oi
∑

a1,...,ag∈G
c1∈O1,...,cp∈Op

∑

d1,...,dk∈G

k∏

i=1

Π({di(h)})
Π(G)

1d1...dk=w(a1...ag)c1...cp
.
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By Lemma 5.3.5, this is equal to

1

#Gg∏p
i=1 #Oi

∑

a1,...,ag∈G
c1∈O1,...,cp∈Op

α∈Irr(G)

1

Π(G)k

(
Π̂(α)

χα(1)

)k
χα(1)χα(w(a1 . . . ag)c1 . . . cp).

Integrating this expression with respect to Y under the probability measure Ξ amounts

to replacing k by a Poisson random variable with parameter Π(G)vol(M) and taking

the expectation. Using (65), we find that this expectation is equal to (66).

5.4. The monodromy process as a Markovian holonomy field

Let m be a point of M . Let l ∈ Lm(M) be a loop based at m. Since l is rectifiable,

its range is negligible for the measure vol. Hence, the ramification locus of a ramified

G-bundle based at m distributed according to the probability measure NBBXM,m,vol,C

is almost surely disjoint from the range of l. The mapping Pl : Rm(M,C)→ G which

sends a pair (R, p) to the monodromy of R along l with respect to p is defined on

the subset where the ramification locus is disjoint from l and thus is a well-defined

random variable under the probability measure NBBXM,m,vol,C .

Let l1, l2 ∈ Lm(M) be two loops. Let (R, p) be an element of Rm(M,C). Let g1 and

g2 be the monodromies of l1 and l2 respectively. Let us compute the monodromy of

l1l2. The point p is sent to pg1 by the parallel transport along l1. Then, on one hand

the parallel transport along l2 sends p to pg2 and on the other hand the the parallel

transport commutes to the action of G on the right on π−1(m). Thus, the parallel

transport along l2 sends pg1 to pg2g1. It appears that monodromies are multiplied

in the reversed order of concatenation. Coming back to the probabilistic setting, this

implies that

∀l1, l2 ∈ Lm(M) , Pl1l2 = Pl2Pl1 almost surely.

It is even easier to check that for all l ∈ Lm(M), Pl−1 = P−1
l almost surely.

Thanks to Proposition 2.2.3, these two relations ensure that the collection of ran-

dom variables (Pl)l∈Lm(M) defined on the probability space (Rm(M,C),NBBXM,m,vol,C)

determines a probability measure on the space (M(Lm(M), G), C). We denote this

probability measure by NMFXM,m,vol,C . By restriction, this probability measure is also

defined on the invariant σ-field and, by Lemma 2.1.5, determines a probability mea-

sure on the measurable space (M(P(M), G), I), which we denote by NMFXM,(m),vol,C .

Finally, we define a finite measure on (M(P(M), G), I) by

MFXM,(m),vol,C = BBXM,vol,C(1)NMFXM,(m),vol,C .

Lemma 5.4.1. — The measure MFXM,(m),vol,C on (M(P(M), G), I) does not depend

on the point m. We denote it by MFXM,vol,C.
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Proof. — By Definition 2.1.6, it suffices to show that, if l1, . . . , ln are loops on M

based at the same point m0, and f : Gn → C is a function invariant under the

action of G by diagonal conjugation, then the distribution of f(h(l1), . . . , h(ln)) under

NMFXM,(m),vol,C does not depend on m. By definition, this distribution is that of

f(Pcl1c−1 , . . . , Pclnc−1) under BBXM,m,vol,C , where c is an arbitrary path from m to

m0. Let m and m′ be two points. Let us chose a path c from m to m0 and a path

c′ from m′ to m. It suffices to prove that the distributions of f(Pcl1c−1 , . . . , Pclnc−1)

under BBXM,m,vol,C and f(Pc′cl1c−1c′−1 , . . . , Pc′clnc−1c′−1) under BBXM,m′,vol,C coincide.

Let Y be a finite subset of M which does not meet c′. Let (R, p′) be an element of

Rm′(M,Y,C). Then, for each i ∈ {1, . . . , n}, the monodromy of R along c′clic−1c′−1

relatively to p′ is equal to the monodromy of R along clic
−1 relatively to the image of

p′ by parallel transport along c′, which we denote by p. Thus, it suffices to prove that

the mapping Rm′(M,Y,C) → Rm(M,Y,C) which sends (R, p′) to (R, p), where p is

the image of p′ by parallel transport along c′, sends the measure BBM,m′,Y,C to the

measure BBM,m,Y,C. This follows from the definition of these measures and the fact

that the mapping which we consider is a bijection which preserves the Π-weight.

The main result of this section is the following.

Theorem 5.4.2. — The finite measures HFXM,vol,∅,C and MFXM,vol,C on the measur-

able space (M(P(M), G), I) are equal.

This theorem expresses, at least when the surfaces carry only G-constraints along

their boundary, the fact that the holonomy process associated with the Markovian

holonomy field HFX is the monodromy process associated to a random ramified G-

bundle taken under the appropriate distribution.

The proof of this theorem consists in two main steps. In the first step, we prove

that the monodromy process is stochastically continuous. Then, we prove that the

holonomy process and the monodromy process coincide in distribution on the set of

piecewise geodesic loops for some Riemannian metric on M .

Proposition 5.4.3. — The measure MFXM,vol,C is stochastically continuous, in the

sense that is satisfies the first property of Definition 3.1.3.

Proof. — It suffices to prove that for all m ∈ M , all l ∈ Lm(M) and all sequence

(ln)n≥0 of loops based at m converging to l, the sequence (Pln)n≥0 converges in

measure to Pl. Let us endow M with a Riemannian metric and choose m, l and

(ln)n≥0 as above. We assume that all loops are parametrized at constant speed, so

that the sequence of parametrized paths (ln)n≥0 converges uniformly to l.

Choose ε > 0. For each r > 0, let Nr(l) denote the r-neighbourhood of the image

of l. Since the distribution of the ramification locus Ram(R) of R under the finite

measure BBXM,m,vol,C is absolutely continuous with respect to Ξ,

lim
r→0

BBXM,m,vol,C ({(R, p) : Ram(R) ∩ Nr(l) 6= ∅}) = 0.
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Choose r > 0 such that this probability is smaller than ε. Assume also that r is

smaller than the convexity radius of our Riemannian metric on M . Finally, let n0 be

such that n ≥ n0 implies d∞(ln, l) < r. Then, if n ≥ n0, ln and l are homotopic inside

Nr(l) which, with probability greater than 1 − ε, does not contain any ramification

point. Hence,

∀n ≥ n0, BBXM,m,vol,C ({(R, p) : Pln(R) 6= Pl(R)}) < ε.

Since ε is arbitrary, this proves that Pln converges to Pl in measure.

Theorem 5.4.2 asserts the equality of two finite measures. We consider the two

stochastic processes (Hl)l∈Lm(G) and (Pl)l∈Lm(G) which are both the canonical pro-

cess on M(Lm(M), G), the first considered under the measure HFXM,vol,∅,C and the

second under the measure MFXM,(m),vol,C . Although these measures are not in general

probability measures, we use the language of stochastic processes for H and P .

By Proposition 5.4.3 and Theorem 3.3.1, it suffices to endow M with a Riemannian

metric and to show that the restrictions of P and H to piecewise geodesic loops agree

in distribution. For this, as we have already observed several times, it suffices to show

that they agree in distribution when restricted to the set of loops in a graph with

piecewise geodesic edges, or in fact any graph.

Proposition 5.4.4. — Let G = (V,E,F) be a graph on M such that m ∈ V. The

families of random variables (Pl)l∈Lm(G) and (Hl)l∈Lm(G) have the same distribution.

Proof. — It suffices to prove that the equality holds when the processes are restricted

to a family of loops which generate the group RLm(M). Consider a tame family of

generators G = {a1, . . . , ag, c1, . . . , cp, l1, . . . , lf} of RLm(G) associated with a word

w. The loop lf is a function of all other loops, so that it suffices to compute the

distribution of H = (Ha1 , . . . , Hag
, Hc1 , . . . , Hcp

, Hl1 , . . . , Hlf−1
). Let us choose h =

(ga1 , . . . , gag
, gc1 , . . . , gcp

, gl1 , . . . , glf−1
) in Gg ×O1 × . . .×Op ×Gf−1. By Proposition

2.4.2,

HFXM,vol,∅,C(H = h) =
#G1−g−f

∏p

i=1 #Oi

f∏

i=1

Qvol(Fi)(gli),

where we have set glf = w(ga1 , . . . , gag
)gc1 . . . gcp

(gl1 . . . glf−1
)−1.

Now let us compute the corresponding quantity for the monodromy field. Let Y

be a finite subset of M which does not meet G. Let refine G inside each face which

meets Y in order to get a new graph G′, finer than G, such that each face of G′ either

does not meet Y and is equal to a face of G, or contains exactly one point of Y .

By applying Proposition 2.4.2 in each face of a split pattern of G, we can construct

a tame family of generators G ′ of the group of reduced loops of G′ which is finer than

G in the sense that for each face F , the facial lasso of G corresponding to F is the
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product in a certain order of the facial lassos of G ′ corresponding to the faces of G′

contained in F .

For each i ∈ {1, . . . , f}, let us write Yi = Y ∩ Fi = {yi,1, . . . , yi,ki
}. Let {li,j : i ∈

{1, . . . , f}, j ∈ {1, . . . , ki}} be the set of facial lassos of G ′ indexed accordingly. We

may assume that for all i ∈ {1, . . . , f}, li = li,1 . . . li,ki

The family G ′ determines a bijection between Rm(M,Y,C) and H(M,k,C,w).

This allows us to compute the distribution of the random variable

M = (Ma1 , . . . ,Mag
,Mc1, . . . ,Mcp

,Ml1 , . . . ,Mlf−1
)

under BBXM,m,Y,C . We find

BBXM,m,Y,C(M = h) =

#G1−g

∏p
i=1 #Oi

f∏

i=1

∑

gli,1
,...,gli,ki

∈G
Π1({gli,1}) . . .Π1({gli,ki

})1gli,ki
...gli,1

=gli
.(67)

Using Lemma 5.3.5, we find that the quantity (67) is equal to

#G1−g−f

∏p

i=1 #Oi

f∏

i=1

∑

αi∈Irr(G)

(
Π̂(αi)

Π(G)χαi
(1)

)ki

χαi
(1)χαi

(gli).

By integrating this expression with respect to Y under the measure Ξ, we find

BBXM,m,vol,C(M = h) =
#G1−g−f

∏p
i=1 #Oi

f∏

i=1

e−vol(Fi)Π(G)
∑

α∈Irr(G)

evol(Fi)
Π̂(α)

χα(1)χα(1)χα(gli)

=
#G1−g−f

∏p

i=1 #Oi

f∏

i=1

Qvol(Fi)(gli).

This proves that BBXM,m,vol,C(M = h) = HFXM,vol,∅,C(H = h).
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[15] Leonard Gross, A Poincaré lemma for connection forms, J. Funct. Anal. 63

(1985), no. 1, 1–46.

[16] , The Maxwell equations for Yang-Mills theory, Mathematical quantum

field theory and related topics (Montreal, PQ, 1987), CMS Conf. Proc., vol. 9,

Amer. Math. Soc., Providence, RI, 1988, pp. 193–203.

[17] Leonard Gross, Christopher King, and Ambar Sengupta, Two-dimensional Yang-

Mills theory via stochastic differential equations, Ann. Physics 194 (1989), no. 1,

65–112.

[18] Ben Hambly and Terry J. Lyons, Uniqueness for the signature of a path of

bounded variation and the reduced path group, Preprint (2006).

[19] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry.

Vol. I, Wiley Classics Library, John Wiley & Sons Inc., New York, 1996, Reprint

of the 1963 original, A Wiley-Interscience Publication.

[20] Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their ap-

plications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag,

Berlin, 2004, With an appendix by Don B. Zagier, Low-Dimensional Topology,

II.
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