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Avenue Léon Duguit, 33608 Pessac Cedex, France

Abstract

The uncertainty or the variability of the data may be treated by

considering, rather than a single value for each data, the interval of

values in which it may fall. This paper studies the derivation of basic

description statistics for interval-valued datasets. We propose a geo-

metrical approach in the determination of summary statistics (central

tendency and dispersion measures) for interval-valued variables.
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1 Introduction

In descriptive statistics, summary statistics are used to synthesize a set of

real observations. They usually involve:

- a measure of location or central tendency, such as the arithmetic mean,

median, interquartile mean or midrange,

- a measure of dispersion like the standard deviation, range, interquartile

range or absolute deviation.

In this paper, we focus on obtaining basic descriptive statistics as central

tendency and dispersion measures for interval-valued data. Such data are

often met in practice, they typically reflect the variability and/or uncertainty

that underly the observed measurement. Interval data is a special case of

‘symbolic data’, which also comprises set-valued categorical and quantitative

variables as described, e.g., in Bock and Diday (2000).

Empirical extensions of summary statistics to the calculation of the mean

and variance for interval valued-data have been given by Bertrand and Goupil

(2000) and for histogram-valued data by Billard and Diday (2003).

In this paper, we propose a geometrical determination of summary statis-

tics (mean, median, variance, absolute deviation,....) for interval-valued vari-

ables. This approach mimics the case of real-valued variables, with the ab-

solute value of the difference between two real numbers being replaced by a

distance between two intervals.

For real-valued variables, a geometrical way for defining a central value c

of a set {x1, x2, ...., xn} of n real observations is to choose c ∈ R as close as

possible to all the xi’s. Let us define the function Sp:

Sp(c) =‖ x − c ‖p=

{
(
∑n

i=1 | xi − c |p)1/p for p < ∞,

maxi=1...n | xi − c | for p = ∞,
(1)
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where x ∈ R
n is the vector of the n observations xi, ‖ · ‖p is the Lp norm on

R
n, and c = cIn with In the unit vector. Then one can use

ĉ = arg min
c∈R

Sp(c), (2)

as a central value and Sp(ĉ) as the associated dispersion measure. The above

minimization problem has an explicit solution for p = 1, 2,∞.

• When p = 1, the central value is ĉ = xM (the sample median) and the

corresponding dispersion is S1(xM) =
∑n

i=1 | xi − xM |= nsM where

sM is the average absolute deviation from the median.

• When p = 2, the central value is ĉ = x̄ (the sample mean) and the cor-

responding dispersion is S2(x̄) =
√∑n

i=1(xi − x̄)2 =
√

(n − 1)s where

s is the sample standard deviation.

• When p = ∞, the central value is ĉ = xR (the midrange) and the

corresponding dispersion is S∞(xR) = maxi=1...n | xi − xR |= 1
2
w where

w is the sample range.

The pairs (x̄, s2), (xM , sM) and (xr, w) are then consistent with the use of

respectively the L1, L2 and L∞ norms in the function Sp.

For interval-valued variables, we will use the above geometrical approach

to define coherent measures of central tendency and dispersion of a set

{x̃1, x̃2, ...., x̃n} of n intervals x̃i = [ai, bi] ∈ I = {[a, b] | a, b ∈ R , a ≤ b}. A

measure of central tendency c̃ is now an interval c̃ = [α, β] defined in order

to be as close as possible to all the x̃i’s. Replacing in (1) the terms | xi − c |

by a distance d(x̃i, c̃) between two intervals leads to the function S̃p defined

by:

S̃p(c̃) =

{
(
∑n

i=1 d(x̃i, c̃)
p)1/p for p < ∞,

maxi=1...n d(x̃i, c̃) for p = ∞.
(3)

The central interval ˆ̃c = [α̂, β̂] is then defined as

ˆ̃c = arg min
c̃∈I

S̃p(c̃), (4)
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and the corresponding dispersion measure is S̃p(ˆ̃c).

In the following, after a brief recall of some definitions of distances be-

tween intervals (section 2), we exhibit in section 3 particular cases of value p

and distance d for which explicit formula of the lower and upper bounds of

central intervals ˆ̃c have already been developed. Then we resolve in section

4 the case where p = 2 and d is the Hausdorff distance and we show how

the corresponding central interval can be computed in a finite number of

operations proportional to n3. We generalize in section 5 all these results to

hypercubes. Finally, concluding remarks are given in section 6.

2 Distances between intervals

Many distances between intervals have been proposed. They vary from simple

ones to the more elaborated ones. Elaborated distances taking into account

both range and position have been proposed in the framework of symbolic

data analysis (see for instance, Chapter 8 and 11.2.2 of Bock and Diday, 2000,

De Carvalho, 1998, Ichino and Yaguchi, 1994). Simple distances commonly

used to compare x̃1 = [a1, b1] and x̃2 = [a2, b2] are the Lp distances between:

• the two vectors

(
a1

b1

)
and

(
a2

b2

)
of the lower and upper bounds,

• or the two vectors

(
m1

l1

)
and

(
m2

l2

)
of the midpoints mi =

ai + bi

2

and the half-lengths li =
bi − ai

2
.

General distances between sets like the Hausdorff distance (see Nadler,

1978), can also be used to compare two intervals. In the case of two intervals

x̃1 = [a1, b1] and x̃2 = [a2, b2], the Hausdorff distance has the property to

simplify to:

d(x̃1, x̃2) = max(| a1 − a2 |, | b1 − b2 |) . (5)
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By replacing in (5) the lower bound ai by (mi − li) and the upper bound

bi by (mi + li), and according to the following property defined for x and y

in R,

max(|x − y|, |x + y|) = |x| + |y|,

one can show that the Hausdorff distance can be written as:

d([a1, b1], [a2, b2]) =| m1 − m2 | + | l1 − l2 | . (6)

The Hausdorff distance between intervals has then the interesting prop-

erty to be, at the same time,

- a distance between sets,

- equal to the L∞ distance between the vectors

(
a1

b1

)
and

(
a2

b2

)
,

- equal to the L1 distance between the vectors

(
m1

l1

)
and

(
m2

l2

)
.

3 Existing results on central intervals

Explicit formula of the central interval ˆ̃c = [α̂, β̂] = arg minc̃∈I S̃p(c̃) can be

found in some particular cases. We remind these results already obtained

and used in previous works (see for instance Chavent and Lechevallier, 2002,

Chavent, 2004, De Carvalho et al., 2006).

3.1 L1 combination of Hausdorff distances

When p = 1 and d is the Hausdorff distance, S̃p(c̃) reads:

S̃1(c̃) =

n∑

i=1

(| mi − µ | + | li − λ |) , (7)

where µ and λ are the midpoint and the half-length of c̃ = [α, β].
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Minimization of S̃1(c̃) boils down to the two minimization problems:

min
µ∈R

n∑

i=1

|mi − µ| and min
λ∈R

n∑

i=1

|li − λ|.

Theorem 1 In case of an L1 combination of Hausdorff distances, the mid-

point µ̂ and the half-length λ̂ of the central interval ˆ̃c are:

µ̂ = median{mi | i = 1, . . . , n}, λ̂ = median{li | i = 1, . . . , n}. (8)

3.2 L∞ combination of Hausdorff distances

When p = ∞ and d is the Hausdorff distance, S̃p(c̃) reads:

S̃∞(c̃) = max
i=1,...,n

max
{
| ai − α |, | bi − β |

}
, (9)

i.e.

S̃∞(c̃) = max
{

max
i=1,...,n

| ai − α | , max
i=1,...,n

| bi − β |
}

.

Minimization of S̃∞(c̃) boils down to the two minimization problems:

min
α∈R

max
i=1,...,n

|ai − α| and min
β∈R

max
i=1,...,n

|bi − β| .

Theorem 2 In case of an L∞ combination of Hausdorff distances, the lower

bound α̂ and the upper bound β̂ of the central interval ˆ̃c are:

α̂ =
a(n) − a(1)

2
, β̂ =

b(n) − b(1)

2
, (10)

where a(n) (resp. b(n)) is the largest lower bound (resp. upper bound) and a(1)

(resp. b(1)) is the smallest lower bound (resp. upper bound).
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3.3 L2 combination of L2 distances

For p = 2, an explicit solution is easily defined when d is the L2 distance

between either the middles and half lengths of the intervals or between their

lower and upper bounds. For instance in the first case, S̃p(c̃) reads:

S̃2(c̃) =

√√√√
n∑

i=1

d(x̃i, c̃))2 =

√√√√
n∑

i=1

(| mi − µ |)2 + (| li − λ |)2 . (11)

Theorem 3 In case of an L2 combination of L2 distances between midpoints

and half lengths, the midpoint µ̂ and the half-length λ̂ of the central interval
ˆ̃c are:

µ̂ =
1

n

n∑

i=1

mi and λ̂ =
1

n

n∑

i=1

li .

In case of an L2 combination of L2 distances between lower and the upper

bounds, the lower and upper bounds of the intervals of the central interval ˆ̃c

are:

α̂ =
1

n

n∑

i=1

ai and β̂ =
1

n

n∑

i=1

bi .

4 Main result

We study here the case of an L2 combination of Hausdorff distances. When

p = 2 and d is the Hausdorff distance, S̃p(c̃) reads:

(
S̃2(c̃)

)2

=

n∑

i=1

(max(| ai − α |, | bi − β |)2 . (12)

Theorem 4 In case of an L2 combination of Hausdorff distances, the cen-

tral interval c̃ which minimizes (12) can be computed in a finite number of

operations proportional to n3.

Proof: The square is an increasing function over positive numbers, so for-

mula (12) can be rewritten:

(
S̃2(c̃)

)2

=

n∑

i=1

max
(
(ai − α)2, (bi − β)2

)
. (13)
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On the other hand, using midpoints and half-lengths, one obtains:

(ai − α)2 − (bi − β)2 = −4(mi − µ)(li − λ) .

So we see that the maximum in (13) is (ai −α)2 if (mi − µ)(li − λ) ≤ 0, and

(bi − β)2 if (mi − µ)(li − λ) ≥ 0.

Let us denote by (m(1), . . . , m(n)), resp. (l(1), . . . , l(n)), the sample of the

midpoints, resp. the half-lengths, organized in increasing order. Let us define

the intervals:
Mj = [m(j), m(j+1)], j = 0, . . . , n,

Lk = [l(k), l(k+1)], k = 0, . . . , n,
(14)

with m(0) = l(0) = −∞ and m(n+1) = l(n+1) = +∞. For all (µ, λ) in any

rectangle Qj,k = Mj × Lk, the product (mi − µ)(li − λ) has a given sign, for

each i = 1, . . . , n. So the formula (13) for
(
S̃2(c̃)

)2

simplifies over such a

rectangle to:

S̃j,k(c̃) =
∑

i∈Ia,j,k

(ai − α)2 +
∑

i∈Ib,j,k

(bi − β)2 , (15)

where:

Ia,j,k =
{
i ∈ {1 . . . n}|

(
mi −

m(j) + m(j+1)

2

)(
li −

l(k) + l(k+1)

2

)
≤ 0
}
, (16)

Ib,j,k =
{
i ∈ {1 . . . n}|

(
mi −

m(j) + m(j+1)

2

)(
li −

l(k) + l(k+1)

2

)
> 0
}
. (17)

Hence the minimization of
(
S̃2(c̃)

)2

over R
2 is equivalent to the reso-

lution, for j, k = 0, 1 . . . n, of the (n + 1)2 constrained quadratic problems:

(Pj,k)





find (α, β) = (α̂j,k, β̂j,k) which minimizes S̃j,k(α, β)

under the constraints:

2m(j) ≤ α + β ≤ 2m(j+1) and 2l(k) ≤ β − α ≤ 2l(k+1)

(18)

whose resolution is described in the Appendix.
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The central interval ˆ̃c = [α̂, β̂] is then given by:

(α̂, β̂) = arg min
j,k=0,1...,n

S̃j,k(α̂j,k, β̂j,k). (19)

Because the number of operations in the resolution of (18) is proportional

to n, the number of operations for the calculation of (α̂, β̂) is proportional

to n3.

5 The multidimensional case

We consider now a set of n k-dimensional intervals {x̃1, . . . , x̃n} with x̃i =

[ai,bi] and ai,bi ∈ R
k. A k-dimensional interval x̃i can also be viewed as a

regular hyperparallelepiped x̃i =
∏k

j=1 x̃j
i with x̃j

i = [aj
i , b

j
i ] where aj

i (resp.

bj
i ) is the jth coordinate of ai (resp. bi). By misuse of language the x̃i’s will

be called hypercubes in the rest of the paper.

The above geometrical approach can then be used to define a central

hypercube (also called centrocube or prototype) of a set of n hypercubes

{x̃1, . . . , x̃n}, which is now a k-dimensional interval c̃ = [α, β] with α and

β in R
k. Replacing in (3) the terms d(x̃i, c̃) by a distance D(x̃i, c̃) between

two hypercubes leads to the function
˜̃
Sp defined by:

˜̃
Sp(c̃) =

{
(
∑n

i=1 D(x̃i, c̃)p)1/p for p < ∞,

maxi=1...n D(x̃i, c̃) for p = ∞.
(20)

The centrocube c̃ = [α, β] is then be defined by

ˆ̃c = arg min
c̃∈I

˜̃
Sp(c̃). (21)

There exists many possible distances between hypercubes (see for instance

Bock, 2002). Once again, depending on the distance D and on the value p

in
˜̃
Sp(c̃), the centrocube is more or less difficult to calculate.
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A first distance D that could be used is the Hausdorff distance between

two hypercubes:

D(x̃1, x̃2) = max(h(x̃1, x̃2), h(x̃2, x̃1)) (22)

with

h(x̃1, x̃2) = sup
a∈x̃1

inf
b∈x̃2

δ(a, b) (23)

where δ is an arbitrary metric on R
k. We have seen that in the one-

dimensional case, the Hausdorff distance simplifies to (5) but the calculation

of this distance for higher dimensions is more involved and depends of the

choice of the metric δ. If δ is the Euclidean metric for instance, there exist

algorithms that compute the Hausdorff distance between two hypercubes in

a finite number of steps (see e.g., Bock, 2005) but as far as we know, there

exist no algorithm to compute the centrocube. If δ is the L∞ metric, an ex-

plicit solution of the centrocube exists when p = ∞ (see Chavent, 2004). In

other cases, the definition of centrocubes for the original Hausdorff distance

between hypercubes still remains a subject to investigate.

Another approach which makes explicit definitions of centrocubes easier

to find, is to use a distance D that is a combination of coordinate-wise one-

dimensional interval distances d:

D(x̃1, x̃2) =

{
(
∑k

j=1 d(x̃j
1, x̃

j
2)

q)1/q for q < ∞,

maxj=1...k d(x̃j
1, x̃

j
2) for q = ∞.

(24)

When p = q,

(
˜̃
Sp(c̃)

)p

reads:

(
˜̃
Sp(c̃)

)p

=
n∑

i=1

k∑

j=1

(
d(x̃j

i , c̃
j)
)p

(25)

Because d(x̃j
i , c̃

j) ≥ 0, it sufficient to find for each component j the central

interval ˆ̃cj which minimizes
∑n

i=1 d(x̃j
i , c̃

j) , so that the centrocube is the

product of the central intervals of each variable. The results presented in

sections 3 and 4 concerning central intervals can then be applied directly to

define this ‘coordinate-wise’ centrocube.
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6 Concluding remarks

In this paper, we proposed different solutions for the determination of central

intervals and hypercubes. These results have applications in clustering. In-

deed, the existence of explicit formula for the computation of the centrocube

is useful in dynamic clustering (see Diday and Simon, 1976), because it en-

sures the decreasing at each iteration of the criterion
˜̃
Sp. ‘Coordinate-wise’

centrocubes have been defined as prototype in several dynamical clustering

algorithms of interval data. The ‘coordinate-wise’ centrocube for p = q = 1

is used with the Hausdorff distance in Chavent and Lechevallier (2002) and

with the L1 distance between the lower and the upper bounds in De Souza

and De Carvalho (2004). The case p = q = 2 is used by de Carvalho et

al. (2006) with the L2 distance between the lower and upper bounds. The

algorithm proposed in section 4 for the determination of the central interval

in the case of L2 combination of Hausdorff distances gives a solution for the

case p = q = 2 and the Hausdorff distance.

Another application of these results concern the data scaling. Dealing

with scalar variables measured on very different scales is already a problem

when comparing two objects globally on all the variables. For instance, the

Euclidean distance or more generaly the Lq distance will give more impor-

tance to variables of strong dispersion and the comparison between objects

will only reflect their differences on those variables. A natural way to avoid

this effect is to use a normalized distance. A Lq normalized component-wise

distance between hypercubes could then be:

D(x̃1, x̃2) =





(
∑k

j=1(
d(x̃j

1
,x̃j

2
)

S̃(ˆ̃cj)
)q)1/q for q < ∞,

maxj=1...k
d(x̃j

1
,x̃j

2
)

S̃(ˆ̃cj)
for q = ∞.

(26)

where S̃(ˆ̃cj) is the dispersion measure associated to a central interval ˆ̃cj . For

coherency reasons, it seems reasonable to use the same exponent (q = p):

- to aggregate the intervals in the search of the central interval and the

evaluation of the dispersion for each variable (exponent p in (3)),
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- and to evaluate the distance between objects (exponent q in (26)).

To conclude, a natural extension of these results concerns weighted central

tendency and dispersion measures. This point is currently under investiga-

tion.
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Appendix: Resolution of problem (Pj,k)

We describe here the resolution of one of the minimization problems (Pj,k)

of equation (18). We drop the subscripts j, k, and we write m− instead of

m(j), m+ instead of m(j+1), l− instead of l(j) and l+ instead of l(j+1). We use

the midpoint and half-length variables µ = (α + β)/2 and λ = (β − α)/2,

and we denote by Q the rectangle

Q = {(µ, λ) such that m− ≤ µ ≤ m+ and l− ≤ λ ≤ l+} . (27)

With these notations, the problem to solve is now:

(P) find (µ̂, λ̂) which minimizes S̃(µ, λ) over Q, (28)

where the objective funtion is:

S̃(µ, λ) =
∑

i∈Ia

(ai − µ + λ)2 +
∑

i∈Ib

(bi − µ − λ)2, (29)

with Ia and Ib defined respectively in (16) and (17) This objective function is

convex and quadratic (the level lines of S̃ are - possibly degenerated - ellipses

with axis parallel to the directions λ = µ and λ = −µ), and the constraints

in (27) are linear, so that the resolution of (P) is equivalent to that of the

associated Kuhn-Tucker system of necessary conditions.

12



We describe now the corresponding algorithm. We have eliminated the

consideration of some dead-end cases by taking advantage of the convexity

of the problem: when the solution (µ̂, λ̂) of (P) is on one edge of Q (possibly

at a corner of Q) , the unconstrained minimizer (µ̌, λ̌) of S̃ and the center

of Q are necessarily on different sides of the line containing this edge. Hence

the edges of Q which can possibly contain the solution (µ̂, λ̂) are those which

contain the L2-projection of (µ̌, λ̌) on Q.

We suppose for simplicity that the midpoints and half-length of all inter-

vals are distinct:
{

m(1) < m(2) < . . . < m(n)

l(1) < l(2) < . . . < l(n)

(30)

One computes first, in a loop from i to n over the samples:




na =
∑

i∈Ia
1 , nb =

∑
i∈Ib

1 ,

A =
∑

i∈Ia
ai , B =

∑
i∈Ib

bi ,

A2 =
∑

i∈Ia
a2

i , B2 =
∑

i∈Ib
b2
i ,

(31)

with the convention that the sum is zero if the set Ia or Ib of indices is empty.

Notice that na is the number of indices in Ia, and nb is the number of indices

in Ib, so that n = na + nb. With these notations, the gradient of S:

∇S̃(µ, λ) = 2

(
−
∑

i∈Ia
(ai − µ + λ) −

∑
i∈Ib

(bi − µ − λ)

+
∑

i∈Ia
(ai − µ + λ) −

∑
i∈Ib

(bi − µ − λ)

)
.

simplifies to:

∇S̃(µ, λ) = 2

(
−A − B + (na + nb)µ − (na − nb)λ

+A − B − (na − nb)µ + (na + nb)λ

)
. (32)

The minimizer (µ̂, λ̂) of problem (P) can be computed as follows:

1. If na = 0 (a similar reasoning can be done if nb = 0), then function S̃

reduces over Q to:

S̃(µ, λ) =
∑

i=1,...,n

(bi − µ − λ)2 ,

13



and the level lines of S̃ degenerate to the straight lines µ+λ = constant.

The unconstrained minimizers (µ̌, λ̌) of S̃ are then on the line:

(L) n(µ + λ) = B .

If the line (L) goes through Q, problem (P) has an infinite number

of solutions, with at least one of them (in general two) being on the

boundary of Q. If (L) does not hit Q, the unique solution of (P) is

located at the corner of Q closest to (L). In both cases, (P) admits

at least one solution (µ̂, λ̂) on one edge of Q. If we denote by Q∗ the

rectangle on the other side of this edge (for which ña = 1 6= 0), one sees

that (µ̂, λ̂) ∈ Q∗, so that the minimum S̃∗

min
of S̃ over Q∗ will necessarily

be smaller than S̃min, the minimum of S̃ over Q (as (µ̂, λ̂) ∈ Q∗). So

there is no point in computing S̃min, and we can skip the resolution of

problem (P).

2. If na > 0 and nb > 0, the unconstrained minimizer (µ̌, λ̌) of S̃ is unique.

It is given by:

{ ∑
i∈Ia

ai = na(µ̌ − λ̌) = naα̌,∑
i∈Ib

bi = nb(µ̌ + λ̌) = nbβ̌.
(33)

If (µ̌, λ̌) ∈ Q then set µ̂ = µ̌ , λ̂ = λ̌, and problem is solved.

If not, go to the next step.

3. Compute the L2-projection (ˇ̌µ, ˇ̌λ) of (µ̌, λ̌) on Q :

ˇ̌µ =





m− if µ̌ ≤ m−

µ̌ if m− ≤ µ̌ ≤ m+

m+ if m+ ≤ µ̌

, ˇ̌λ =





l− if λ̌ ≤ l−

λ̌ if l− ≤ λ̌ ≤ l+

l+ if l+ ≤ λ̌

(34)

4. If the projection is on a edge of Q, say for example ˇ̌µ = m− , l− < ˇ̌λ < l+

(left edge), determine
ˇ̌̌
λ which zeroes the component of ∇S̃ along this
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edge (here the second component as the edge is parallel to the second

axis µ = 0):

+
∑

i∈Ia

ai − na(m− −
ˇ̌̌
λ) −

∑

i∈Ib

bi + nb(m− +
ˇ̌̌
λ) = 0. (35)

Then set:

µ̂ = m− , λ̂ =





l− if
ˇ̌̌
λ ≤ l− ,

ˇ̌̌
λ if l− ≤

ˇ̌̌
λ ≤ l+ ,

l+ if m+ ≤
ˇ̌̌
λ ,

, (36)

and problem is solved.

5. If the projection is at a corner of Q, say for example ˇ̌µ = m− , ˇ̌λ = l−

(lower-left corner), evaluate the gradient ∇S̃ = (gµ, gλ) at the corner.

• If gµ ≥ 0 and gλ ≥ 0, set µ̂ = m− , λ̂ = l−, and problem is solved.

• If gµ < 0 and gλ ≥ 0, (the objective function is decreasing when

one leaves the lower-left corner to the right on the lower edge of

Q), determine
ˇ̌̌
λ which zeroes the component of ∇S̃ along this

edge (here the first component as the edge is parallel to the first

axis λ = 0):

−
∑

i∈Ia

ai + na(
ˇ̌̌µ − l−) −

∑

i∈Ib

bi + nb(
ˇ̌̌µ + l−) = 0. (37)

Then set:

µ̂ =

{
ˇ̌̌µ if m− < ˇ̌̌µ ≤ m+ ,

m+ if m+ ≤ ˇ̌̌µ ,
, λ̂ = l− , (38)

and problem is solved.

• If gµ ≥ 0 and gλ < 0, similarly determine ˇ̌̌µ which zeroes the

component of ∇S̃ along the left edge of Q:

+
∑

i∈Ia

ai − na(m− −
ˇ̌̌
λ) −

∑

i∈Ib

bi + nb(m− +
ˇ̌̌
λ) = 0 (39)
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Then set:

µ̂ = m− , λ̂ =





ˇ̌̌
λ if l− <

ˇ̌̌
λ ≤ l+ ,

l+ if l+ ≤
ˇ̌̌
λ ,

, (40)

and problem is solved.

• The case gµ < 0 and gλ < 0 cannot happen.

The minimum value S̃min of S̃ over Q is then:

S̃min = A2 − 2A α̂ + α̂2 + B2 − 2B β̂ + β̂2, (41)

where α̂ = µ̂ − λ̂ and β̂ = µ̂ + λ̂.
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