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Argos: an Automaton-BasedSyn
hronous LanguageFloren
e Maranin
hi 1;4 Yann R�emond 2VERIMAG { Centre Equation, 2 Avenue de Vignate { F38610 GIERES 3Abstra
tArgos belongs to the family of syn
hronous languages, designed for programmingrea
tive systems (Lustre [1,2℄, Esterel [3℄, Signal [4℄, ...). Argos is a set of operatorsthat allow to 
ombine Boolean Mealy ma
hines, in a 
ompositional way. It takesits origin in State
harts [5℄, but with the Argos operators, one 
an build only asubset of State
harts, roughly those that do not make use of multi-level arrows. Weexplain the main motivations for the de�nition of Argos, and the main di�eren
eswith State
harts and their numerous semanti
s. We de�ne the set of operators, givethem a perfe
tly syn
hronous semanti
s in the sense of Esterel, and prove that it is
ompositional, with respe
t to the tra
e equivalen
e of Boolean Mealy ma
hines.We give an overview of the work related to the de�nition and implementa-tion of Argos (
ode generation, 
onne
tion to veri�
ation tools, introdu
tion ofnon-determinism, et
.). This paper also gives a set of guidelines for building anautomaton-based, State
hart-like, yet perfe
tly syn
hronous, language.Key words: Argos, syn
hronous language, semanti
s, 
ompositionality
1 Introdu
tionRea
tive Systems and the Syn
hronous Approa
hThe term of rea
tive system [6℄ has been widely a

epted to talk about 
om-puter systems in whi
h the intera
tions with an environment are the promi-1 Institut National Polyte
hnique de Grenoble (INPG) and VERIMAG2 Universit�e Joseph Fourier Grenoble (UJF) and VERIMAG3 Verimag is a joint laboratory of UJF, CNRS and INPG4 Corresponding author, Tel: (33) 4 76 63 48 53; fax: (33) 4 76 63 48 50.E-mail address: Floren
e.Maranin
hi�imag.frPreprint submitted to Elsevier Preprint 14 August 2001



nent aspe
t. They are opposed to transformational ones, in whi
h 
omplexdata stru
tures and algorithms are involved.The problem of spe
ifying, programming and verifying real-time rea
tive sys-tems, together with the de�nition of appropriate development environments,is still an important resear
h problem [5{7℄, the following being widely a
-
epted. There exist appropriate design methods, programming languages andenvironments for transformational systems (or, at least, for systems whi
h aremainly transformational, like 
ompilers). This is not yet the 
ase for rea
tivesystems, like real-time pro
ess 
ontrollers. Moreover, the need for formal ver-i�
ation methods and tools is even more 
ru
ial for rea
tive systems than fortransformational ones, be
ause strong reliability requirements are asso
iatedwith them.The family of syn
hronous languages [8℄ and formalisms has been a very im-portant 
ontribution to the domain. The syn
hronous approa
h is the mathe-mati
al foundation for the Esterel [3℄, Lustre [1,2℄, Signal [4℄ languages, for thealgebra ATP [9℄, for the Con
urrent Constraint Programming paradigm [10℄.To a 
ertain extent, some of the various semanti
s that have been proposed sofar for State
harts [5℄ are also syn
hronous. Mode
harts [11,12℄ were re
entlygiven a syn
hronous semanti
s in the spirit of Esterel.Syn
hronous languages or formalisms are based upon the syn
hrony hypothe-sis, whi
h states that the rea
tion time of the system is zero. From an externalpoint of view, it means that outputs are produ
ed simultaneously with the in-puts, whi
h is 
learly unimplementable; however, a syn
hronous system works�ne provided it rea
ts suÆ
iently fast, w.r.t. the rate imposed by the environ-ment: if relevant 
hanges in the inputs o

ur at most ea
h se
ond, the systemmay take one se
ond to rea
t. When we program a rea
tive system using asyn
hronous language, we always have to prove that the �nal 
ode 
an indeedexe
ute one rea
tion of the system suÆ
iently fast. We would have to do thatfor any language. Simply, the stru
ture of the typi
al imperative 
ode pro-du
ed by 
ompiling a syn
hronous language is su
h that one 
an provide quitea

urate upper-approximations of the exe
ution time, looking at the sour
eprogram. In the general 
ase, 
omputing the so-
alled worst-
ase exe
utiontime (see for instan
e [13℄) of a program is diÆ
ult, mainly be
ause of re
ur-sion and unbounded loops; but these 
onstru
ts never appear in the 
ode of asyn
hronous program.The interesting part is the internal point of view on the syn
hrony hypothesis.The hypothesis states that the rea
tion time of a parti
ular 
omponent, andthe 
ommuni
ation time between 
omponents, are also zero. This makes thesemanti
s of parallel 
omposition very simple. It 
ould be useless if the imple-mentation of the parallel 
omposition in syn
hronous languages was based ona separate implementation of ea
h 
omponent, running in parallel with a kind2



of dynami
 s
heduler, be
ause the hypothesis that the 
ommuni
ation takesno time would 
learly be in 
ontradi
tion with the reality of the exe
ution.But the syn
hronous languages are intended to be 
ompiled into 
entralizedsequential 
ode. The parallel 
omposition and the 
ommuni
ation me
hanismare introdu
ed only for des
ription purposes, at the level of the language;they are 
ompiled into something sequential, hen
e they do not imply expli
itparallelism and 
ommuni
ation at exe
ution time. (The problem of distribut-ing 
ode is also important, but 
an be 
onsidered orthogonal to the fa
t thatthere indeed exists a parallel stru
ture in the sour
e language; see work byP. Caspi [14,15℄).The syn
hrony hypothesis implies that systems 
ompose very well, and are eas-ier to des
ribe and verify than asyn
hronous ones. Moreover, syn
hrony allowsto deal with fun
tional and timing 
orre
tness of a system separately [7,16℄.Finally, syn
hronous languages are programming languages, not only spe
i�
a-tion languages. Their programming environments provide eÆ
ient 
ompilerstowards various kinds of software or hardware targets. Relying on a formallyde�ned semanti
s also allows the 
onne
tion of su
h programming languages tovalidation tools (formal veri�
ation by model-
he
king or dedu
tive methods,test 
ase generation, debugging, et
.). For Lustre, see for instan
e [17,18℄.ArgosThe �rst de�nition of Argos appeared in [19,20℄. Argos is a set of operators for
ombining Mealy ma
hines in parallel and hierar
hi
 stru
tures; it has a puresyn
hronous semanti
s following that of Esterel; it may be given a graphi
alsyntax similar to that of State
harts (with no multi-level arrows), and is indeedinspired by the very �rst papers on State
harts [5℄ and Higraphs [21℄. It is listedin [22℄ as one of the State
harts semanti
 variants, but it was not designedfor that purpose, and a lot of State
harts features are missing. We show,however, that some of these features may be des
ribed from the primitive setof Argos operators, thanks to the syn
hronous semanti
s. We give below themain motivations for the de�nition of Argos.No multi-level arrowsThe main di�eren
e between Argos and the various semanti
s of State
harts inwhi
h people have tried to get rid of the multi-level arrows, is that the perfe
tlysyn
hronous semanti
s we adopted allows to repla
e this rather synta
ti
alfeature by a 
ompletely semanti
al one: some pro
esses, at two di�erent levelsof the hierar
hy, do 
ommuni
ate with ea
h other and this ensures a globalbehavior similar to that of a multi-level arrow. In some sense, this essential3



modi�
ation is similar to what happened when expli
it goto's were repla
edby impli
it ones, available through the use of semanti
al stru
tures like whileloops. The important point is that one 
annot do without something repla
ingmulti-level arrows: they 
orrespond to very usual situations in the rea
tivesystem domain (or you are also bound to forget about hierar
hy of states!).The 
hoi
e we made for Argos has big 
onsequen
es: with no multi-level ar-rows, a State
hart-like pi
ture may be seen as a parti
ular 
ombination ofwell-de�ned automata. An automaton is a set of states and transitions 
on-ne
ted together, and this is possible only at one level. Then 
omplex pi
turesare obtained by two simple 
onstru
ts: put two (possibly 
omposed) obje
tsin parallel; put a (possibly 
omposed) obje
t inside the state of an automaton.This paves the way to a well-de�ned syntax of programs, on whi
h a stru
-tural semanti
s 
an be based. When a syntax-dire
ted semanti
s has beenobtained, 
ompositionality begins to make sense, and a 
areful de�nition ofthe 
omposition operators guarantees it.A Compositional semanti
sWhat does 
ompositionality mean, in this 
ontext? In all programming lan-guages, one 
an build several synta
ti
ally di�erent programs that do the same.When we are in the pro
ess of de�ning a formal semanti
s, this notion may(should) be formalized a little. For Argos, it means the following: the semanti
sof a program is given in terms of a Boolean Mealy ma
hine, the mathemati
almodel we use for rea
tive behaviors. There exists an equivalen
e relation forsu
h ma
hines, that 
aptures the fa
t that two ma
hines represent the samerea
tive behavior (something similar to the fa
t that, in a sequential language,while true do A od and while true do A; A od are the same).Knowing this equivalen
e relation, we 
an de�ne the 
ompositionality 
rite-rion for the semanti
s of Argos: if two sub-programs are the same (i.e. thesemanti
s asso
iates with them two equivalent ma
hines), then one should beable to repla
e one by the other in any program 
ontext, without 
hanging thesemanti
s of the global program (formally: the equivalen
e is a 
ongruen
e forall the operators of the language).We show that this is true for the semanti
s of our operators set. To our opinion,
ompositionality is a key property for the language to be usable: it allows toreason about sub-programs independently.A notion of in
orre
t programsA less prominent (but yet important for programming real systems) di�eren
ebetween Argos and all the State
hart semanti
 variants we know is our notion4



of in
orre
t program. We will see in the sequel that the 
ommuni
ation me
h-anism adopted in State
harts and Argos gives rise to the so-
alled 
ausalityproblems, somewhat similar to deadlo
ks. Imagine a pro
ess that waits forsignal a for emitting signal b, talking to a pro
ess in parallel that waits for bfor emitting a: what should the behavior of the whole be? Are the two pro-
esses stu
k, waiting for ea
h other to start? Or does a kind of spontaneousrea
tion take pla
e? Let us 
all the programs in whi
h su
h problems appear\non-
ausal".For State
harts, people tried to give a meaning to all 
ombinations of obje
ts,in parti
ular non-
ausal ones. This leads to some 
hoi
es in the semanti
sthat may have 
onsequen
es on the 
ompositionality properties, for instan
e.Huizing [23℄ has studied the relationships between what he 
alls responsiveness(obeying the syn
hrony hypothesis), 
ausality andmodularity (a notion relatedto our 
ompositionality), and proved, in his framework, that no semanti
s 
anbe responsive, 
ausal and modular. See more details in se
tion 6.3.In Argos, we followed the path shown by Esterel: there are in
orre
t 
ompo-sitions, to whi
h we are not bound to give a meaning. As a 
onsequen
e, weare interested in 
ompositionality properties for the subset of 
orre
t programsonly. This is mu
h simpler than trying to integrate a notion of 
omposition-ality with a way of giving a meaning to non-
ausal programs; moreover, it islegitimate: this is the point of view of a programming language designer. In allprogramming languages one 
an write in
orre
t programs that are dete
tedat 
ompile-time and reje
ted: no meaning is given. This 
an be due to typing,for instan
e.Of 
ourse, we should provide a dete
tion me
hanism for non-
ausal obje
ts.This is a bit more 
omplex than typing in 
lassi
al languages, however, espe-
ially for valued (i.e. not only Boolean) Argos or Esterel. This is be
ause theexa
t dete
tion of su
h in
orre
t programs is unde
idable. For the Booleansubsets of the languages, it is de
idable, but may be quite expensive, be
auseit depends on the expanded 
ontrol stru
ture of the program.In 
lassi
al languages, the dete
tion of a large 
lass of errors is alsounde
idable. A few errors only 
an be dete
ted at 
ompile-time (likeX := 1/0 ; in Ada) ; otherwise the sour
es of potential dynami
 errors (likeget(Y) ; X := 1/Y ;) are 
learly identi�ed, and the 
ompiler produ
es \de-fensive" 
ode, whi
h may raise ex
eptions at exe
ution-time. Hen
e, the stati
me
hanism may a

ept in
orre
t programs, but it provides well-de�ned dy-nami
 errors.In the family of syn
hronous languages, dedi
ated to the programming ofsafety-
riti
al rea
tive systems, we do not a

ept dynami
 errors. Hen
e wehave to adopt the opposite point of view, and to provide 
onservative ap-5



proximate dete
tion me
hanisms: if a program is a

epted by the dete
tionme
hanism, then it is guaranteed to be free of non-
ausal situations (i.e., dy-nami
 errors); if it is reje
ted, it may 
ontain non-
ausal situations, or it maybe free of these problems too. When su
h a language is augmented with arraysor other data stru
tures, the same prin
iple applies: we 
annot a

ept an \in-dex out of bounds" error at exe
ution-time, hen
e we are bound to be quitedrasti
 at 
ompile-time.The quality of the approximate dete
tion me
hanism is good if it does notreje
t 
orre
t programs too often.A small number of features (or 
onstru
ts)Finally, we deliberately gave priority to a 
lean and simple semanti
s, anddid not hesitate to reje
t some features, if they did not �t well in the sim-ple semanti
 framework. It appears now that a lot of sophisti
ated languagefeatures (some of them borrowed from State
harts) 
an be des
ribed as ma
ro-notations, using a very simple 
ore language. We mention some of them in se
-tion 6.1. This is good news for 
ode-generation, 
onne
tion to analysis tools,et
.Outline of the PaperThe paper is organized as follows: �rst, in se
tion 2, we present the notion ofa Boolean rea
tive system, for whi
h the basi
 Argos operator set is designed,we show a simple example that uses the three main operators of Argos, andwe explain their semanti
s intuitively. Se
tion 3 de�nes the set of operatorsformally. Se
tion 4 de�nes a language based upon this set of operators, andthe notion of 
ausally in
orre
t program. Se
tion 5 dis
usses 
ode generationissues, and the 
onne
tion to analysis tools. Se
tion 6 gives a (probably non-exhaustive) list of related work, with detailed 
omparison. Se
tion 7 is the
on
lusion.2 An Argos Example with intuitive Semanti
s2.1 Boolean Rea
tive SystemsBoolean Mealy ma
hines 
onstitute the basi
 
omponents of Argos programs.They are appropriate for the des
ription of Boolean rea
tive systems, i.e. rea
-tive systems in whi
h the inputs and outputs are pure signals. A digital wat
h6



may be seen as a Boolean rea
tive system: ea
h button of its interfa
e givesone Boolean input signal, and we 
an use two Boolean outputs on and off forea
h element of the digital display. It makes a huge set of outputs (the displayof a single digit needs 7 elements, hen
e 14 signals), but there is no loss ofinformation.The digital wat
h may also be seen as a rea
tive system with integer outputs, inwhi
h 
ase the physi
al environment is supposed to deal with outputs like 10,in order to 
ontrol the display. In some sense, this only 
hanges the position ofthe frontier between what we 
all the system, to be des
ribed in our language,and what we 
all the environment.This is usually suÆ
ient for event systems, like the digital wat
h. For des
rib-ing signal-pro
essing systems, or simply 
ontrol systems in whi
h the inputsare given by sampling a 
ontinuous phenomenon, one needs valued signals,e.g., integers, reals, et
. Although most 
omplex rea
tive systems have bothevent-driven and sampled subsystems, the 
ore of Argos deals with pure sig-nals only, en
oded into Booleans. Values are introdu
ed in se
tion 4.5.2.2 Des
ription of the programFigure 1-a is an Argos program using four automata (or Boolean Mealy ma-
hines), to des
ribe a modulo-8 a-
ounter, with initialization and interruptionfa
ilities. Rounded-
orner boxes are automaton states; arrows are transitions;re
tangular boxes are used for unary operators (see below). A set of states andtransitions whi
h are 
onne
ted together 
onstitutes an automaton. The fourbasi
 
omponents of the program have the following sets of states: fCounting,Not 
ountingg, fA0, A1 g, fB0, B1 g, fC0, C1 g.In an automaton, transitions are labeled by inputs and outputs. The input partof a transition label is a Boolean formula of the input signals, not ne
essarilya 
omplete monomial (the end label stands for end.stop _ end.stop); theoutput part is a set of output signals. (The input part and the output partare separated by a slash; negation is denoted by over-lining, and 
onjun
tionis denoted by a dot: 
=end, stop:end. When the output set is empty, it 
an beomitted). We also omit the transitions from a state to itself, if they do notemit signals. For instan
e, the states A0 and A1 of the �rst bit (resp. B0 andB1, C0 and C1) should have loops labeled by a (resp. b, 
).There is one initial state, designated by an arrow without sour
e. States arenamed, but names should be 
onsidered as 
omments: they 
annot be referredto in other 
omponents. An arrow 
an have several labels | and stand forseveral transitions, in whi
h 
ase the labels are separated by a 
omma.7



The automaton whose states are Counting and Not 
ounting is said to bere�ned, in its Counting state, by a subprogram built with the three otherautomata. The external box, whose 
artridge 
ontains end, is the graphi
alsyntax for a lo
al signal de
laration unary operator. The box de�nes the s
opein whi
h the signal end is known. This signal is used as input by the re�nedautomaton; it is used as output by one of the three other ones: a 
ommuni-
ation will take pla
e between the two. Another su
h unary operator is usedin the program, in order to limit the s
ope of signals b, 
 to the program
onstituted by the three unre�ned automata.The interfa
e of the global program is de�ned as follows: all signals whi
happear in a left-hand (resp. right-hand) side of a label, and are not de
laredto be lo
al to some part of the program are global inputs (resp. global outputs).The shadowed box gives the name of the program (or subprogram), the list ofglobal inputs, and the list of global outputs.Finally, three automata are put in parallel: they are drawn separated by dashedlines.2.3 Intuitive Semanti
sThe behavior is as follows.Initially, the 
ounter is not 
ounting; the global state is Not 
ounting. Itmay be started by the input start, whi
h puts the system in the global stateCounting:A0B0C0, en
oding the value 0. The �rst o

urren
e of the signal athen moves the �rst bit from A0 to A1 and leaves the two other bits un
hanged:Counting:A1B0C0 en
odes 1. The next o

urren
e of a moves the �rst bitba
k to A0; this transition is labeled by a/b, whi
h means that it broad
aststhe signal b towards the other 
omponents, that may rea
t to it in the samerea
tion; it moves the se
ond bit from B0 to B1. The third bit is left un
hanged:Counting:A0B1C0 en
odes 2. The fourth o

urren
e of a moves the �rst bitfrom A1 to A0, whi
h emits b; hen
e it also moves the se
ond bit from B1 to B0,whi
h emits 
; hen
e it moves the third bit from C0 to C1. The global targetstate is Counting:C1A0B0, en
oding 4.The eighth o

urren
e of the signal a moves the 
ounter from stateCounting:A1B1C1 to state Counting:A0B0C0, and emits the signal end, whi
his an input of the main automaton: the system returns to the global state NotCounting.At any moment, a stop signal stops the 
ounter, and the system returns tothe global state Not Counting. The label stop.end is ne
essary for ensuringthe determinism of the main automaton (see details below). However, sin
e8



the two transitions labeled by stop.end and end do not emit signals, andhave the same target state, they 
ould be repla
ed by a single one, labeled bystop _ end.2.4 Equivalent programsThe se
ond program (Figure 1-b) is equivalent to the �rst one (see formalde�nition below): the parallel 
omposition of the three bits, with the signalsb and 
 being de
lared lo
al, has been repla
ed by a 
at automaton, havingthe same behavior.Sin
e the semanti
s is 
ompositional, repla
ing a 
omponent by an equivalentone leaves the global program behavior un
hanged.Figure 2 is a third equivalent program, made of one single 
at automaton. Thesemanti
s of the language formally de�nes the translation of the �rst program(Figure 1-a) into the 
at automaton of Figure 2.3 A set of operations on Boolean Mealy ma
hinesIn this se
tion, we �rst de�ne the obje
ts that serve as basi
 
omponents inall Argos programs: Boolean Mealy Ma
hines, with additional properties likedeterminism and rea
tivity.Then we de�ne a set of operations on these obje
ts that may, or may not,preserve the additional properties.This set of operations is not yet a language. In the language, we add a syntaxfor programs (
omposed obje
ts, i.e. expressions made of basi
 obje
ts andany number of operators), and de�ne the notion of 
orre
tion of a program.The de�nition of the operations makes them total, but the notion of program
orre
tness may de
lare that a parti
ular 
ombination of basi
 obje
ts andoperators is illegal, in whi
h 
ase we are not bound to give it a meaning.3.1 Deterministi
 and Rea
tive Boolean Mealy Ma
hinesA simple rea
tive behavior may be des
ribed by a labeled transition system.The transition system has one initial state. Transition labels are made of twoparts: the input part i, and the output part o. The 
omplete label is denoted9



by i/o. Both parts are built upon a set of elementary intera
tions with theenvironment, 
alled signals.The input part is a Boolean 
ondition on signals. It des
ribe a 
ondition tobe ful�lled by the environment in order to make the system rea
t. A Boolean
ondition des
ribes a set of input signal valuations.The output part is the set of signals the system outputs to its environment,when rea
ting to a given input. One transition is one rea
tion, and is supposedto be instantaneous, hen
e the outputs are simultaneous to the inputs that
ause them. Time passes in states.Let A denote the set of signals. In the general 
ase, a basi
 Argos 
omponentis of the following form :De�nition 1 : Boolean Mealy ma
hineA Mealy ma
hine is a tuple (S; s0; I; O; T ) where I � A; O � A are thesets of input and output signals; S is the set of states; s0 is the initial state;T � S � B(I) � 2O � S is the set of transitions. (B(I) denotes the set ofBoolean formulas with variables in I). 2Without loss of generality, we 
an always 
onsider that the Boolean Mealyma
hines we deal with have only 
omplete monomials as input labels. If theset of inputs is fa; bg, then the input 
ondition a stands for : a ^ b _ a ^ :b,and a transition labeled by a=o may be split into two transitions (between thesame states) labeled by a ^ b=o and a ^ :b=o.De�nition 2 : Bisimulation of Boolean Mealy ma
hinesTwo ma
hines M1 = (S1; s01; I; O; T1) and M2 = (S2; s02; I; O; T2) are said tobe bisimilar, denoted by M1 � M2, if and only if there exists an equivalen
erelation R � S1 � S2 su
h that s01Rs02 and
sRs0 =) 8>>>>>>>><>>>>>>>>: s b=o!r =) 8>>>>><>>>>>:9b1; : : : ; bm; r01; : : : ; r0m su
h that8i 2 [1; m℄; s0 bi=o!r0i ^ r R r0i^ b) (Wi bi)and 
onversely: 2Bisimulation has been �rst introdu
ed by Park and Milner [24,25℄. It 
oin
ides10



with tra
e equivalen
e for deterministi
 systems.The ma
hines we 
onsider should be both deterministi
 and rea
tive. We givethe de�nition only for ma
hines labeled by 
omplete monomials on the set ofinputs.De�nition 3 : Determinism and rea
tivityA ma
hine (S; s0; I; O; T ) is rea
tive i� :8s 2 S; 24 _(s;m;o;s0)2T )m35 = trueIt is deterministi
 i� :8s 2 S; 8t1 = (s;m1=o1; s1) 2 T; 8t2 = (s;m2=o2; s2) 2 Tm1 = m2 =) (o1 = o2) ^ (s1 = s2) 2We will denote by Mr;Md and Mrd, respe
tively, the sets of rea
tive, deter-ministi
, rea
tive and deterministi
 Boolean Mealy ma
hines.Determinism is an important issue. In spite of the inherent non-determinism inthe des
ription of the environment, the programs should des
ribe deterministi
behaviors. In this framework, non-determinism of a rea
tive behavior is simplythe existen
e of two transitions sour
ed in the same state, with non-ex
lusiveinput parts, and di�erent output parts and/or target states.3.2 Operations3.2.1 Cartesian Produ
t or Parallel CompositionThe formal de�nition of parallel 
omposition is based upon the following prod-u
t operation.De�nition 4 : Syn
hronous produ
t of Boolean Mealy ma
hines11



� : M�M �!M(S1; s01; I1; O1; T1)� (S2; s02; I2; O2; T2) =(S1 � S2; (s01; s02); I1 [ I2; O1 [ O2; T 0)Where T 0 is de�ned by :((s1; m1; o1; s01) 2 T1; (s2; m2; o2; s02) 2 T2) =)((s1; s2); m1 ^m2; o1 [ o2; (s01; s02)) 2 T 0) 2The syn
hronous produ
t of Boolean Mealy ma
hines is both 
ommutativeand asso
iative, and it is easy to show that it preserves both determinism andrea
tivity.Note that the parallel 
omposition does not make any syn
hronization between
omponents. It is the appropriate 
onstru
t for the parallel 
omposition of twoindependent systems. When the systems have to 
ommuni
ate or syn
hronizewith ea
h other, parallel 
omposition should be used together with en
apsu-lation of some dedi
ated signals; this is explained below.Sin
e all the 
omponents are rea
tive, a transition in the 
omposed pro
ess
orresponds to exa
tly one transition in ea
h of its parallel 
omponents. Someof them exe
ute loops, and emit no signals, so their rea
tion is not observable,but they do take a transition, and only one.The ma
hine 
orresponding to the parallel 
omposition of the two �rst bits ofthe 
ounter (before applying the unary operator that de
lares b and 
 to belo
al) is given in Figure 3.3.2.2 En
apsulationBasi
 ideasEn
apsulation is a unary operator parameterized by a set of signal names. Itis used to restri
t the s
ope of signals, and to for
e syn
hronization betweenparallel or hierar
hi
 
omponents. Typi
ally, if a signal s is used as the out-put of a 
omponent P and as the input of a 
omponent Q, it may serve as asyn
hronization signal. This is the 
ase for signals b, 
 and end of the 
ounter12



in se
tion 2. The syn
hronization and 
ommuni
ation me
hanism is the syn-
hronous broad
ast (the same as in Esterel): the sender 
an always send, andit needs not know whether 0, 1 or several other 
omponents are listening thissignal. Sending is non-blo
king.The main reason why we express the semanti
s of the syn
hronous broad
astonly in the en
apsulation operator is the following: it may serve for syn
hro-nizing parallel 
omponents, but also hierar
hi
al 
omponents. If we partly in-tegrate it in the semanti
s of the parallel 
omposition, then we need to repeatit in the semanti
s of the hierar
hi
 
omposition.Observation of the exampleThe intuitive semanti
s of the example shows that the bit in whi
h b is aninput should rea
t to this signal only if it 
omes from the previous bit. On theother hand, the signal b is emitted by the �rst bit in order to syn
hronize withthe se
ond one, and should not be visible elsewhere. In su
h a 
ase, the s
opeof b 
an be restri
ted to the parallel 
omposition of the �rst and se
ond bits.In the example, it is in fa
t extended to the parallel 
omposition of the threebits, but it does not appear in the third one, and it is simpler to use only oneen
apsulation operator for the two signals b and 
.De�ning the s
ope of a signal by en
apsulating a subprogram P , allows tosimplify the transitions of P : en
apsulation for
es the syn
hronization betweenthe 
omponents of P by removing some transitions of their produ
t, like therestri
tion in CCS [26℄. It is a bit more 
omplex be
ause of the input/outputstru
ture of the labels, and the Boolean stru
ture of the inputs, but it isessentially the same idea.Formal de�nitionDe�nition 5 : En
apsulationn : M� 2A �!M(S; s0; I; O; T ) n � = (S; s0; I n �; O n �; T 0)Where T 0 is de�ned by :(s;m; o; s0) 2 T ^ m+ \ � � o ^ m� \ � \ o = ;=) (s; 9�:m; o n �; s0) 2 T 0 213



m+ is the set of variables that appear as positive elements in the monomialm(i.e. m+ = fx 2 A j (x ^m) = mg). m� is the set of variables that appear asnegative elements in the monomial m (i.e. m� = fx 2 A j (:x ^m) = mg).Intuitively, a transition (s;m; o; s0) 2 T is still present in the result of theen
apsulation operation if its label satis�es the lo
al 
riterion: m+ \ � � o,whi
h means that a lo
al signal whi
h is supposed to be present has to beemitted in the same rea
tion; and m� \ � \ o = ;, whi
h means that a lo
alsignal that is supposed to be absent should not be emitted in the same rea
tion.If the label of a transition satis�es this 
riterion, then the names of the en-
apsulated signals are hidden, both in the input part and in the output part.This is expressed by 9�:m for the input part, and by on� for the output part.The en
apsulation operator 
an only remove some transitions in a 
omplexobje
t obtained, for instan
e, as the result of a parallel 
omposition. Hen
e itis always true that ea
h basi
 automaton 
omponent in a program parti
ipatesin a global rea
tion by exe
uting exa
tly one transition. The syn
hronizationbased on broad
asting signals does not give rise to in�nite behaviors, or la
kof stability, et
.The syn
hrony hypothesis, stating that 
ommuni
ation takes no time, is il-lustrated here: if we 
onsider two programs P and Q, 
ommuni
ating with asignal a whi
h is made lo
al to their parallel 
omposition, one transition in Pthat emits a, and one transition in Q that rea
ts to the presen
e a, make asingle transition in the result. The parallel 
omposition is 
ompletely 
ompiled,and there is nothing like a 
ommuni
ation at exe
ution time.Determinism and Rea
tivity of an en
apsulated pro
essThe en
apsulation operation does not preserve determinism nor rea
tivity.Intuitively, this is be
ause the 
riterion used for ruling out some transitions ofthe en
apsulated pro
ess, depending on their labels, is applied lo
ally.Take a 
omponent P with two states A1 and A2 and four transitions (A1; i ^a=b; A2), (A1; i ^ a; A1), (A1; i ^ a; A1), (A1; i ^ a; A1), and a 
omponent Qwith two states B1 and B2 and four transitions (B1; i^b=a; B2), (B1; i^b; B1),(B1; i ^ b; B1), (B1; i ^ b; B1).Put these two 
omponents in parallel and make the signals a and b lo
alto the result. For input i, from the 
omposed state A1B1, there will be twodistin
t transitions left when applying the above 
riterion: (A1B1; i; A2B2) and(A1B1; i; A1B1). The �rst one is made of: the transition (A1; i^ a=b; A2) in P ,14



and the transition (B1; i^b=a; B2) in Q, whi
h gives (A1B1; i^a^b=a; b; A2B2)in the produ
t, before en
apsulation; it passes the lo
al 
riterion and thengives (A1B1; i; A2B2) when hiding a and b. The se
ond one is made of thetransition (A1; i ^ a; A1) in P and the transition (B1; i ^ b; B1) in Q, whi
hgives (A1B1; i ^ a ^ b=;; A1B1) in the produ
t, before en
apsulation. It alsopasses the lo
al 
riterion, and then gives (A1B1; i; A1B1) when hiding a and b.The result is no longer deterministi
, be
ause of these two transitions. Thereare no other transitions left in the en
apsulated program.Now, take the same 
omponent P , and a 
omponent Q with two states B1and B2 and four transitions (B1; i ^ b=a; B2), (B1; i ^ b; B1), (B1; i ^ b; B1),(B1; i ^ b; B1).Put them in parallel and en
apsulate the result with lo
al signals a and b: inthe resulting pro
ess, there is no transition sour
ed in A1B1 for input i: theresult is no longer rea
tive.These are the typi
al 
ases where non-determinism and non-rea
tivity appear.It may seem strange to write su
h pathologi
al 
ommuni
ations dire
tly, insu
h simple systems. But this kind of situation may appear in very 
omplex
ompositions of 
omponents, with any number of parti
ipants.Alternative view of the semanti
sAnother way of expressing the semanti
s of the en
apsulation operator is bygiving a system of equations, of whi
h the values of the en
apsulated signals area solution. This view gives some new hints for understanding why determinismand rea
tivity are not preserved.The idea is the following: for ea
h state q of the pro
ess P , and ea
h 
on�gu-ration I of the inputs, there should be exa
tly one status of the en
apsulatedsignals, i.e. one valuation of these signals, seen as Boolean variables. Knowinga 
on�guration of the inputs, and a status of the lo
al signals, it is easy to de-termine the rea
tion of the system, by observing what transitions 
an indeedbe taken.The status of the lo
al signals is the solution of a set of equations that 
an bebuilt as follows. For ea
h lo
al signal s, take the set of transitions sour
ed inq and emitting s (i.e. with a label of the form: 
i=S with s 2 S) and build theequation: s = W 
i. In other words, s is true (emitted) if and only if at leastone of the transitions of P that emits it 
an be �red. This expresses the fa
tthat a lo
al signal 
annot 
ome from outside P : it is present in a rea
tion ofP only if P itself emits it. The important point is that the lo
al signals mayappear in the 
onditions 
i. Hen
e the system of equations obtained by writing15



su
h an equation for ea
h lo
al signal is of the general form; in parti
ular, itmay 
ontain 
y
les of dependen
ies, like a = b; b = a.When the system of equations has exa
tly one solution, it means that therea
tion of the system to input I is unique. If this is the 
ase for ea
h state ofP , then the en
apsulated system is both deterministi
 and rea
tive.If, for a state q, the system of equations has more than one solution (resp.no solution at all) then the en
apsulated pro
ess is no longer deterministi
(resp. rea
tive). This is the 
ase for pro
esses that exhibit equations of theform a = b; b = a (several solutions) or a = b; b = a (no solutions).The typi
al examples presented above give this kind of system: a = i ^ b; b =i ^ a, or a = i ^ b; b = i ^ a. Sin
e we are interested in the rea
tion of thesystem to input i, we repla
e i by true in these equations, and obtain thetypi
al 
ases.The two-bit exampleFigure 4 shows how to apply the en
apsulation operator, for signal b, to thesystem we obtained in �gure 3.An Example: the Instantaneous DialogueObserve the example of �gure 6. It shows an instantaneous dialogue betweenthe two parallel 
omponents. The intuitive behavior is the following: whenin state A, the �rst 
omponent P1 needs to query the state of the se
ond
omponent P2 in order to 
hoose its rea
tion to input i; if P2 is in stateC, then P1 goes to B, otherwise it stays in A. (In State
harts, this wouldbe des
ribed by a 
ondition of the form \i and in(C)" appearing in P1. Weexplain in se
tion 4.4 below why we 
hose not to introdu
e su
h a 
onstru
tin Argos).In Argos, P1 rea
ts to I by emitting Q, whi
h is a question to P2. P2 rea
ts tothis question by saying yes (Y ) if it is indeed in state C, and nothing if it isin another state, say D, or E. The answer and the question are simultaneous,thanks to the syn
hronous broad
ast. Hen
e the behavior of P1, from state A,is des
ribed by: if I and Y , then emit the question Q and take the transitionto B; if I and not Y , then emit the question Q and stay in A. This may seemstrange, be
ause there is no visible sequen
ing between the question and theanswer, but the behavior of the global pro
ess, where both the question Q andthe answer Y are lo
al signals, is exa
tly what we want. This is be
ause thestatus of Q and Y , when the system is in the global state AC, is given by theequations: Q = i ^ Y _ i ^ :Y ;Y = Q, whi
h simpli�es to Q = Y = i. Hen
e16



for input i, both Q and Y are present, the global system takes the transitionfrom A to B and the loop on C.Noti
e that, in Esterel, from whi
h this example is borrowed, the notion of se-quen
e inside a rea
tion allows a natural writing of the dialogue. The programin �gure 5 is made of two parallel 
omponents. The �rst one emits the questionQ when the 
ause I o

urs. Then it 
he
ks whether the answer Y is present, foremitting the output S (we need something observable, like 
hanging state inthe Argos program). The se
ond parallel 
omponent always answers Y whenit re
eives the question Q (the answer 
ould depend on some internal state,of 
ourse, as in the Argos example). await ti
k, meaning \wait until nextinstant" is ne
essary be
ause the 
omponent every Q do emit Y does notemit Y if Q is present in the very �rst instant, but only after that. The parallel
omposition does nothing in the �rst instant, and then behaves as expe
ted.In se
tion 3.2.4 below, we give another version of this program by using theArgos re�nement operator, whi
h is more natural. In Esterel, there is evena third solution, in whi
h P2 emits Y 
ontinuously, when in the appropriatestate, not only when it re
eives the question Q. In this 
ase P1 needs only testY , without asking Q.3.2.3 Inhibiting OperatorThe inhibiting operator is useful for building some of the State
harts or Esterel
onstru
ts from the set of Argos operators, in a stru
tural way (see se
tion 3.3below). P whennot a behaves as P , but only when a is not present. Theinterfa
e of P whennot a has one more input signal.De�nition 6 : Inhibition of a Boolean Mealy ma
hinewhennot : M�A �!M(S; s0; I; O; T ) whennot a is de�ned i� a 62 I and(S; s0; I; O; T ) whennot a = (S; s0; I [ fag; O; T 0)Where T 0 is de�ned by :(s;m; o; s0) 2 T; =) (s;m:a; o; s0) 2 T 0 ^ (s;m:a; ;; s) 2 T 0 217



3.2.4 Hierar
hi
al CompositionThe intuitive behavior of a re�ned pro
ess is the following: a transition thatenters a re�ned state starts the re�ning pro
ess, in its initial state. A transi-tion that leaves a re�ned state kills the re�ning pro
ess, and all informationabout the state it had rea
hed is lost (this, in parti
ular, forbids the \entryby history" of State
harts).An important point is the following: the automaton that is re�ned is alwaysa
tive; when it is in state A, the pro
ess re�ning state A is also a
tive. Theybehave as if they were put in parallel, as far as the 
ommuni
ation betweenthem is 
on
erned. But, of 
ourse, a transition of the re�ned automaton maykill a re�ning pro
ess and start another one, whi
h is not the 
ase for parallel
omposition.Note that the en
apsulation operator 
an be applied to the result of a hierar-
hi
 
omposition too, for syn
hronizing a 
ontroller with its re�ning pro
esses.Finally, a re�ning pro
ess is alive during the rea
tion that kills it (leaving are�ned state is a non-preemptive interrupt). Hen
e it may 
ommuni
ate (orsyn
hronize) with the re�ned automaton. In parti
ular, the transition of theautomaton that leaves the state may be triggered by a signal emitted by there�ning pro
ess itself. In this 
ase, we say that the re�ning pro
ess 
ommitssui
ide. We will see that this parti
ular feature of Argos allows to en
odeoutgoing multi-level arrows in an elegant and 
ompositional way. This is the
ase in the introdu
tory example for the signal end, whi
h is emitted by thethree-bit 
ounter, and kills it. Conversely, in the example, the signal stop a
tsas an external interrupt, whatever the state of the three-bit 
ounter is.On the 
ontrary, the pro
ess that re�nes the target state of a transition o
-
urring in the re�ned automaton is not alive during this rea
tion: it does notparti
ipate in the rea
tion that starts it. This forbids a number of interestingbehaviors (
hoosing the a
tual initial state by an initial transition triggeredby external signals, ...) and the symmetri
al en
oding of ingoing multi-levelarrows. We 
ould modify the semanti
s of the re�nement operator in orderto make it more symmetri
al. However, the basi
 version we present here issimpler, be
ause it does not give rise to the s
hizophrenia problem of Esterel(see [27℄ for details). Roughly speaking, s
hizophrenia would o

ur for a loopon a re�ned state: the re�ning pro
ess is both killed and restarted in its initialstate. In fa
t, two instan
es of it would be alive during the rea
tion, not ne
-essarily in the same state. If the re�ning pro
ess 
ontains lo
al signals, theyall have two instan
es during one rea
tion.With our asymmetri
al semanti
s, s
hizophrenia 
annot o

ur.The formal de�nition is based upon the operation denoted by ., that takes18



a ma
hine for the 
ontroller and n ma
hines for re�ning the n states of the
ontroller. The ma
hine that serves as the 
ontroller is not ne
essarily rea
tive.De�nition 7 : Re�nement. : M� 2M �!MLet M denote (S; s0; I; O; T ), where S = fs0; s1; :::; sng. Consider also a setfMjgj=0::n of ma
hines, to be used as re�nements of the states of M , whereMj = (Sj; sj0; Ij; Oj; T j), and Sj = fsj0; sj1; :::; sjnjg.The 
omposed ma
hine, in whi
h ea
h Mj re�nes the state sj, is of the form:M . fMjgj=0::n = (S . fSjgJ ; s0 . s00; I [ S Ij; O [ SOj; T 0).Its set of states is of the form:S . fSjgJ = Snj=0fsj . sjk; k 2 [0::nj℄gAnd its transitions T 0 are given by the following two rules:1) A transition from sa to sb in the 
ontroller, together with a transitionfrom sak to sak0 in the ma
hine that re�nes the 
urrent state. The outputs aregathered. In the global target state, the ma
hine that re�nes state sb is startedin its initial state, and the ma
hine that re�nes state sa has been killed. Itsinternal state is no longer relevant:(sa; m; o; sb) 2 T ^ (sak; m0; o0; sak0) 2 T a =)(sa . sak; m ^m0; o [ o0; sb . sb0) 2 T 02) A transition of the ma
hine that re�nes the 
urrent state, from sak to sak0,while no transition sour
ed in state sa is a
tivated in the 
ontroller:(sak; m0; o0; sak0) 2 T a =) (sa . sak; m0 ^ 24 ^(sa;m;�;�)2T :m35 ; o0; sa . sak0) 2 T 02Figure 7 illustrates the semanti
s of the hierar
hi
al 
omposition (or \re�ne-ment").Figure 8 is a version of the instantaneous dialogue using re�nement. Thetransitions labeled by i=Q and by Y in the �rst 
omponent may be taken19



together, if the other 
omponent is in state C and indeed answers Y to thequestion Q. When the system is in state AX, the status of the lo
al signals Qand Y is given by the equations: Q = i;Y = Q, whi
h gives Q = Y = i as inthe parallel version of �gure 6, without the need for Boolean simpli�
ation.3.3 Some Useful Combinations of Operators3.3.1 Temporized statesThe ability to atta
h delays to states was proposed in an early unpublished pa-per about State
harts. In argos, it is very easy to introdu
e su
h a 
onstru
tand to give it a 
lear semanti
s; indeed, it 
an be introdu
ed as a ma
ro-notation. Following syn
hronous languages (Lustre, Esterel, Signal), argosdeals with multiform time. Any external input event 
an be used as a 
lo
kfor the system, whi
h may 
ount meters as well as se
onds. Figure 9-a showsa temporized state Tempo. The notation [d a℄ means that a delay d is asso-
iated with the state. d is a positive integer, and a is the name of an inputsignal, whi
h gives the unit of time. The behavior of the system is as follows:when the system enters state Tempo, it 
an stay in this state at most until do

urren
es of signal a have been 
ounted; if it has not left the state when thelast o

urren
e happens, the spe
ial transition denoted by a box (the time-outtransition) is taken. Figure 9-b shows how the ma
ro-notation is expanded:states are added to 
ount the o

urren
es of a.All transitions that enter the temporized state output the starting signalstart; all transitions that leave the state output the killing signal kill; thebox transition is triggered by the time-out signal. The main point is the pri-ority we 
hoose between the killing transitions and the 
ounting ones. In theexpansion we give, an outgoing transition 
an be taken even if the last o

ur-ren
e of a o

urs at the same time (time-out is output only if kill does noto

ur).If we add variables to Argos (i.e. obje
ts that exist \in parallel" with theArgos program, and that may be tested and assigned to during a rea
tion),the 
ounter is des
ribed by a variable, whi
h avoids expli
it states. However,as far as veri�
ation is 
on
erned, we have to expand these variables intoexpli
it states, for using model-
he
kers, if we want to verify properties inwhi
h time is involved. In [28℄ we showed how to translate Argos programswith temporized-states dire
tly into timed-graphs [29℄ (without expanding thema
ro-notation into expli
it states), in order to use the veri�
ation tool Kro-nos [30℄. Some examples using the Argos 
ompiler 
onne
ted to Kronos aredes
ribed in [31,32℄. 20



3.3.2 Inhibiting transitionsWhen the automaton whi
h 
ontrols a re�nement operation takes a transition,the subprogram whi
h re�nes the sour
e state always rea
ts at the instantwhen it is killed.When preemptive interruptions have to be des
ribed, one uses inhibiting tran-sitions, whi
h stand for inhibiting operators (see �gure 10). The transitionsour
ed in State 1 (�gure 10-a) outputs the signal whi
h inhibits the re�ningsubprogram P: it is a preemptive interruption; the ma
ro-notation avoids theintrodu
tion of � and uses a small bla
k 
ir
le (�gure 10-b).4 The Argos Language and its Semanti
s4.1 SyntaxFrom the set of operators des
ribed in the previous se
tions, we de�ne the
ore of the Argos language. E is the set of programs :E ::= EkE Parallel 
ompositionj E� En
apsulation � � Aj RM(R1; :::; Rn) re�nement of M by the Rij E<
> Inhibition 
 2 AR ::= E j NIL re�ning obje
tsThe nil notation is introdu
ed to identify leaf states, i.e. the states that arenot further re�ned.4.2 Causality and In
orre
t CompositionsThe term \
ausality" has been widely a

epted, following the authors of Es-terel, to talk about those situations when the stri
t interpretation of the syn-
hrony hypothesis leads to apparent paradoxes. When a pro
ess that waitsfor signal a for emitting signal b, is talking to a pro
ess in parallel that waitsfor b for emitting a, the global behavior is not de�ned. This typi
al example,written in Argos, is given in se
tion 3.2.2 above.21



In Argos, we de
ide to 
hara
terize a 
ausally in
orre
t 
omposition of 
ompo-nents (or program) by the fa
t that there exists an o

urren
e of an en
apsula-tion operator whi
h is applied to a rea
tive and deterministi
 
omponent andyet yields a system whi
h is either non-deterministi
 or non-rea
tive. Theseare the 
ases when non-determinism (or non-rea
tivity) appears, due to theappli
ation of the en
apsulation semanti
s, based on the de�nition of the syn-
hronous broad
ast me
hanism.Hen
e our notion of 
orre
tion is the following: all basi
 
omponents should beboth deterministi
 and rea
tive, and all operators should be applied in su
h away that they preserve these properties. We are 
onvin
ed that the programsthat will be reje
ted by our 
riterion indeed 
onstitute programming errors.This notion of program 
orre
tion is, in some sense, minimal, with respe
tto the syn
hronous broad
ast me
hanism; it is also 
alled logi
al 
orre
tness.See se
tion 6.3 for 
omparisons with similar notions in other syn
hronouslanguages and State
harts.Under these 
onstraints, we 
an easily asso
iate a 
at Boolean Mealy ma
hineto any Argos program, and this is indeed what we des
ribe in the semanti
sbelow. Then this ma
hine 
an easily be implemented by translation into anyimperative programming language like C, Ada, Java, et
.Any other 
hoi
e, i.e. a

epting to take non-deterministi
 or non-rea
tiveBoolean Mealy ma
hines as the semanti
s of Argos programs, would be unim-plementable.For non-rea
tivity, 
onsider a state X, from whi
h the transition for input i ismissing: there is no 
onsistent implementation. Noti
e that an implementationof the system that does nothing for input i when in state X is in fa
t animplementation of the system that does have a loop on state X, with input i,and no emitted signal. (In se
tion 3.2.2 above, we showed that it may be the
ase that even the loop does not exist).For non-determinism, there is no implementation, unless we 
onsider that
ipping a 
oin at exe
ution time, for 
hoosing a transition, is an appropriatesolution.However, we 
ould �nd non-determinism useful, in a spe
i�
ation language, es-pe
ially for the partial des
ription of the environment. In this 
ase, we wouldallow the basi
 
omponents to exhibit some expli
it non-determinism (severaltransitions with non-ex
lusive input 
onditions, and distin
t emitted signalsand/or target states), but still require that the 
omposition of two su
h 
om-ponents do not introdu
e non-determinism. This is what we argue in [33℄.All these remarks lead to the notion of in
orre
t program in Argos. In
orre
tprograms should be dete
ted, of 
ourse, by a 
ompiler.22



In [34℄ we proposed an exa
t dete
tion me
hanism for 
ausality errors, forArgos with pure signals; it gives a reasonable 
ost 
ompilation algorithm.4.3 Semanti
sSin
e there exist in
orre
t programs, the semanti
 fun
tion should be partialon E . We make it total by adding the spe
ial value ? to the 
odomain.The semanti
 fun
tion S : E �!Mrd [ f?g is de�ned re
ursively by:S(E1kE2) = 8><>:? if S(E1) = ? or S(E2) = ?S(E1)� S(E2) otherwiseS(RMd(R1; :::; Rn)) = 8><>:? if 9i 2 [1; n℄ s.t. S(Ri) = ?Md . (S(R1); :::S(Rn)) otherwiseS(E�) = 8><>:? if S(E) = ?otherwise: let X = S(E) n � in if X 2 Mrd then X else ?S(E<
>) = 8><>:? if S(E) = ?S(E) whennot 
 otherwiseS(NIL) = (fNILg;NIL; ;; ;; f(NIL; true; ;;NIL)g)A program P is said to be in
orre
t if and only if S(P ) = ?. The errors aredue to en
apsulations that do not preserve rea
tivity or determinism. The ?value is absorbant.4.4 CompositionalityFrom the de�nition of the equivalen
e for Boolean Mealy ma
hines, we de�nean equivalen
e of Argos programs, denoted by �. The main point here is thatwe are interested in 
ompositionality for 
orre
t programs only.De�nition 8 : Equivalen
e of Argos programs23



P1 � P2 () 8><>:S(P1) 6= ? ^ S(P2) 6= ? ^ S(P1) � S(P2) _S(P1) = S(P2) = ? 2The semanti
s is 
ompositional, whi
h means that the equivalen
e of Argosprograms is a 
ongruen
e for the operators (parallel and hierar
hi
 
omposi-tions, inhibition, en
apsulation):8P;Q 2 P; 8C 
ontext P � Q =) C[P ℄ � C[Q℄It is easy to prove, by indu
tion on the stru
ture of pro
esses (see [20℄). (We
an in
lude the proof in the full paper if needed).RemarkSin
e we require the equivalen
e of Boolean Mealy ma
hines to be a 
ongru-en
e for our operators, and sin
e this equivalen
e does not take state infor-mation into a

ount, we 
annot use state information in the semanti
s of our
onstru
ts.Let us take an example: the equivalen
e de�ned above is in fa
t a kind of tra
eequivalen
e, whi
h may identify two ma
hines with di�erent sets of states,provided they have the same paths. For instan
e, the ma
hine with two statesA and B, and four transitions (A; a=x;B), (A; a; A), (B; a=x; A), (B; a; B) isequivalent to a ma
hine with only one state C and two transitions (C; a=x; C),(C; a; C). With our semanti
s, the �rst ma
hine may be repla
ed by the se
ondone (or the other way round) in any 
ontext, without 
hanging the behaviorof the global program in whi
h that o

urs.This forbids, in parti
ular, to give a dire
t semanti
s to the State
hart featurein whi
h one may write \a and in (A)" as a 
ondition for a transition tobe taken, where A is the name of a state, somewhere in a 
omponent of theprogram. Indeed, the 
omponent with state A 
ould be repla
ed by an equiva-lent one with no state A. However, it is relatively easy to repla
e the synta
ti
feature \in(A)" by a 
ommuni
ation based on ex
hanging a dedi
ated signal.24



4.5 Introdu
ing variablesThe Boolean 
ore of Argos is now 
ompletely de�ned. We mentioned the needfor variables or valued signals previously. Variables 
ould serve as 
ountersfor avoiding expli
it states, for instan
e in the en
oding of temporized states.Valued signals are needed for representing the inputs and outputs of regulationsystems, in whi
h the 
omputer samples 
ontinuous data, like the temperature.We never implemented a 
omplete Argos with variables, but the ideas forintrodu
ing are quite simple, and we explain them brie
y here.4.5.1 Boolean Mealy ma
hines with VariablesIn Argos, we 
an introdu
e variables by upgrading Boolean Mealy ma
hinesto general interpreted automata.We still have a set A of pure signals, i.e. Booleans. An Argos 
omponent withvariables is now of the following form :De�nition 9 : Boolean Mealy ma
hine with variablesA Mealy ma
hine with variables is a tuple (S; s0; I; O; V; T ) where I � A; O �A are the sets of input and output signals; V is the set of (potentially typed)variables used in this ma
hine, taking their values in a domain D; S is the setof states; s0 is the initial state; T � S� 
ond(V )�B(I)�2O� Assign(V )�Sis the set of transitions. 2As before, B(I) denotes the set of Boolean formulas with variables in I.
ond(V ) is the set of Boolean 
onditions on V . For instan
e, if V 
ontains aninteger x and a Boolean b, "x < 0 ^ :b" is a possible 
ondition.Assign(V ) is the set of assignments to variables in V . For instan
e, with thesame hypothesis as before, \fx := 2:7; b := falseg" is a possible assignment.The elementary assignments are 
onsidered to be in parallel : there should notbe two assignments to the same variable in the same set, but there is no order.The intuitive idea is that a transition (q; 
;m; o; a; q0), where 
 is the 
onditionon variables,m is a 
ondition on Boolean inputs, o is the set of emitted signals,and a is an assignment, is taken if: the automaton is in q, m is true of theexternal inputs; and 
 is true in the 
urrent valuation � : V ! D of thevariables. The automaton goes to state q0, emitting the signals in o, and thevariables are updated a

ording to � and a. This gives a new valuation �0.25



A lot of things be
ome unde
idable when variables are introdu
ed (espe
iallyintegers, with the power of full arithmeti
s. In fa
t, interpreted automata havethe power of Turing ma
hines: it is quite easy to 
onvin
e oneself that they
an be used as a target language for any high level programming language).For instan
e, it be
omes impossible to 
he
k the determinism of the basi

omponents, in the general 
ase. There are several ways the problem 
an besolved: we 
an introdu
e a synta
ti
 feature that allows to spe
ify prioritiesbetween the transitions sour
ed in the same state. From the semanti
 pointof view, this is like requiring the ex
lusivity of the 
onditions to be stati
ally
he
kable, i.e. to have the following form: 
1, 
2 ^ :C1, 
3 ^ :(
1 _ 
2), et
.Similarly, rea
tivity is not 
he
kable but, on ea
h state A of the basi
 
om-ponents, we 
an add a loop that emits nothing and leaves the variables un-
hanged, labeled by :W 
i, where the 
i are the 
onditions of all the expli
itlygiven transitions sour
ed in A. If the automaton is already rea
tive, this 
on-dition redu
es to false, and has no in
uen
e on the behavior.4.5.2 Compositions of Boolean Mealy ma
hines with VariablesWe 
an rewrite the semanti
 rules, taking the valuations of variables intoa

ount. In the parallel 
omposition, a 
ombined transition is labeled by: the
onjun
tion of the Boolean 
onditions on inputs (as before), the 
onjun
tionof the 
onditions on variables, the union of the emitted signals (as before), theunion of the assignments. We de
lare an error if this results in assigning toa variable twi
e. Hen
e, if a variable is shared by n parallel 
omponents, oneshould be the produ
er (the one allowed to assign values to the variables) andall the others should be only 
onsumers (allowed to read the variable).When we introdu
e variables, we should also introdu
e a unary operator tode�ne their s
ope. Su
h an operator may be parameterized by: the name ofthe variable, its type, and an initial value. If a variable is de
lared lo
al to apro
ess that re�nes the state A of an automaton, it is reinitialized ea
h timestate A is entered.4.5.3 Extending the notion of in
orre
t programThe main problem 
on
erns the dete
tion of so-
alled 
ausality errors. Indeed,the me
hanism we presented is based upon the existen
e of transitions for agiven input, in the result of an en
apsulation. When variables are introdu
ed,it might be the 
ase that a transition that remains in the result of an en-
apsulation is in fa
t not �rable, be
ause of its 
ondition on variables. Take,for instan
e, a 
omponent P with a transition labeled by (x < 0) a/b anda 
omponent Q with a transition labeled by (x > 0) b. If we put them in26



parallel and en
apsulate the signal b, we obtain a transition labeled by (x <0) ^ (x > 0) a, whi
h is 
learly non-�rable.Should we de
ide that there is no transition for input a, in the result of theen
apsulation and, 
onsequently, de
lare a 
ase of non-rea
tivity? Let us 
allintrinsi
 
orre
tness the notion of 
orre
tness based upon the existen
e oftransitions, with the interpretation of 
onditions being taken into a

ount.Even if we 
hose this new de�nition of 
orre
t programs for Argos with vari-ables, we 
ould not implement it: the problem is unde
idable. We 
annot
ompute stati
ally the set of transitions that are indeed �rable. The generalproblem is even more 
omplex be
ause it may depend on the dynami
s of thesystem: think of a transition labeled by X < 0, sour
ed in a state that 
annotbe entered unless X > 0.Sin
e an exa
t dete
tion me
hanism 
annot be de�ned, we should be able tode�ne an approximate one.There is a way of providing a 
onservative dete
tion me
hanism for both de-terminism and rea
tivity: we 
onsider ea
h 
ondition on variables as a newBoolean input. A transition label of the form: C(x) m/o, where C(x) is anarbitrary Boolean 
ondition on the variable x, is treated as �^ m/o, where �is a fresh signal name (not used elsewhere in the program). We 
an do that onall transitions of the basi
 
omponents of a program. Of 
ourse, we lose a lot ofinformation: x < 0 and x � 0 will be repla
ed by two independent Booleanvariables (or signals). Then, we apply our stati
 
riterion to this new program.The 
riterion requires that there exist exa
tly one possible transition for ea
h
on�guration of the inputs (in
luding the ones introdu
ed for en
oding the
onditions).We may reje
t intrinsi
ally 
orre
t programs, of 
ourse, be
ause the dete
tionme
hanism may 
omplain about non-determinism or non-rea
tivity appearingfor a given input � ^ � ^ :::, where � and � are new names introdu
ed asexplained before for representing 
onditions 
1 and 
2, and 
1 ^ 
2 is in fa
tnot satis�able. But we 
annot a

ept intrinsi
ally in
orre
t programs.Hen
e we have a 
onservative dete
tion me
hanism. Moreover, we are 
on-vin
ed that it does not reje
t \too many" 
orre
t programs. This is a ratherinformal statement, but it means the following: the programs that are reje
ted,while being intrinsi
ally 
orre
t, are those in whi
h the 
orre
tness relies onsome intri
ate mixing of Boolean Signals with other variables. Writing su
hprograms is a questionnable pra
tise, be
ause the slightest modi�
ation maytransform an intrinsi
ally 
orre
t program into an in
orre
t one, or 
onversely.27



4.5.4 Valued signalsIf variables are available, a valued signal is simply a pair made of a pure signalthat represents the presen
e of the signal, and a variable that 
ontains itsvalue. This is the approa
h of Esterel, whi
h is parti
ularly well suited forevent systems. In Lustre, there is no notion of a pure signal: all inputs havevalues, of type int, or real, or bool.One 
an then o�er a spe
i�
 syntax for designating the presen
e of a signaland its value. In Esterel, we would write x for the presen
e (hen
e present xthen ... is 
orre
t) and x? for the asso
iated value. (However, in Esterel, be
areful not to 
onfuse valued signals with variables).5 Code Generation and Conne
tion to Analysis ToolsArgos programs may be 
ompiled into a lot of automaton formats, used asinput by veri�
ation tools.For produ
ing expli
it automata, a 
ompiler that mimi
s the de�nition of theoperators would be far too expensive. Indeed, the intermediate obje
ts ob-tained when expanding parallel 
ompositions are likely to be far bigger thanthe �nal system obtained by applying en
apsulation operators for all lo
alsignals. We use a top-down method, with BDDs [35℄ for solving the equa-tions obtained for the en
apsulation operations. This is des
ribed in [36℄. TheArgonaute environment based upon Argos (a graphi
al editor and simulator,plus a 
ompiler) has been su

essfully 
onne
ted to various veri�
ation tools,among whi
h: Aldebaran [37℄, Me
 [38℄, Kronos [30{32℄, Polka [39,40℄.It is easy to obtain exe
utable 
ode from an expli
it 
at automaton 
orre-sponding to an Argos program; the typi
al form of su
h a sequential programis an in�nite loop:initialize the statewhile trueget inputs (the values of the input signals)
ompute outputs, a

ording to the valuesof the inputs and the 
urrent stateemit outputsupdate the stateEa
h pass in the loop 
orresponds to one transition of the global Mealy ma-
hine obtained by expanding the Argos program, hen
e it also 
orresponds toone rea
tion of this program. A rea
tion usually involves several 
omponents.28



For the syn
hrony hypothesis to be a usable approximation of the real world,the exe
ution time of one pass in the loop should be less than the minimalamount of time between two relevant 
hanges of the program environment.However, the 
ompilation into an expli
it automata is not always a good idea,sin
e it produ
es 
ode whose size is exponential in the size of the program(the parallel 
omposition, in parti
ular, produ
es an explosion of the numberof states). For generating good sequential 
ode, Argos is 
ompiled into data-
ow equations with a
tivation 
onditions, using the d
 format [41℄, also usedas an intermediate form in the 
ompilers of Lustre, Signal and Esterel [42℄. d

an then be 
ompiled into C. We also obtain a program with an in�nite looplike the one above, but the set of states is not given in extension. Rather, thestate is the 
on�guration of a set of Boolean variables, whi
h may be assignedto separately.6 General 
omments and Comparison with Related WorkFirst, we summarize how to provide some of the missing State
harts featuresas ma
ro-notations in Argos. Then we 
ompare Argos with three 
lasses ofState
harts semanti
s. The way 
ommuni
ation, syn
hronization and the as-so
iated \
ausality" problems are treated is somewhat independent of thesethree 
lasses. We review the main 
hoi
es in a separate se
tion.6.1 From Argos to State
hartsOutgoing multi-level arrows 
an be done thanks to an expli
it 
ommuni
a-tion between the re�ning pro
ess P and the automaton A it re�nes, sin
e Pparti
ipates in a rea
tion in whi
h the state A is left.Ingoing multi-level arrows 
an be done with a similar me
hanism if we modifythe de�nition of re�nement in su
h a way that the pro
ess that re�nes a stateparti
ipates in a rea
tion in whi
h this state is entered. We did not present thisextended version of the re�nement here, be
ause it gives rise to s
hizophreniaproblems. See [43℄ for an example of use.Spe
ial events like "entered(A)" 
an be implemented as ma
ro-notations,with pre-pro
essing: we introdu
e a new signal name, and add it to the set ofemitted signals of all transitions that enter A. This has to be done 
arefully,be
ause A may be the initial state in a re�ning pro
ess, and there is no expli
-itly drawn transition that enters it. But then the signal 
an be added to theset of emitted signals of the transition that starts this pro
ess. Similar things29




an be done for the spe
ial events "exit(A)" and "in(A)".Adding variables and valued signals has been des
ribed in se
tion 4.5.Entry by history 
annot be done, at least as a simple ma
ro-notation, be
ausethe de�nition of the re�nement is entirely based upon the fa
t that all informa-tion about a pro
ess re�ning a state is lost when we exit the state. However, ifwe look at systems in whi
h entry by history is used, we understand that whatwe really need is a suspension me
hanism. Suspension may be built in Argoswith a simple 
ombination of parallelism, inhibition and 
ommuni
ation, as itis shown in Figure 11. The interfa
e signals are suspendP and resumeP. Wemay de
ide whether suspension has an immediate e�e
t (i.e., P does not par-ti
ipate in the rea
tion that suspends it). In the �gure, this is the 
ase, sin
ethe transition labeled by suspendP does indeed emit the signal � whi
h in-hibits P . We should also take 
are of the simultaneous o

urren
e of suspendPand resumeP.This 
onstru
tion is quite satisfa
tory be
ause, if we need entry by history ina pro
ess P , it means we need P to stay alive, until we need the informationabout its internal state again. And, if it is still alive, it is intrinsi
ally inparallel with another part of the program. In Argos, we use re�nement onlywhen we need to start and kill pro
esses, depending on a sequential stru
turedes
ribed by an expli
it automaton. In all situations where we need to keepsome information on a pro
ess, even if it does not parti
ipate in the rea
tionsfor a while, we use the parallel 
omposition.6.2 Comparison with other State
harts semanti
sAs far as we know, the semanti
s that have been proposed so far for State
hartsor State
harts variants 5 fall into three main 
ategories. This 
lassi�
ation issomewhat biased, sin
e we are mainly interested in the use of State
hartsas a programming language; the existen
e of a notion of equivalen
e | or
ongruen
e | is an important 
riterion. The set of referen
es is by no meansexhaustive: a qui
k world-wide-web sear
h gives at least 150 referen
es onState
harts, and a thorough 
omparison of all the variants is not the subje
tof this arti
le.In order to 
ompare Argos and State
harts, the following three 
lasses are5 We �nd semanti
s of State
harts in a wide variety of papers, sin
e the formalismhas been used intensively in a number of very di�erent 
ontexts. As soon as atranslation of State
harts into some formally de�ned language is provided, we 
an
onsider that a semanti
s of State
harts is given.30



adequate:� Global semanti
s� Denotational and fully abstra
t semanti
s� Pro
ess Algebrai
 semanti
s, with equivalen
es or 
ongruen
esThey are detailed below.None of the variants we know of has been espe
ially tailored for pure pro-gramming purposes, and this is a major di�eren
e with Argos. All of them arepresented as spe
i�
ation languages, that 
an be used in a veri�
ation frame-work. Sometimes, an algorithm for generating 
ode is provided but, in all
ases, generating 
ode implies taking a de
ision about the non-deterministi
elements of the language.
6.2.1 Global Semanti
s of State
hartsIn this 
lass, a State
hart is de�ned as an And/Or tree, with additional 
on-straints on the stru
ture of the tree. The semanti
s is des
ribed in terms of alarge number of tree-manipulation fun
tions, like the 
losest 
ommon an
estorof two nodes, et
. [44{46℄ and a lot of others fall into this 
ategory. There isno way to view a program as a 
omposition of sub-programs, and there isno real \syntax" | or grammar, on whi
h a syntax-dire
ted semanti
s 
ouldbe based. Therefore, a State
hart is viewed as a monolithi
 obje
t, not as the
omposition of simpler obje
ts, and 
ompositionality makes no sense. Another
onsequen
e is that none of these semanti
s propose a notion of equivalen
efor State
harts. The operationally-de�ned semanti
s like that of [47℄, whi
hdes
ribes the algorithm of the interpreter, also falls into this 
lass.
6.2.2 Denotational Fully Abstra
t Semanti
s of State
hartsIn this 
lass, the language is given a syntax, and a syntax-dire
ted seman-ti
s. When the full set of features of State
harts is indeed taken into a

ount(like the multi-level arrows in [48℄), the 
ombinators are quite 
omplex, andsometimes far from \semanti
al" 
ombinations. One need to build programsby 
omposing basi
 obje
ts that 
an be sets of states with dangling in
omingor outgoing transitions, and it is hard to atta
h a meaning to these obje
ts,in terms of rea
tive behaviors. In this 
lass of semanti
s, the notion of 
om-positionality relies on the full abstra
tion 
riterion.31



6.2.3 Pro
ess Algebrai
 Semanti
s of State
hartsIn this 
lass, the language is also given a syntax, in the spirit of pro
essalgebras: the 
lassi
al non-deterministi
 
hoi
e (the \+" of CCS [26℄) and theparallel operator are used. [49{51℄ and many others fall into this 
lass.These semanti
s also need a notion of model for State
harts, i.e. the math-emati
al de�nition of a rea
tive system behavior (usually a labeled transi-tion system, or LTS). Giving an operational and pro
ess-algebrai
 semanti
sto State
harts means providing a stru
tural translation of State
harts into aLTS. The main di�eren
es with Argos are the following.First, the 
onstru
tion of programs starts with the pre�x operator. Basi
 au-tomata are built with the pre�x operator, the non-deterministi
 
hoi
e, andthe re
ursion. Then, automata may be 
omposed using the parallel operator,for instan
e. Multi-level transitions are often forbidden, for the same reasonsas in Argos, but without explaining 
learly how a similar behavior 
an beobtained with the features of the language. In fa
t, sin
e the underlying se-manti
s is not purely syn
hronous, there is no solution with a ma
ro-notation,i.e. independent of the 
ontext in whi
h it is needed.With this granularity in the de�nition of the basi
 
omponents, these seman-ti
 frameworks also need to require well-guardedness (see the de�nition of thisnotion in CCS [26℄) for avoiding in�nite bran
hing. In Argos, we 
onsiderautomata as the primitive obje
ts, be
ause it is easier to de�ne the determin-ism and rea
tivity 
riteria in su
h a framework. Hen
e we need no re
ursionoperator.Se
ond, Argos is a subset of State
harts features, ex
ept on one point: wede
ided, from the very beginning, to de�ne an en
apsulation operator, thatallows to restri
t the s
ope of signals. This has well-known renaming e�e
ts,whi
h are ne
essary when des
ribing large systems (think of a version of Cwithout lo
al variables, in whi
h a team of 50 developers would have to de
idewho is allowed to use i as a loop index!). But this has also some advantages
on
erning the de�nition of the language itself: the en
apsulation operator isthe one that 
orresponds to the syn
hronization. As already mentioned, it isthe same idea as in CCS.6.3 Communi
ation, syn
hronization and 
ausality6.3.1 Causality in other syn
hronous languagesAs we illustrated with the de�nition of en
apsulation, the syn
hrony hypoth-esis means that the status of lo
al signals, used for internal syn
hronization,32



should be uniquely determined in a global transition: it is given as the solutionof a system of equations. The intrinsi
 paradoxes are related to the fa
t thatthe system of equations may have 0 or several solutions. This is 
alled logi
al
orre
tness.In Esterel, the notion of 
ausally 
orre
t program is mu
h stronger, be
ausewe do not only require that the system have a unique solution, but also thatthis solution be 
onstru
tive (see [16℄ for a syntheti
 presentation of this idea:the system of equations has to be solved using 
onstru
tive logi
, i.e. withoutusing a _ :a = 1).In Lustre, the data-
ow de
larative style of the language means that \pro-grams" are similar to the set of equations we showed in se
tion 3.2.2 for ex-plaining en
apsulation. The stati
 
riterion used for ruling out non-
ausalprograms is even stronger than in Esterel: the system of equations should be
y
le-free. A 
y
li
 system of equations, even if it has a unique solution, isreje
ted. It may seem too strong a 
riterion, but there are very few 
ases inwhi
h we would like the 
riterion to be a little weaker (see examples, takenfrom 
ir
uit design, in [34,52℄).6.3.2 Notions related to 
ausality in State
hartsTo our knowledge, none of the semanti
s that have been proposed so far forState
harts is purely syn
hronous, in the sense that: they are based upon thesyn
hrony hypothesis, and there is a notion of in
orre
t program for rulingout the programs that rise the 
ausality paradoxes intrinsi
 to the stri
t ap-pli
ation of this hypothesis.By stri
t appli
ation of the syn
hrony hypothesis, we mean that a 
omponentthat 
ontains a transition labeled by a=b, in parallel with a 
omponent that
ontains a transition labeled by b, gives a single transition as a result, what-ever the notion of \result" is. For pro
ess-algebrai
 semanti
s, this is the samenotion as in Argos, sin
e they are based on operations over LTS. For global se-manti
s, this is also quite similar, be
ause the operational semanti
s des
ribesthe possible global transitions of a State
hart. Another point of view on thesame fa
t is the following: a=b in parallel with b giving a single transition inthe parallel pro
ess means that the internal 
ommuni
ation between the two
omponents is atomi
, with respe
t to what happens in the environment.This global transition is 
omputed knowing the status of lo
al signals used forinternal syn
hronization, whi
h should be uniquely determined.In State
harts, there is no real notion of in
orre
t program: non-determinismis not 
onsidered harmful, and if a transition is missing (non-rea
tivity), thesystem simply does nothing. In general, there is no notion of lo
al signal either,33



for whi
h we 
ould require a unique status. Hen
e the notions of 
ausality arequite di�erent from the 
orresponding notions in syn
hronous languages.The very �rst semanti
s of State
harts ([45℄ for instan
e) introdu
ed the no-tion of \mi
ro-step", to talk about what happens inside a State
hart when itrea
ts to an external stimulus. There is a 
omplementary notion ofma
ro-step,intended to represent an atomi
 rea
tion of the system to its environment; ami
ro-step is usually a maximal sequen
e of mi
ro-steps, in the sense that it
annot be extended: none of the 
urrently a
tive 
omponents 
an rea
t to thesignals that were present in the original external stimulus, or that were emit-ted by the already exe
uted mi
ro-steps. This raises new problems, be
ausea maximal sequen
e does not ne
essarily exist in all 
ases; in general, it isnot possible to determine stati
ally whether all rea
tions to external inputsgive �nite sequen
es of internal mi
ro-steps. Moreover, in some of the so-
alledmi
ro-step semanti
s, it is possible to take one mi
ro-step assuming that a sig-nal is absent and, later, to take another mi
ro-step that emits the signal. Thiskind of problem led to a number of 
riteria like global 
onsisten
y, for talkingabout those ma
ro-steps that are logi
ally 
orre
t, when observed globally.A good summary 
an be found in [23℄, where it is shown that no mi
ro-stepsemanti
s 
an be responsive, 
ausal, and modular. Responsiveness means thatthe outputs are simultaneous with the inputs (the syn
hrony hypothesis); mod-ularity means that a 
omponent may be used in an overall 
ontext knowing itsma
ro-step semanti
s only and forgetting about the details of its mi
ro-steps(this is related to our 
ompositionality 
riterion, with a notion of equivalen
ede�ned as having the same ma
ro-steps) ; 
ausality means that a ma
ro-step
annot generate its own trigger (this is one half of our de�nition: it rules outprograms of the form: a/b in parallel with b/a).The semanti
s of State
harts entitled \what is in a step?" [53,44℄ is suÆ-
iently 
lose to ours for the 
omparison to be meaningful: we did it in [54℄,where we proposed a general framework for 
omparing syn
hronous 
ommuni-
ation me
hanisms; the di�eren
es lie in the interpretation of the syn
hronousbroad
ast. For instan
e, the parallel version of the instantaneous dialogue(�gure 6) would be 
orre
t in this version of State
harts, but would give nobehavior. The re�nement version of the dialogue works �ne, though. In oursemanti
s, where these two programs are indeed equivalent, there 
annot besu
h a semanti
al di�eren
e between them.7 Con
lusionsWe presented a set of operators for building a syn
hronous language based onexpli
it automata, with a syntax similar to that of State
harts.34



The semanti
s is purely syn
hronous; it may be viewed as a simpli�
ation ofthe Esterel semanti
s, adapted to a programming style where automata aregiven expli
itly (in Esterel, the 
ontrol stru
ture of a program is made of loops,wat
hdogs, et
.).As it is, the set of operators we presented is not a language, be
ause it la
ksa lot of features of real programming languages, for instan
e valued (i.e. notonly Boolean) signals, expli
it variables of any type that 
an be tested andassigned during a rea
tion, et
. Moreover, the other syn
hronous languagesallow to use 
alls to a host language like C, in whi
h 
omplex data stru
turesmay be de�ned. This should be the 
ase for Argos too.In order to provide su
h features in a simple way, and also be
ause we are
onvin
ed that 
omplex systems 
annot be des
ribed using only automata, weworked a lot on the 
ombination of Argos with other syn
hronous languages(mainly Lustre and Esterel, whi
h have quite distin
t programming styles:Lustre is data-
ow, while Esterel is imperative with 
ontrol stru
tures). Seefor instan
e [55℄. We also worked on the Argos-Esterel 
ombined language,but Charles Andr�e and his team (University of Ni
e, Fran
e) have de�nedthe Syn
Charts [56℄ formalism, whi
h seems to be the way things should bedone: the language inherits various preemption primitives from Esterel, thehierar
hi
 program stru
ture from Argos, and other interesting primitives fromGraf
et [57℄, whi
h may be given a readable and 
on
ise graphi
al semanti
s.More re
ently, Argos has given birth to Mode-Automata [58℄, a promis-ing mixed-style language for the des
ription of regulation systems and theirrunning modes, that 
an be 
ompletely implemented on top of the Lustreboth a
ademi
 and 
ommer
ial programming environments. A basi
 mode-automaton is an automaton with data-
ow programs atta
hed to states. Thelanguage re-uses the parallel and hierar
hi
 
onstru
ts of Argos, although thebasi
 obje
ts are more similar to Moore ma
hines than to Mealy ma
hines.As in Argos, there are no multi-level arrows in the hierar
hi
 
omposition,and the 
omponents at several levels of hierar
hy may 
ommuni
ate with ea
hother in order to a
hieve the multi-level transition behavior.
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Not
ounting(a)

Main1 (a, start, stop) ()Counting

end end
C1 C0
/end


Main2 (a, start, stop) ()
a

aa
endstop.end

Counting

end (b)

B1 B0b/
bA1 A0a/bab,

C1,B1,A1C1,B1,A0C1,B0,A1 C0,B1,A1C0,B1,A0C0,B0,A1C0,B0,A0

C1,B0,A0
aaaa

a/end

startNot 
ountingstartstop.end
Fig. 1. Two equivalent Argos programs for the modulo-8 a-
ounter

a.stop,a.stop,a.stop
C1,B0,A1

C0,B0,A0C0,B1,A0C0,B0,A1C0,B1,A1C1,B0,A0
C1,B1,A1 stop

a.stop
a.stop
stopstop
a.stopC1,B1,A0

start.a
a.stopa.stop a.stopNot 
ounting

a.stop
start.a

Fig. 2. The behavior of the modulo-8 a-
ounter41



B0A0
B1A1 B0A1B1A0 a.b

A1 A0a/baB1 B0b/
b
a.b/
a.b/b

a.b

a.b
a.ba.b a.b

a.ba.b/ba.b/
a.b a.b a.b/ba.b/
a.b/b,

Fig. 3. Semanti
s of the parallel 
omposition

B1A0 a.ba.b a.ba.b a.b
a.b/b,
a.b/b a/
aB0A1B0A0

B1A1a.b a
a aa aaB1A0 B0A0 B0A1B1A1Fig. 4. Semanti
s of the en
apsulation operation: we �rst apply the 
riterion of theen
apsulation operation to the system obtained from the parallel 
omposition in�gure 3, and then we hide the lo
al signal b.42



module instantaneous_dialogue:input I;output S;signal Q, Y in[ await ti
k;present I then emit Q end;present Y then emit S end||every Q do emit Y end℄end. Fig. 5. The instantaneous dialogue in Esterel

A
B
i:Y =Q
i:Y=Q ....C

DE
Q=YQ

QQ; YFig. 6. The instantaneous dialogue with a parallel 
omposition43



X i _ jYsBaA a=A
YXA s XBi _ j

(i _ j)(i _ j)=A:a^a^
a ^ :(i _ j)=Aa ^ :(i _ j)

:s:a ^ :(i _ j)
:a ^ :(i _ j)

(a)

(b) Fig. 7. Re�nement: a simple example

B
....C

DE
Q=YQ

Q
i=QY

Q; Y

AX

Fig. 8. Instantaneous dialogue, des
ribed with a re�nement44



Tempo[d a℄

Tempo[d a℄

time-out/... .../kill....../kill....../start... Idle start 0 1 d-1a.kill a.killa.killkill kill ...kill,a.kill/time-outstart, kill, time-out

(a)

(b)Fig. 9. Ma
ro-notation for temporized states

State 1< � >P (a) (b)i/o [f�g PState 1 i/o
Fig. 10. The ma
ro-notation for inhibiting transitions. The box with < � > is the
on
rete syntax of the inhibiting operator.45



P< � > resumeP/��
resumeP suspendP/�

Fig. 11. Suspension of P
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Summary

47


