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Argos: an Automaton-BasedSynhronous LanguageFlorene Maraninhi 1;4 Yann R�emond 2VERIMAG { Centre Equation, 2 Avenue de Vignate { F38610 GIERES 3AbstratArgos belongs to the family of synhronous languages, designed for programmingreative systems (Lustre [1,2℄, Esterel [3℄, Signal [4℄, ...). Argos is a set of operatorsthat allow to ombine Boolean Mealy mahines, in a ompositional way. It takesits origin in Stateharts [5℄, but with the Argos operators, one an build only asubset of Stateharts, roughly those that do not make use of multi-level arrows. Weexplain the main motivations for the de�nition of Argos, and the main di�ereneswith Stateharts and their numerous semantis. We de�ne the set of operators, givethem a perfetly synhronous semantis in the sense of Esterel, and prove that it isompositional, with respet to the trae equivalene of Boolean Mealy mahines.We give an overview of the work related to the de�nition and implementa-tion of Argos (ode generation, onnetion to veri�ation tools, introdution ofnon-determinism, et.). This paper also gives a set of guidelines for building anautomaton-based, Statehart-like, yet perfetly synhronous, language.Key words: Argos, synhronous language, semantis, ompositionality
1 IntrodutionReative Systems and the Synhronous ApproahThe term of reative system [6℄ has been widely aepted to talk about om-puter systems in whih the interations with an environment are the promi-1 Institut National Polytehnique de Grenoble (INPG) and VERIMAG2 Universit�e Joseph Fourier Grenoble (UJF) and VERIMAG3 Verimag is a joint laboratory of UJF, CNRS and INPG4 Corresponding author, Tel: (33) 4 76 63 48 53; fax: (33) 4 76 63 48 50.E-mail address: Florene.Maraninhi�imag.frPreprint submitted to Elsevier Preprint 14 August 2001



nent aspet. They are opposed to transformational ones, in whih omplexdata strutures and algorithms are involved.The problem of speifying, programming and verifying real-time reative sys-tems, together with the de�nition of appropriate development environments,is still an important researh problem [5{7℄, the following being widely a-epted. There exist appropriate design methods, programming languages andenvironments for transformational systems (or, at least, for systems whih aremainly transformational, like ompilers). This is not yet the ase for reativesystems, like real-time proess ontrollers. Moreover, the need for formal ver-i�ation methods and tools is even more ruial for reative systems than fortransformational ones, beause strong reliability requirements are assoiatedwith them.The family of synhronous languages [8℄ and formalisms has been a very im-portant ontribution to the domain. The synhronous approah is the mathe-matial foundation for the Esterel [3℄, Lustre [1,2℄, Signal [4℄ languages, for thealgebra ATP [9℄, for the Conurrent Constraint Programming paradigm [10℄.To a ertain extent, some of the various semantis that have been proposed sofar for Stateharts [5℄ are also synhronous. Modeharts [11,12℄ were reentlygiven a synhronous semantis in the spirit of Esterel.Synhronous languages or formalisms are based upon the synhrony hypothe-sis, whih states that the reation time of the system is zero. From an externalpoint of view, it means that outputs are produed simultaneously with the in-puts, whih is learly unimplementable; however, a synhronous system works�ne provided it reats suÆiently fast, w.r.t. the rate imposed by the environ-ment: if relevant hanges in the inputs our at most eah seond, the systemmay take one seond to reat. When we program a reative system using asynhronous language, we always have to prove that the �nal ode an indeedexeute one reation of the system suÆiently fast. We would have to do thatfor any language. Simply, the struture of the typial imperative ode pro-dued by ompiling a synhronous language is suh that one an provide quiteaurate upper-approximations of the exeution time, looking at the soureprogram. In the general ase, omputing the so-alled worst-ase exeutiontime (see for instane [13℄) of a program is diÆult, mainly beause of reur-sion and unbounded loops; but these onstruts never appear in the ode of asynhronous program.The interesting part is the internal point of view on the synhrony hypothesis.The hypothesis states that the reation time of a partiular omponent, andthe ommuniation time between omponents, are also zero. This makes thesemantis of parallel omposition very simple. It ould be useless if the imple-mentation of the parallel omposition in synhronous languages was based ona separate implementation of eah omponent, running in parallel with a kind2



of dynami sheduler, beause the hypothesis that the ommuniation takesno time would learly be in ontradition with the reality of the exeution.But the synhronous languages are intended to be ompiled into entralizedsequential ode. The parallel omposition and the ommuniation mehanismare introdued only for desription purposes, at the level of the language;they are ompiled into something sequential, hene they do not imply expliitparallelism and ommuniation at exeution time. (The problem of distribut-ing ode is also important, but an be onsidered orthogonal to the fat thatthere indeed exists a parallel struture in the soure language; see work byP. Caspi [14,15℄).The synhrony hypothesis implies that systems ompose very well, and are eas-ier to desribe and verify than asynhronous ones. Moreover, synhrony allowsto deal with funtional and timing orretness of a system separately [7,16℄.Finally, synhronous languages are programming languages, not only spei�a-tion languages. Their programming environments provide eÆient ompilerstowards various kinds of software or hardware targets. Relying on a formallyde�ned semantis also allows the onnetion of suh programming languages tovalidation tools (formal veri�ation by model-heking or dedutive methods,test ase generation, debugging, et.). For Lustre, see for instane [17,18℄.ArgosThe �rst de�nition of Argos appeared in [19,20℄. Argos is a set of operators forombining Mealy mahines in parallel and hierarhi strutures; it has a puresynhronous semantis following that of Esterel; it may be given a graphialsyntax similar to that of Stateharts (with no multi-level arrows), and is indeedinspired by the very �rst papers on Stateharts [5℄ and Higraphs [21℄. It is listedin [22℄ as one of the Stateharts semanti variants, but it was not designedfor that purpose, and a lot of Stateharts features are missing. We show,however, that some of these features may be desribed from the primitive setof Argos operators, thanks to the synhronous semantis. We give below themain motivations for the de�nition of Argos.No multi-level arrowsThe main di�erene between Argos and the various semantis of Stateharts inwhih people have tried to get rid of the multi-level arrows, is that the perfetlysynhronous semantis we adopted allows to replae this rather syntatialfeature by a ompletely semantial one: some proesses, at two di�erent levelsof the hierarhy, do ommuniate with eah other and this ensures a globalbehavior similar to that of a multi-level arrow. In some sense, this essential3



modi�ation is similar to what happened when expliit goto's were replaedby impliit ones, available through the use of semantial strutures like whileloops. The important point is that one annot do without something replaingmulti-level arrows: they orrespond to very usual situations in the reativesystem domain (or you are also bound to forget about hierarhy of states!).The hoie we made for Argos has big onsequenes: with no multi-level ar-rows, a Statehart-like piture may be seen as a partiular ombination ofwell-de�ned automata. An automaton is a set of states and transitions on-neted together, and this is possible only at one level. Then omplex pituresare obtained by two simple onstruts: put two (possibly omposed) objetsin parallel; put a (possibly omposed) objet inside the state of an automaton.This paves the way to a well-de�ned syntax of programs, on whih a stru-tural semantis an be based. When a syntax-direted semantis has beenobtained, ompositionality begins to make sense, and a areful de�nition ofthe omposition operators guarantees it.A Compositional semantisWhat does ompositionality mean, in this ontext? In all programming lan-guages, one an build several syntatially di�erent programs that do the same.When we are in the proess of de�ning a formal semantis, this notion may(should) be formalized a little. For Argos, it means the following: the semantisof a program is given in terms of a Boolean Mealy mahine, the mathematialmodel we use for reative behaviors. There exists an equivalene relation forsuh mahines, that aptures the fat that two mahines represent the samereative behavior (something similar to the fat that, in a sequential language,while true do A od and while true do A; A od are the same).Knowing this equivalene relation, we an de�ne the ompositionality rite-rion for the semantis of Argos: if two sub-programs are the same (i.e. thesemantis assoiates with them two equivalent mahines), then one should beable to replae one by the other in any program ontext, without hanging thesemantis of the global program (formally: the equivalene is a ongruene forall the operators of the language).We show that this is true for the semantis of our operators set. To our opinion,ompositionality is a key property for the language to be usable: it allows toreason about sub-programs independently.A notion of inorret programsA less prominent (but yet important for programming real systems) di�erenebetween Argos and all the Statehart semanti variants we know is our notion4



of inorret program. We will see in the sequel that the ommuniation meh-anism adopted in Stateharts and Argos gives rise to the so-alled ausalityproblems, somewhat similar to deadloks. Imagine a proess that waits forsignal a for emitting signal b, talking to a proess in parallel that waits for bfor emitting a: what should the behavior of the whole be? Are the two pro-esses stuk, waiting for eah other to start? Or does a kind of spontaneousreation take plae? Let us all the programs in whih suh problems appear\non-ausal".For Stateharts, people tried to give a meaning to all ombinations of objets,in partiular non-ausal ones. This leads to some hoies in the semantisthat may have onsequenes on the ompositionality properties, for instane.Huizing [23℄ has studied the relationships between what he alls responsiveness(obeying the synhrony hypothesis), ausality andmodularity (a notion relatedto our ompositionality), and proved, in his framework, that no semantis anbe responsive, ausal and modular. See more details in setion 6.3.In Argos, we followed the path shown by Esterel: there are inorret ompo-sitions, to whih we are not bound to give a meaning. As a onsequene, weare interested in ompositionality properties for the subset of orret programsonly. This is muh simpler than trying to integrate a notion of omposition-ality with a way of giving a meaning to non-ausal programs; moreover, it islegitimate: this is the point of view of a programming language designer. In allprogramming languages one an write inorret programs that are detetedat ompile-time and rejeted: no meaning is given. This an be due to typing,for instane.Of ourse, we should provide a detetion mehanism for non-ausal objets.This is a bit more omplex than typing in lassial languages, however, espe-ially for valued (i.e. not only Boolean) Argos or Esterel. This is beause theexat detetion of suh inorret programs is undeidable. For the Booleansubsets of the languages, it is deidable, but may be quite expensive, beauseit depends on the expanded ontrol struture of the program.In lassial languages, the detetion of a large lass of errors is alsoundeidable. A few errors only an be deteted at ompile-time (likeX := 1/0 ; in Ada) ; otherwise the soures of potential dynami errors (likeget(Y) ; X := 1/Y ;) are learly identi�ed, and the ompiler produes \de-fensive" ode, whih may raise exeptions at exeution-time. Hene, the statimehanism may aept inorret programs, but it provides well-de�ned dy-nami errors.In the family of synhronous languages, dediated to the programming ofsafety-ritial reative systems, we do not aept dynami errors. Hene wehave to adopt the opposite point of view, and to provide onservative ap-5



proximate detetion mehanisms: if a program is aepted by the detetionmehanism, then it is guaranteed to be free of non-ausal situations (i.e., dy-nami errors); if it is rejeted, it may ontain non-ausal situations, or it maybe free of these problems too. When suh a language is augmented with arraysor other data strutures, the same priniple applies: we annot aept an \in-dex out of bounds" error at exeution-time, hene we are bound to be quitedrasti at ompile-time.The quality of the approximate detetion mehanism is good if it does notrejet orret programs too often.A small number of features (or onstruts)Finally, we deliberately gave priority to a lean and simple semantis, anddid not hesitate to rejet some features, if they did not �t well in the sim-ple semanti framework. It appears now that a lot of sophistiated languagefeatures (some of them borrowed from Stateharts) an be desribed as maro-notations, using a very simple ore language. We mention some of them in se-tion 6.1. This is good news for ode-generation, onnetion to analysis tools,et.Outline of the PaperThe paper is organized as follows: �rst, in setion 2, we present the notion ofa Boolean reative system, for whih the basi Argos operator set is designed,we show a simple example that uses the three main operators of Argos, andwe explain their semantis intuitively. Setion 3 de�nes the set of operatorsformally. Setion 4 de�nes a language based upon this set of operators, andthe notion of ausally inorret program. Setion 5 disusses ode generationissues, and the onnetion to analysis tools. Setion 6 gives a (probably non-exhaustive) list of related work, with detailed omparison. Setion 7 is theonlusion.2 An Argos Example with intuitive Semantis2.1 Boolean Reative SystemsBoolean Mealy mahines onstitute the basi omponents of Argos programs.They are appropriate for the desription of Boolean reative systems, i.e. rea-tive systems in whih the inputs and outputs are pure signals. A digital wath6



may be seen as a Boolean reative system: eah button of its interfae givesone Boolean input signal, and we an use two Boolean outputs on and off foreah element of the digital display. It makes a huge set of outputs (the displayof a single digit needs 7 elements, hene 14 signals), but there is no loss ofinformation.The digital wath may also be seen as a reative system with integer outputs, inwhih ase the physial environment is supposed to deal with outputs like 10,in order to ontrol the display. In some sense, this only hanges the position ofthe frontier between what we all the system, to be desribed in our language,and what we all the environment.This is usually suÆient for event systems, like the digital wath. For desrib-ing signal-proessing systems, or simply ontrol systems in whih the inputsare given by sampling a ontinuous phenomenon, one needs valued signals,e.g., integers, reals, et. Although most omplex reative systems have bothevent-driven and sampled subsystems, the ore of Argos deals with pure sig-nals only, enoded into Booleans. Values are introdued in setion 4.5.2.2 Desription of the programFigure 1-a is an Argos program using four automata (or Boolean Mealy ma-hines), to desribe a modulo-8 a-ounter, with initialization and interruptionfailities. Rounded-orner boxes are automaton states; arrows are transitions;retangular boxes are used for unary operators (see below). A set of states andtransitions whih are onneted together onstitutes an automaton. The fourbasi omponents of the program have the following sets of states: fCounting,Not ountingg, fA0, A1 g, fB0, B1 g, fC0, C1 g.In an automaton, transitions are labeled by inputs and outputs. The input partof a transition label is a Boolean formula of the input signals, not neessarilya omplete monomial (the end label stands for end.stop _ end.stop); theoutput part is a set of output signals. (The input part and the output partare separated by a slash; negation is denoted by over-lining, and onjuntionis denoted by a dot: =end, stop:end. When the output set is empty, it an beomitted). We also omit the transitions from a state to itself, if they do notemit signals. For instane, the states A0 and A1 of the �rst bit (resp. B0 andB1, C0 and C1) should have loops labeled by a (resp. b, ).There is one initial state, designated by an arrow without soure. States arenamed, but names should be onsidered as omments: they annot be referredto in other omponents. An arrow an have several labels | and stand forseveral transitions, in whih ase the labels are separated by a omma.7



The automaton whose states are Counting and Not ounting is said to bere�ned, in its Counting state, by a subprogram built with the three otherautomata. The external box, whose artridge ontains end, is the graphialsyntax for a loal signal delaration unary operator. The box de�nes the sopein whih the signal end is known. This signal is used as input by the re�nedautomaton; it is used as output by one of the three other ones: a ommuni-ation will take plae between the two. Another suh unary operator is usedin the program, in order to limit the sope of signals b,  to the programonstituted by the three unre�ned automata.The interfae of the global program is de�ned as follows: all signals whihappear in a left-hand (resp. right-hand) side of a label, and are not delaredto be loal to some part of the program are global inputs (resp. global outputs).The shadowed box gives the name of the program (or subprogram), the list ofglobal inputs, and the list of global outputs.Finally, three automata are put in parallel: they are drawn separated by dashedlines.2.3 Intuitive SemantisThe behavior is as follows.Initially, the ounter is not ounting; the global state is Not ounting. Itmay be started by the input start, whih puts the system in the global stateCounting:A0B0C0, enoding the value 0. The �rst ourrene of the signal athen moves the �rst bit from A0 to A1 and leaves the two other bits unhanged:Counting:A1B0C0 enodes 1. The next ourrene of a moves the �rst bitbak to A0; this transition is labeled by a/b, whih means that it broadaststhe signal b towards the other omponents, that may reat to it in the samereation; it moves the seond bit from B0 to B1. The third bit is left unhanged:Counting:A0B1C0 enodes 2. The fourth ourrene of a moves the �rst bitfrom A1 to A0, whih emits b; hene it also moves the seond bit from B1 to B0,whih emits ; hene it moves the third bit from C0 to C1. The global targetstate is Counting:C1A0B0, enoding 4.The eighth ourrene of the signal a moves the ounter from stateCounting:A1B1C1 to state Counting:A0B0C0, and emits the signal end, whihis an input of the main automaton: the system returns to the global state NotCounting.At any moment, a stop signal stops the ounter, and the system returns tothe global state Not Counting. The label stop.end is neessary for ensuringthe determinism of the main automaton (see details below). However, sine8



the two transitions labeled by stop.end and end do not emit signals, andhave the same target state, they ould be replaed by a single one, labeled bystop _ end.2.4 Equivalent programsThe seond program (Figure 1-b) is equivalent to the �rst one (see formalde�nition below): the parallel omposition of the three bits, with the signalsb and  being delared loal, has been replaed by a at automaton, havingthe same behavior.Sine the semantis is ompositional, replaing a omponent by an equivalentone leaves the global program behavior unhanged.Figure 2 is a third equivalent program, made of one single at automaton. Thesemantis of the language formally de�nes the translation of the �rst program(Figure 1-a) into the at automaton of Figure 2.3 A set of operations on Boolean Mealy mahinesIn this setion, we �rst de�ne the objets that serve as basi omponents inall Argos programs: Boolean Mealy Mahines, with additional properties likedeterminism and reativity.Then we de�ne a set of operations on these objets that may, or may not,preserve the additional properties.This set of operations is not yet a language. In the language, we add a syntaxfor programs (omposed objets, i.e. expressions made of basi objets andany number of operators), and de�ne the notion of orretion of a program.The de�nition of the operations makes them total, but the notion of programorretness may delare that a partiular ombination of basi objets andoperators is illegal, in whih ase we are not bound to give it a meaning.3.1 Deterministi and Reative Boolean Mealy MahinesA simple reative behavior may be desribed by a labeled transition system.The transition system has one initial state. Transition labels are made of twoparts: the input part i, and the output part o. The omplete label is denoted9



by i/o. Both parts are built upon a set of elementary interations with theenvironment, alled signals.The input part is a Boolean ondition on signals. It desribe a ondition tobe ful�lled by the environment in order to make the system reat. A Booleanondition desribes a set of input signal valuations.The output part is the set of signals the system outputs to its environment,when reating to a given input. One transition is one reation, and is supposedto be instantaneous, hene the outputs are simultaneous to the inputs thatause them. Time passes in states.Let A denote the set of signals. In the general ase, a basi Argos omponentis of the following form :De�nition 1 : Boolean Mealy mahineA Mealy mahine is a tuple (S; s0; I; O; T ) where I � A; O � A are thesets of input and output signals; S is the set of states; s0 is the initial state;T � S � B(I) � 2O � S is the set of transitions. (B(I) denotes the set ofBoolean formulas with variables in I). 2Without loss of generality, we an always onsider that the Boolean Mealymahines we deal with have only omplete monomials as input labels. If theset of inputs is fa; bg, then the input ondition a stands for : a ^ b _ a ^ :b,and a transition labeled by a=o may be split into two transitions (between thesame states) labeled by a ^ b=o and a ^ :b=o.De�nition 2 : Bisimulation of Boolean Mealy mahinesTwo mahines M1 = (S1; s01; I; O; T1) and M2 = (S2; s02; I; O; T2) are said tobe bisimilar, denoted by M1 � M2, if and only if there exists an equivalenerelation R � S1 � S2 suh that s01Rs02 and
sRs0 =) 8>>>>>>>><>>>>>>>>: s b=o!r =) 8>>>>><>>>>>:9b1; : : : ; bm; r01; : : : ; r0m suh that8i 2 [1; m℄; s0 bi=o!r0i ^ r R r0i^ b) (Wi bi)and onversely: 2Bisimulation has been �rst introdued by Park and Milner [24,25℄. It oinides10



with trae equivalene for deterministi systems.The mahines we onsider should be both deterministi and reative. We givethe de�nition only for mahines labeled by omplete monomials on the set ofinputs.De�nition 3 : Determinism and reativityA mahine (S; s0; I; O; T ) is reative i� :8s 2 S; 24 _(s;m;o;s0)2T )m35 = trueIt is deterministi i� :8s 2 S; 8t1 = (s;m1=o1; s1) 2 T; 8t2 = (s;m2=o2; s2) 2 Tm1 = m2 =) (o1 = o2) ^ (s1 = s2) 2We will denote by Mr;Md and Mrd, respetively, the sets of reative, deter-ministi, reative and deterministi Boolean Mealy mahines.Determinism is an important issue. In spite of the inherent non-determinism inthe desription of the environment, the programs should desribe deterministibehaviors. In this framework, non-determinism of a reative behavior is simplythe existene of two transitions soured in the same state, with non-exlusiveinput parts, and di�erent output parts and/or target states.3.2 Operations3.2.1 Cartesian Produt or Parallel CompositionThe formal de�nition of parallel omposition is based upon the following prod-ut operation.De�nition 4 : Synhronous produt of Boolean Mealy mahines11



� : M�M �!M(S1; s01; I1; O1; T1)� (S2; s02; I2; O2; T2) =(S1 � S2; (s01; s02); I1 [ I2; O1 [ O2; T 0)Where T 0 is de�ned by :((s1; m1; o1; s01) 2 T1; (s2; m2; o2; s02) 2 T2) =)((s1; s2); m1 ^m2; o1 [ o2; (s01; s02)) 2 T 0) 2The synhronous produt of Boolean Mealy mahines is both ommutativeand assoiative, and it is easy to show that it preserves both determinism andreativity.Note that the parallel omposition does not make any synhronization betweenomponents. It is the appropriate onstrut for the parallel omposition of twoindependent systems. When the systems have to ommuniate or synhronizewith eah other, parallel omposition should be used together with enapsu-lation of some dediated signals; this is explained below.Sine all the omponents are reative, a transition in the omposed proessorresponds to exatly one transition in eah of its parallel omponents. Someof them exeute loops, and emit no signals, so their reation is not observable,but they do take a transition, and only one.The mahine orresponding to the parallel omposition of the two �rst bits ofthe ounter (before applying the unary operator that delares b and  to beloal) is given in Figure 3.3.2.2 EnapsulationBasi ideasEnapsulation is a unary operator parameterized by a set of signal names. Itis used to restrit the sope of signals, and to fore synhronization betweenparallel or hierarhi omponents. Typially, if a signal s is used as the out-put of a omponent P and as the input of a omponent Q, it may serve as asynhronization signal. This is the ase for signals b,  and end of the ounter12



in setion 2. The synhronization and ommuniation mehanism is the syn-hronous broadast (the same as in Esterel): the sender an always send, andit needs not know whether 0, 1 or several other omponents are listening thissignal. Sending is non-bloking.The main reason why we express the semantis of the synhronous broadastonly in the enapsulation operator is the following: it may serve for synhro-nizing parallel omponents, but also hierarhial omponents. If we partly in-tegrate it in the semantis of the parallel omposition, then we need to repeatit in the semantis of the hierarhi omposition.Observation of the exampleThe intuitive semantis of the example shows that the bit in whih b is aninput should reat to this signal only if it omes from the previous bit. On theother hand, the signal b is emitted by the �rst bit in order to synhronize withthe seond one, and should not be visible elsewhere. In suh a ase, the sopeof b an be restrited to the parallel omposition of the �rst and seond bits.In the example, it is in fat extended to the parallel omposition of the threebits, but it does not appear in the third one, and it is simpler to use only oneenapsulation operator for the two signals b and .De�ning the sope of a signal by enapsulating a subprogram P , allows tosimplify the transitions of P : enapsulation fores the synhronization betweenthe omponents of P by removing some transitions of their produt, like therestrition in CCS [26℄. It is a bit more omplex beause of the input/outputstruture of the labels, and the Boolean struture of the inputs, but it isessentially the same idea.Formal de�nitionDe�nition 5 : Enapsulationn : M� 2A �!M(S; s0; I; O; T ) n � = (S; s0; I n �; O n �; T 0)Where T 0 is de�ned by :(s;m; o; s0) 2 T ^ m+ \ � � o ^ m� \ � \ o = ;=) (s; 9�:m; o n �; s0) 2 T 0 213



m+ is the set of variables that appear as positive elements in the monomialm(i.e. m+ = fx 2 A j (x ^m) = mg). m� is the set of variables that appear asnegative elements in the monomial m (i.e. m� = fx 2 A j (:x ^m) = mg).Intuitively, a transition (s;m; o; s0) 2 T is still present in the result of theenapsulation operation if its label satis�es the loal riterion: m+ \ � � o,whih means that a loal signal whih is supposed to be present has to beemitted in the same reation; and m� \ � \ o = ;, whih means that a loalsignal that is supposed to be absent should not be emitted in the same reation.If the label of a transition satis�es this riterion, then the names of the en-apsulated signals are hidden, both in the input part and in the output part.This is expressed by 9�:m for the input part, and by on� for the output part.The enapsulation operator an only remove some transitions in a omplexobjet obtained, for instane, as the result of a parallel omposition. Hene itis always true that eah basi automaton omponent in a program partiipatesin a global reation by exeuting exatly one transition. The synhronizationbased on broadasting signals does not give rise to in�nite behaviors, or lakof stability, et.The synhrony hypothesis, stating that ommuniation takes no time, is il-lustrated here: if we onsider two programs P and Q, ommuniating with asignal a whih is made loal to their parallel omposition, one transition in Pthat emits a, and one transition in Q that reats to the presene a, make asingle transition in the result. The parallel omposition is ompletely ompiled,and there is nothing like a ommuniation at exeution time.Determinism and Reativity of an enapsulated proessThe enapsulation operation does not preserve determinism nor reativity.Intuitively, this is beause the riterion used for ruling out some transitions ofthe enapsulated proess, depending on their labels, is applied loally.Take a omponent P with two states A1 and A2 and four transitions (A1; i ^a=b; A2), (A1; i ^ a; A1), (A1; i ^ a; A1), (A1; i ^ a; A1), and a omponent Qwith two states B1 and B2 and four transitions (B1; i^b=a; B2), (B1; i^b; B1),(B1; i ^ b; B1), (B1; i ^ b; B1).Put these two omponents in parallel and make the signals a and b loalto the result. For input i, from the omposed state A1B1, there will be twodistint transitions left when applying the above riterion: (A1B1; i; A2B2) and(A1B1; i; A1B1). The �rst one is made of: the transition (A1; i^ a=b; A2) in P ,14



and the transition (B1; i^b=a; B2) in Q, whih gives (A1B1; i^a^b=a; b; A2B2)in the produt, before enapsulation; it passes the loal riterion and thengives (A1B1; i; A2B2) when hiding a and b. The seond one is made of thetransition (A1; i ^ a; A1) in P and the transition (B1; i ^ b; B1) in Q, whihgives (A1B1; i ^ a ^ b=;; A1B1) in the produt, before enapsulation. It alsopasses the loal riterion, and then gives (A1B1; i; A1B1) when hiding a and b.The result is no longer deterministi, beause of these two transitions. Thereare no other transitions left in the enapsulated program.Now, take the same omponent P , and a omponent Q with two states B1and B2 and four transitions (B1; i ^ b=a; B2), (B1; i ^ b; B1), (B1; i ^ b; B1),(B1; i ^ b; B1).Put them in parallel and enapsulate the result with loal signals a and b: inthe resulting proess, there is no transition soured in A1B1 for input i: theresult is no longer reative.These are the typial ases where non-determinism and non-reativity appear.It may seem strange to write suh pathologial ommuniations diretly, insuh simple systems. But this kind of situation may appear in very omplexompositions of omponents, with any number of partiipants.Alternative view of the semantisAnother way of expressing the semantis of the enapsulation operator is bygiving a system of equations, of whih the values of the enapsulated signals area solution. This view gives some new hints for understanding why determinismand reativity are not preserved.The idea is the following: for eah state q of the proess P , and eah on�gu-ration I of the inputs, there should be exatly one status of the enapsulatedsignals, i.e. one valuation of these signals, seen as Boolean variables. Knowinga on�guration of the inputs, and a status of the loal signals, it is easy to de-termine the reation of the system, by observing what transitions an indeedbe taken.The status of the loal signals is the solution of a set of equations that an bebuilt as follows. For eah loal signal s, take the set of transitions soured inq and emitting s (i.e. with a label of the form: i=S with s 2 S) and build theequation: s = W i. In other words, s is true (emitted) if and only if at leastone of the transitions of P that emits it an be �red. This expresses the fatthat a loal signal annot ome from outside P : it is present in a reation ofP only if P itself emits it. The important point is that the loal signals mayappear in the onditions i. Hene the system of equations obtained by writing15



suh an equation for eah loal signal is of the general form; in partiular, itmay ontain yles of dependenies, like a = b; b = a.When the system of equations has exatly one solution, it means that thereation of the system to input I is unique. If this is the ase for eah state ofP , then the enapsulated system is both deterministi and reative.If, for a state q, the system of equations has more than one solution (resp.no solution at all) then the enapsulated proess is no longer deterministi(resp. reative). This is the ase for proesses that exhibit equations of theform a = b; b = a (several solutions) or a = b; b = a (no solutions).The typial examples presented above give this kind of system: a = i ^ b; b =i ^ a, or a = i ^ b; b = i ^ a. Sine we are interested in the reation of thesystem to input i, we replae i by true in these equations, and obtain thetypial ases.The two-bit exampleFigure 4 shows how to apply the enapsulation operator, for signal b, to thesystem we obtained in �gure 3.An Example: the Instantaneous DialogueObserve the example of �gure 6. It shows an instantaneous dialogue betweenthe two parallel omponents. The intuitive behavior is the following: whenin state A, the �rst omponent P1 needs to query the state of the seondomponent P2 in order to hoose its reation to input i; if P2 is in stateC, then P1 goes to B, otherwise it stays in A. (In Stateharts, this wouldbe desribed by a ondition of the form \i and in(C)" appearing in P1. Weexplain in setion 4.4 below why we hose not to introdue suh a onstrutin Argos).In Argos, P1 reats to I by emitting Q, whih is a question to P2. P2 reats tothis question by saying yes (Y ) if it is indeed in state C, and nothing if it isin another state, say D, or E. The answer and the question are simultaneous,thanks to the synhronous broadast. Hene the behavior of P1, from state A,is desribed by: if I and Y , then emit the question Q and take the transitionto B; if I and not Y , then emit the question Q and stay in A. This may seemstrange, beause there is no visible sequening between the question and theanswer, but the behavior of the global proess, where both the question Q andthe answer Y are loal signals, is exatly what we want. This is beause thestatus of Q and Y , when the system is in the global state AC, is given by theequations: Q = i ^ Y _ i ^ :Y ;Y = Q, whih simpli�es to Q = Y = i. Hene16



for input i, both Q and Y are present, the global system takes the transitionfrom A to B and the loop on C.Notie that, in Esterel, from whih this example is borrowed, the notion of se-quene inside a reation allows a natural writing of the dialogue. The programin �gure 5 is made of two parallel omponents. The �rst one emits the questionQ when the ause I ours. Then it heks whether the answer Y is present, foremitting the output S (we need something observable, like hanging state inthe Argos program). The seond parallel omponent always answers Y whenit reeives the question Q (the answer ould depend on some internal state,of ourse, as in the Argos example). await tik, meaning \wait until nextinstant" is neessary beause the omponent every Q do emit Y does notemit Y if Q is present in the very �rst instant, but only after that. The parallelomposition does nothing in the �rst instant, and then behaves as expeted.In setion 3.2.4 below, we give another version of this program by using theArgos re�nement operator, whih is more natural. In Esterel, there is evena third solution, in whih P2 emits Y ontinuously, when in the appropriatestate, not only when it reeives the question Q. In this ase P1 needs only testY , without asking Q.3.2.3 Inhibiting OperatorThe inhibiting operator is useful for building some of the Stateharts or Esterelonstruts from the set of Argos operators, in a strutural way (see setion 3.3below). P whennot a behaves as P , but only when a is not present. Theinterfae of P whennot a has one more input signal.De�nition 6 : Inhibition of a Boolean Mealy mahinewhennot : M�A �!M(S; s0; I; O; T ) whennot a is de�ned i� a 62 I and(S; s0; I; O; T ) whennot a = (S; s0; I [ fag; O; T 0)Where T 0 is de�ned by :(s;m; o; s0) 2 T; =) (s;m:a; o; s0) 2 T 0 ^ (s;m:a; ;; s) 2 T 0 217



3.2.4 Hierarhial CompositionThe intuitive behavior of a re�ned proess is the following: a transition thatenters a re�ned state starts the re�ning proess, in its initial state. A transi-tion that leaves a re�ned state kills the re�ning proess, and all informationabout the state it had reahed is lost (this, in partiular, forbids the \entryby history" of Stateharts).An important point is the following: the automaton that is re�ned is alwaysative; when it is in state A, the proess re�ning state A is also ative. Theybehave as if they were put in parallel, as far as the ommuniation betweenthem is onerned. But, of ourse, a transition of the re�ned automaton maykill a re�ning proess and start another one, whih is not the ase for parallelomposition.Note that the enapsulation operator an be applied to the result of a hierar-hi omposition too, for synhronizing a ontroller with its re�ning proesses.Finally, a re�ning proess is alive during the reation that kills it (leaving are�ned state is a non-preemptive interrupt). Hene it may ommuniate (orsynhronize) with the re�ned automaton. In partiular, the transition of theautomaton that leaves the state may be triggered by a signal emitted by there�ning proess itself. In this ase, we say that the re�ning proess ommitssuiide. We will see that this partiular feature of Argos allows to enodeoutgoing multi-level arrows in an elegant and ompositional way. This is thease in the introdutory example for the signal end, whih is emitted by thethree-bit ounter, and kills it. Conversely, in the example, the signal stop atsas an external interrupt, whatever the state of the three-bit ounter is.On the ontrary, the proess that re�nes the target state of a transition o-urring in the re�ned automaton is not alive during this reation: it does notpartiipate in the reation that starts it. This forbids a number of interestingbehaviors (hoosing the atual initial state by an initial transition triggeredby external signals, ...) and the symmetrial enoding of ingoing multi-levelarrows. We ould modify the semantis of the re�nement operator in orderto make it more symmetrial. However, the basi version we present here issimpler, beause it does not give rise to the shizophrenia problem of Esterel(see [27℄ for details). Roughly speaking, shizophrenia would our for a loopon a re�ned state: the re�ning proess is both killed and restarted in its initialstate. In fat, two instanes of it would be alive during the reation, not ne-essarily in the same state. If the re�ning proess ontains loal signals, theyall have two instanes during one reation.With our asymmetrial semantis, shizophrenia annot our.The formal de�nition is based upon the operation denoted by ., that takes18



a mahine for the ontroller and n mahines for re�ning the n states of theontroller. The mahine that serves as the ontroller is not neessarily reative.De�nition 7 : Re�nement. : M� 2M �!MLet M denote (S; s0; I; O; T ), where S = fs0; s1; :::; sng. Consider also a setfMjgj=0::n of mahines, to be used as re�nements of the states of M , whereMj = (Sj; sj0; Ij; Oj; T j), and Sj = fsj0; sj1; :::; sjnjg.The omposed mahine, in whih eah Mj re�nes the state sj, is of the form:M . fMjgj=0::n = (S . fSjgJ ; s0 . s00; I [ S Ij; O [ SOj; T 0).Its set of states is of the form:S . fSjgJ = Snj=0fsj . sjk; k 2 [0::nj℄gAnd its transitions T 0 are given by the following two rules:1) A transition from sa to sb in the ontroller, together with a transitionfrom sak to sak0 in the mahine that re�nes the urrent state. The outputs aregathered. In the global target state, the mahine that re�nes state sb is startedin its initial state, and the mahine that re�nes state sa has been killed. Itsinternal state is no longer relevant:(sa; m; o; sb) 2 T ^ (sak; m0; o0; sak0) 2 T a =)(sa . sak; m ^m0; o [ o0; sb . sb0) 2 T 02) A transition of the mahine that re�nes the urrent state, from sak to sak0,while no transition soured in state sa is ativated in the ontroller:(sak; m0; o0; sak0) 2 T a =) (sa . sak; m0 ^ 24 ^(sa;m;�;�)2T :m35 ; o0; sa . sak0) 2 T 02Figure 7 illustrates the semantis of the hierarhial omposition (or \re�ne-ment").Figure 8 is a version of the instantaneous dialogue using re�nement. Thetransitions labeled by i=Q and by Y in the �rst omponent may be taken19



together, if the other omponent is in state C and indeed answers Y to thequestion Q. When the system is in state AX, the status of the loal signals Qand Y is given by the equations: Q = i;Y = Q, whih gives Q = Y = i as inthe parallel version of �gure 6, without the need for Boolean simpli�ation.3.3 Some Useful Combinations of Operators3.3.1 Temporized statesThe ability to attah delays to states was proposed in an early unpublished pa-per about Stateharts. In argos, it is very easy to introdue suh a onstrutand to give it a lear semantis; indeed, it an be introdued as a maro-notation. Following synhronous languages (Lustre, Esterel, Signal), argosdeals with multiform time. Any external input event an be used as a lokfor the system, whih may ount meters as well as seonds. Figure 9-a showsa temporized state Tempo. The notation [d a℄ means that a delay d is asso-iated with the state. d is a positive integer, and a is the name of an inputsignal, whih gives the unit of time. The behavior of the system is as follows:when the system enters state Tempo, it an stay in this state at most until dourrenes of signal a have been ounted; if it has not left the state when thelast ourrene happens, the speial transition denoted by a box (the time-outtransition) is taken. Figure 9-b shows how the maro-notation is expanded:states are added to ount the ourrenes of a.All transitions that enter the temporized state output the starting signalstart; all transitions that leave the state output the killing signal kill; thebox transition is triggered by the time-out signal. The main point is the pri-ority we hoose between the killing transitions and the ounting ones. In theexpansion we give, an outgoing transition an be taken even if the last our-rene of a ours at the same time (time-out is output only if kill does notour).If we add variables to Argos (i.e. objets that exist \in parallel" with theArgos program, and that may be tested and assigned to during a reation),the ounter is desribed by a variable, whih avoids expliit states. However,as far as veri�ation is onerned, we have to expand these variables intoexpliit states, for using model-hekers, if we want to verify properties inwhih time is involved. In [28℄ we showed how to translate Argos programswith temporized-states diretly into timed-graphs [29℄ (without expanding themaro-notation into expliit states), in order to use the veri�ation tool Kro-nos [30℄. Some examples using the Argos ompiler onneted to Kronos aredesribed in [31,32℄. 20



3.3.2 Inhibiting transitionsWhen the automaton whih ontrols a re�nement operation takes a transition,the subprogram whih re�nes the soure state always reats at the instantwhen it is killed.When preemptive interruptions have to be desribed, one uses inhibiting tran-sitions, whih stand for inhibiting operators (see �gure 10). The transitionsoured in State 1 (�gure 10-a) outputs the signal whih inhibits the re�ningsubprogram P: it is a preemptive interruption; the maro-notation avoids theintrodution of � and uses a small blak irle (�gure 10-b).4 The Argos Language and its Semantis4.1 SyntaxFrom the set of operators desribed in the previous setions, we de�ne theore of the Argos language. E is the set of programs :E ::= EkE Parallel ompositionj E� Enapsulation � � Aj RM(R1; :::; Rn) re�nement of M by the Rij E<> Inhibition  2 AR ::= E j NIL re�ning objetsThe nil notation is introdued to identify leaf states, i.e. the states that arenot further re�ned.4.2 Causality and Inorret CompositionsThe term \ausality" has been widely aepted, following the authors of Es-terel, to talk about those situations when the strit interpretation of the syn-hrony hypothesis leads to apparent paradoxes. When a proess that waitsfor signal a for emitting signal b, is talking to a proess in parallel that waitsfor b for emitting a, the global behavior is not de�ned. This typial example,written in Argos, is given in setion 3.2.2 above.21



In Argos, we deide to haraterize a ausally inorret omposition of ompo-nents (or program) by the fat that there exists an ourrene of an enapsula-tion operator whih is applied to a reative and deterministi omponent andyet yields a system whih is either non-deterministi or non-reative. Theseare the ases when non-determinism (or non-reativity) appears, due to theappliation of the enapsulation semantis, based on the de�nition of the syn-hronous broadast mehanism.Hene our notion of orretion is the following: all basi omponents should beboth deterministi and reative, and all operators should be applied in suh away that they preserve these properties. We are onvined that the programsthat will be rejeted by our riterion indeed onstitute programming errors.This notion of program orretion is, in some sense, minimal, with respetto the synhronous broadast mehanism; it is also alled logial orretness.See setion 6.3 for omparisons with similar notions in other synhronouslanguages and Stateharts.Under these onstraints, we an easily assoiate a at Boolean Mealy mahineto any Argos program, and this is indeed what we desribe in the semantisbelow. Then this mahine an easily be implemented by translation into anyimperative programming language like C, Ada, Java, et.Any other hoie, i.e. aepting to take non-deterministi or non-reativeBoolean Mealy mahines as the semantis of Argos programs, would be unim-plementable.For non-reativity, onsider a state X, from whih the transition for input i ismissing: there is no onsistent implementation. Notie that an implementationof the system that does nothing for input i when in state X is in fat animplementation of the system that does have a loop on state X, with input i,and no emitted signal. (In setion 3.2.2 above, we showed that it may be thease that even the loop does not exist).For non-determinism, there is no implementation, unless we onsider thatipping a oin at exeution time, for hoosing a transition, is an appropriatesolution.However, we ould �nd non-determinism useful, in a spei�ation language, es-peially for the partial desription of the environment. In this ase, we wouldallow the basi omponents to exhibit some expliit non-determinism (severaltransitions with non-exlusive input onditions, and distint emitted signalsand/or target states), but still require that the omposition of two suh om-ponents do not introdue non-determinism. This is what we argue in [33℄.All these remarks lead to the notion of inorret program in Argos. Inorretprograms should be deteted, of ourse, by a ompiler.22



In [34℄ we proposed an exat detetion mehanism for ausality errors, forArgos with pure signals; it gives a reasonable ost ompilation algorithm.4.3 SemantisSine there exist inorret programs, the semanti funtion should be partialon E . We make it total by adding the speial value ? to the odomain.The semanti funtion S : E �!Mrd [ f?g is de�ned reursively by:S(E1kE2) = 8><>:? if S(E1) = ? or S(E2) = ?S(E1)� S(E2) otherwiseS(RMd(R1; :::; Rn)) = 8><>:? if 9i 2 [1; n℄ s.t. S(Ri) = ?Md . (S(R1); :::S(Rn)) otherwiseS(E�) = 8><>:? if S(E) = ?otherwise: let X = S(E) n � in if X 2 Mrd then X else ?S(E<>) = 8><>:? if S(E) = ?S(E) whennot  otherwiseS(NIL) = (fNILg;NIL; ;; ;; f(NIL; true; ;;NIL)g)A program P is said to be inorret if and only if S(P ) = ?. The errors aredue to enapsulations that do not preserve reativity or determinism. The ?value is absorbant.4.4 CompositionalityFrom the de�nition of the equivalene for Boolean Mealy mahines, we de�nean equivalene of Argos programs, denoted by �. The main point here is thatwe are interested in ompositionality for orret programs only.De�nition 8 : Equivalene of Argos programs23



P1 � P2 () 8><>:S(P1) 6= ? ^ S(P2) 6= ? ^ S(P1) � S(P2) _S(P1) = S(P2) = ? 2The semantis is ompositional, whih means that the equivalene of Argosprograms is a ongruene for the operators (parallel and hierarhi omposi-tions, inhibition, enapsulation):8P;Q 2 P; 8C ontext P � Q =) C[P ℄ � C[Q℄It is easy to prove, by indution on the struture of proesses (see [20℄). (Wean inlude the proof in the full paper if needed).RemarkSine we require the equivalene of Boolean Mealy mahines to be a ongru-ene for our operators, and sine this equivalene does not take state infor-mation into aount, we annot use state information in the semantis of ouronstruts.Let us take an example: the equivalene de�ned above is in fat a kind of traeequivalene, whih may identify two mahines with di�erent sets of states,provided they have the same paths. For instane, the mahine with two statesA and B, and four transitions (A; a=x;B), (A; a; A), (B; a=x; A), (B; a; B) isequivalent to a mahine with only one state C and two transitions (C; a=x; C),(C; a; C). With our semantis, the �rst mahine may be replaed by the seondone (or the other way round) in any ontext, without hanging the behaviorof the global program in whih that ours.This forbids, in partiular, to give a diret semantis to the Statehart featurein whih one may write \a and in (A)" as a ondition for a transition tobe taken, where A is the name of a state, somewhere in a omponent of theprogram. Indeed, the omponent with state A ould be replaed by an equiva-lent one with no state A. However, it is relatively easy to replae the syntatifeature \in(A)" by a ommuniation based on exhanging a dediated signal.24



4.5 Introduing variablesThe Boolean ore of Argos is now ompletely de�ned. We mentioned the needfor variables or valued signals previously. Variables ould serve as ountersfor avoiding expliit states, for instane in the enoding of temporized states.Valued signals are needed for representing the inputs and outputs of regulationsystems, in whih the omputer samples ontinuous data, like the temperature.We never implemented a omplete Argos with variables, but the ideas forintroduing are quite simple, and we explain them briey here.4.5.1 Boolean Mealy mahines with VariablesIn Argos, we an introdue variables by upgrading Boolean Mealy mahinesto general interpreted automata.We still have a set A of pure signals, i.e. Booleans. An Argos omponent withvariables is now of the following form :De�nition 9 : Boolean Mealy mahine with variablesA Mealy mahine with variables is a tuple (S; s0; I; O; V; T ) where I � A; O �A are the sets of input and output signals; V is the set of (potentially typed)variables used in this mahine, taking their values in a domain D; S is the setof states; s0 is the initial state; T � S� ond(V )�B(I)�2O� Assign(V )�Sis the set of transitions. 2As before, B(I) denotes the set of Boolean formulas with variables in I.ond(V ) is the set of Boolean onditions on V . For instane, if V ontains aninteger x and a Boolean b, "x < 0 ^ :b" is a possible ondition.Assign(V ) is the set of assignments to variables in V . For instane, with thesame hypothesis as before, \fx := 2:7; b := falseg" is a possible assignment.The elementary assignments are onsidered to be in parallel : there should notbe two assignments to the same variable in the same set, but there is no order.The intuitive idea is that a transition (q; ;m; o; a; q0), where  is the onditionon variables,m is a ondition on Boolean inputs, o is the set of emitted signals,and a is an assignment, is taken if: the automaton is in q, m is true of theexternal inputs; and  is true in the urrent valuation � : V ! D of thevariables. The automaton goes to state q0, emitting the signals in o, and thevariables are updated aording to � and a. This gives a new valuation �0.25



A lot of things beome undeidable when variables are introdued (espeiallyintegers, with the power of full arithmetis. In fat, interpreted automata havethe power of Turing mahines: it is quite easy to onvine oneself that theyan be used as a target language for any high level programming language).For instane, it beomes impossible to hek the determinism of the basiomponents, in the general ase. There are several ways the problem an besolved: we an introdue a syntati feature that allows to speify prioritiesbetween the transitions soured in the same state. From the semanti pointof view, this is like requiring the exlusivity of the onditions to be statiallyhekable, i.e. to have the following form: 1, 2 ^ :C1, 3 ^ :(1 _ 2), et.Similarly, reativity is not hekable but, on eah state A of the basi om-ponents, we an add a loop that emits nothing and leaves the variables un-hanged, labeled by :W i, where the i are the onditions of all the expliitlygiven transitions soured in A. If the automaton is already reative, this on-dition redues to false, and has no inuene on the behavior.4.5.2 Compositions of Boolean Mealy mahines with VariablesWe an rewrite the semanti rules, taking the valuations of variables intoaount. In the parallel omposition, a ombined transition is labeled by: theonjuntion of the Boolean onditions on inputs (as before), the onjuntionof the onditions on variables, the union of the emitted signals (as before), theunion of the assignments. We delare an error if this results in assigning toa variable twie. Hene, if a variable is shared by n parallel omponents, oneshould be the produer (the one allowed to assign values to the variables) andall the others should be only onsumers (allowed to read the variable).When we introdue variables, we should also introdue a unary operator tode�ne their sope. Suh an operator may be parameterized by: the name ofthe variable, its type, and an initial value. If a variable is delared loal to aproess that re�nes the state A of an automaton, it is reinitialized eah timestate A is entered.4.5.3 Extending the notion of inorret programThe main problem onerns the detetion of so-alled ausality errors. Indeed,the mehanism we presented is based upon the existene of transitions for agiven input, in the result of an enapsulation. When variables are introdued,it might be the ase that a transition that remains in the result of an en-apsulation is in fat not �rable, beause of its ondition on variables. Take,for instane, a omponent P with a transition labeled by (x < 0) a/b anda omponent Q with a transition labeled by (x > 0) b. If we put them in26



parallel and enapsulate the signal b, we obtain a transition labeled by (x <0) ^ (x > 0) a, whih is learly non-�rable.Should we deide that there is no transition for input a, in the result of theenapsulation and, onsequently, delare a ase of non-reativity? Let us allintrinsi orretness the notion of orretness based upon the existene oftransitions, with the interpretation of onditions being taken into aount.Even if we hose this new de�nition of orret programs for Argos with vari-ables, we ould not implement it: the problem is undeidable. We annotompute statially the set of transitions that are indeed �rable. The generalproblem is even more omplex beause it may depend on the dynamis of thesystem: think of a transition labeled by X < 0, soured in a state that annotbe entered unless X > 0.Sine an exat detetion mehanism annot be de�ned, we should be able tode�ne an approximate one.There is a way of providing a onservative detetion mehanism for both de-terminism and reativity: we onsider eah ondition on variables as a newBoolean input. A transition label of the form: C(x) m/o, where C(x) is anarbitrary Boolean ondition on the variable x, is treated as �^ m/o, where �is a fresh signal name (not used elsewhere in the program). We an do that onall transitions of the basi omponents of a program. Of ourse, we lose a lot ofinformation: x < 0 and x � 0 will be replaed by two independent Booleanvariables (or signals). Then, we apply our stati riterion to this new program.The riterion requires that there exist exatly one possible transition for eahon�guration of the inputs (inluding the ones introdued for enoding theonditions).We may rejet intrinsially orret programs, of ourse, beause the detetionmehanism may omplain about non-determinism or non-reativity appearingfor a given input � ^ � ^ :::, where � and � are new names introdued asexplained before for representing onditions 1 and 2, and 1 ^ 2 is in fatnot satis�able. But we annot aept intrinsially inorret programs.Hene we have a onservative detetion mehanism. Moreover, we are on-vined that it does not rejet \too many" orret programs. This is a ratherinformal statement, but it means the following: the programs that are rejeted,while being intrinsially orret, are those in whih the orretness relies onsome intriate mixing of Boolean Signals with other variables. Writing suhprograms is a questionnable pratise, beause the slightest modi�ation maytransform an intrinsially orret program into an inorret one, or onversely.27



4.5.4 Valued signalsIf variables are available, a valued signal is simply a pair made of a pure signalthat represents the presene of the signal, and a variable that ontains itsvalue. This is the approah of Esterel, whih is partiularly well suited forevent systems. In Lustre, there is no notion of a pure signal: all inputs havevalues, of type int, or real, or bool.One an then o�er a spei� syntax for designating the presene of a signaland its value. In Esterel, we would write x for the presene (hene present xthen ... is orret) and x? for the assoiated value. (However, in Esterel, beareful not to onfuse valued signals with variables).5 Code Generation and Connetion to Analysis ToolsArgos programs may be ompiled into a lot of automaton formats, used asinput by veri�ation tools.For produing expliit automata, a ompiler that mimis the de�nition of theoperators would be far too expensive. Indeed, the intermediate objets ob-tained when expanding parallel ompositions are likely to be far bigger thanthe �nal system obtained by applying enapsulation operators for all loalsignals. We use a top-down method, with BDDs [35℄ for solving the equa-tions obtained for the enapsulation operations. This is desribed in [36℄. TheArgonaute environment based upon Argos (a graphial editor and simulator,plus a ompiler) has been suessfully onneted to various veri�ation tools,among whih: Aldebaran [37℄, Me [38℄, Kronos [30{32℄, Polka [39,40℄.It is easy to obtain exeutable ode from an expliit at automaton orre-sponding to an Argos program; the typial form of suh a sequential programis an in�nite loop:initialize the statewhile trueget inputs (the values of the input signals)ompute outputs, aording to the valuesof the inputs and the urrent stateemit outputsupdate the stateEah pass in the loop orresponds to one transition of the global Mealy ma-hine obtained by expanding the Argos program, hene it also orresponds toone reation of this program. A reation usually involves several omponents.28



For the synhrony hypothesis to be a usable approximation of the real world,the exeution time of one pass in the loop should be less than the minimalamount of time between two relevant hanges of the program environment.However, the ompilation into an expliit automata is not always a good idea,sine it produes ode whose size is exponential in the size of the program(the parallel omposition, in partiular, produes an explosion of the numberof states). For generating good sequential ode, Argos is ompiled into data-ow equations with ativation onditions, using the d format [41℄, also usedas an intermediate form in the ompilers of Lustre, Signal and Esterel [42℄. dan then be ompiled into C. We also obtain a program with an in�nite looplike the one above, but the set of states is not given in extension. Rather, thestate is the on�guration of a set of Boolean variables, whih may be assignedto separately.6 General omments and Comparison with Related WorkFirst, we summarize how to provide some of the missing Stateharts featuresas maro-notations in Argos. Then we ompare Argos with three lasses ofStateharts semantis. The way ommuniation, synhronization and the as-soiated \ausality" problems are treated is somewhat independent of thesethree lasses. We review the main hoies in a separate setion.6.1 From Argos to StatehartsOutgoing multi-level arrows an be done thanks to an expliit ommunia-tion between the re�ning proess P and the automaton A it re�nes, sine Ppartiipates in a reation in whih the state A is left.Ingoing multi-level arrows an be done with a similar mehanism if we modifythe de�nition of re�nement in suh a way that the proess that re�nes a statepartiipates in a reation in whih this state is entered. We did not present thisextended version of the re�nement here, beause it gives rise to shizophreniaproblems. See [43℄ for an example of use.Speial events like "entered(A)" an be implemented as maro-notations,with pre-proessing: we introdue a new signal name, and add it to the set ofemitted signals of all transitions that enter A. This has to be done arefully,beause A may be the initial state in a re�ning proess, and there is no expli-itly drawn transition that enters it. But then the signal an be added to theset of emitted signals of the transition that starts this proess. Similar things29



an be done for the speial events "exit(A)" and "in(A)".Adding variables and valued signals has been desribed in setion 4.5.Entry by history annot be done, at least as a simple maro-notation, beausethe de�nition of the re�nement is entirely based upon the fat that all informa-tion about a proess re�ning a state is lost when we exit the state. However, ifwe look at systems in whih entry by history is used, we understand that whatwe really need is a suspension mehanism. Suspension may be built in Argoswith a simple ombination of parallelism, inhibition and ommuniation, as itis shown in Figure 11. The interfae signals are suspendP and resumeP. Wemay deide whether suspension has an immediate e�et (i.e., P does not par-tiipate in the reation that suspends it). In the �gure, this is the ase, sinethe transition labeled by suspendP does indeed emit the signal � whih in-hibits P . We should also take are of the simultaneous ourrene of suspendPand resumeP.This onstrution is quite satisfatory beause, if we need entry by history ina proess P , it means we need P to stay alive, until we need the informationabout its internal state again. And, if it is still alive, it is intrinsially inparallel with another part of the program. In Argos, we use re�nement onlywhen we need to start and kill proesses, depending on a sequential struturedesribed by an expliit automaton. In all situations where we need to keepsome information on a proess, even if it does not partiipate in the reationsfor a while, we use the parallel omposition.6.2 Comparison with other Stateharts semantisAs far as we know, the semantis that have been proposed so far for Statehartsor Stateharts variants 5 fall into three main ategories. This lassi�ation issomewhat biased, sine we are mainly interested in the use of Statehartsas a programming language; the existene of a notion of equivalene | orongruene | is an important riterion. The set of referenes is by no meansexhaustive: a quik world-wide-web searh gives at least 150 referenes onStateharts, and a thorough omparison of all the variants is not the subjetof this artile.In order to ompare Argos and Stateharts, the following three lasses are5 We �nd semantis of Stateharts in a wide variety of papers, sine the formalismhas been used intensively in a number of very di�erent ontexts. As soon as atranslation of Stateharts into some formally de�ned language is provided, we anonsider that a semantis of Stateharts is given.30



adequate:� Global semantis� Denotational and fully abstrat semantis� Proess Algebrai semantis, with equivalenes or ongruenesThey are detailed below.None of the variants we know of has been espeially tailored for pure pro-gramming purposes, and this is a major di�erene with Argos. All of them arepresented as spei�ation languages, that an be used in a veri�ation frame-work. Sometimes, an algorithm for generating ode is provided but, in allases, generating ode implies taking a deision about the non-deterministielements of the language.
6.2.1 Global Semantis of StatehartsIn this lass, a Statehart is de�ned as an And/Or tree, with additional on-straints on the struture of the tree. The semantis is desribed in terms of alarge number of tree-manipulation funtions, like the losest ommon anestorof two nodes, et. [44{46℄ and a lot of others fall into this ategory. There isno way to view a program as a omposition of sub-programs, and there isno real \syntax" | or grammar, on whih a syntax-direted semantis ouldbe based. Therefore, a Statehart is viewed as a monolithi objet, not as theomposition of simpler objets, and ompositionality makes no sense. Anotheronsequene is that none of these semantis propose a notion of equivalenefor Stateharts. The operationally-de�ned semantis like that of [47℄, whihdesribes the algorithm of the interpreter, also falls into this lass.
6.2.2 Denotational Fully Abstrat Semantis of StatehartsIn this lass, the language is given a syntax, and a syntax-direted seman-tis. When the full set of features of Stateharts is indeed taken into aount(like the multi-level arrows in [48℄), the ombinators are quite omplex, andsometimes far from \semantial" ombinations. One need to build programsby omposing basi objets that an be sets of states with dangling inomingor outgoing transitions, and it is hard to attah a meaning to these objets,in terms of reative behaviors. In this lass of semantis, the notion of om-positionality relies on the full abstration riterion.31



6.2.3 Proess Algebrai Semantis of StatehartsIn this lass, the language is also given a syntax, in the spirit of proessalgebras: the lassial non-deterministi hoie (the \+" of CCS [26℄) and theparallel operator are used. [49{51℄ and many others fall into this lass.These semantis also need a notion of model for Stateharts, i.e. the math-ematial de�nition of a reative system behavior (usually a labeled transi-tion system, or LTS). Giving an operational and proess-algebrai semantisto Stateharts means providing a strutural translation of Stateharts into aLTS. The main di�erenes with Argos are the following.First, the onstrution of programs starts with the pre�x operator. Basi au-tomata are built with the pre�x operator, the non-deterministi hoie, andthe reursion. Then, automata may be omposed using the parallel operator,for instane. Multi-level transitions are often forbidden, for the same reasonsas in Argos, but without explaining learly how a similar behavior an beobtained with the features of the language. In fat, sine the underlying se-mantis is not purely synhronous, there is no solution with a maro-notation,i.e. independent of the ontext in whih it is needed.With this granularity in the de�nition of the basi omponents, these seman-ti frameworks also need to require well-guardedness (see the de�nition of thisnotion in CCS [26℄) for avoiding in�nite branhing. In Argos, we onsiderautomata as the primitive objets, beause it is easier to de�ne the determin-ism and reativity riteria in suh a framework. Hene we need no reursionoperator.Seond, Argos is a subset of Stateharts features, exept on one point: wedeided, from the very beginning, to de�ne an enapsulation operator, thatallows to restrit the sope of signals. This has well-known renaming e�ets,whih are neessary when desribing large systems (think of a version of Cwithout loal variables, in whih a team of 50 developers would have to deidewho is allowed to use i as a loop index!). But this has also some advantagesonerning the de�nition of the language itself: the enapsulation operator isthe one that orresponds to the synhronization. As already mentioned, it isthe same idea as in CCS.6.3 Communiation, synhronization and ausality6.3.1 Causality in other synhronous languagesAs we illustrated with the de�nition of enapsulation, the synhrony hypoth-esis means that the status of loal signals, used for internal synhronization,32



should be uniquely determined in a global transition: it is given as the solutionof a system of equations. The intrinsi paradoxes are related to the fat thatthe system of equations may have 0 or several solutions. This is alled logialorretness.In Esterel, the notion of ausally orret program is muh stronger, beausewe do not only require that the system have a unique solution, but also thatthis solution be onstrutive (see [16℄ for a syntheti presentation of this idea:the system of equations has to be solved using onstrutive logi, i.e. withoutusing a _ :a = 1).In Lustre, the data-ow delarative style of the language means that \pro-grams" are similar to the set of equations we showed in setion 3.2.2 for ex-plaining enapsulation. The stati riterion used for ruling out non-ausalprograms is even stronger than in Esterel: the system of equations should beyle-free. A yli system of equations, even if it has a unique solution, isrejeted. It may seem too strong a riterion, but there are very few ases inwhih we would like the riterion to be a little weaker (see examples, takenfrom iruit design, in [34,52℄).6.3.2 Notions related to ausality in StatehartsTo our knowledge, none of the semantis that have been proposed so far forStateharts is purely synhronous, in the sense that: they are based upon thesynhrony hypothesis, and there is a notion of inorret program for rulingout the programs that rise the ausality paradoxes intrinsi to the strit ap-pliation of this hypothesis.By strit appliation of the synhrony hypothesis, we mean that a omponentthat ontains a transition labeled by a=b, in parallel with a omponent thatontains a transition labeled by b, gives a single transition as a result, what-ever the notion of \result" is. For proess-algebrai semantis, this is the samenotion as in Argos, sine they are based on operations over LTS. For global se-mantis, this is also quite similar, beause the operational semantis desribesthe possible global transitions of a Statehart. Another point of view on thesame fat is the following: a=b in parallel with b giving a single transition inthe parallel proess means that the internal ommuniation between the twoomponents is atomi, with respet to what happens in the environment.This global transition is omputed knowing the status of loal signals used forinternal synhronization, whih should be uniquely determined.In Stateharts, there is no real notion of inorret program: non-determinismis not onsidered harmful, and if a transition is missing (non-reativity), thesystem simply does nothing. In general, there is no notion of loal signal either,33



for whih we ould require a unique status. Hene the notions of ausality arequite di�erent from the orresponding notions in synhronous languages.The very �rst semantis of Stateharts ([45℄ for instane) introdued the no-tion of \miro-step", to talk about what happens inside a Statehart when itreats to an external stimulus. There is a omplementary notion ofmaro-step,intended to represent an atomi reation of the system to its environment; amiro-step is usually a maximal sequene of miro-steps, in the sense that itannot be extended: none of the urrently ative omponents an reat to thesignals that were present in the original external stimulus, or that were emit-ted by the already exeuted miro-steps. This raises new problems, beausea maximal sequene does not neessarily exist in all ases; in general, it isnot possible to determine statially whether all reations to external inputsgive �nite sequenes of internal miro-steps. Moreover, in some of the so-alledmiro-step semantis, it is possible to take one miro-step assuming that a sig-nal is absent and, later, to take another miro-step that emits the signal. Thiskind of problem led to a number of riteria like global onsisteny, for talkingabout those maro-steps that are logially orret, when observed globally.A good summary an be found in [23℄, where it is shown that no miro-stepsemantis an be responsive, ausal, and modular. Responsiveness means thatthe outputs are simultaneous with the inputs (the synhrony hypothesis); mod-ularity means that a omponent may be used in an overall ontext knowing itsmaro-step semantis only and forgetting about the details of its miro-steps(this is related to our ompositionality riterion, with a notion of equivalenede�ned as having the same maro-steps) ; ausality means that a maro-stepannot generate its own trigger (this is one half of our de�nition: it rules outprograms of the form: a/b in parallel with b/a).The semantis of Stateharts entitled \what is in a step?" [53,44℄ is suÆ-iently lose to ours for the omparison to be meaningful: we did it in [54℄,where we proposed a general framework for omparing synhronous ommuni-ation mehanisms; the di�erenes lie in the interpretation of the synhronousbroadast. For instane, the parallel version of the instantaneous dialogue(�gure 6) would be orret in this version of Stateharts, but would give nobehavior. The re�nement version of the dialogue works �ne, though. In oursemantis, where these two programs are indeed equivalent, there annot besuh a semantial di�erene between them.7 ConlusionsWe presented a set of operators for building a synhronous language based onexpliit automata, with a syntax similar to that of Stateharts.34



The semantis is purely synhronous; it may be viewed as a simpli�ation ofthe Esterel semantis, adapted to a programming style where automata aregiven expliitly (in Esterel, the ontrol struture of a program is made of loops,wathdogs, et.).As it is, the set of operators we presented is not a language, beause it laksa lot of features of real programming languages, for instane valued (i.e. notonly Boolean) signals, expliit variables of any type that an be tested andassigned during a reation, et. Moreover, the other synhronous languagesallow to use alls to a host language like C, in whih omplex data struturesmay be de�ned. This should be the ase for Argos too.In order to provide suh features in a simple way, and also beause we areonvined that omplex systems annot be desribed using only automata, weworked a lot on the ombination of Argos with other synhronous languages(mainly Lustre and Esterel, whih have quite distint programming styles:Lustre is data-ow, while Esterel is imperative with ontrol strutures). Seefor instane [55℄. We also worked on the Argos-Esterel ombined language,but Charles Andr�e and his team (University of Nie, Frane) have de�nedthe SynCharts [56℄ formalism, whih seems to be the way things should bedone: the language inherits various preemption primitives from Esterel, thehierarhi program struture from Argos, and other interesting primitives fromGrafet [57℄, whih may be given a readable and onise graphial semantis.More reently, Argos has given birth to Mode-Automata [58℄, a promis-ing mixed-style language for the desription of regulation systems and theirrunning modes, that an be ompletely implemented on top of the Lustreboth aademi and ommerial programming environments. A basi mode-automaton is an automaton with data-ow programs attahed to states. Thelanguage re-uses the parallel and hierarhi onstruts of Argos, although thebasi objets are more similar to Moore mahines than to Mealy mahines.As in Argos, there are no multi-level arrows in the hierarhi omposition,and the omponents at several levels of hierarhy may ommuniate with eahother in order to ahieve the multi-level transition behavior.
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Notounting(a)

Main1 (a, start, stop) ()Counting

end end
C1 C0/end

Main2 (a, start, stop) ()
a

aa
endstop.end

Counting

end (b)

B1 B0b/bA1 A0a/bab,
C1,B1,A1C1,B1,A0C1,B0,A1 C0,B1,A1C0,B1,A0C0,B0,A1C0,B0,A0

C1,B0,A0
aaaa

a/end

startNot ountingstartstop.end
Fig. 1. Two equivalent Argos programs for the modulo-8 a-ounter

a.stop,a.stop,a.stop
C1,B0,A1

C0,B0,A0C0,B1,A0C0,B0,A1C0,B1,A1C1,B0,A0
C1,B1,A1 stop

a.stop
a.stop
stopstop
a.stopC1,B1,A0

start.a
a.stopa.stop a.stopNot ounting

a.stop
start.a

Fig. 2. The behavior of the modulo-8 a-ounter41



B0A0
B1A1 B0A1B1A0 a.b

A1 A0a/baB1 B0b/b
a.b/a.b/b

a.b

a.b
a.ba.b a.b

a.ba.b/ba.b/a.b a.b a.b/ba.b/a.b/b,
Fig. 3. Semantis of the parallel omposition

B1A0 a.ba.b a.ba.b a.b
a.b/b,a.b/b a/aB0A1B0A0

B1A1a.b a
a aa aaB1A0 B0A0 B0A1B1A1Fig. 4. Semantis of the enapsulation operation: we �rst apply the riterion of theenapsulation operation to the system obtained from the parallel omposition in�gure 3, and then we hide the loal signal b.42



module instantaneous_dialogue:input I;output S;signal Q, Y in[ await tik;present I then emit Q end;present Y then emit S end||every Q do emit Y end℄end. Fig. 5. The instantaneous dialogue in Esterel

A
B
i:Y =Q
i:Y=Q ....C

DE
Q=YQ

QQ; YFig. 6. The instantaneous dialogue with a parallel omposition43



X i _ jYsBaA a=A
YXA s XBi _ j

(i _ j)(i _ j)=A:a^a^
a ^ :(i _ j)=Aa ^ :(i _ j)

:s:a ^ :(i _ j)
:a ^ :(i _ j)

(a)

(b) Fig. 7. Re�nement: a simple example

B
....C

DE
Q=YQ

Q
i=QY

Q; Y

AX

Fig. 8. Instantaneous dialogue, desribed with a re�nement44



Tempo[d a℄

Tempo[d a℄

time-out/... .../kill....../kill....../start... Idle start 0 1 d-1a.kill a.killa.killkill kill ...kill,a.kill/time-outstart, kill, time-out

(a)

(b)Fig. 9. Maro-notation for temporized states

State 1< � >P (a) (b)i/o [f�g PState 1 i/o
Fig. 10. The maro-notation for inhibiting transitions. The box with < � > is theonrete syntax of the inhibiting operator.45



P< � > resumeP/��
resumeP suspendP/�

Fig. 11. Suspension of P
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Summary
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