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Argos: an Automaton-Based
Synchronous Language

Florence Maraninchi* Yann Rémond 2

VERIMAG — Centre Equation, 2 Avenue de Vignate — F38610 GIERES?

Abstract

Argos belongs to the family of synchronous languages, designed for programming
reactive systems (Lustre [1,2], Esterel [3], Signal [4], ...). Argos is a set of operators
that allow to combine Boolean Mealy machines, in a compositional way. It takes
its origin in Statecharts [5], but with the Argos operators, one can build only a
subset of Statecharts, roughly those that do not make use of multi-level arrows. We
explain the main motivations for the definition of Argos, and the main differences
with Statecharts and their numerous semantics. We define the set of operators, give
them a perfectly synchronous semantics in the sense of Esterel, and prove that it is
compositional, with respect to the trace equivalence of Boolean Mealy machines.

We give an overview of the work related to the definition and implementa-
tion of Argos (code generation, connection to verification tools, introduction of
non-determinism, etc.). This paper also gives a set of guidelines for building an
automaton-based, Statechart-like, yet perfectly synchronous, language.

Key words: Argos, synchronous language, semantics, compositionality

1 Introduction

Reactive Systems and the Synchronous Approach

The term of reactive system [6] has been widely accepted to talk about com-
puter systems in which the interactions with an environment are the promi-
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nent aspect. They are opposed to transformational ones, in which complex
data structures and algorithms are involved.

The problem of specifying, programming and verifying real-time reactive sys-
tems, together with the definition of appropriate development environments,
is still an important research problem [5-7], the following being widely ac-
cepted. There exist appropriate design methods, programming languages and
environments for transformational systems (or, at least, for systems which are
mainly transformational, like compilers). This is not yet the case for reactive
systems, like real-time process controllers. Moreover, the need for formal ver-
ification methods and tools is even more crucial for reactive systems than for
transformational ones, because strong reliability requirements are associated
with them.

The family of synchronous languages [8] and formalisms has been a very im-
portant contribution to the domain. The synchronous approach is the mathe-
matical foundation for the Esterel [3], Lustre [1,2], Signal [4] languages, for the
algebra ATP [9], for the Concurrent Constraint Programming paradigm [10].
To a certain extent, some of the various semantics that have been proposed so
far for Statecharts [5] are also synchronous. Modecharts [11,12] were recently
given a synchronous semantics in the spirit of Esterel.

Synchronous languages or formalisms are based upon the synchrony hypothe-
sis, which states that the reaction time of the system is zero. From an external
point of view, it means that outputs are produced simultaneously with the in-
puts, which is clearly unimplementable; however, a synchronous system works
fine provided it reacts sufficiently fast, w.r.t. the rate imposed by the environ-
ment: if relevant changes in the inputs occur at most each second, the system
may take one second to react. When we program a reactive system using a
synchronous language, we always have to prove that the final code can indeed
execute one reaction of the system sufficiently fast. We would have to do that
for any language. Simply, the structure of the typical imperative code pro-
duced by compiling a synchronous language is such that one can provide quite
accurate upper-approximations of the execution time, looking at the source
program. In the general case, computing the so-called worst-case execution
time (see for instance [13]) of a program is difficult, mainly because of recur-
sion and unbounded loops; but these constructs never appear in the code of a
synchronous program.

The interesting part is the internal point of view on the synchrony hypothesis.
The hypothesis states that the reaction time of a particular component, and
the communication time between components, are also zero. This makes the
semantics of parallel composition very simple. It could be useless if the imple-
mentation of the parallel composition in synchronous languages was based on
a separate implementation of each component, running in parallel with a kind



of dynamic scheduler, because the hypothesis that the communication takes
no time would clearly be in contradiction with the reality of the execution.
But the synchronous languages are intended to be compiled into centralized
sequential code. The parallel composition and the communication mechanism
are introduced only for description purposes, at the level of the language;
they are compiled into something sequential, hence they do not imply explicit
parallelism and communication at execution time. (The problem of distribut-
ing code is also important, but can be considered orthogonal to the fact that
there indeed exists a parallel structure in the source language; see work by
P. Caspi [14,15]).

The synchrony hypothesis implies that systems compose very well, and are eas-
ier to describe and verify than asynchronous ones. Moreover, synchrony allows
to deal with functional and timing correctness of a system separately [7,16].

Finally, synchronous languages are programming languages, not only specifica-
tion languages. Their programming environments provide efficient compilers
towards various kinds of software or hardware targets. Relying on a formally
defined semantics also allows the connection of such programming languages to
validation tools (formal verification by model-checking or deductive methods,
test case generation, debugging, etc.). For Lustre, see for instance [17,18].

Argos

The first definition of Argos appeared in [19,20]. Argos is a set of operators for
combining Mealy machines in parallel and hierarchic structures; it has a pure
synchronous semantics following that of Esterel; it may be given a graphical
syntax similar to that of Statecharts (with no multi-level arrows), and is indeed
inspired by the very first papers on Statecharts [5] and Higraphs [21]. Tt is listed
in [22] as one of the Statecharts semantic variants, but it was not designed
for that purpose, and a lot of Statecharts features are missing. We show,
however, that some of these features may be described from the primitive set
of Argos operators, thanks to the synchronous semantics. We give below the
main motivations for the definition of Argos.

No multi-level arrows

The main difference between Argos and the various semantics of Statecharts in
which people have tried to get rid of the multi-level arrows, is that the perfectly
synchronous semantics we adopted allows to replace this rather syntactical
feature by a completely semantical one: some processes, at two different levels
of the hierarchy, do communicate with each other and this ensures a global
behavior similar to that of a multi-level arrow. In some sense, this essential



modification is similar to what happened when explicit goto’s were replaced
by implicit ones, available through the use of semantical structures like WHILE
loops. The important point is that one cannot do without something replacing
multi-level arrows: they correspond to very usual situations in the reactive
system domain (or you are also bound to forget about hierarchy of states!).

The choice we made for Argos has big consequences: with no multi-level ar-
rows, a Statechart-like picture may be seen as a particular combination of
well-defined automata. An automaton is a set of states and transitions con-
nected together, and this is possible only at one level. Then complex pictures
are obtained by two simple constructs: put two (possibly composed) objects
in parallel; put a (possibly composed) object inside the state of an automaton.
This paves the way to a well-defined syntaz of programs, on which a struc-
tural semantics can be based. When a syntax-directed semantics has been
obtained, compositionality begins to make sense, and a careful definition of
the composition operators guarantees it.

A Compositional semantics

What does compositionality mean, in this context? In all programming lan-
guages, one can build several syntactically different programs that do the same.
When we are in the process of defining a formal semantics, this notion may
(should) be formalized a little. For Argos, it means the following: the semantics
of a program is given in terms of a Boolean Mealy machine, the mathematical
model we use for reactive behaviors. There exists an equivalence relation for
such machines, that captures the fact that two machines represent the same
reactive behavior (something similar to the fact that, in a sequential language,
while true do A od and while true do A; A od are the same).

Knowing this equivalence relation, we can define the compositionality crite-
rion for the semantics of Argos: if two sub-programs are the same (i.e. the
semantics associates with them two equivalent machines), then one should be
able to replace one by the other in any program context, without changing the
semantics of the global program (formally: the equivalence is a congruence for
all the operators of the language).

We show that this is true for the semantics of our operators set. To our opinion,
compositionality is a key property for the language to be usable: it allows to
reason about sub-programs independently.

A notion of incorrect programs

A less prominent (but yet important for programming real systems) difference
between Argos and all the Statechart semantic variants we know is our notion



of incorrect program. We will see in the sequel that the communication mech-
anism adopted in Statecharts and Argos gives rise to the so-called causality
problems, somewhat similar to deadlocks. Imagine a process that waits for
signal a for emitting signal b, talking to a process in parallel that waits for b
for emitting a: what should the behavior of the whole be? Are the two pro-
cesses stuck, waiting for each other to start? Or does a kind of spontaneous
reaction take place? Let us call the programs in which such problems appear
“non-causal’.

For Statecharts, people tried to give a meaning to all combinations of objects,
in particular non-causal ones. This leads to some choices in the semantics
that may have consequences on the compositionality properties, for instance.
Huizing [23] has studied the relationships between what he calls responsiveness
(obeying the synchrony hypothesis), causality and modularity (a notion related
to our compositionality), and proved, in his framework, that no semantics can
be responsive, causal and modular. See more details in section 6.3.

In Argos, we followed the path shown by Esterel: there are incorrect compo-
sitions, to which we are not bound to give a meaning. As a consequence, we
are interested in compositionality properties for the subset of correct programs
only. This is much simpler than trying to integrate a notion of composition-
ality with a way of giving a meaning to non-causal programs; moreover, it is
legitimate: this is the point of view of a programming language designer. In all
programming languages one can write incorrect programs that are detected
at compile-time and rejected: no meaning is given. This can be due to typing,
for instance.

Of course, we should provide a detection mechanism for non-causal objects.
This is a bit more complex than typing in classical languages, however, espe-
cially for valued (i.e. not only Boolean) Argos or Esterel. This is because the
exact detection of such incorrect programs is undecidable. For the Boolean
subsets of the languages, it is decidable, but may be quite expensive, because
it depends on the expanded control structure of the program.

In classical languages, the detection of a large class of errors is also
undecidable. A few errors only can be detected at compile-time (like
X := 1/0 ; in Ada) ; otherwise the sources of potential dynamic errors (like
get(Y) ; X := 1/Y ;) are clearly identified, and the compiler produces “de-
fensive” code, which may raise exceptions at execution-time. Hence, the static
mechanism may accept incorrect programs, but it provides well-defined dy-
namic errors.

In the family of synchronous languages, dedicated to the programming of
safety-critical reactive systems, we do not accept dynamic errors. Hence we
have to adopt the opposite point of view, and to provide conservative ap-



prozimate detection mechanisms: if a program is accepted by the detection
mechanism, then it is guaranteed to be free of non-causal situations (i.e., dy-
namic errors); if it is rejected, it may contain non-causal situations, or it may
be free of these problems too. When such a language is augmented with arrays
or other data structures, the same principle applies: we cannot accept an “in-
dex out of bounds” error at execution-time, hence we are bound to be quite

drastic at compile-time.

The quality of the approximate detection mechanism is good if it does not
reject correct programs too often.

A small number of features (or constructs)

Finally, we deliberately gave priority to a clean and simple semantics, and
did not hesitate to reject some features, if they did not fit well in the sim-
ple semantic framework. It appears now that a lot of sophisticated language
features (some of them borrowed from Statecharts) can be described as macro-
notations, using a very simple core language. We mention some of them in sec-
tion 6.1. This is good news for code-generation, connection to analysis tools,
etc.

Outline of the Paper

The paper is organized as follows: first, in section 2, we present the notion of
a Boolean reactive system, for which the basic Argos operator set is designed,
we show a simple example that uses the three main operators of Argos, and
we explain their semantics intuitively. Section 3 defines the set of operators
formally. Section 4 defines a language based upon this set of operators, and
the notion of causally incorrect program. Section 5 discusses code generation
issues, and the connection to analysis tools. Section 6 gives a (probably non-
exhaustive) list of related work, with detailed comparison. Section 7 is the
conclusion.

2 An Argos Example with intuitive Semantics

2.1 Boolean Reactive Systems

Boolean Mealy machines constitute the basic components of Argos programs.
They are appropriate for the description of Boolean reactive systems, i.e. reac-
tive systems in which the inputs and outputs are pure signals. A digital watch



may be seen as a Boolean reactive system: each button of its interface gives
one Boolean input signal, and we can use two Boolean outputs on and off for
each element of the digital display. It makes a huge set of outputs (the display
of a single digit needs 7 elements, hence 14 signals), but there is no loss of
information.

The digital watch may also be seen as a reactive system with integer outputs, in
which case the physical environment is supposed to deal with outputs like 10,
in order to control the display. In some sense, this only changes the position of
the frontier between what we call the system, to be described in our language,
and what we call the environment.

This is usually sufficient for event systems, like the digital watch. For describ-
ing signal-processing systems, or simply control systems in which the inputs
are given by sampling a continuous phenomenon, one needs valued signals,
e.g., integers, reals, etc. Although most complex reactive systems have both
event-driven and sampled subsystems, the core of Argos deals with pure sig-
nals only, encoded into Booleans. Values are introduced in section 4.5.

2.2 Description of the program

Figure 1-a is an Argos program using four automata (or Boolean Mealy ma-
chines), to describe a modulo-8 a-counter, with initialization and interruption
facilities. Rounded-corner boxes are automaton states; arrows are transitions;
rectangular boxes are used for unary operators (see below). A set of states and
transitions which are connected together constitutes an automaton. The four
basic components of the program have the following sets of states: {Counting,
Not counting}, {A0, A1 }, {BO, B1}, {CO, C1}.

In an automaton, transitions are labeled by inputs and outputs. The input part
of a transition label is a Boolean formula of the input signals, not necessarily
a complete monomial (the end label stands for end.stop V end.stop); the
output part is a set of output signals. (The input part and the output part
are separated by a slash; negation is denoted by over-lining, and conjunction
is denoted by a dot: ¢/end, stop.end. When the output set is empty, it can be
omitted). We also omit the transitions from a state to itself, if they do not
emit signals. For instance, the states A0 and A1 of the first bit (resp. BO and
B1, CO and C1) should have loops labeled by @ (resp. b, ).

There is one initial state, designated by an arrow without source. States are
named, but names should be considered as comments: they cannot be referred
to in other components. An arrow can have several labels — and stand for
several transitions, in which case the labels are separated by a comma.



The automaton whose states are Counting and Not counting is said to be
refined, in its Counting state, by a subprogram built with the three other
automata. The external box, whose cartridge contains end, is the graphical
syntax for a local signal declaration unary operator. The box defines the scope
in which the signal end is known. This signal is used as input by the refined
automaton; it is used as output by one of the three other ones: a communi-
cation will take place between the two. Another such unary operator is used
in the program, in order to limit the scope of signals b, ¢ to the program
constituted by the three unrefined automata.

The interface of the global program is defined as follows: all signals which
appear in a left-hand (resp. right-hand) side of a label, and are not declared
to be local to some part of the program are global inputs (resp. global outputs).
The shadowed box gives the name of the program (or subprogram), the list of
global inputs, and the list of global outputs.

Finally, three automata are put in parallel: they are drawn separated by dashed
lines.

2.8 Intuitive Semantics

The behavior is as follows.

Initially, the counter is not counting; the global state is Not counting. It
may be started by the input start, which puts the system in the global state
Counting:A0BOCO, encoding the value 0. The first occurrence of the signal a
then moves the first bit from A0 to A1 and leaves the two other bits unchanged:
Counting:A1BOCO encodes 1. The next occurrence of a moves the first bit
back to AO; this transition is labeled by a/b, which means that it broadcasts
the signal b towards the other components, that may react to it in the same
reaction; it moves the second bit from BO to B1. The third bit is left unchanged:
Counting:A0B1CO encodes 2. The fourth occurrence of a moves the first bit
from A1 to AO, which emits b; hence it also moves the second bit from B1 to BO,
which emits c; hence it moves the third bit from CO to C1. The global target
state is Counting:C1A0BO, encoding 4.

The eighth occurrence of the signal a moves the counter from state
Counting:A1B1C1 to state Counting:AOBOCO, and emits the signal end, which
is an input of the main automaton: the system returns to the global state Not
Counting.

At any moment, a stop signal stops the counter, and the system returns to
the global state Not Counting. The label stop.end is necessary for ensuring
the determinism of the main automaton (see details below). However, since




the two transitions labeled by stop.end and end do not emit signals, and
have the same target state, they could be replaced by a single one, labeled by
stop V end.

2.4  FEquivalent programs

The second program (Figure 1-b) is equivalent to the first one (see formal
definition below): the parallel composition of the three bits, with the signals
b and ¢ being declared local, has been replaced by a flat automaton, having
the same behavior.

Since the semantics is compositional, replacing a component by an equivalent
one leaves the global program behavior unchanged.

Figure 2 is a third equivalent program, made of one single flat automaton. The
semantics of the language formally defines the translation of the first program
(Figure 1-a) into the flat automaton of Figure 2.

3 A set of operations on Boolean Mealy machines

In this section, we first define the objects that serve as basic components in
all Argos programs: Boolean Mealy Machines, with additional properties like
determinism and reactivity.

Then we define a set of operations on these objects that may, or may not,
preserve the additional properties.

This set of operations is not yet a language. In the language, we add a syntax
for programs (composed objects, i.e. expressions made of basic objects and
any number of operators), and define the notion of correction of a program.

The definition of the operations makes them total, but the notion of program
correctness may declare that a particular combination of basic objects and
operators is illegal, in which case we are not bound to give it a meaning.

3.1  Deterministic and Reactive Boolean Mealy Machines

A simple reactive behavior may be described by a labeled transition system.
The transition system has one initial state. Transition labels are made of two
parts: the input part 1, and the output part 0. The complete label is denoted



by 1/0. Both parts are built upon a set of elementary interactions with the
environment, called signals.

The input part is a Boolean condition on signals. It describe a condition to
be fulfilled by the environment in order to make the system react. A Boolean
condition describes a set of input signal valuations.

The output part is the set of signals the system outputs to its environment,
when reacting to a given input. One transition is one reaction, and is supposed
to be instantaneous, hence the outputs are simultaneous to the inputs that
cause them. Time passes in states.

Let A denote the set of signals. In the general case, a basic Argos component
is of the following form :

Definition 1 : Boolean Mealy machine

A Mealy machine is a tuple (S,so,I,0,T) where I C A,O0 C A are the
sets of input and output signals; S is the set of states; sy is the initial state;
T C S x B(I) x 29 x S is the set of transitions. (B(I) denotes the set of
Boolean formulas with variables in 7). O

Without loss of generality, we can always consider that the Boolean Mealy
machines we deal with have only complete monomials as input labels. If the
set of inputs is {a, b}, then the input condition a stands for : a A bV a A —b,
and a transition labeled by a/o may be split into two transitions (between the
same states) labeled by a A b/o and a A =b/o.

Definition 2 : Bisimulation of Boolean Mealy machines

Two machines M; = (Sy, so1, 1,0, T1) and My = (Ss, Sg2, [, O, Ty) are said to
be bisimilar, denoted by M; ~ Ms, if and only if there exists an equivalence
relation R C S; x Sy such that sg;Rsge and

f Ty, bt ..., such that
R s Moy — Vi e [l,m], s Mﬂ“; ANrRT
Ab= (Vib)
| and conversely.

Bisimulation has been first introduced by Park and Milner [24,25]. It coincides
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with trace equivalence for deterministic systems.
The machines we consider should be both deterministic and reactive. We give

the definition only for machines labeled by complete monomials on the set of
inputs.

Definition 3 : Determinism and reactivity
A machine (S, sg, 1,0, T) is reactive iff :

Vs €S,

\/ m] = true
)ET)

(Simioisl

It is deterministic iff :

Vs € S, Vt; = (s,my/o01,81) € T, Yty = (s,my/09,82) € T

mip = Mo - (01 = 02) N (31 = 82)

We will denote by M", M? and M", respectively, the sets of reactive, deter-
manistic, reactive and deterministic Boolean Mealy machines.

Determinism is an important issue. In spite of the inherent non-determinism in
the description of the environment, the programs should describe deterministic
behaviors. In this framework, non-determinism of a reactive behavior is simply

the existence of two transitions sourced in the same state, with non-exclusive
input parts, and different output parts and/or target states.

3.2 Operations

3.2.1 Cartesian Product or Parallel Composition

The formal definition of parallel composition is based upon the following prod-
uct operation.

Definition 4 : Synchronous product of Boolean Mealy machines

11



X 1 MxM-—M
(51,801,]1,01,T1) X (SQaSOQaIQaOQaTQ) =
(S1 % Sa, (801, S02), [1 U Ir, 01 U Oy, T")

Where T" is defined by :

((slamla 01, sll) € Tl) (SQa ma, 02, 8’2) € TQ) -

((317 32)a my A ma, 01 U 02, (slla 8’2)) € TI)

The synchronous product of Boolean Mealy machines is both commutative
and associative, and it is easy to show that it preserves both determinism and
reactivity.

Note that the parallel composition does not make any synchronization between
components. It is the appropriate construct for the parallel composition of two
independent systems. When the systems have to communicate or synchronize
with each other, parallel composition should be used together with encapsu-
lation of some dedicated signals; this is explained below.

Since all the components are reactive, a transition in the composed process
corresponds to exactly one transition in each of its parallel components. Some
of them execute loops, and emit no signals, so their reaction is not observable,
but they do take a transition, and only one.

The machine corresponding to the parallel composition of the two first bits of
the counter (before applying the unary operator that declares b and ¢ to be
local) is given in Figure 3.

3.2.2  Encapsulation

Basic ideas

Encapsulation is a unary operator parameterized by a set of signal names. It
is used to restrict the scope of signals, and to force synchronization between
parallel or hierarchic components. Typically, if a signal s is used as the out-
put of a component P and as the input of a component (), it may serve as a
synchronization signal. This is the case for signals b, ¢ and end of the counter

12



in section 2. The synchronization and communication mechanism is the syn-
chronous broadcast (the same as in Esterel): the sender can always send, and
it needs not know whether 0, 1 or several other components are listening this
signal. Sending is non-blocking.

The main reason why we express the semantics of the synchronous broadcast
only in the encapsulation operator is the following: it may serve for synchro-
nizing parallel components, but also hierarchical components. If we partly in-
tegrate it in the semantics of the parallel composition, then we need to repeat
it in the semantics of the hierarchic composition.

Observation of the example

The intuitive semantics of the example shows that the bit in which b is an
input should react to this signal only if it comes from the previous bit. On the
other hand, the signal b is emitted by the first bit in order to synchronize with
the second one, and should not be visible elsewhere. In such a case, the scope
of b can be restricted to the parallel composition of the first and second bits.
In the example, it is in fact extended to the parallel composition of the three
bits, but it does not appear in the third one, and it is simpler to use only one
encapsulation operator for the two signals b and c.

Defining the scope of a signal by encapsulating a subprogram P, allows to
simplify the transitions of P: encapsulation forces the synchronization between
the components of P by removing some transitions of their product, like the
restriction in CCS [26]. It is a bit more complex because of the input/output
structure of the labels, and the Boolean structure of the inputs, but it is
essentially the same idea.

Formal definition

Definition 5 : Encapsulation

\ 0 Mx24— M

(S, 50, 1,0, T)\T = (8,50, I\T,0O\ T, T

Where T" is defined by :

(s,my0,) €T AN m™NT Co A m NINo=1)
= (s,30.m,0\T,s) e T’

13



m™ is the set of variables that appear as positive elements in the monomial m
(i.e. mt ={x € A| (x Am) =m}). m™ is the set of variables that appear as
negative elements in the monomial m (i.e. m~ = {z € A| (-z A m) = m}).

Intuitively, a transition (s,m,o,s") € T is still present in the result of the
encapsulation operation if its label satisfies the local criterion: m™ N T C o,
which means that a local signal which is supposed to be present has to be
emitted in the same reaction; and m~ N T N o = (), which means that a local
signal that is supposed to be absent should not be emitted in the same reaction.

If the label of a transition satisfies this criterion, then the names of the en-
capsulated signals are hidden, both in the input part and in the output part.
This is expressed by 3I.m for the input part, and by o\ T for the output part.

The encapsulation operator can only remove some transitions in a complex
object obtained, for instance, as the result of a parallel composition. Hence it
is always true that each basic automaton component in a program participates
in a global reaction by executing exactly one transition. The synchronization
based on broadcasting signals does not give rise to infinite behaviors, or lack
of stability, etc.

The synchrony hypothesis, stating that communication takes no time, is il-
lustrated here: if we consider two programs P and (), communicating with a
signal @ which is made local to their parallel composition, one transition in P
that emits a, and one transition in () that reacts to the presence a, make a
single transition in the result. The parallel composition is completely compiled,
and there is nothing like a communication at execution time.

Determinism and Reactivity of an encapsulated process

The encapsulation operation does not preserve determinism nor reactivity.
Intuitively, this is because the criterion used for ruling out some transitions of
the encapsulated process, depending on their labels, is applied locally.

Take a component P with two states A; and Ay and four transitions (Aq,7 A
a/b, As), (A1,i A a,Ay), (A,i Aa, Ay), (A,i Aa, Ay), and a component Q
with two states B; and By and four transitions (By,iAb/a, By), (By,iAb, By),
(B1,i Ab,By), (By,iAb, By).

Put these two components in parallel and make the signals a and b local
to the result. For input 7, from the composed state A;B;, there will be two
distinct transitions left when applying the above criterion: (A, By, i, Ay Bsy) and
(A1 By, i, A1 By). The first one is made of: the transition (A, i A a/b, Ag) in P,

14



and the transition (By,iAb/a, By) in @, which gives (A By,iANaAb/a,b, A3Bs)
in the product, before encapsulation; it passes the local criterion and then
gives (A1By,1, A3Bs) when hiding a and b. The second one is made of the
transition (A;,7 A @, A;) in P and the transition (By,i A b, B;) in @, which
gives (A1By,i A@a A b/0, A;B;) in the product, before encapsulation. It also
passes the local criterion, and then gives (A; By, i, A1 By) when hiding a and b.

The result is no longer deterministic, because of these two transitions. There
are no other transitions left in the encapsulated program.

Now, take the same component P, and a component @ with two states B
and B, and four transitions (By,i A b/a, Ba), (B1,i A b, By), (By,i A b, By),
(Blag/\ ba Bl)

Put them in parallel and encapsulate the result with local signals a and b: in
the resulting process, there is no transition sourced in A;B; for input i: the
result is no longer reactive.

These are the typical cases where non-determinism and non-reactivity appear.
It may seem strange to write such pathological communications directly, in
such simple systems. But this kind of situation may appear in very complex
compositions of components, with any number of participants.

Alternative view of the semantics

Another way of expressing the semantics of the encapsulation operator is by
giving a system of equations, of which the values of the encapsulated signals are
a solution. This view gives some new hints for understanding why determinism
and reactivity are not preserved.

The idea is the following: for each state ¢ of the process P, and each configu-
ration I of the inputs, there should be exactly one status of the encapsulated
signals, i.e. one valuation of these signals, seen as Boolean variables. Knowing
a configuration of the inputs, and a status of the local signals, it is easy to de-
termine the reaction of the system, by observing what transitions can indeed
be taken.

The status of the local signals is the solution of a set of equations that can be
built as follows. For each local signal s, take the set of transitions sourced in
q and emitting s (i.e. with a label of the form: ¢;/S with s € S) and build the
equation: s = V ¢;. In other words, s is true (emitted) if and only if at least
one of the transitions of P that emits it can be fired. This expresses the fact
that a local signal cannot come from outside P: it is present in a reaction of
P only if P itself emits it. The important point is that the local signals may
appear in the conditions ¢;. Hence the system of equations obtained by writing
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such an equation for each local signal is of the general form; in particular, it
may contain cycles of dependencies, like a = b;b = a.

When the system of equations has exactly one solution, it means that the
reaction of the system to input [ is unique. If this is the case for each state of
P, then the encapsulated system is both deterministic and reactive.

If, for a state ¢, the system of equations has more than one solution (resp.
no solution at all) then the encapsulated process is no longer deterministic
(resp. reactive). This is the case for processes that exhibit equations of the
form a = b;b = a (several solutions) or a = b;b = @ (no solutions).

The typical examples presented above give this kind of system: a =7 A b;b =
iNa,ora=iAbb=1iAa. Since we are interested in the reaction of the
system to input ¢, we replace i by true in these equations, and obtain the
typical cases.

The two-bit example

Figure 4 shows how to apply the encapsulation operator, for signal b, to the
system we obtained in figure 3.

An Example: the Instantaneous Dialogue

Observe the example of figure 6. It shows an instantaneous dialogue between
the two parallel components. The intuitive behavior is the following: when
in state A, the first component P; needs to query the state of the second
component P, in order to choose its reaction to input i; if P, is in state
C, then P; goes to B, otherwise it stays in A. (In Statecharts, this would
be described by a condition of the form “i and in(C)” appearing in P;. We
explain in section 4.4 below why we chose not to introduce such a construct
in Argos).

In Argos, P; reacts to I by emitting (), which is a question to P,. P, reacts to
this question by saying yes (V) if it is indeed in state C, and nothing if it is
in another state, say D, or E. The answer and the question are simultaneous,
thanks to the synchronous broadcast. Hence the behavior of P;, from state A,
is described by: if I and Y, then emit the question () and take the transition
to B; if I and not Y, then emit the question () and stay in A. This may seem
strange, because there is no visible sequencing between the question and the
answer, but the behavior of the global process, where both the question () and
the answer Y are local signals, is exactly what we want. This is because the
status of  and Y, when the system is in the global state AC is given by the
equations: Q =i AY Vi A=Y Y = (@, which simplifies to ) =Y = i. Hence
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for input 4, both ) and Y are present, the global system takes the transition
from A to B and the loop on C.

Notice that, in Esterel, from which this example is borrowed, the notion of se-
quence inside a reaction allows a natural writing of the dialogue. The program
in figure 5 is made of two parallel components. The first one emits the question
Q when the cause I occurs. Then it checks whether the answer Y is present, for
emitting the output S (we need something observable, like changing state in
the Argos program). The second parallel component always answers Y when
it receives the question Q (the answer could depend on some internal state,
of course, as in the Argos example). await tick, meaning “wait until next
instant” is necessary because the component every Q do emit Y does not
emit Y if Q is present in the very first instant, but only after that. The parallel
composition does nothing in the first instant, and then behaves as expected.

In section 3.2.4 below, we give another version of this program by using the
Argos refinement operator, which is more natural. In Esterel, there is even
a third solution, in which P, emits Y continuously, when in the appropriate
state, not only when it receives the question (). In this case P; needs only test
Y, without asking Q.

3.2.3  Inhibiting Operator

The inhibiting operator is useful for building some of the Statecharts or Esterel
constructs from the set of Argos operators, in a structural way (see section 3.3
below). P whennot a behaves as P, but only when a is not present. The
interface of P whennot a has one more input signal.

Definition 6 : Inhibition of a Boolean Mealy machine

whennot @ MxA— M
(S, 80, I,0,T) whennot a is defined iff a ¢ I and
(S, 80, I,0,T) whennot a = (S, so, [ U {a}, O, T

Where T" is defined by :

(s,m,0,8)eT, = (s,m.a,0,8)eT AN (s,m.a0s)eT
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3.2.4  Hierarchical Composition

The intuitive behavior of a refined process is the following: a transition that
enters a refined state starts the refining process, in its initial state. A transi-
tion that leaves a refined state kills the refining process, and all information
about the state it had reached is lost (this, in particular, forbids the “entry
by history” of Statecharts).

An important point is the following: the automaton that is refined is always
active; when it is in state A, the process refining state A is also active. They
behave as if they were put in parallel, as far as the communication between
them is concerned. But, of course, a transition of the refined automaton may
kill a refining process and start another one, which is not the case for parallel
composition.

Note that the encapsulation operator can be applied to the result of a hierar-
chic composition too, for synchronizing a controller with its refining processes.

Finally, a refining process is alive during the reaction that kills it (leaving a
refined state is a non-preemptive interrupt). Hence it may communicate (or
synchronize) with the refined automaton. In particular, the transition of the
automaton that leaves the state may be triggered by a signal emitted by the
refining process itself. In this case, we say that the refining process commits
suicide. We will see that this particular feature of Argos allows to encode
outgoing multi-level arrows in an elegant and compositional way. This is the
case in the introductory example for the signal end, which is emitted by the
three-bit counter, and kills it. Conversely, in the example, the signal stop acts
as an external interrupt, whatever the state of the three-bit counter is.

On the contrary, the process that refines the target state of a transition oc-
curring in the refined automaton is not alive during this reaction: it does not
participate in the reaction that starts it. This forbids a number of interesting
behaviors (choosing the actual initial state by an initial transition triggered
by external signals, ...) and the symmetrical encoding of ingoing multi-level
arrows. We could modify the semantics of the refinement operator in order
to make it more symmetrical. However, the basic version we present here is
simpler, because it does not give rise to the schizophrenia problem of Esterel
(see [27] for details). Roughly speaking, schizophrenia would occur for a loop
on a refined state: the refining process is both killed and restarted in its initial
state. In fact, two instances of it would be alive during the reaction, not nec-
essarily in the same state. If the refining process contains local signals, they
all have two instances during one reaction.

With our asymmetrical semantics, schizophrenia cannot occur.

The formal definition is based upon the operation denoted by t>, that takes
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a machine for the controller and n machines for refining the n states of the
controller. The machine that serves as the controller is not necessarily reactive.

Definition 7 : Refinement
b Mx2M 5 M

Let M denote (S, sg,I,0,T), where S = {sq, $1,..., 5, }. Consider also a set
{M;}j=0.n of machines, to be used as refinements of the states of M, where
M; = (57, s}, 17,09, T7), and S = {s, 57, ...,s{;],}.

The composed machine, in which each M, refines the state s;, is of the form:
M > {Mj}j:O..n = (SD{Sj}J,SO DSg,IU U]],OU UO],T’)
Its set of states is of the form:

S {SJ}J = U;L:(){sj > Si, ke [OTLJ}}

And its transitions 7" are given by the following two rules:

1) A transition from s, to s, in the controller, together with a transition
from sf to si in the machine that refines the current state. The outputs are
gathered. In the global target state, the machine that refines state s is started
in its initial state, and the machine that refines state s, has been killed. Its
internal state is no longer relevant:

(S, m,0,8) €T AN (s¢,m' o, sh)eTe —

(sa>s&,mAm, oUd, sy>sh)eT

2) A transition of the machine that refines the current state, from s¢ to s¢,
while no transition sourced in state s, is activated in the controller:

(sg,m', o', sp) €T = (su>sp,m' A

A ﬂm] 0, s, sp) €T
)ET

(Sasms_s_
O

Figure 7 illustrates the semantics of the hierarchical composition (or “refine-
ment”).

Figure 8 is a version of the instantaneous dialogue using refinement. The
transitions labeled by i/Q) and by Y in the first component may be taken
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together, if the other component is in state C' and indeed answers Y to the
question ). When the system is in state AX, the status of the local signals @)
and Y is given by the equations: ) = ;Y = @), which gives Q =Y =i as in
the parallel version of figure 6, without the need for Boolean simplification.

3.3 Some Useful Combinations of Operators

3.3.1 Temporized states

The ability to attach delays to states was proposed in an early unpublished pa-
per about Statecharts. In ARGOS, it is very easy to introduce such a construct
and to give it a clear semantics; indeed, it can be introduced as a macro-
notation. Following synchronous languages (Lustre, Esterel, Signal), ARGOS
deals with multiform time. Any external input event can be used as a clock
for the system, which may count meters as well as seconds. Figure 9-a shows
a temporized state Tempo. The notation [d ] means that a delay d is asso-
ciated with the state. d is a positive integer, and a is the name of an input
signal, which gives the unit of time. The behavior of the system is as follows:
when the system enters state Tempo, it can stay in this state at most until d
occurrences of signal @ have been counted; if it has not left the state when the
last occurrence happens, the special transition denoted by a box (the time-out
transition) is taken. Figure 9-b shows how the macro-notation is expanded:
states are added to count the occurrences of a.

All transitions that enter the temporized state output the starting signal
start; all transitions that leave the state output the killing signal kill; the
box transition is triggered by the time-out signal. The main point is the pri-
ority we choose between the killing transitions and the counting ones. In the
expansion we give, an outgoing transition can be taken even if the last occur-
rence of a occurs at the same time (time-out is output only if kill does not
occur).

If we add wvariables to Argos (i.e. objects that exist “in parallel” with the
Argos program, and that may be tested and assigned to during a reaction),
the counter is described by a variable, which avoids explicit states. However,
as far as verification is concerned, we have to expand these variables into
explicit states, for using model-checkers, if we want to verify properties in
which time is involved. In [28] we showed how to translate Argos programs
with temporized-states directly into timed-graphs [29] (without expanding the
macro-notation into explicit states), in order to use the verification tool Kro-
nos [30]. Some examples using the Argos compiler connected to Kronos are
described in [31,32].
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3.3.2  Inhibiting transitions

When the automaton which controls a refinement operation takes a transition,
the subprogram which refines the source state always reacts at the instant
when it is killed.

When preemptive interruptions have to be described, one uses inhibiting tran-
sitions, which stand for inhibiting operators (see figure 10). The transition
sourced in State 1 (figure 10-a) outputs the signal which inhibits the refining
subprogram P: it is a preemptive interruption; the macro-notation avoids the
introduction of & and uses a small black circle (figure 10-b).

4 The Argos Language and its Semantics

4.1 Syntax

From the set of operators described in the previous sections, we define the
core of the Argos language. £ is the set of programs :

E = E|E Parallel composition
| ET Encapsulation I' C A
| Ry (R, ..., Ry) refinement of M by the R;
| E<> Inhibition v € A

R ::= E | NIL refining objects

The NIL notation is introduced to identify leaf states, i.e. the states that are
not further refined.

4.2 Causality and Incorrect Compositions

The term “causality” has been widely accepted, following the authors of Es-
terel, to talk about those situations when the strict interpretation of the syn-
chrony hypothesis leads to apparent paradoxes. When a process that waits
for signal a for emitting signal b, is talking to a process in parallel that waits
for b for emitting a, the global behavior is not defined. This typical example,
written in Argos, is given in section 3.2.2 above.
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In Argos, we decide to characterize a causally incorrect composition of compo-
nents (or program) by the fact that there exists an occurrence of an encapsula-
tion operator which is applied to a reactive and deterministic component and
yet yields a system which is either non-deterministic or non-reactive. These
are the cases when non-determinism (or non-reactivity) appears, due to the
application of the encapsulation semantics, based on the definition of the syn-
chronous broadcast mechanism.

Hence our notion of correction is the following: all basic components should be
both deterministic and reactive, and all operators should be applied in such a
way that they preserve these properties. We are convinced that the programs
that will be rejected by our criterion indeed constitute programming errors.
This notion of program correction is, in some sense, minimal, with respect
to the synchronous broadcast mechanism; it is also called logical correctness.
See section 6.3 for comparisons with similar notions in other synchronous
languages and Statecharts.

Under these constraints, we can easily associate a flat Boolean Mealy machine
to any Argos program, and this is indeed what we describe in the semantics
below. Then this machine can easily be implemented by translation into any
imperative programming language like C, Ada, Java, etc.

Any other choice, i.e. accepting to take non-deterministic or non-reactive
Boolean Mealy machines as the semantics of Argos programs, would be unim-
plementable.

For non-reactivity, consider a state X, from which the transition for input i is
missing: there is no consistent implementation. Notice that an implementation
of the system that does nothing for input ¢ when in state X is in fact an
implementation of the system that does have a loop on state X, with input 7,
and no emitted signal. (In section 3.2.2 above, we showed that it may be the
case that even the loop does not exist).

For non-determinism, there is no implementation, unless we consider that
flipping a coin at execution time, for choosing a transition, is an appropriate
solution.

However, we could find non-determinism useful, in a specification language, es-
pecially for the partial description of the environment. In this case, we would
allow the basic components to exhibit some explicit non-determinism (several
transitions with non-exclusive input conditions, and distinct emitted signals
and/or target states), but still require that the composition of two such com-
ponents do not introduce non-determinism. This is what we argue in [33].

All these remarks lead to the notion of incorrect program in Argos. Incorrect
programs should be detected, of course, by a compiler.
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In [34] we proposed an exact detection mechanism for causality errors, for
Argos with pure signals; it gives a reasonable cost compilation algorithm.

4.3 Semantics

Since there exist incorrect programs, the semantic function should be partial
on £. We make it total by adding the special value L to the codomain.

The semantic function 8 : & — M"™ U { L} is defined recursively by:

S(E;) x S(E,) otherwise

S(Er|E,) =

Lif3ie[1,n] st. S(R) = L

SRya(Ry, ..., Ry)) = M4 (S(Ry),...S(R,)) otherwise

_ fritsE)y=1
S(ET) =
otherwise: let X = S(E)\Tin if X € M" then X else |
— LifS(F)= 1
S(E<r>) =

S(F) whennot v otherwise

S(NIL) = ({NIL}, NIL, 0, 0, {(NIL, true, , NIL)})

A program P is said to be incorrect if and only if S(P) = L. The errors are
due to encapsulations that do not preserve reactivity or determinism. The L
value is absorbant.

4.4 Compositionality

From the definition of the equivalence for Boolean Mealy machines, we define
an equivalence of Argos programs, denoted by =. The main point here is that
we are interested in compositionality for correct programs only.

Definition 8 : Equivalence of Argos programs
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S(P)=8(P) = L

PlEPQ <~

The semantics is compositional, which means that the equivalence of Argos
programs is a congruence for the operators (parallel and hierarchic composi-
tions, inhibition, encapsulation):

VP,Q € P,VC context P=Q = C[P]=C[Q]

It is easy to prove, by induction on the structure of processes (see [20]). (We
can include the proof in the full paper if needed).

Remark

Since we require the equivalence of Boolean Mealy machines to be a congru-
ence for our operators, and since this equivalence does not take state infor-
mation into account, we cannot use state information in the semantics of our
constructs.

Let us take an example: the equivalence defined above is in fact a kind of trace
equivalence, which may identify two machines with different sets of states,
provided they have the same paths. For instance, the machine with two states
A and B, and four transitions (A,a/z, B), (A,a, A), (B,a/z,A), (B,a, B) is
equivalent to a machine with only one state C' and two transitions (C, a/x, C),
(C,a, C). With our semantics, the first machine may be replaced by the second
one (or the other way round) in any context, without changing the behavior
of the global program in which that occurs.

This forbids, in particular, to give a direct semantics to the Statechart feature
in which one may write “a and in (A)” as a condition for a transition to
be taken, where A is the name of a state, somewhere in a component of the
program. Indeed, the component with state A could be replaced by an equiva-
lent one with no state A. However, it is relatively easy to replace the syntactic
feature “in(A)” by a communication based on exchanging a dedicated signal.
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4.5 Introducing variables

The Boolean core of Argos is now completely defined. We mentioned the need
for variables or valued signals previously. Variables could serve as counters
for avoiding explicit states, for instance in the encoding of temporized states.
Valued signals are needed for representing the inputs and outputs of regulation
systems, in which the computer samples continuous data, like the temperature.

We never implemented a complete Argos with variables, but the ideas for
introducing are quite simple, and we explain them briefly here.

4.5.1 Boolean Mealy machines with Variables

In Argos, we can introduce variables by upgrading Boolean Mealy machines
to general interpreted automata.

We still have a set A of pure signals, i.e. Booleans. An Argos component with
variables is now of the following form :

Definition 9 : Boolean Mealy machine with variables

A Mealy machine with variables is a tuple (S, so, I, O, V,T) where I C A, O C
A are the sets of input and output signals; V is the set of (potentially typed)
variables used in this machine, taking their values in a domain D; S is the set
of states; sq is the initial state; T C S x cond(V) x B(I) x 29 x Assign(V) x S
is the set of transitions. a

As before, B(I) denotes the set of Boolean formulas with variables in I.

cond (V) is the set of Boolean conditions on V. For instance, if V' contains an
integer r and a Boolean b, "z < 0 A =0” is a possible condition.

Assign(V) is the set of assignments to variables in V. For instance, with the
same hypothesis as before, “{z := 2.7;b := false}” is a possible assignment.
The elementary assignments are considered to be in parallel : there should not
be two assignments to the same variable in the same set, but there is no order.

The intuitive idea is that a transition (¢, ¢, m, 0, a, q'), where c is the condition
on variables, m is a condition on Boolean inputs, o is the set of emitted signals,
and a is an assignment, is taken if: the automaton is in ¢, m is true of the
external inputs; and ¢ is true in the current valuation ¢ : V. — D of the
variables. The automaton goes to state ¢', emitting the signals in o, and the
variables are updated according to o and a. This gives a new valuation o’.
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A lot of things become undecidable when variables are introduced (especially
integers, with the power of full arithmetics. In fact, interpreted automata have
the power of Turing machines: it is quite easy to convince oneself that they
can be used as a target language for any high level programming language).

For instance, it becomes impossible to check the determinism of the basic
components, in the general case. There are several ways the problem can be
solved: we can introduce a syntactic feature that allows to specify priorities
between the transitions sourced in the same state. From the semantic point
of view, this is like requiring the exclusivity of the conditions to be statically
checkable, i.e. to have the following form: ¢1, co A =CY, c3 A =(cq V ¢2), ete.

Similarly, reactivity is not checkable but, on each state A of the basic com-
ponents, we can add a loop that emits nothing and leaves the variables un-
changed, labeled by =V ¢;, where the ¢; are the conditions of all the explicitly
given transitions sourced in A. If the automaton is already reactive, this con-
dition reduces to false, and has no influence on the behavior.

4.5.2  Compositions of Boolean Mealy machines with Variables

We can rewrite the semantic rules, taking the valuations of variables into
account. In the parallel composition, a combined transition is labeled by: the
conjunction of the Boolean conditions on inputs (as before), the conjunction
of the conditions on variables, the union of the emitted signals (as before), the
union of the assignments. We declare an error if this results in assigning to
a variable twice. Hence, if a variable is shared by n parallel components, one
should be the producer (the one allowed to assign values to the variables) and
all the others should be only consumers (allowed to read the variable).

When we introduce variables, we should also introduce a unary operator to
define their scope. Such an operator may be parameterized by: the name of
the variable, its type, and an initial value. If a variable is declared local to a
process that refines the state A of an automaton, it is reinitialized each time
state A is entered.

4.5.3 Eztending the notion of incorrect program

The main problem concerns the detection of so-called causality errors. Indeed,
the mechanism we presented is based upon the ezxistence of transitions for a
given input, in the result of an encapsulation. When variables are introduced,
it might be the case that a transition that remains in the result of an en-
capsulation is in fact not firable, because of its condition on variables. Take,
for instance, a component P with a transition labeled by (x < 0) a/b and
a component () with a transition labeled by (x > 0) b. If we put them in

26



parallel and encapsulate the signal b, we obtain a transition labeled by (x <
0) A (x > 0) a, which is clearly non-firable.

Should we decide that there is no transition for input a, in the result of the
encapsulation and, consequently, declare a case of non-reactivity? Let us call
intrinsic correctness the notion of correctness based upon the existence of
transitions, with the interpretation of conditions being taken into account.

Even if we chose this new definition of correct programs for Argos with vari-
ables, we could not implement it: the problem is undecidable. We cannot
compute statically the set of transitions that are indeed firable. The general
problem is even more complex because it may depend on the dynamics of the
system: think of a transition labeled by X < 0, sourced in a state that cannot
be entered unless X > 0.

Since an ezact detection mechanism cannot be defined, we should be able to
define an approzimate one.

There is a way of providing a conservative detection mechanism for both de-
terminism and reactivity: we consider each condition on variables as a new
Boolean input. A transition label of the form: C(x) m/o, where C(x) is an
arbitrary Boolean condition on the variable x, is treated as aA m/o, where «
is a fresh signal name (not used elsewhere in the program). We can do that on
all transitions of the basic components of a program. Of course, we lose a lot of
information: x < 0 and x > 0 will be replaced by two independent Boolean
variables (or signals). Then, we apply our static criterion to this new program.
The criterion requires that there exist exactly one possible transition for each
configuration of the inputs (including the ones introduced for encoding the
conditions).

We may reject intrinsically correct programs, of course, because the detection
mechanism may complain about non-determinism or non-reactivity appearing
for a given input a A § A ..., where a and [ are new names introduced as
explained before for representing conditions ¢; and co, and ¢; A ¢ is in fact
not satisfiable. But we cannot accept intrinsically incorrect programs.

Hence we have a conservative detection mechanism. Moreover, we are con-
vinced that it does not reject “too many” correct programs. This is a rather
informal statement, but it means the following: the programs that are rejected,
while being intrinsically correct, are those in which the correctness relies on
some intricate mixing of Boolean Signals with other variables. Writing such
programs is a questionnable practise, because the slightest modification may
transform an intrinsically correct program into an incorrect one, or conversely.
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4.5.4  Valued signals

If variables are available, a valued signal is simply a pair made of a pure signal
that represents the presence of the signal, and a variable that contains its
value. This is the approach of Esterel, which is particularly well suited for
event systems. In Lustre, there is no notion of a pure signal: all inputs have
values, of type int, or real, or bool.

One can then offer a specific syntax for designating the presence of a signal
and its value. In Esterel, we would write x for the presence (hence present x
then ... is correct) and x? for the associated value. (However, in Esterel, be
careful not to confuse valued signals with variables).

5 Code Generation and Connection to Analysis Tools

Argos programs may be compiled into a lot of automaton formats, used as
input by verification tools.

For producing explicit automata, a compiler that mimics the definition of the
operators would be far too expensive. Indeed, the intermediate objects ob-
tained when expanding parallel compositions are likely to be far bigger than
the final system obtained by applying encapsulation operators for all local
signals. We use a top-down method, with BDDs [35] for solving the equa-
tions obtained for the encapsulation operations. This is described in [36]. The
Argonaute environment based upon Argos (a graphical editor and simulator,

plus a compiler) has been successfully connected to various verification tools,
among which: Aldebaran [37], Mec [38], Kronos [30-32], Polka [39,40].

It is easy to obtain executable code from an explicit flat automaton corre-
sponding to an Argos program; the typical form of such a sequential program
is an infinite loop:

initialize the state
while true
get inputs (the values of the input signals)
compute outputs, according to the values
of the inputs and the current state
emit outputs
update the state

Each pass in the loop corresponds to one transition of the global Mealy ma-

chine obtained by expanding the Argos program, hence it also corresponds to
one reaction of this program. A reaction usually involves several components.

28



For the synchrony hypothesis to be a usable approximation of the real world,
the execution time of one pass in the loop should be less than the minimal
amount of time between two relevant changes of the program environment.

However, the compilation into an explicit automata is not always a good idea,
since it produces code whose size is exponential in the size of the program
(the parallel composition, in particular, produces an explosion of the number
of states). For generating good sequential code, Argos is compiled into data-
flow equations with activation conditions, using the pc format [41], also used
as an intermediate form in the compilers of Lustre, Signal and Esterel [42]. DC
can then be compiled into C. We also obtain a program with an infinite loop
like the one above, but the set of states is not given in extension. Rather, the
state is the configuration of a set of Boolean variables, which may be assigned
to separately.

6 General comments and Comparison with Related Work

First, we summarize how to provide some of the missing Statecharts features
as macro-notations in Argos. Then we compare Argos with three classes of
Statecharts semantics. The way communication, synchronization and the as-
sociated “causality” problems are treated is somewhat independent of these
three classes. We review the main choices in a separate section.

6.1 From Argos to Statecharts

Outgoing multi-level arrows can be done thanks to an explicit communica-
tion between the refining process P and the automaton A it refines, since P
participates in a reaction in which the state A is left.

Ingoing multi-level arrows can be done with a similar mechanism if we modify
the definition of refinement in such a way that the process that refines a state
participates in a reaction in which this state is entered. We did not present this
extended version of the refinement here, because it gives rise to schizophrenia
problems. See [43] for an example of use.

Special events like "entered(A)" can be implemented as macro-notations,
with pre-processing: we introduce a new signal name, and add it to the set of
emitted signals of all transitions that enter A. This has to be done carefully,
because A may be the initial state in a refining process, and there is no explic-
itly drawn transition that enters it. But then the signal can be added to the
set of emitted signals of the transition that starts this process. Similar things
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can be done for the special events "exit (A)" and "in(A)".
Adding variables and valued signals has been described in section 4.5.

Entry by history cannot be done, at least as a simple macro-notation, because
the definition of the refinement is entirely based upon the fact that all informa-
tion about a process refining a state is lost when we exit the state. However, if
we look at systems in which entry by history is used, we understand that what
we really need is a suspension mechanism. Suspension may be built in Argos
with a simple combination of parallelism, inhibition and communication, as it
is shown in Figure 11. The interface signals are suspendP and resumeP. We
may decide whether suspension has an immediate effect (i.e., P does not par-
ticipate in the reaction that suspends it). In the figure, this is the case, since
the transition labeled by suspendP does indeed emit the signal a which in-
hibits P. We should also take care of the simultaneous occurrence of suspendP
and resumeP.

This construction is quite satisfactory because, if we need entry by history in
a process P, it means we need P to stay alive, until we need the information
about its internal state again. And, if it is still alive, it is intrinsically in
parallel with another part of the program. In Argos, we use refinement only
when we need to start and kill processes, depending on a sequential structure
described by an explicit automaton. In all situations where we need to keep
some information on a process, even if it does not participate in the reactions
for a while, we use the parallel composition.

6.2 Comparison with other Statecharts semantics

As far as we know, the semantics that have been proposed so far for Statecharts
or Statecharts variants® fall into three main categories. This classification is
somewhat biased, since we are mainly interested in the use of Statecharts
as a programming language; the existence of a notion of equivalence — or
congruence — is an important criterion. The set of references is by no means
exhaustive: a quick world-wide-web search gives at least 150 references on
Statecharts, and a thorough comparison of all the variants is not the subject
of this article.

In order to compare Argos and Statecharts, the following three classes are

5 We find semantics of Statecharts in a wide variety of papers, since the formalism
has been used intensively in a number of very different contexts. As soon as a
translation of Statecharts into some formally defined language is provided, we can
consider that a semantics of Statecharts is given.
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adequate:

e Global semantics
e Denotational and fully abstract semantics
e Process Algebraic semantics, with equivalences or congruences

They are detailed below.

None of the variants we know of has been especially tailored for pure pro-
gramming purposes, and this is a major difference with Argos. All of them are
presented as specification languages, that can be used in a verification frame-
work. Sometimes, an algorithm for generating code is provided but, in all
cases, generating code implies taking a decision about the non-deterministic
elements of the language.

6.2.1 Global Semantics of Statecharts

In this class, a Statechart is defined as an And/Or tree, with additional con-
straints on the structure of the tree. The semantics is described in terms of a
large number of tree-manipulation functions, like the closest common ancestor
of two nodes, etc. [44-46] and a lot of others fall into this category. There is
no way to view a program as a composition of sub-programs, and there is
no real “syntax” — or grammar, on which a syntax-directed semantics could
be based. Therefore, a Statechart is viewed as a monolithic object, not as the
composition of simpler objects, and compositionality makes no sense. Another
consequence is that none of these semantics propose a notion of equivalence
for Statecharts. The operationally-defined semantics like that of [47], which
describes the algorithm of the interpreter, also falls into this class.

6.2.2 Denotational Fully Abstract Semantics of Statecharts

In this class, the language is given a syntax, and a syntax-directed seman-
tics. When the full set of features of Statecharts is indeed taken into account
(like the multi-level arrows in [48]), the combinators are quite complex, and
sometimes far from “semantical” combinations. One need to build programs
by composing basic objects that can be sets of states with dangling incoming
or outgoing transitions, and it is hard to attach a meaning to these objects,
in terms of reactive behaviors. In this class of semantics, the notion of com-
positionality relies on the full abstraction criterion.
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6.2.3 Process Algebraic Semantics of Statecharts

In this class, the language is also given a syntax, in the spirit of process
algebras: the classical non-deterministic choice (the “4” of CCS [26]) and the
parallel operator are used. [49-51] and many others fall into this class.

These semantics also need a notion of model for Statecharts, i.e. the math-
ematical definition of a reactive system behavior (usually a labeled transi-
tion system, or LTS). Giving an operational and process-algebraic semantics
to Statecharts means providing a structural translation of Statecharts into a
LTS. The main differences with Argos are the following.

First, the construction of programs starts with the prefix operator. Basic au-
tomata are built with the prefix operator, the non-deterministic choice, and
the recursion. Then, automata may be composed using the parallel operator,
for instance. Multi-level transitions are often forbidden, for the same reasons
as in Argos, but without explaining clearly how a similar behavior can be
obtained with the features of the language. In fact, since the underlying se-
mantics is not purely synchronous, there is no solution with a macro-notation,
i.e. independent of the context in which it is needed.

With this granularity in the definition of the basic components, these seman-
tic frameworks also need to require well-guardedness (see the definition of this
notion in CCS [26]) for avoiding infinite branching. In Argos, we consider
automata as the primitive objects, because it is easier to define the determin-
ism and reactivity criteria in such a framework. Hence we need no recursion
operator.

Second, Argos is a subset of Statecharts features, except on one point: we
decided, from the very beginning, to define an encapsulation operator, that
allows to restrict the scope of signals. This has well-known renaming effects,
which are necessary when describing large systems (think of a version of C
without local variables, in which a team of 50 developers would have to decide
who is allowed to use i as a loop index!). But this has also some advantages
concerning the definition of the language itself: the encapsulation operator is
the one that corresponds to the synchronization. As already mentioned, it is
the same idea as in CCS.

6.3 Communication, synchronization and causality

6.3.1 Causality in other synchronous languages

As we illustrated with the definition of encapsulation, the synchrony hypoth-
esis means that the status of local signals, used for internal synchronization,

32



should be uniquely determined in a global transition: it is given as the solution
of a system of equations. The intrinsic paradoxes are related to the fact that
the system of equations may have 0 or several solutions. This is called logical
correctness.

In Esterel, the notion of causally correct program is much stronger, because
we do not only require that the system have a unique solution, but also that
this solution be constructive (see [16] for a synthetic presentation of this idea:
the system of equations has to be solved using constructive logic, i.e. without
using a V —a = 1),

In Lustre, the data-flow declarative style of the language means that “pro-
grams” are similar to the set of equations we showed in section 3.2.2 for ex-
plaining encapsulation. The static criterion used for ruling out non-causal
programs is even stronger than in Esterel: the system of equations should be
cycle-free. A cyclic system of equations, even if it has a unique solution, is
rejected. It may seem too strong a criterion, but there are very few cases in
which we would like the criterion to be a little weaker (see examples, taken
from circuit design, in [34,52]).

6.3.2 Notions related to causality in Statecharts

To our knowledge, none of the semantics that have been proposed so far for
Statecharts is purely synchronous, in the sense that: they are based upon the
synchrony hypothesis, and there is a notion of incorrect program for ruling
out the programs that rise the causality paradoxes intrinsic to the strict ap-
plication of this hypothesis.

By strict application of the synchrony hypothesis, we mean that a component
that contains a transition labeled by a/b, in parallel with a component that
contains a transition labeled by b, gives a single transition as a result, what-
ever the notion of “result” is. For process-algebraic semantics, this is the same
notion as in Argos, since they are based on operations over L'TS. For global se-
mantics, this is also quite similar, because the operational semantics describes
the possible global transitions of a Statechart. Another point of view on the
same fact is the following: a/b in parallel with b giving a single transition in
the parallel process means that the internal communication between the two
components is atomic, with respect to what happens in the environment.

This global transition is computed knowing the status of local signals used for
internal synchronization, which should be uniquely determined.

In Statecharts, there is no real notion of incorrect program: non-determinism
is not considered harmful, and if a transition is missing (non-reactivity), the
system simply does nothing. In general, there is no notion of local signal either,
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for which we could require a unique status. Hence the notions of causality are
quite different from the corresponding notions in synchronous languages.

The very first semantics of Statecharts ([45] for instance) introduced the no-
tion of “micro-step”, to talk about what happens inside a Statechart when it
reacts to an external stimulus. There is a complementary notion of macro-step,
intended to represent an atomic reaction of the system to its environment; a
micro-step is usually a mazimal sequence of micro-steps, in the sense that it
cannot be extended: none of the currently active components can react to the
signals that were present in the original external stimulus, or that were emit-
ted by the already executed micro-steps. This raises new problems, because
a maximal sequence does not necessarily exist in all cases; in general, it is
not possible to determine statically whether all reactions to external inputs
give finite sequences of internal micro-steps. Moreover, in some of the so-called
micro-step semantics, it is possible to take one micro-step assuming that a sig-
nal is absent and, later, to take another micro-step that emits the signal. This
kind of problem led to a number of criteria like global consistency, for talking
about those macro-steps that are logically correct, when observed globally.

A good summary can be found in [23], where it is shown that no micro-step
semantics can be responsive, causal, and modular. Responsiveness means that
the outputs are simultaneous with the inputs (the synchrony hypothesis); mod-
ularity means that a component may be used in an overall context knowing its
macro-step semantics only and forgetting about the details of its micro-steps
(this is related to our compositionality criterion, with a notion of equivalence
defined as having the same macro-steps) ; causality means that a macro-step
cannot generate its own trigger (this is one half of our definition: it rules out
programs of the form: a/b in parallel with b/a).

The semantics of Statecharts entitled “what is in a step?” [53,44] is suffi-
ciently close to ours for the comparison to be meaningful: we did it in [54],
where we proposed a general framework for comparing synchronous communi-
cation mechanisms; the differences lie in the interpretation of the synchronous
broadcast. For instance, the parallel version of the instantaneous dialogue
(figure 6) would be correct in this version of Statecharts, but would give no
behavior. The refinement version of the dialogue works fine, though. In our
semantics, where these two programs are indeed equivalent, there cannot be
such a semantical difference between them.

7 Conclusions

We presented a set of operators for building a synchronous language based on
explicit automata, with a syntax similar to that of Statecharts.
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The semantics is purely synchronous; it may be viewed as a simplification of
the Esterel semantics, adapted to a programming style where automata are
given explicitly (in Esterel, the control structure of a program is made of loops,
watchdogs, etc.).

As it is, the set of operators we presented is not a language, because it lacks
a lot of features of real programming languages, for instance valued (i.e. not
only Boolean) signals, explicit variables of any type that can be tested and
assigned during a reaction, etc. Moreover, the other synchronous languages
allow to use calls to a host language like C, in which complex data structures
may be defined. This should be the case for Argos too.

In order to provide such features in a simple way, and also because we are
convinced that complex systems cannot be described using only automata, we
worked a lot on the combination of Argos with other synchronous languages
(mainly Lustre and Esterel, which have quite distinct programming styles:
Lustre is data-flow, while Esterel is imperative with control structures). See
for instance [55]. We also worked on the Argos-Esterel combined language,
but Charles André and his team (University of Nice, France) have defined
the SyncCharts [56] formalism, which seems to be the way things should be
done: the language inherits various preemption primitives from Esterel, the
hierarchic program structure from Argos, and other interesting primitives from
Grafcet [57], which may be given a readable and concise graphical semantics.

More recently, Argos has given birth to Mode-Automata [58], a promis-
ing mixed-style language for the description of regulation systems and their
running modes, that can be completely implemented on top of the Lustre
both academic and commercial programming environments. A basic mode-
automaton is an automaton with data-flow programs attached to states. The
language re-uses the parallel and hierarchic constructs of Argos, although the
basic objects are more similar to Moore machines than to Mealy machines.
As in Argos, there are no multi-level arrows in the hierarchic composition,
and the components at several levels of hierarchy may communicate with each
other in order to achieve the multi-level transition behavior.
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Mainl (a, start, stop) ()

Main2 (a, start, stop) ()

4 . N
Counting

~__| counting |starf]

end

(a)

/ .
Counting

Copod.

a~(01,B1,A1 (C0,B0,AIN2
C1,B1,A0 (C0,B1,AQ
a2 (C1,B0,A co,B1,A1i>a
~C1LBOAG

a/en

stop.ﬂ

end

(b)

Fig. 1. Two equivalent Argos programs for the modulo-8 a-counter
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Fig. 2. The behavior of the modulo-8 a-counter
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Fig. 3. Semantics of the parallel composition

Fig. 4. Semantics of the encapsulation operation: we first apply the criterion of the
encapsulation operation to the system obtained from the parallel composition in
figure 3, and then we hide the local signal b.
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module instantaneous_dialogue:

input I;
output S;

signal Q, Y in
[
await tick;
present I then emit Q end;
present Y then emit S end
|
every Q do emit Y end
]

end.

Fig. 5. The instantaneous dialogue in Esterel
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Fig. 6. The instantaneous dialogue with a parallel composition
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Fig. 7. Refinement: a simple example
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Fig. 8. Instantaneous dialogue, described with a refinement
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kill,
a.kill /time-out
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start, kill, time-out (b)

Fig. 9. Macro-notation for temporized states
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Fig. 10. The macro-notation for inhibiting transitions. The box with < « > is the
concrete syntax of the inhibiting operator.
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