
Aspect-Oriented Programming

for Reactive Systems: Larissa,

a Proposal in the Synchronous Framework

K. Altisen and F. Maraninchi and D. Stauch

Verimag, Centre équation - 2, avenue de Vignate, 38610 GIÈRES — France

Abstract

Aspect-Oriented Programming (AOP) has emerged recently as a language concept
for expressing cross-cutting concerns, mainly in object-oriented software. Since then,
the concept has been applied to a wide variety of other contexts. In this paper, we
explore some cross-cutting concerns for parallel programs of reactive systems: we
propose an aspect language, Larissa, and a weaving mechanism, in a core language
based on parallel communicating Mealy machines.

1 Introduction

Aspect oriented programming (AOP) has emerged recently. It aims at provid-
ing new facilities to implement or modify existing programs: it may be the
case that implementing some new functionality or property in a program P
can not be done by adding a new module to the existing structure of P but
rather by modifying every module in P . This kind of functionality or property
is then called an aspect. AOP provides a way to define aspects separately from
the rest of the program and then to introduce or “weave” them automatically
into the existing structure.

From our point of view, the AOP community is divided into two families:
(1) the first family is guided by the needs on tracing, profiling, debugging:
aspects are used to describe functionalities that do not modify the behavior
of the original program. Such an aspect should be allowed to access/observe
every entity (variables, functions, ...) in the program, provided that it does
not interfere with the execution of the program. The way it refers to the
entities of the program may be syntactic, or even lexical, but its role is not
intrusive. (2) In the second family, aspects aim at modifying the behavior of a
program. The way aspects are allowed to interfere with the program behavior,

3 February 2006



and with each other, has to be clearly defined and limited. The definition
of an aspect needs to be more semantic. Indeed, one would intuitively expect
that whenever two programs P and P ′ are semantically equivalent (i.e. behave
the same), applying such an aspect to P gives the same result (semantically
speaking) as applying it to P ′, even if they have very different syntactic forms.
Of course, which entities of the program the aspect is allowed to refer to, and
how far the weaving mechanism can change the execution of the program, are
deeply linked to the definition of the semantic equivalence.

In this paper, we are interested in the notion of cross-cutting concerns for
reactive systems. The existing structure of the program we want to cross-cut
is based on parallel composition. Since reactive systems very often execute
in critical contexts, it is very important to understand their behavior, so we
use formally defined languages. That is why we study aspects with the point
of view number (2): we need some definition of an aspect and some weaving
mechanism that guarantee the preservation of a semantic equivalence.

An important question is the choice of the base language on which we will
define aspects. We chose a very simple set of operators, capturing the main
ideas behind synchronous languages. The reasons are the following: first, syn-
chronous languages and formalisms share a very clean and simple definition of
parallelism, and it is a good starting point for studying aspects that crosscut a
parallel structure. Second, the need for aspects clearly appeared in synchronous
programming.

1.1 The Discrete View on Reactive Systems

A reactive system is a computer system embedded into an environment made
of physical phenomena, human beings and other computers. It has input sig-
nals coming from the environment (sensors for the physical phenomena, nor-
mal inputs from the human beings, incoming communications from other com-
puters) and output signals sent to this environment (actuators, normal out-
puts, outgoing communications). Reactive means that we have to consider the
system together with its environment, in order to specify and program its
behaviour. Indeed, an output issued at some point in time may have some
influence on the inputs received later, via the reaction of the environment.

Of course, the environment (at least the physical part of it) is intrinsically
continuous. But the reactive system itself is a computer system, hence it has
a discrete behaviour. Programming reactive systems imposes a discrete view
of time: time can be viewed as divided into instants. All inputs that occur in
the same instant are considered to be simultaneous. The connection between
the reactive system and its environment faces sampling problems, but the

2



implementation of the reactive kernel may be designed with this discrete view.

1.2 Programming Reactive Systems: the Synchronous Approach

Over the past ten years, the family of synchronous languages [4,13] has been
very successful in offering domain-specific, formally defined languages and
programming environments for safety-critical reactive systems. The family is
composed of data-flow languages (Lustre, Signal) and imperative languages
(Esterel, Argos).

All these languages, even if they may seem to have very different styles, share
a common semantical basis. As stated above, time is discrete and divided into
instants. In each of these instants, a program reacts to inputs by sending out-
puts and updating its internal memory. Such a reaction is atomic: the system
does not read inputs while computing outputs and updating its memory. All
the synchronous languages may be compiled into very simple programs of the
following form:

initialize memory m ;

while (true) {

read inputs i ;

compute outputs o (depending on i and m) ;

update memory m (depending on m and i)

emit ouputs o ; }

The motivation for designing high level languages that can be compiled into
this very simple scheme is the need for parallelism. A complex reactive system
is very hard to describe directly as a simple loop. As soon as it has to take
several inputs into account, it is likely to be composed of some “parallel”
activities. For instance, it could have to send one output “A” each time it has
seen two inputs “a” and, during the same time to send one “B” each time it has
seen three “b”. In all synchronous languages, this behavior can be described
as the parallel composition of the two activities. The compiler then produces
a piece of sequential code, relying on some ordering of the tests on inputs, but
the user does not have to think in terms of this low level ordering. Parallelism
can be considered as the main structure of reactive programs, regardless of the
language used. Any notion of aspect will naturally cross-cut this structure.

When the parallel activities are not independent, the synchronous languages
provide a very powerful synchronization mechanism called synchronous broad-
cast. For instance, consider the two parallel activities : “send an ’A’ every two
’a’ ” and “send a ’B’ every three ’A’ ”; the activities synchronize on ’A’ which
is emitted and received during the same instant. The main idea behind this
construct, often referred to as the “synchrony hypothesis”, is the following: it

3



allows the use of parallel components instead of sequential code when it is con-
venient from the logical point of view, without influence on the code produced.
This is the case because the synchronization between parallel components is
entirely compiled into sequential code where it is no longer visible.

One of the advantages of the synchronous broadcast is its asymmetry: sending
is non blocking, and the sender does not have to know the number of potential
listeners. This allows to use so-called observers [15], i.e., programs that specify
safety properties (in the sense of Lamport [22]) and that are put in parallel
with the system observed, without changing its behavior. These observers may
be used as a kind of temporal logic to specify properties to be checked, or as
oracles in a test framework. In the context of aspects, observers seem a very
good candidate for defining dynamic join points.

1.3 Aspects for Reactive Systems

In spite of the powerful parallel composition and synchronization mechanism
shared by all synchronous languages, some recurring problems appear when
programming complex reactive systems.

For instance, in some languages, something as simple as modifying an existing
program in such a way that it becomes reinitializable when some new event
occurs, cannot be done without introducing some new code everywhere in the
parallel components. In Esterel, the need for reinitializable subprograms has
led to the definition of a dedicated construct, but adding a dedicated construct
as soon as a similar need appears is a never-ending process.

In this paper, we investigate a notion of aspects for reactive systems pro-
grammed with synchronous languages. Reinitialization will be a very simple
case of it, which can be specified informally as follows: in any state, whenever
a special signal “reset” occurs, do not behave as specified by the program, but
rather go to its initial state.

In more general cases, we need to specify where in the program the aspect
should have some effect. As we do not want to talk about the program syntac-
tically, we look at its execution traces and we specify when the aspect should
have some effect. This leads to specifying dynamic join points which are de-
fined w.r.t. the history of the system’s behavior. This is intrinsic to reactive
systems, whose behavior highly depends on the history of inputs. For instance,
we could need to change the behavior of the system when some “Alarm” oc-
curs, but only if it is after an occurrence of another event.

Let us compare these needs to a cflow-like mechanism. In AspectJ [19], cflow
is used as an abstraction of the stack, and may specify dynamic join points.

4



For instance, one may say that he would like to do something in function f ,
but only if it has been called from function g. The information needed for
checking this condition is indeed computed by any runtime environment, and
present in the stack at any time. But a specification like “do something in
function f , but only when called after function g” is not implementable with
the history abstraction contained in the stack. Other related works on dynamic
join points are exposed in section 6.

In our framework, it is natural to use observers to specify dynamic join points.
It means there is no limitation on the history information an aspect may need
as far as it is bounded.

1.4 Approach and Contributions

We consider that AOP techniques and tools have demonstrated their interest
in various domains. We suspect that some of the recurring problems people
have encountered when programming complex reactive systems (and making
the programs evolve) can be better understood and dealt with if we clearly
consider them as aspects. Since we are interested mainly in critical systems,
we care about formal semantics, and therefore would like our notion of as-
pect to be more “semantical” than “syntactical”. We will concentrate on the
preservation of a behavioral equivalence.

To investigate these ideas further, we propose to define and implement a par-
ticular notion of aspects for a formally defined language, in the context of
reactive systems. This means:

Choosing a base synchronous language for reactive systems. We choose to work
on a formalism whose structure is intermediate between the structure of high
level languages (because it would be too specific) and the simple flat automata
representing the reactive behaviors (because it would be degenerated). Our
core language is made of Mealy machines composed in parallel, and commu-
nicating via the synchronous broadcast. This is enough to study cross-cutting
of a parallel structure, and to use observers freely. The simplest way of ex-
pressing the semantics of such a language is to consider that any composition
of automata can be “flattened” into a single automaton.

Proposing a language of aspects and a weaving mechanism, in a somewhat
“minimal” way: first, we should avoid introducing aspect-oriented features
for the behavior transformations that were already feasible without them;
second, we would like to identify the “basic blocks” needed to define aspects
for reactive systems. The weaving mechanism is static (it can be part of a
compiler), but the specification of join points may refer to the dynamics of
the system’s behavior. When using observers, the language of join points is

5



the programming language itself.

Proving that aspect weaving preserves the usual behavioral equivalence used in
the context of reactive systems.

Implementing this language and this weaving mechanism in an existing com-
piler.

As a by-product, this work will also give some hints on the desirable properties
of an aspect-oriented mechanism, when introduced in a formally defined lan-
guage. But we do not aim at formalizing this “meta” notion, nor at proposing
a list of these desirable properties.

1.5 Structure of the paper

Some of the ideas in this paper were already sketched in [1], but without for-
malization. The structure of the sequel is as follows: section 2 describes the
simple language on which we will define aspects; section 3 gives an introduc-
tory example: it explains informally the notion of aspect we deal with and
the weaving mechanism; section 4 gives formal definitions for: the language
semantics (section 4.1), the aspect language Larissa and the weaving mech-
anism (section 4.2); section 5 presents the implementation and extensions;
section 6 explores related works; section 7 concludes.

2 A Simple Language for Reactive Systems

In this section, we describe a very simple language for reactive systems, meant
to illustrate the main principles of synchronous programming and languages.
It is a restriction of Argos [25]. We also give an example program.

2.1 Mealy Automata

The language we describe allows the use of explicit automata to describe
reactive kernels. Since the size of explicit automata grows rapidly with the
complexity of systems, we also provide a parallel composition construct.

Fig. 1 gives a Mealy automaton with Boolean guards and actions, which im-
plements the following behaviour: the system has three inputs x, y and z

that may occur simultaneously, and one output a. a is emitted whenever the
system has observed an occurrence of x (not necessarily alone) followed by

6



z

x∧z∧y/ax∧z∧y/a

z∧yx∨z x∧z

Fig. 1. A Mealy machine.

an occurrence of y (not necessarily alone either), with no occurrence of z in
between.

Transitions are labeled by a Boolean condition on input signals, and a set of
emitted signals. We use the concrete syntax: condition / emitted signals.
The automaton of fig. 1 is both deterministic and complete, i.e., for any state q,
for any possible configuration C of the inputs, there is exactly one transition
sourced in q whose condition is true for C. An automaton like the one in
fig. 1 is very easy to compile into sequential code, of the form shown in the
introduction.

2.2 Parallel composition and Encapsulation

A reactive system can sometimes be difficult to design directly as a flat au-
tomaton, because of the number of its states and transitions. The parallel
composition may then be used.

In the language we present here, we clearly distinguish between: the parallel
composition of machines, that reflect exactly the intersection of their behav-
iors; and the encapsulation, that forces two machines to synchronize on some
signal. In practice, the two operators are used in conjunction as illustrated by
fig. 2. Note that we suppose all automata in the sequel to be implicitly com-
plete: if a state has no transition for some input valuations, we suppose that
there is a self-loop transition with these valuations as triggering condition and
no outputs. The system described in fig. 2 is a modulo 8 counter, counting the
occurrences of the signal a, and emitting hi every 8 a’s. It could be described
directly as a 8-states Mealy machine (fig. 2(a)), or as the result of a parallel
composition between 3 small automata that represent the bits: bit0 counts a

modulo 2 and emits a carry c0 towards bit1. bit1 counts c0 modulo 2 and
emits a carry c1 towards bit2. bit2 counts c1 modulo 2 and emits the output
hi. The scope of the signal c0 is limited to the parallel composition of bit0
and bit1. The scope of c1 is limited to the parallel composition of bit2 with
the composition of bit0 and bit1.

The parallel composition alone is just the synchronous product of two ma-
chines. To illustrate this, we draw part of the product of bit0 and bit1
(fig. 2(b)), without the encapsulation by c0. From the state BC, for instance,

7



AC

BDAD

BC

a

a

a
aa

a

a∧c0

a∧c0/c0

a/hi

a

a∧c0/c0

(b)

a∧c0

(a)

FE

C D

B

c0

bit1

bit2

a/c0

c1

c0/c1

a a

c0 c0

c1 c1

c0

c1/hi

bit0

c1

a

A

(c)

Fig. 2. A modulo-8 counter.

all possible pairs of transitions are present: the loop a∧c0, and the transitions
a∧c0 to BD, a∧c0/c0 to AC, a∧c0/c0 to AD.

The encapsulation by c0 then forces the synchronization according to the
signal c0 that is an input of one component, and an output of the other one.
The idea is to express the fact that, if c0 is emitted by a component, then
the other one cannot ignore it; conversely, a component cannot react as if c0
was present, if the other one does not emit it. On the example of the two bits,
we have to remove the transitions a∧c0 (because it corresponds to the second
component reacting to c0, while the first one does not emit it) and a∧c0/c0
because it corresponds to the first component emitting c0 while the second
ignores it. Conversely, we will keep the transition a∧c0/c0 from BC to AD,
because it corresponds to a correct synchronization: bit0 emits c0 and bit1

reacts to it. In the result, the local signal c0 will be hidden.

2.3 Determinism and Completeness

Reactive systems designed with this language are programs to be implemented.
They need to be complete and deterministic since generating code for non-
deterministic or non-complete systems is meaningless. This means respec-
tively: the system accepts any given sequence of inputs, and two executions
with the same sequence of inputs give the same outputs. To obtain those prop-
erties, dealing with individual deterministic and complete Mealy machines is
often sufficient, but not always. Indeed, the parallel composition preserves

8



both, but there are some particular cases when the encapsulation operator
does not preserve determinism nor completeness of its operand. Those cases,
studied under the name of “causality problem” [5] , can appear only if two
parallel individual Mealy machines communicate in both directions, in the
same instant; for instance, if the first emits a ’b’ when it receives an ’a’ and
the second emits an ’a’ when it receives a ’b’, this means that ’a’ and ’b’
have the same value but it could non-deterministically be true or false. In all
synchronous languages, a detection mechanism is defined for these cases. It
ranges from pure syntactic restrictions to more sophisticated semantic analy-
sis, including state reachability.

In the rest of the paper, we will define aspects as program transformations
and show that aspect weaving may be considered as a new operator. We will
show that this new operator preserves both determinism and completeness.

2.4 Modular Programming

A complete language based on explicit automata would also provide a con-
struct dedicated to build hierarchies of states, as in Statecharts [16]. However,
the parallel composition and the encapsulation are already very expressive,
and we chose not to include such a hierarchic operator in our base language.

As an example for modular programming, imagine a system with three inputs
x, y and z that may occur simultaneously, and one output hi. hi is emitted
every eighth occurrence of the following situation: whenever the system has
observed an occurrence of x (not necessarily alone) followed by an occurrence
of y (not necessarily alone either), with no occurrence of z in between. This
new system is simply the parallel composition of the modulo-8 counter with
the detector of fig. 1, encapsulated according to the signal a.

A program in the language is thus a set of Mealy machines composed with
the parallel composition and the encapsulation operators. Its semantics is
obtained when flattening the operators as shown in the modulo-8 counter
example (fig. 2).

3 Introductory example

This section illustrates the whole approach on two examples. They are ex-
tracted from the same case study, namely a juice processing plant [10]. The
plant is divided into three departments. The first one aims at producing the
juice, the second one pasteurizes it and the last one packages it. Our examples

9



focus on the high level controls of the production process (section 3.2) and of
the pasteurization (section 3.1).

For each of them, we first describe the physical system to be controlled, and
then its controller with focus on its inputs and outputs. Inputs of the controller
are mainly information coming from the plant (e.g. signals from sensors) and
outputs of the controller are commands that are sent to the plant (e.g. close
a valve). The controller is the program we work on: its interface, namely its
inputs and its outputs, is precisely known, but the way it is programmed is not
known. We just know that its role is to control the plant with respect to the
inputs it receives and by sending commands. The second part of the example
describes a functionality to be added to a controller. We there introduce our
notion of aspect and show how to use it to express the new functionality.
The third part of each example shows a sample controller and how the above
functionality is added by weaving the aspect. Giving a sample controller after
having specified entirely the aspects aims at showing that our approach is
completely oblivious [11]: nothing has been foreseen in the program to weave
the aspects. Moreover, our approach is also black-box: the aspect has not been
tailored for a given implementation of the program.

3.1 The pasteurizer controller

By means of an example aspect for the pasteurizer controller, this section
introduces our notion of aspect.

3.1.1 The physical machine

A simplified view of the pasteurization department is shown in fig. 3. The juice
to be pasteurized comes from the input buffer tank. When the valve is open,
the juice continuously flows to the pasteurizer machine where it is heated and
then quickly cooled down. When leaving the pasteurizer, it flows to the output
buffer tank. After one cycle of pasteurization, the pasteurizer machine and the
buffer tanks must be cleaned. This is done by the cleaner machine which is
not detailed here.

3.1.2 The controller specification

A user interface panel contains two buttons, one to ask for cleaning, the other
for pasteurizing. When the machine is idle, pressing the clean button begins
a cleaning cycle and pressing the past button starts the pasteurizer. The
pasteurizer cannot be used while the cleaner machine is working. The machine
has various sensors and actuators. The sensors transmit Boolean signals to

10



sensor:
fullO

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

User Interface

button:

button: clean

past

output:
cleaned

command:
Clean

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Pasteurizer

sensor:
emptyI

sensor:
emptyO

sensor:
cold

PastOn, PastOff

buffer tank
Output

buffer tank
Input

Cleaner

commands:
openValve, closeValve

commands:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

tester
qualityOk
sensor:

Fig. 3. A simplified view of the pasteurization department

Buttons and sensors:

clean clean the pasteurizer (button)

past pasteurize juice (button)

emptyI the input buffer tank is empty

emptyO the output buffer tank is empty

fullO the output buffer tank is full

cold the pasteurizer is cold

cleaned the cleaner has finished cleaning

Commands:

Clean make the cleaner work

PastOn switch the pasteurizer on

PastOff switch the pasteurizer off

openValve open the valve connecting the

input buffer tank and the pasteurizer

closeValve close the valve

Fig. 4. Meaning of the sensors, buttons and commands.

the controller; the actuators receive signals sent by the controller. Thus the
inputs of the controller are the signals from the sensors and buttons and its
outputs are the commands to the actuators. The signals and the commands
are summarized in fig. 4.

We assume we have a program for the controller, written in the language
presented in section 2. This means that: 1) inputs and outputs of the program
are the inputs and outputs of the controller; 2) the program is designed as a set
of Mealy machines composed with the parallel product and the encapsulation;
3) the transitions of the whole program (compiled into a flat automaton) are
of the form C/A where C is a Boolean expression on inputs of the controller
and A is a subset of the outputs of the controller.

3.1.3 Modifying the controller to add a quality tester

Suppose we now want to add a quality tester to the department. It will be
placed between the pasteurizer and the output buffer tank to test the quality of
the juice (in italic in fig. 3). It is a sophisticated sensor whose signal qualityOk
is false whenever a problem is detected and true otherwise.

11



When a problem of quality is detected, we should stop the pasteurization
process, and then clean the machines, before being able to restart another
pasteurization process. This new behavior has to be added to the normal
behavior of the controller. We can specify it precisely as follows: “whenever
pasteurizing, if qualityOk is false, then stop the pasteurization process and
start cleaning”.

If we think of the internal structure of the existing controller program (the
explicit states and transitions of the flat automaton), the new behavior could
be implemented in the following way: 1) identify the set X of the states that
correspond to the condition “whenever pasteurizing”; 2) add a transition from
each state x ∈ X to the state that corresponds to the cleaner beginning to
work; those transitions have to be triggered by “if qualityOk is false” and
should meanwhile “stop the pasteurization process”. This kind of program
transformation is quite tricky, and it seems that we have to know the existing
program in full detail to be able to perform it.

In the sequel, we propose to use the specification “whenever pasteurizing, if
qualityOk is false, then stop the pasteurization process and start cleaning”
as the definition of an aspect, and to weave it automatically in the existing
controller. We will show that it requires that we know the specification of the
controller (section 3.1.2), but not its internal structure.

3.1.4 A notion of aspect

To perform the kind of transformation we mentioned for the controller, we
need to specify: (1) the transitions to be added, this corresponds to the advice
of the aspect; (2) where to add them (source states of the added transitions),
this corresponds to the pointcut of the aspect.

Specifying the advice. The transitions to be added have to be defined by
their triggering condition, their outputs, and their target state. In the example,
the controller has to clean the machines when qualityOk is false (this is the
triggering condition). Meanwhile, it has to emit the outputs Clean (to start
cleaning), PastOff and closeValve (to stop the pasteurization process). To
define the target state of the added transitions, we use a finite sequence of
input values σ. This sequence uniquely determines a state in the program
because it is complete and deterministic: it is the state that would be reached
by executing the sequence of inputs from the initial state of the program. We
call this kind of advice a toInit advice: all added transitions go to the same
target state identified by the finite input trace σ executed from the initial
state. In the example, we need to specify the state where the cleaner begins
to work. As specified in section 3.1.2, when the machine is idle (as it is in
its initial state), pushing the user button clean starts the cleaner. Hence the

12



state where the cleaner begins to works can be reached from the initial state
in one step if the input clean is true, i.e. by the finite input trace σ = (clean).

Specifying the join points by describing a pointcut. In our case, the
join points are the source states where the advice transitions are added. Again,
we have to specify states in a system whose internal structure is not known.
Using the same trick as above (a finite sequence of inputs, to be played from
the initial state) cannot be used here, because it would break the preservation
of the behavior equivalence (two equivalent programs should still behave the
same after the weaving of the same aspect in each of them). Indeed, specifying
states by the execution of a finite input trace from the initial state, would be
able to distinguish equivalent states, if they are reachable by input sequences

of different lengths. For example, the two automata A1 = {q a/b−→ q} and

A2 = {q a/b−→ q′, q′
a/b−→ q} are equivalent; they both represent the traces where

a = b in every instant. But the states q and q′ of A2 are distinguished by the
finite input trace σ′ = (a): adding a transition from the state reached by σ′ in
A1 and in A2 leads to non equivalent automata. (Notice that distinguishing
equivalent states by a finite trace was not problematic for the selection of
target states, because the notion of state equivalence is based on the future
execution from these states, which does not change when adding transitions
to these states.)

For Larissa, we choose to specify join points with a program, called the pointcut
program. Technically, it is a synchronous observer of the original program,
composed in parallel with it, that may observe its inputs and outputs, and
that emits a single fresh output JP each time a join point is reached.

In the example, the states X where we need to add transitions are the states
in which the pasteurizer is working. The pointcut program will then listen to
the inputs and outputs of the program in order to deduce when it is in a state
of X. Here, the commands issued to the actuators are sufficient, because the
controller enters X whenever it emits the command PastOn and it leaves X
when it emits PastOff. The automaton in fig. 5 emits JP whenever it is in X,
thus marking the states in X as join points.

PastOff/JP
PastOn

PastOff

Fig. 5. Pointcut program for the quality tester.

3.1.5 A sample controller.

Fig. 6 shows a sample controller. It can either be cleaning or pasteurizing.
When pasteurizing, if the input buffer tank is empty or the output buffer

13



clean
/Clean

Waiting

cleaned
∧cold

∧empty
∧full

past

/openValve

past∧

/closeValve
(emptyI∨ fullO)

emptyI
∧emptyO

Off

Cleaning

Emptying

Pasteurizing

Cooling Down
clean/Clean

past∧clean/PastOn, openValve

past/closeValve, PastOff

cleaned∧cold past/PastOff

clean∧cold

Fig. 6. A sample pasteurizer controller.

tank is full, the process is suspended for a while by commuting the valve. The
process is interrupted when the signal past becomes false. Before returning to
the Off state, the controller has to empty the buffer tanks (state Emptying)
and wait for the pasteurizer to be cold (state Cooling Down). The pasteurizer
can be cleaned when cooling down.

Notice that the controller is deterministic: when exiting, e.g. the state Off,
one can go either to Cleaning if clean is true or to Pasteurizing if past is
true, if past and clean are both true, priority is given to clean.

This controller explicitly contains states that represent the requirement “be-
tween an occurrence of PastOn and the following occurrence of PastOff”,
namely the states Pasteurizing and Waiting. These are the join points
identified by the pointcut program fig. 5. The sequence σ selects the state
reached from the initial state when clean is true, namely Cleaning: this is
the target state of the advice transitions. Finally the weaving aspect mecha-
nism will add transitions from the Pasteurizing and Waiting states to the
Cleaning state. These transitions will be labelled by qualityOk/PastOff,

closeValve, Clean.

Weaving an aspect into the controller has modified its interface: the input
qualityOk has been added. The added transitions are triggered by qualityOk.
If the other transitions sourced in the same state are unchanged the automaton
is non deterministic. To recover determinism, we reinforce their condition by
qualityOK. The woven controller is partially given in fig. 7.

3.2 Blender controller

In the first example (the pasteurizer), aspect weaving modifies the program by
adding transitions to a given point in the program, which is entirely specified

14



Added transitions:

Pasteurizing qualityOk / PastOff, closeValve, Clean Cleaning

Waiting qualityOk / PastOff, closeValve, Clean Cleaning

Modified transitions:

Pasteurizing past∧(emptyI∨fullO)∧qualityOk/closeValve Waiting

Pasteurizing past∧qualityOk/closeValve, PastOff Emptying

Waiting past∧emptyI∧fullO∧qualityOk/openValve Pasteurizing

Waiting past∧qualityOk/PastOff Emptying

Fig. 7. The woven controller: modified and added transitions.

by a finite input trace from the initial state (and thus is independent of a
particular execution). This section gives an example where an aspect should
be able to make a program go backwards in a particular execution.

3.2.1 The physical machine and its specification

The blender is the unit of the production process where the various ingredients
of a juice are mixed. The blender is connected to a manifold, which provides
different juice concentrates, namely for apple, orange, and tomato juice. The
blender mixes one of these juice concentrates with water in a tank. The dif-
ferent juices may have different water/juice ratios. Once the tank is full, the
product is pumped to the next processing unit, the pasteurizer.

The blender provides a user interface with a command for each juice. To start
the blender, one must choose a juice. The blender then tells the manifold to
connect to the corresponding juice concentrate. When the manifold is con-
nected, the blender starts the production of the juice. Once the tank is full,
the blender pumps its content to the next processing unit, and waits for a
command to start a new production. The interface of the blender is detailed
in fig. 8.

Buttons and sensors:

A produce apple juice (button)

T produce tomato juice (button)

O produce orange juice (button)

cncted the manifold has connected to a pipe

full the tank is full

empty the tank is empty

tick a timer signal; true every n seconds

Commands:

cnctA connect to apple juice concentrate

cnctT connect to tomato juice concentrate

cnctO connect to orange juice concentrate

addW add water to the tank

addJC add fruit juice concentrate to the tank

pump pump content of the tank to the next unit

Fig. 8. The blender interface.

15



3.2.2 Modifying the blender controller

The blender controller has the disadvantage that the production has to be
manually restarted each time the tank is full, and that the manifold reconnects
each time a process restarts (reconnection takes time), even though this would
not be necessary when the choice of juice has not changed. Therefore, we want
to add a new command restart that tells the blender to restart the current
production after the tank has been emptied. When restart is true, we do not
want the manifold to reconnect, but restart the production of the same juice
directly.

3.2.3 Recovery aspects

We specify the additional functionality as follows: “when restart is true after
the tank has been emptied, go back to the point where the production of the
current juice started”. As in the previous example, this aspect will add advice
transitions from join points.

Specifying the triggering condition. The aspect specification requires
the tank to be empty, i.e. the input empty must be true when the aspect
is activated. We can state this directly by setting the triggering condition to
restart∧empty.

Specifying join points. As before, we use a pointcut program to identify
the join points, i.e. the states where the triggering condition should apply and
restart the current production. Here, the join points are the states where the
tank is emptying, i.e. when pump is true. The pointcut program is shown in
fig. 9(b). Together with empty in the triggering condition, this ensures that
the tank has just been completely emptied.

Specifying the “recovery” advice. We have to specify where to go, back-
wards. We cannot simply use a trace to be played backwards, because programs
are usually not deterministic in this direction. For example, in the sample pas-
teurizer controller, if we want to go backwards from the Emptying state by
past, there is no way to know if we should take the transition to Waiting or
to Pasteurizing.

Therefore, we propose a different mechanism to specify where to jump back-
wards. Some recovery states are defined globally and the program will only be
able to return to the last recovery state it was in. To specify the set of recovery
states, the same mechanism as for join points is used: a recovery program ob-
serves the inputs and outputs of the program and emits a single fresh output
REC when a recovery state is reached.

Restarting the juice processing should bring the program to the point where it

16



started producing juice, i.e. just after cncted was true for the first time after
we told the manifold to connect to a juice. The recovery program is shown
fig. 9(a).

cnctO∨cnctA∨cnctT

(a)

cnctedtrue/REC

pump/JP

(b)

Fig. 9. The recovery (a) and the pointcut program (b) for the recovery aspect.

Note that, again, we defined the aspect in a completely oblivious way w.r.t.
the actual implementation of the blender controller; the knowledge of its spec-
ification was sufficient.

3.2.4 A sample blender controller

Fig. 10 shows a sample implementation. From the Start state, a connection
to the manifold is made. Then the juice is “cooked” (water+juice for orange,
water+2*juice for tomato and apple) and then pumped to the next processing
unit, before the controller goes back to the Start state.

Start

ConnectO

full

empty/pump

emptying

cncted

tick tick

cncted
ConnectA

cnctedConnectT

empty
O/cnctO

tick/addW

A/cnctA

T/cnctT

tick/addW tick

full/pump

tick ∧full/addJC

tick∧full

tick∧full
tick ∧full/addJC

WaterO JuiceO

WaterAT

JuiceAT

JuiceAT

tick/addJC

Fig. 10. A sample blender controller.

We then illustrate how to weave the aspect into this sampler blender controller;
fig. 11 shows parts of the result. The set of join points selected by the pointcut
program is reduced to the single Emptying state; the advice transitions are
added from there.

The recovery program selects the points in the execution just after an occur-
rence of cncted. There is no state in the implementation (fig. 10) that cor-
responds exactly to this condition. For instance, we could think of the state
WaterO, but the system can go from Start to connectO to WaterO to JuiceO

17



to WaterO to JuiceO ... to emptying. The first time it is in WaterO matches
the requirement of the recovery but not the other times.

The recovery states “just after an occurrence of cncted” are computed by the
parallel composition of the controller (fig. 10) and the recovery program. This
leads, for instance, to split the state WaterO into two states, WaterO’ for the
first time WaterO is reached after the occurrence of cncted and WaterO’’ for
the other time (see fig. 11(a)).

tick

tick/addW

cncted
/inO

WaterO’

restart∧empty∧recAT∧recO

∧(restart∨recO∧recAT)

restart∧empty∧recO

Start

ConnectO

tick

full/pumptick∧full

Emptying

(a)

...

empty
O/cnctO

recO

inAT/recO

inAT recAT

inAT
/recO

/recAT
inO

inO/recAT(b)

init

WaterO” JuiceO

tick/addW

inO

tick ∧full/addJC

empty/pump

Fig. 11. Result of weaving the blender aspect in the controller. Added states, tran-
sitions and modified conditions are written in italic.

Once the join points and recovery states have been identified, transitions are
added from the join point Emptying to the recovery states, e.g. WaterO’. The
upper half of the modified controller is displayed in fig. 11(a). However, the
program must decide at runtime which of these transitions to take, because
it has to go back to the last recovery state it has encountered. Thus, the con-
troller must know which of the recovery states it passed last. This information
is recorded in the memory automaton, which emits the information to the
modified controller that is run in parallel.

The memory automaton for the blender controller is shown in fig. 11(b). It has
three states: state init means that no recovery state has been passed so far,
state recO means the last recovery state was WaterO’ and state recAT means
the last recovery state was WaterAT’. The modified controller and the memory
automaton communicate through four encapsulated signals. Each time the
controller enters the recovery state WaterO’ (resp. WaterAT’), it emits inO

(resp. inAT); this makes the memory automaton update its state by entering
the state inO (resp. inAT). On the other hand, when the memory automaton
is in its state inO (resp. inAT), it permanently emits the signal recO (resp.
recAT). Consequently, when an advice transition is taken (the program is in
the state Emptying and restart and empty are both true), the signal recO
or recAT decides to which recovery state the controller goes back.

The triggering condition of the advice transition to the recovery state

18



WaterO’ is thus not only the activation signal restart∧empty, but
restart∧empty∧recO, which indicates that WaterO’ was the last recov-
ery state passed. A similar transition goes to WaterAT’, with condition
restart∧empty∧recAT∧recO, where the additional recO is needed to keep
the automaton deterministic. The existing transitions of the join point are
also reinforced by restart ∨ empty ∨ (recO ∧ recAT). Thus, the automaton
executes as before the aspect weaving when either restart∧empty is false or
no recovery state has been passed so far. The whole woven program controller
is the parallel composition and encapsulation of the modified controller (see
fig. 11(a)) and of the memory automaton (see fig. 11(b)).

4 Formal definitions

This section defines formally the concepts that were introduced informally in
the previous sections.

4.1 The language

The language described in section 2 uses deterministic and complete automata,
the parallel composition and the encapsulation. The interface of a program is
made of its sets of inputs and outputs. For a program to be implementable,
the following conditions should hold:

• the input and output sets are disjoint;
• it is deterministic (it behaves the same when executed with the same input

sequence twice);
• it is complete (the behavior is defined for any input sequence).

4.1.1 Syntax

Definition 4.1 (Automaton). An automaton A is a tuple A =
(Q, sinit, I,O, T ) where Q is the set of states, sinit ∈ Q is the initial state,
I and O are the sets of Boolean input and output variables respectively, and
T ⊆ Q × Bool(I) × 2O ×Q is the set of transitions. Bool(I) denotes the set
of Boolean formulas with variables in I. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q
are the source and target states, ` ∈ Bool(I) is the triggering condition of the
transition, and O ⊆ O is the set of outputs emitted whenever the transition
is triggered.

19



Definition 4.2 (Grammar of the language). The set of expressions is defined
by the grammar:

M ::= M‖M | M \ Γ | A (1)

where A is an automaton (see def. 4.1), ‖ is the synchronous product, \ is the
encapsulation and Γ is a set of Boolean variables.

The interface of an expression is given by the table in fig. 12, where A is
defined on the set of inputs (resp. outputs) IA (resp. OA) and Mi is defined
on inputs Ii and outputs Oi (i = 1, 2).

in out in out in out

A IA OA M1‖M2 I1 ∪ I2 O1 ∪ O2 M1 \ Γ I1 \ Γ O1 \ Γ

Fig. 12. The inputs and outputs of the composed programs.

Definition 4.3 (Program). A program on inputs I and outputs O is an
expression given by the grammar (1), defined on I and O such that I∩O = ∅.

4.1.2 Semantics

The semantics of a program P is given by defining the set of traces on its
inputs and outputs which it may produce when executing. When P is a sin-
gle automaton, we directly define its semantics as the set of all the possible
traces of execution of the automaton; when it is a more complex expression,
its semantics is that of the single automaton obtained when flattening the
expression.

We first give some definitions about traces, then we define how to flatten an
expression into a single automaton and finally, we derive the semantics of a
program.

Sets of i/o-traces.

Definition 4.4 (Traces). Let I, O be sets of Boolean input and output
variables representing signals from and to the environment. An input trace
it is a function: it : N −→ [I −→ {true, false}]. An output trace ot is a
function: ot : N −→ [O −→ {true, false}]. We denote by InputTraces (resp.
OutputTraces) the set of all input (resp. output) traces. A pair (it, ot) of input
and output traces (i/o-traces for short) provides the valuations of every input
and output at each instant n ∈ N. We denote by it(n)[i] (resp. ot(n)[o]) the
value of the input i ∈ I (resp. the output o ∈ O) at the instant n ∈ N.

A set of pairs of i/o-traces S = {(it, ot) | it ∈ InputTraces ∧ ot ∈
OutputTraces} is deterministic iff ∀(it, ot), (it′, ot′) ∈ S . (it = it′) =⇒
(ot = ot′).

20



A set of pairs of i/o traces S = {(it, ot) | it ∈ InputTraces ∧ ot ∈
OutputTraces} is complete iff ∀it ∈ InputTraces . ∃ot ∈ OutputTraces .
(it, ot) ∈ S.

Flattening an expression. Flattening transforms any expression into a sin-
gle automaton. This is done by the function flatten which is inductively defined
w.r.t. the grammar (1) as follows:

Basis: flatten(A) = A (2)

Rule(‖): flatten(M1‖M2) = flatProd(flatten(M1),flatten(M2)) (3)

Rule(\): flatten(M \ Γ) = flatEncaps(flatten(M), Γ) (4)

where flatProd is the function that computes the synchronous product of two
automata (def. 4.5) and flatEncaps is the function that encapsulates a set of
variables Γ in an automaton (def. 4.6).

Definition 4.5 (Synchronous Product). Let A1 = (Q1, sinit1, I1,O1, T1)
and A2 = (Q2, sinit2, I2,O2, T2) be automata. The synchronous product of
A1 and A2 is the automaton flatten(A1‖A2) = flatProd(A1,A2)= (Q1 ×
Q2, (sinit1sinit2), I1 ∪ I2,O1 ∪ O2, T ) where T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒

((s1, s2), `1 ∧ `2, O1 ∪O2, (s
′
1, s

′
2)) ∈ T .

(5)

The synchronous product of automata is both commutative and associative.

Definition 4.6 (Encapsulation). LetA = (Q, sinit, I,O, T ) be an automaton
and Γ ⊆ I ∪ O be a set of inputs and outputs of A. The encapsulation of A
w.r.t. Γ is the automaton flatten(A \ Γ) = flatEncaps(A, Γ) = (Q, sinit, I \
Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `′, O′, s′) ∈ T ′ ⇐⇒(s, `, O, s′) ∈ T ∧ O′ = O \ Γ ∧
`′ is obtained from ` by setting all

variables in O ∩ Γ to true, and all

variables in Γ \O to false.

(6)

The encapsulation forces the synchronization according to Γ, as explained in
section 2.2. Technically, if the triggering condition of a transition contains an
encapsulated variable as a positive atom, and if the variable is not emitted by
the transition, it is set to false by the encapsulation and the transition is thus
cut. E.g., from the example in section 2.2, the transition a∧c0 is cut, because
the encapsulated variable c0 is set to false. Likewise, if the triggering condition
of a transition contains an encapsulated variable as a negative atom, and if it

21



is emitted by the transition, the variable is set to true and the transition is
also cut. E.g., transition a∧c0/c0 is cut, because c0 is set to true and c0 is
thus false. In other cases, the transition is kept.

Definition 4.7 (Semantics of an Automaton). Let A = (Q, sinit, I,O, T ) be
an automaton. Its semantics is given in terms of a set of pairs of i/o-traces,
Traces(A). This set is built by using the following functions:

S stepA : Q× InputTraces× N −→ Q
O stepA : Q× InputTraces× N \ {0} −→ 2O

(7)

S step(s, it, n) is the state reached from state s after performing n steps with
the input trace it; O step(s, it, n) are the outputs emitted at step n:

n = 0 : S stepA(s, it, n) = s

n > 0 : S stepA(s, it, n) = s′ O stepA(s, it, n) = O

where ∃(S stepA(s, it, n− 1), `, O, s′) ∈ T
∧ ` has value true for it(n− 1) .

(8)

Let it ∈ InputTraces and ot ∈ OutputTraces. We denote by Traces(A) the
set of all traces such that:

(it, ot) ∈ Traces(A) ⇐⇒ ∀n > 0 . O step(sinit, it, n) = ot(n− 1) . (9)

This means that at each step n, the outputs emitted when executing the input
trace it from the initial state are exactly the ones of ot.

Definition 4.8 (Semantics of a program). Let P be a program expressed as
an expression. The semantics of P is given by its set of i/o-traces Traces(P ):

Traces(P ) = Traces(flatten(P )) (10)

Determinism and Completeness. the program P is said to be determinis-
tic (resp. complete) iff its set of traces Traces(P ) is deterministic (resp. com-
plete) (see def. 4.4). It is easy to show that the synchronous product preserves
both determinism and completeness. In general, as explained in section 2.3,
the encapsulation operation does not preserve determinism nor completeness.
Programs are implementable if they are both complete and deterministic. In
the sequel, we always consider programs with both properties.

Program equivalence. To conclude the formal definition of the language,
we define a semantic equivalence of programs.

Definition 4.9 (Semantic equivalence). Let P and P ′ be two programs on
the same sets of inputs and outputs. P and P ′ are said to be semantically
equivalent (noted P ∼ P ′) iff Traces(P ) = Traces(P ′).

22



The equivalence of programs is defined on their sets of i/o-traces. It does not
take the structure of the program into account, nor its states: two programs
may be semantically equivalent without having the same expression, two au-
tomata may be semantically equivalent without having the same set of states
or transitions.

This equivalence is a congruence w.r.t. the synchronous product and the en-
capsulation operator: applying one of those operators on programs preserves
the semantic equivalence (see, for instance, [25]).

4.2 Larissa Aspects

The introductory examples in section 3 illustrate our notion of aspect and
informally explain the weaving mechanism: roughly speaking, it consists in
adding some transitions to the original program. This requires that an aspect
specification contain the description of the source states, the target states and
the labels of the added transitions. We call the added transitions the advice
and their source states the join points.

As we want this program transformation to become a new operator in the
language, we need it to preserve completeness, determinism and over all the
semantic equivalence. Since the equivalence definition only relies on traces, we
need to specify the target and source states of the added transitions in terms
of traces.

4.2.1 Specifying pointcuts

This paragraph could have been entitled “how to specify states by a trace
mechanism?”. The proposed solution is a mechanism that selects states ac-
cording to the history of inputs, described by a synchronous observer Pselect.
Let P be a program on inputs I and outputs O. The input set of Pselect is
I ∪ O and its output set is a single fresh output {sel}.

Selection of states: A state x of P will be considered as selected if, when
P and Pselect are run in parallel, sel is emitted when a global state containing
x is reached. If we simply put P and Pselect in parallel, P ’s outputs O will
become synchronization signals between them, as they are also inputs of Pselect.
They consequently will be encapsulated, and thus no longer emitted by the
product. We avoid this problem by introducing a new output o′ for each output
o of P : o′ will be used for the synchronization with Pselect, and o will still be
visible as an output. First, we transform P into P ′ and Pselect into P ′

select,
where ∀o ∈ O, o is replaced by o′. Second, we duplicate each output of P by
putting P in parallel with one single-state automaton per output o defined

23



by: duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete product, where O is
noted {o1, ..., on}, is given by:

P(P, Pselect) = (P ′‖P ′
select‖duplo1

‖ ... ‖duplon
) \ {o′1, ..., o′n} (11)

If flatten(P(P, Pselect)) = (Q, sinit, I,O, T ) then the set of selected states is:

select(P(P, Pselect), sel) = {s′ | (s, `, O, s′) ∈ T ∧ sel ∈ O} (12)

Notice that the selection does not operate only on P , but on the synchronous
product of P and some other automata. Due to Pselect, the product may have
more states than P alone: this occurs when the observer adds some information
about the history of inputs that was not already computed by P . This case is
illustrated by the blender recovery program in section 3.2.

From the pointcut program to join points: the join points of a program
P are selected using the above mechanism. The observer is then called the
pointcut program. If P is defined on inputs I and outputs O, the pointcut
program Ppc is defined on inputs I ∪ O and output {JP}. The set of join
points is given by select(P(P, Ppc), JP ).

4.2.2 Specifying the advice

The advice is the set of transitions to be added. It contains two kinds of
information: the labels of the added transitions (triggering condition, outputs
emitted), and the target states (which state is reached after firing an advice
transition). We define two kinds of advice, the toInit advice and the Recovery
advice, which differ by the way they specify the target states. The first one,
as in example 3.1, defines a single target state; it is the state that would be
reached after executing a finite input trace from the initial state. The second
one, as in example 3.2, selects recovery states of the program with a recovery
program and the same selection mechanism as for join points. The advice
transition then goes back to the last recovery state dynamically reached.

4.2.3 General aspect definition

Definition 4.10 (Larissa aspect). An aspect, for a program P on inputs I
and outputs O, is a tuple (Ppc, type, advice) where

• Ppc = (Qpc, spc, I ∪ O, {JP}, Tpc) is the pointcut program.
• type ∈ {toInit, Recovery} is the type of the advice.
• if “type=toInit” then advice = (α, O, σ): α and O are respectively the trig-

gering condition and the set of outputs emitted by the advice transitions. α
is a Boolean expression over I and fresh variables, and O is a set which may
contain fresh variables as well as elements of O. σ : [0, ..., `σ] −→ [I −→

24



{true, false}] is a finite input trace of length `σ + 1. It defines the single
target state of the advice transitions by executing the trace from the initial
state.

• if “type=Recovery” then advice = (α, O, Prec): α and O have the same
meaning as for the toInit advice. Prec = (Qrec, srec,0, I ∪ O, {REC}, Trec) is
the recovery program: it selects the recovery states of P by emitting the
output REC.

We define the semantics of aspects the same way we defined the semantics of
programs, i.e. on a single automaton (sections 4.2.4 and 4.2.5). The weaving
for programs is the natural extension:

Definition 4.11 (Aspect weaving for programs). Let P be a program and
asp an aspect for P . P / asp is the program given by flatten(P ) / asp.

4.2.4 toInit advices

The weaving mechanism for a toInit advice consists in adding advice transi-
tions from join points to the single state specified by the finite input trace
σ; join points are selected as shown in section 4.2.1. The pasteurizer example
(section 3.1) dealt with an aspect with a toInit advice: it fully illustrates the
effect of weaving.

Definition 4.12 (Aspect weaving for automata – toInit advice). Let A =
(Q, sinit, I,O, T ) be an automaton and asp = (Ppc, toInit, (α, Oα, σ)) an as-
pect for a program on I and O. We note AP ′ = (QP ′ , sinitP ′ , IP ′ ,OP ′ , TP ′)
the automaton obtained when flattening the program P(A, Ppc) and J =
select(P(A, Ppc), JP ) is the set of join points (see eq. (11), (12) for the defini-
tion of P and select). The weaving operator, /, weaves asp on A and returns
the automaton: A/asp = (QP ′ , sinitP ′ , IP ′∪var(α),OP ′∪Oα, T ′), where var(α)
are the variables in α and T ′ is defined as follows:(

(s, `, O, s′) ∈ TP ′ ∧ s /∈ J
)

=⇒ (s, `, O, s′) ∈ T ′ (13)(
(s, `, O, s′) ∈ TP ′ ∧ s ∈ J

)
=⇒

(
(s, `∧α, O, s′) ∈ T ′ (14)

∧(s, `∧α, Oα, S stepAP ′ (sinit, σ, lσ)) ∈ T ′
)
(15)

Transitions (13) are sourced in a non join point state: they are left unchanged.
Transitions (14) are sourced in a join point state: to preserve determinism,
their conditions are reinforced by α. Transitions (15) are the advice transitions,
added by the aspect; their final state is specified by the finite input trace σ:
S stepAP ′ (which has been naturally extended to finite input traces) executes
the trace during lσ steps, where lσ is the length of σ, as defined in def. 4.10.

25



Reinitialization: a toInit example. An aspect that makes a program P
reinitializable by r is specified as follows: reinit = (Ppc, toInit, (r, ∅, ε)) where
ε is the empty trace. Ppc is the automaton that chooses all states:
({q}, q, I, {JP}, {(q, true, JP, q)}). Weaving reinit into P leads to adding a
transition labelled by r from any state of P to its initial state. Notice that
reinit can be applied to any program, regardless of its interface, since the
condition “true” can be interpreted as a condition on any set I ∪ O.

4.2.5 Recovery advices

The weaving mechanism for a Recovery advice consists in adding advice transi-
tions from join points to recovery states in such a way that the program goes
back to the recovery state it passed last. A memory automaton remembers
which recovery state was passed last. We motivated and introduced recovery
aspects informally in section 3.2.

Definition 4.13 (Aspect weaving for automata – Recovery advice). Let A =
(Q, sinit, I,O, T ) be an automaton and asp = (Ppc, Recovery, (α, Oα, Prec)) an
aspect for a program on I and O.

Join points and recovery states: we denote by (QP ′ , sinitP ′ , IP ′ ,OP ′ , TP ′) the
automaton obtained when flattening the program P ′ = P(P(P, Ppc), Prec).
P ′ is the program P in parallel with the pointcut program and the recovery
program. The set of join points J is equal to select(P ′, JP ) and the set of
recovery states R = {r1, ..., rn} to select(P ′, REC).

Memory automaton: we define fresh variables Rec = {rec1, ..., recn} and
In = {in1, ..., inn}: ini = true means “the program enters the recovery state
ri (at this step)” and reci = true means “the last recovery state encountered
is ri”. The memory automaton M is given by (QM, q0, In,Rec, TM), where
QM = R∪ {q0} and TM is defined by

∀i ≤ n . ∀j ≤ n . (ri, inj ∧
∧

j<k≤n

ink, {reci}, rj)

∀i ≤ n . (ri,
∧

1≤j≤n

inj, {reci}, ri)

∀i ≤ n . (q0, ini ∧
∧

i<j≤n

inj, ∅, ri)

(16)

Advice and modified transitions: we note P ′
/ = (QP ′ , sinitP ′ , IP ′ ∪ Rec ∪

var(α),OP ′ ∪ In ∪ Oα, TP ′
/) where var(α) are the variables in α and TP ′

/

26



is defined by

s ∈ J =⇒ (s, α ∧ reci ∧
∧

j=i+1..n

recj, Oα, ri) ∈ TP ′
/ (17)

(s, `, o, ri) ∈ TP ′

∧s /∈ J =⇒ (s, `, o ∪ {ini}, ri) ∈ TP ′
/ (18)

(s, `, o, s′) ∈ TP ′

∧s ∈ J ∧ s′ /∈ R =⇒ (s, ` ∧ (α ∨ α ∧
∧

j=1..n

reci), o, s
′) ∈ TP ′

/ (19)

(s, `, o, ri) ∈ TP ′

∧s ∈ J =⇒ (s, ` ∧ (α ∨ α ∧
∧

j=1..n

reci), o ∪ {ini}, ri) ∈ TP ′
/ (20)

(s, `, o, s′) ∈ TP ′

∧s /∈ J ∧ s′ /∈ R =⇒ (s, `, o, s′) ∈ TP ′
/ (21)

Transitions (17) are the added advice transitions: they go from every join point
to every recovery state. A transition to state ri is taken when α is true and the
memory automaton M emits reci (meaning that the last recovery state is ri).
The equations (18), (19), (20) stand for the transitions of TP ′ which have been
modified and (21) for the unchanged transitions of TP ′ . Transitions (18) enter
some recovery state ri: they emit the output ini to inform M. Transitions (19)
leave join points, which are no longer deterministic after the introduction of
transitions (17). The expression (α∨α∧∧

j=1..n reci) reinforces the conditions of
transitions (19), such that the join points are again deterministic and complete.
Finally, a transition (20) exits a join point to a recovery state ri: it has thus
both to inform M by emitting ini as in (18) and to reinforce its condition as
in (19).

The woven program: finally, the woven program A / asp is the synchronous
product of P ′

/ and M being encapsulated by the variables in Rec and In:

A / asp = (P ′
/‖M) \ (Rec ∪ In) (22)

4.3 Extension of the language

Theorem 4.1 below expresses that weaving over an automaton preserves both
completeness and determinism. Because of def. 4.11, so does the weaving over
a program, whatever be its structure.

Theorem 4.1 (Preservation of determinism and completeness). Let P be a
program and asp = (Ppc, type, advice) an aspect. Let P , Ppc and, if “type =
Recovery” also Prec, be deterministic and complete. Then, P / asp is also
deterministic and complete.

27



Theorem 4.2 shows that the semantic equivalence is preserved when weaving
an aspect.

Theorem 4.2 (Preservation of equivalence). Let P1, P2 be two programs
on I and O and let asp be an aspect for a program on I and O. Then
P1 ∼ P2 =⇒ (P1 / asp) ∼ (P2 / asp).

Proofs for the theorems are given in appendixes A and B.

The completeness, the determinism and the equivalence being preserved, as-
pect weaving may be considered as a new operator in the language. Programs
are now expressions built from single automata with the synchronous product,
the encapsulation over a set of variables, and the weaving of an aspect. The
new grammar for the language is now given by:

M ::= M / asp | M‖M | M \ Γ | A (23)

Example. As the weaving is a new operator of the language, it may be used
in expressions such as:

(
(Blender / restart)‖(Pasteurizer / tester)

)
/ reinit.

Blender (resp. Pasteurizer) is the blender controller (3.2) (resp. the pas-
teurizer controller (3.1)), restart and tester are their respective aspects, and
reinit is the reinitialization aspect (4.2.4). The above program is the global
controller for the pasteurizer and the blender made reinitializable.

5 Implementation and extensions

This section presents an implementation for Larissa, proposes an extension
and briefly discusses aspect interference.

5.1 Implementation

A compiler [3] for Larissa was developed, as an extension of an existing Argos
compiler. This tool is connected to simulation, test, debug and formal veri-
fication tools like model-checkers. We did some experiments with the model-
checker Lesar [14]. We are currently developing examples. The current defini-
tions are quite powerful (especially the recovery aspect), and seem to offer a
good support for the kind of modifications we need in reactive programs.

28



start
.../back

.../back

...

.../start

back

.../start
join point

join point

...

(a)Transformation of the original program

inserted state I

target state S

(b)Advice automaton

Fig. 13. Inserting an advice program instead of advice transitions.

5.2 Extension: advice automaton

It may be useful to insert an entire program between the join point and the
target state of the advice transition. First, note that introducing an automaton
is enough since we can first flatten the program to be inserted. Then, the
easiest way to insert an automaton is to give it separately and to synchronize
it with the original program, in which it is sufficient to add a single state.
The mechanism we propose is essentially the same construct as presented in
the core of this paper, but for each target state S, a new inserted state I is
added to the program. The advice transitions now go to I, and an additional
transition goes from I to S. The transitions to I emit a special fresh output,
start (begin the execution of the advice automaton), and the transition that
leaves I is triggered by a single fresh input back (notifying the program that
the advice automaton has finished). This is illustrated in fig. 13(a). The advice
program (fig. 13(b)) has back as output and start as input, beside the normal
inputs and outputs of the program. It is put in parallel with the program by
the weaver, and start and back are encapsulated. The results and proofs
of the paper can be easily extended for this kind of aspect, i.e., the weaving
of an advice automaton preserves determinism, completeness and semantic
equivalence: this kind of advice can also be considered as a new operator of
the language.

5.3 Aspect Interferences

A key point when dealing with aspects is the notion of interferences. Generally
speaking, if P is a program and A1 and A2 two aspects, the weaving of A1 and
A2 into P may have different effects depending on how the weaver proceeds
(weave A1 and then A2?, the reverse order?, weave A1 and A2 at the same
time?). When this is the case, the aspects are said to interfere. Note that it
may be the case that (P /A1)/A2 is well defined, while (P /A2)/A1 is not. In
general, A2 is not an aspect for P alone – just look at the inputs and outputs
– nor is A1 for (P /A2). Hence the interference problem cannot be expressed

29



simply as a comparison between (P /A1) /A2 and (P /A2) /A1.

In fact, from our point of view, the interference problem covers several situa-
tions leading to different questions. First situation, A1 may have been woven
into P at some date; some properties ϕ hold for (P /A1). Later on, (P /A1)
needs to evolve, by weaving A2 into it. The question of interference is then:
does the weaving of A2 into (P / A1) break some effect of A1, i.e. does ϕ
still hold? Automated analysis tools (verification, testing, simulation...) can
be used on (P /A1) /A2 and ϕ.

Second situation, imagine a modular program is designed as a single program
P and two crosscutting features A1 and A2. The program we want to obtained
is P “plus” the two aspects woven in it. How to achieve this? The programmer
meant to weave A1 and A2 “at the same time” into P . It seems that the
weaving operator has to be extended to take into account not only a single
aspect, but a set of aspects: P / {A1,A2}. Intuitively, this operator is well-
defined in simple cases, for instance when the set of join points for A1 and A2

are disjoint. For more complex cases, it is the responsibility of the programmer
to specify the global modification, e.g. by another aspect A1,2.

From a practical point of view, in both situation, we can use Larissa’s con-
nection to formal verification tools to check if some formally defined property
ϕ still hold after the application of an aspect, and if A1 and A2 interefere in
P / {A1,A2}. However, aspects often invalidate properties and interfere even
when one would not expect it. Furthermore, proving properties may be very
expensive for large automata. We are currently investigating this issue to get
a better insight into aspect interference at a higher level.

6 Related work

Comparison with AspectJ. Comparing Larissa with AspectJ is quite dif-
ficult, due to the difference of the underlying languages. Let us first compare
AspectJ’s pointcuts with Larissa’s, and look at the blender example in sec-
tion 3.2. To represent this pointcut in AspectJ, one would select the method
that empties the tank as pointcut, and an after advice. This would cause
the AspectJ-aspect to intervene at the same points as the blender aspect.
However, this is possible only for very simple pointcuts. More complex point-
cut, which rely on the history of events, cannot be represented by a simple
AspectJ pointcut: for instance, the pointcut of the pasteurizer aspect (sec-
tion 3.1), must dynamically know whether the pasteurizer is switched on or
off. Furthermore, in AspectJ it is impossible to jump to another point in the
control flow as we do here. Instead, the aspect can execute program code,
but after that, the execution continues at the position where the advice was

30



inserted.

On the other hand, it is not possible to directly express an arbitrary AspectJ
before, after or around advice with the sorts of advice presented in this
paper. Adding a kind of advice closer to AspectJ’s advice could be done with
two modifications of our advice. First, it is necessary to add general behaviors
to the advice transitions, by adding an automaton between the join point and
the final state. This idea is discussed in section 5.2. Second, the final state of
the advice transition must not be globally fixed, but depend on the join point.
Then, one could add the AspectJ advice as advice automaton (see fig. 13(b)),
and let the target state be the join point. This inserts arbitrary code at join
points and continues the execution afterwards, as before or after advice do.

Temporal pointcuts, trace-based aspects, stateful aspects, dynamic
join points. A lot of authors have noticed before us that the cflow construct
that enables dynamic join points in AspectJ is intrinsically limited by the
nature of the history information contained in the runtime system (mainly
the stack). This has motivated a lot of proposals for more general notions.
In all these approaches, the idea is to trigger an aspect depending on some
history, or “joint point sequence”, or “trace”, etc. In Arachne [8], aspects
can be applied in sequences, which consist of restricted regular expressions
over aspects, without parentheses or “or” constructs (ab* is allowed, but not
a(bb)*, nor a+b). Stateful aspects, as defined in [7], may be the basis for the
definition of automata-like pointcut languages, or general regular-expressions.
In our approach, pointcuts are defined by finite automata, so we also have the
power of regular languages. [28] is a temporal extension of AspectJ. Pointcuts
can refer to method entries and exits, and one can construct expressions over
these items with the power of context-free grammars. [21] proposes to define
pointcuts with powerful predicates (à la Prolog) on traces.

Formal definitions of aspects. A number of approaches have been proposed
for the formalization of aspects. Some of them aim at formalizing the notion of
aspect itself, in the most general framework. Others are proposals for a notion
of aspect in a given context, together with a formal definition, tailored for this
precise context. Our proposal belongs to the second family.

Among the first family, we may cite [2]; the author proposes to define the
weaving operation (for aspects of sequential programs) as a parallel compo-
sition; the formal framework is based on process algebras and products, and
therefore very close to our setting. But we aim at defining aspects that cross-
cut the parallel structure of reactive programs, not at formalizing weaving for
sequential programs by a kind of parallel composition.

[29] is a formal definition of AspectJ-like advice, for a simple imperative lan-
guage with recursive definitions. Our work does not easily compare to this

31



type of work, because the notion of aspect we chose for reactive systems is
guided by the need to cross-cut a parallel structure. It is quite different from
the AspectJ-like advice (“before”, “after” or “around” a piece of code) that
make sense mainly for sequential languages.

Superimposition. Superimposition has been proposed by S. Katz and co-
authors in several papers, starting with [17]. It can be considered as a precur-
sor work on a notion of aspect for parallel programs. The authors proposed
three categories of aspects called spectative, regulative and invasive, to qual-
ify the effect of a superimposition on a program. Superimposition was mainly
defined for distributed asynchronous systems on which one wants to impose
a global property. It is however very close to our motivations. In our setting,
a spectative superimposition is merely the synchronous composition with an
observer [15], i.e. a component that observes the inputs and outputs of the
original program, but cannot have a feedback effect on it. Invasive superimpo-
sition has the power to modify the behavior of a program drastically. To our
opinion, it should therefore be defined in conjunction with strong properties
relating its effect with the other constructs of the language. That is why we
insist on being able to consider weaving as a new operator, obeying the same
laws as the previous operators.

Enforcing properties of critical code. A number of approaches have been
proposed for enforcing properties of programs, they mainly rely on dynamic
checks.

In [6], a program transformation technique is presented, allowing to equip
programs with runtime checks in a minimal way. Temporal properties are
taken into account, and abstract interpretation techniques are used in order
to avoid the runtime checks whenever the property can be proven correct,
statically. In the general case, the technique relies on runtime checks, anyway.

The approach described in [26] is a bit different because it does not rely on pro-
gram transformation. The authors propose the notion of security automaton.
Such a security automaton is an observer for a safety property, that can be run
in parallel with the program (performing an on-the-fly synchronous product).
When the automaton reaches an error state, the program is stopped.

Edit automata [23] are more general. They allow a security specification to
interfere with the program execution. An edit automaton may truncate the
execution, suppress some actions, or insert some actions in the normal execu-
tion of a program. This technique is mainly dynamic and does not seem to
be designed for program transformation, but we could probably weave such
an edit automaton into an existing program by performing a kind of compiled
synchronous product between them. The authors aim at executing unknown
and untrusted programs in a safe way. This is different from our motivations,

32



because we would like the weaving operation to behave as a normal operation
on programs. In particular, it should be possible to continue composing the
woven program.

Aspects for automata-based languages. In [27], a notion of aspect is
proposed for so-called “modular transition systems” (a kind of interpreted
automata composed in parallel with shared variables). The ideas of the ap-
proach are quite similar to ours, including the proposal for formal automatic
verification. The authors also show that their setting allows to give a clear
definition to aspect interference. They do not study equivalences of programs,
but propose to look at the properties that are preserved by the application of
an aspect. The main differences with our work are: the focus on imperative
code associated with transitions; the simpler structure of programs, which are
sets of parallel automata. We concentrate on reactivity, and we use a general
notion of program, with any level of operators.

A proposal for introducing aspects into Statecharts is made in [24]. Aspects
are modeled as normal Statecharts, which are put in parallel with the base
Statechart. Then, it can be specified that a transition in the aspect is taken
before or after a certain transition in the base program. This approach does
not have the semantical properties we are looking for, but has the advantage
of being closer to AspectJ.

7 Conclusion and Further Work

This paper introduces a notion of aspects for a small language from the reactive
synchronous languages family. The first motivation was that some recurring
transformations on reactive synchronous programs appeared to be crosscutting
notions.

Our main requirement on aspects is that the weaving transformation preserve
the semantic equivalence between programs. We have defined and implemented
two kinds of aspects: they both add new transitions in the program. The
first one allows to go to some predefined state, when the aspect is activated.
The second allows to go back to some recovery state. Their use is illustrated
in a complete example. Finally, we propose some extensions of the weaving
mechanisms and some comments on aspect interferences in this context.

The work leads to some interesting but more open questions. We examine two
of them below.

Qualifying the effect of aspects A difficult to formulate question is how
much an aspect is allowed to modify a program? or how to qualify the relation-

33



ship between the behavior of the program before and after the application of the
aspect? S. Katz in [18] proposes to associate with a program a set of tempo-
ral logic properties that should be preserved by the application of any aspect.
Our opinion is the following: first, it contradicts the obliviousness requirement;
second, a lot of work on the specification and verification of reactive systems
has proved that it is usually very hard to define a “complete” specification of
a reactive system. We will study the opposite point of view: when defining an
aspect, one should be able to provide a criterion for comparing the behaviors
of programs before and after the application of this aspect.

Pragmatically, this can be done by studying the semantic effect of the aspect
on each particular program. The criterion thus depends on the pair (program,
aspect). Or it can only depend on the aspect: this could lead us to define some
“semantic interface” of the aspect or some contract in the sense of aspect-
aware interfaces [20] or crosscutting programming interfaces [12], that have
been defined as tools to define the static effects of AspectJ aspects.

Could it be done without aspects? Wondering whether something we do
with aspects could have been done “modularly” with the existing constructs
of the language, is an interesting question, but not easy to specify. The most
interesting setting to study this question is probably the notion of language
expressivity proposed by M. Felleisen in [9]: a new construct C does add to
the expressivity of a language if doing the same effect without it needs a lot
of modifications everywhere in a program. The typical example he studies is
the assignment construct, when added to a pure functional language.

References

[1] K. Altisen, F. Maraninchi, D. Stauch, Exploring aspects in the context
of reactive systems, in: Workshop on the Foundations of Aspect-Oriented
Languages (FOAL), 2004.

[2] J. H. Andrews, Process-algebraic foundations of aspect-oriented programming,
in: Proceedings of the Third International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns (Reflection 2001), Vol.
2192 of LNCS, 2001, pp. 187–209.

[3] Compiler for Argos and Larissa, http://www-verimag.imag.fr/
∼stauch/ArgosCompiler/.

[4] A. Benveniste, G. Berry, Another look at real-time programming, Special
Section of the Proceedings of the IEEE 79 (9).

[5] G. Berry, G. Gonthier, The Esterel synchronous programming language: Design,
semantics, implementation, Sci. Comput. Programming 19 (2) (1992) 87–152.

34



[6] T. Colcombet, P. Fradet, Enforcing trace properties by
program transformation., in: Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL-00), 2000, pp. 54–
66.

[7] R. Douence, P. Fradet, M. Südholt, Trace-based aspects, in: R. E. Filman,
T. Elrad, S. Clarke, M. Akşit (Eds.), Aspect-Oriented Software Development,
Addison-Wesley, Boston, 2005, pp. 201–217.

[8] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-Devillechaise,
M. Südholt, An expressive aspect language for system applications with
Arachne, in: Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD), ACM Press, Chicago, IL, USA, 2005,
pp. 27–38.

[9] M. Felleisen, On the expressive power of programming languages, in: N. Jones
(Ed.), ESOP’90 3rd European Symposium on Programming, Vol. 432 of LNCS,
Springer-Verlag, 1990, pp. 134–151.

[10] J. J. Fey, J. H. van Schuppen, VHS case study 4 - modeling and control of a
juice processing plant, http://www-verimag.imag.fr/VHS/CS4/dcs42.ps.gz
(1999).

[11] R. E. Filman, D. P. Friedman, Aspect-oriented programming is quantification
and obliviousness, in: R. E. Filman, T. Elrad, S. Clarke, M. Akşit (Eds.),
Aspect-Oriented Software Development, Addison-Wesley, Boston, 2005, pp. 21–
35.

[12] W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, H. Rajan,
Modular software design with crosscutting interfaces, in: IEEE Software, Special
Issue on Aspect-Oriented Programming, 2006.

[13] N. Halbwachs, Synchronous programming of reactive systems, Kluwer Academic
Pub., 1993.

[14] N. Halbwachs, F. Lagnier, C. Ratel, Programming and verifying critical systems
by means of the synchronous data-flow programming language lustre, IEEE
Transactions on Software Engineering, Special Issue on the Specification and
Analysis of Real-Time Systems.

[15] N. Halbwachs, F. Lagnier, P. Raymond, Synchronous observers and the
verification of reactive systems, in: M. Nivat, C. Rattray, T. Rus, G. Scollo
(Eds.), Third Int. Conf. on Algebraic Methodology and Software Technology,
AMAST’93, 1993.

[16] D. Harel, Statecharts: A visual formalism for complex systems, Sci. Comput.
Programming 8 (3) (1987) 231–274.

[17] S. Katz, A superimposition control construct for distributed systems, ACM
Trans. Prog. Lang. Syst. 15 (2) (1993) 337–356.

35



[18] S. Katz, Diagnosis of harmful aspects using regression verification, in: Workshop
on Foundations of Aspect-Oriented Languages (FOAL’04), Lancaster, March
2004, 2004.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
overview of AspectJ, LNCS 2072 (2001) 327–353.

[20] G. Kiczales, M. Mezini, Aspect-oriented programming and modular reasoning,
in: ICSE ’05: Proceedings of the 27th international conference on software
engineering, 2005, pp. 49–58.

[21] K. Klose, K. Ostermann, Back to the future: Pointcuts as predicates over traces,
in: Workshop on the Foundations of Aspect-Oriented Languages (FOAL), 2005.

[22] L. Lamport, Proving the correctness of multiprocess programs, IEEE Trans.
Softw. Eng. SE-3 (2) (1977) 125–143.

[23] J. Ligatti, L. Bauer, D. Walker, Edit automata: Enforcement mechanisms for
run-time security policies, International Journal of Information Security.

[24] M. Mahoney, A. Bader, T. Elrad, O. Aldawud, Using aspects to abstract and
modularize statecharts, in: 5th Aspect-Oriented Modeling Workshop, Lisbon,
Portugal, 2004.

[25] F. Maraninchi, Y. Rémond, Argos: an automaton-based synchronous language,
Computer Language 27 (1/3) (2001) 61–92.

[26] F. B. Schneider, Enforceable security policies, ACM Transactions on
Information and System Security 3 (1) (2000) 30–50.

[27] H. Sipma, A formal model for cross-cutting modular transition systems, in:
Workshop on Foundations of Aspect-Oriented Languages (FOAL’03), 2003.

[28] R. J. Walker, K. Viggers, Implementing protocols via declarative event patterns,
in: SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engineering, ACM Press,
New York, NY, USA, 2004, pp. 159–169.

[29] M. Wand, G. Kiczales, C. Dutchyn, A semantics for advice and dynamic join
points in aspect-oriented programming., ACM Trans. Prog. Lang. Syst. 26 (5)
(2004) 890–910.

A Proof for Theorem 4.1

We proove that weaving preserves determinism and completeness. We prove
the theorem for programs being simple automata, since weaving first applies
the flatten function (see def. 2) on a program. Weaving an aspect is defined
using parallel products, encapsulations and the adding of advice transitions.
Parallel products preserves determinism and completeness. We will show that

36



so does the adding of advice transitions. Encapsulation does not always pre-
serve determinism nor completeness: we will show that the particular cases in
which encapsulation is used by the weaving preserve determinism and com-
pleteness. This is done by lemma A.1 – a proof is given at the end of this
appendix:

Lemma A.1 Let M1 = (Q1, q1, I ∪ A,O1 ∪ B, T1) and M2 = (Q2, q2, I ∪
B,O2∪A, T2) be two complete and deterministic automata such that B∩O2 =
∅, A∩O1 = ∅ and A∩B = ∅. Furthermore, let all outgoing transitions of M2

emit the same subset of A, i.e. ∀t1 = (s1, `1, o1, s
′
1), t2 = (s2, `2, o2, s

′
2) ∈ T2 .

s1 = s2 ⇒ o1 ∩ A = o2 ∩ A. (This means that the outputs of M2 that are in
A only depend on M2’s current state, and not on the inputs and the taken
transition.) Then, M1‖M2 \ (A ∪B) is complete and deterministic.

ToInit aspects. Let asp = (Ppc, toInit, (α, Oα, σ)). Let A be an automaton.
We prove that if A and Ppc are deterministic and complete, then so is A/asp.

First, we proof that the computation of the join points preserves deter-
minism and completeness: they are computed on the program P(A, Ppc) =
(A′‖P ′

pc‖duplo1
‖ . . . ‖duplon

) \ {o′1, ... o′n}. Calculating a parallel product does
not affect determinism nor completeness. We then set M1 = A′, M2 =
P ′

pc‖duplo1
‖ . . . ‖duplon

, A = ∅ and B = {o′1, ..., o′n} to apply property A.1.
Thus P(A, Ppc) is deterministic and complete.

Second, we show that adding advice transitions to P(A, Ppc) preserves deter-
minism and completeness: some transitions are left unchanged, and any other
with condition ` is replaced by two transitions with conditions `∧α and `∧α.
This does not alter determinism not completeness, thus A/asp is deterministic
and complete.

Recovery aspects. Let asp = (Ppc, Recovery, (α, Oα, Prec))). Let A be an
automaton. We prove that if A, Ppc and Prec are deterministic and complete,
then so is A / asp. The proof follows the same steps as above.

First, as for toInit aspects, P(A, Ppc) is deterministic and complete. The same
reasoning is applied to show that P ′ = P(P(A, Ppc), Prec) is deterministic and
complete.

Second, we show that adding advice transitions to flatten(P ′) preserves de-
terminism and completeness; this leads to P ′

/. Some transitions are left un-
changed, and any other with condition ` is replaced by one transition with
condition ` ∧ α, one with ` ∧ α ∧ ∧

1≤i≤n reci, and for every i ≤ n one with
condition `∧α∧ reci∧

∧
i<j≤n recj. These conditions are pairwise disjoint, the

37



automaton is thus deterministic. Their disjunction is `, thus the automaton is
complete. Hence P ′

/ is deterministic and complete.

Third, the memory automaton, M is constructed in such a way that it is
deterministic and complete. Indeed, in any state ri, we create n transitions
with conditions inj ∧

∧
j<k≤n ink and one transition with condition

∧
j inj.

These conditions are pairwise disjoint, the automaton is thus deterministic.
Their disjunction is true, thus the automaton is complete.

Finally, A / asp is obtained by (P ′
/‖M) \ (Rec ∪ In). Again, we apply prop-

erty A.1 to show that the encapsulation does not affect determinism nor com-
pleteness: the memory automaton’s output depend only on its state and not
on the current input signals, so we can set M2 = M and M1 = P ′

/ and apply
property A.1, with A = Rec and B = In. 2

Proof for lemma A.1 All outgoing transitions of a state s2 in M2 have
the same subset of A in their outputs, say a. A complete monomial over a
set of variables V is a Boolean conjunction which contains for each v ∈ V ,
either v or v. We call ã the complete monomial over A where the variables in
a are positive and the variables not in a are negative. Furthermore, let m̃ be
a complete monomial over I.

Because M1 is complete and deterministic, a state s1 of M1 has exactly one
outgoing transition t1 = (s1, `1, o1, s

′
1) with `1 ⇒ m̃ ∧ ã. Let b = o1 ∩ B and b̃

the complete monomial over B where the variables in b are positive and the
variables not in b are negative. Because M2 is complete and deterministic, s2

has exactly one outgoing transition t2 = (s2, `2, o2, s
′
2) with `2 ⇒ m̃ ∧ b̃.

In M1‖M2, the combination of t1 and t2 leads to a transition t = ((s1, s2), `1∧
`2, o1 ∪ o2, (s

′
1, s

′
2)). t isn’t cut by the encapsulation and we obtain t′ =

((s1, s2),∃(A ∪ B) . `1 ∧ `2, (o1 ∪ o2) \ (A ∪ B), (s′1, s
′
2)) in M1‖M2 \ (A ∪ B).

We thus have a transition for every complete monomial m̃ in every state, the
automaton is complete.

The automaton is also deterministic, because all the other transitions of the
product are cut by the encapsulation. We show that for two states s1 and
s2 and a complete monomial m̃, t′ is the only transition to survive the en-
capsulation: Let t′1 = (s1, `

′
1, o

′
1, s

′′
1) such that t′1 6= t1 and `′1 ⇒ m̃. Because

`′1 ∧ `1 = false, we have `′1 ∧ ã = false, so there is variable x ∈ a that either
(1) appears as a positive atom in ã and negated in `′1 or (2) the other way
round. The subset of A in the outputs of all outgoing transitions of s2 is a.
Thus, after a product with a transition sourced in s2, the substitution of the
encapsulation of A replaces variables in a by true, thus in (1), x is false. The
substitution also replaces variables of A not in a by false, thus in (2), x is also

38



false. In both cases, the condition is false and the transition is cut. Likewise,
let t′2 = (s2, `

′
2, o

′
2, s

′′
2) such that t′2 6= t2 and `′2 ⇒ m̃. We have `′2 ∧ b̃ = false

and the same reasoning applies, such that the transition is cut. 2

B Proof for Theorem 4.2

We prove the preservation of semantical equivalence for toInit aspects and
recovery aspects. We prove the theorem for programs being simple automata,
since weaving first applies the flatten function (see def. 2) on a program.

We first define the equivalence between states : let A1 and A2 be two automata;
let q1 be a state of A1 and q2 a state of A2, q1 and q2 are said to be equivalent
(noted q1 ∼ q2) iff A′1 ∼ A′2 where A′1 (resp. A′2) is the automaton A1 (resp.
A2) where the initial state is set to q1 (resp. q2).

ToInit aspects. Let asp = (Ppc, toInit, (α, Oα, σ)). Let A1 and A2 be au-
tomata. We prove that if A1 and A2 are semantically equivalent, then A1 /asp
and A2 / asp are also semantically equivalent.

A1 ∼ A2 =⇒ P(A1, Ppc) ∼ P(A2, Ppc), because P only relies on op-
erators ‖ and \, which are known to preserve equivalence. P(A1, Ppc) and
P(A2, Ppc) consist of sets of equivalent states. The states in these sets are
indistinguishable among themselves. Any set of equivalent states in an au-
tomata has an equivalent set of equivalent states in an equivalent automata.
Thus, for q1 ∈ QP(A1,Ppc), q2 ∈ QP(A2,Ppc), we have q1 ∼ q2 =⇒ (q1 ∈
select(A1, Ppc, JP ) ⇐⇒ q2 ∈ select(A2, Ppc, JP )); otherwise q1 and q2 would
be distinguishable by JP .

If the aspect is applied to two equivalent states, they are modified in the
same way. The input variables of the outgoing transitions are reinforced by α,
the output variables by Oα. The added transitions also preserve equivalence,
because the execution of σ from two equivalent states ends in equivalent states;
otherwise the starting states would be distinguishable. Thus, A1 / asp ∼ A2 /
asp.

Recovery aspects. Let asp = (Ppc, Recovery, (α, Oα, Prec))). We have al-
ready shown that A1 ∼ A2 =⇒ P(A1, Ppc) ∼ P(A2, Ppc). We obtain
P(A1, Ppc) ∼ P(A2, Ppc) =⇒ P(P(A1, Ppc), Prec) ∼ P(P(A2, Ppc), Prec)
by exactly the same reasoning. We denote P ′

i = P(P(Ai, Ppc), Prec) for
i = 1 . . . 2. P ′

/1 and P ′
/2 are not equivalent (they have even different in-

and outputs: the In and Rec signals), nor are M1 and M2. However, we

39



show that (P ′
/1‖M1) \ (Rec2 ∪ In1) and (P ′

/2‖M2) \ (Rec2 ∪ In2) are trace
equivalent.

Let (it, ot) be a trace of A1 / asp. By induction over the length of the trace,
we show that (it, ot) is also a trace of A2 / asp.

Inductive hypothesis:

∀m ≤ n . S stepA1/asp(sinit1, it, m) ∼α S stepA2/asp(sinit2, it, m)

where the conditional equivalence ∼α is defined by

X ∼α Y ⇔(∀(it, ot) . (∀n . (it(n) ⇒ α))

⇒ ((it, ot) ∈ Traces(X) ⇔ (it, ot) ∈ Traces(Y )))

Base Case: For n = 0, S step returns the initial state. We must thus show
A1 / asp ∼α A2 / asp. When α is false, only those transitions in P ′

/i are
taken that existed already in P ′

i . The memory automaton has no effect on
P ′

/i, because the transitions which take its outputs Rec into account also
have α as condition, and are never taken. Thus, Ai / asp ∼α P ′

i and because
of P ′

1 ∼ P ′
2, we have A1 / asp ∼α A2 / asp.

Inductive step: We show that if the hypothesis is true for n, it is also true for
n+1, and we also show O stepA1/asp(sinit1, it, n+1) = O stepA2/asp(sinit2, it, n+
1)). We distinguish two cases: either (1) α is true, Ppc emits JP (i.e. we are in
a join point) and Prec has already emitted REC (i.e. we have already passed
a recovery state), such that the aspect is activated, or (2) one of the above
conditions is not met, and the aspect is not activated.

(1) Both automata take advice transitions and emit Oα, we have thus
O stepA1/asp(sinit1, it, n + 1) = O stepA2/asp(sinit2, it, n + 1)). Let r1 and r2

be the last recovery states passed in 1 . . . n − 1. They are passed at some
instant tr < n, the last instant in 1 . . . n − 1 where REC is emitted. In tr,
M1 (resp. M2) enters r1 (resp. r2), and emits recr1 (resp. recr2) in n. Thus,
P ′

/1 (resp. P ′
/2) takes the advice transition leading to r1 (resp. r2). Because

of the induction hypothesis we have r1 ∼α r2.
(2) Only those transitions in P ′

/i are taken that existed already in P ′
i . Because

of P ′
1 ∼ P ′

2 and the induction hypothesis, we have S stepA1/asp(sinit1, it, n +
1) ∼α S stepA2/asp(sinit2, it, n + 1) and also O stepA1/asp(sinit1, it, n + 1) =
O stepA2/asp(sinit2, it, n + 1)).

Because we inductively showed that O stepA1/asp(sinit1, it, n) =
O stepA2/asp(sinit2, it, n)) holds for any n, A1 / asp and A2 / asp have
the same outputs for it, thus (it, ot) is also a trace of A2 / asp. 2

40


