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Scaling-sharp dispersive estimates for the Korteweg-de Vries
group

Raphaél Cote Luis Vega

Abstract

We prove weighted estimates on the linear KdV group, which are scaling sharp.
This kind of estimates are in the spirit of that used to prove small data scattering
for the generalized KdV equations.

The purpose of this short note is to give a simple proof of two dispersive estimates
which are heavily used in the proof of small data scattering for the generalized Korteweg-
de Vries equations [g.

The proof of these estimates can be easily extended to other dispersive equations.

Denote U (t) the linear Korteweg-de Vries group, i.e v = U(t)¢ is the solution to

= e ite3 7 1 _
{utte =0 e TWo=c®s o W00 = 55 [ A1 () ot

where Ai is the Airy function

00 3
Ai(z) = %/0 cos (% + 52) d¢.

Theorem 1. Let ¢, € L?, such that x¢,xp € L. Then
U@l < 20l Ai oot |¢] 2 2]l 2, (1)
U0V (~t)allze < CtHllz2 latbll 2 + [l ool 2)- (2)
Furthermore, the constant 2|| Ai||2. in the first estimate is optimal.

Remark 1. These estimates are often used with ¢ replaced by U(—t)¢ : denoting J(t) =
U(t)xU(—t), they take the form

16117 < CE2Ig] 21T ()l 2 (3)
l6vallzoe < CEHIDN L2l (Ol 2 + 191221l T ()l 2)- (4)

Proof. Due to a scaling argument (and representation in term of the Airy function), we
are reduced to show that

UMWl < Clill 2]zl 2,

and similarly for the second inequality. Hence we consider
UWs)@) = [ Ailz - 1)ow)dy,
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and we recall that the Airy function satisfies | Ai(z)| < C(1 4+ |z|)~Y/* and | Ai(z)| <
C(1+ |z|)"/*. Then

U( //Alm— y) Ai(z — 2)p(z )z:
Ai(x — 2) -
= / Ai(z — y)yo(y) / %Wﬂz)dwy
Heoy (Ai(z—2)8(2))(y)

- [ i - 2200 [ Do)y iz

—Hyrz(Al(z—y)d(y))(2)

_ o / Ai(z — y)yd(y)Hary (Ai(z — 2)0(2))(n)dy,

where H denotes the Hilbert transform (and with the slight abuse of notation % for
vp (1)). As H : L* — L? is isometric and hence continuous (with norm 1), and Ai € L*,
we get

U)o () < 2| Ailz — »)yd(y) ] 2 (ay) I (AL = )0) (¥)l] 2 (ay) (5)
< 2/ At | Zoe llyoll 211l 2 (6)

This is the first inequality. Let us now prove that the constant is sharp.
First consider the minimizers in the following Cauchy-Schwarz inequality :

' [ o) 0| < Iz 1912 ™)

There is equality if yi(y) = AH(¢)(y) for some A € C. Then a Fourier Transform shows
that 3@&(5) = Asgn &P(€), hence (€) = Cexp(—A|z|), or equivalenty, one has equality
in () as soon as

Y(y) = m for some A, C € R. (8)
(Notice that all the functions involved lie in L?)
We now go back to (). Let 29 € R where |Ai| reaches its maximum. Now as
Ai(zg) # 0, let € > 0 such that for all y € [—¢,¢], |Ai(zg — y)| > | Ai(zg)|/2, and
consider the sequence of functions

Vn Ljyj<e
1+ (ny)? Ai(zo — y)

Denote () = 455 As Ai(zg — ¥)én (ny) = v/ (ny),

U@)nf?0) =2 [y ey (Vi) @y =~ [ () () o)y,

One easily sees that ¥, (y) — ﬁ in L? and y, (y) — ﬁ in L2, and hence, in view

Pn(T) =

of (§), as H is homogeneous of degree 0 and L? isometric, we have

2 1 2 1
U6, o) ~ = [ ) Wy ~ Z I el
s Dy () 2 ) .

~ 2|y Ai(zo — y)on(Y) |2 || Al(zo — y)dn(Y) ]l L2-
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As ¢, concentrates at point 0, we deduce

U (1)dn|* (o) ~ 2| Ailzo) *lydn ()|l 2160 W)l 2 as n — oo, (9)

which proves that the sharp constant in the first inequality is 2|| Ai /2.

For the second inequality (estimate of the derivative), we have as for the first in-
equality :

(U(1)pU / Ai(z — y)o(y) AY (m—z)zp(z)z:

- / Al (z — y)yo(y) ( / wd% W

_ /zAi’(:c - 4)9(y) (/ Al Z__Z)yzw(Z)dZ> W

= [ AV = Do) Moy (Al — 2002 )y
4 [ AT = 90 Hey (A — 2)20(:)) ()i

z dydz
z

Denote w,(y) = m -1 € Ay (with the notation of [{]), so that there exists C

not depending on x such that

v, / [HolPw, ' < C / 0wyt

Recall the well-know asymptotic | Ai'(z)| < C(1 + |z|'/*). Then

[ At = otwmiait - i)l

(/rAlx— yoy) Pwnd ) (/rHch— ()P (y )dy)m

1/2
< Cllyé(@)ll 12 ( / | Air yw(yn?wy%y)dy)
< Cllydl 2l 2.

In the same way,

\ [ At~ oty (i - z)zq‘s(z))(y)dy'

1/2
< Cllo|l» ( [ 14t - y)ywy)m%y)dy)
< Cllél 2l o

So that : B
[UML)eU (L)pz | zee < 2C([|@]| L2llzt] 2 + 1Nl L2 2@l L2)-

Up to scaling and replacing 1 by 1, this is the second inequality. O
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Remark 2. This proof (especially (B)) is reminiscent of that in [3] (see also [d])

161170 < lllz2 1 2.

where the constant is sharp and minimizers are Ce M. This has application to the

Schradinger group U(t) (i.e L{/(t)\gb = ¢ité? ngb) We have the following Schrodinger version

ilz|? . ilz|?
of estimate ([) (notice that U(t)zU(—t) = e 2t Loye™ 2 ) :

ilz? ;Lz12 lzl2 g lal? 2
[z = lle™m 9l Zoe < [l |2l 5 Bpe’ 5 9| 2 < L Illzzlled ()2t (=)o 2.

From Theorem 1, we can easily obtain the optimal decay in a scaling sharp Besov
like space. Let ¢ € D(IR) be non-negative with support in | —2, 2[ and such that ¢ equals
1 in a neighbourhood of [—1.5,1.5]. Denote ¢(z) = p(2z) — ¢(x) and ¢j(z) = (x/27).
Finally introduce

Iolne = Y 272(0U(=1)8| -

j=—o0

Corollary 1. We have :
I8l < CE3 ],

Proof. Notice that |z;(z)| < 2771, (x). As ¢ = > U®)Y;U(-t), we have :
[Pl < Z 1U(#)8;U (=)l =
J

< OtV U U (=09l U @)xU (—4)U (21,U (—0)gl1
J

< CE Y83 U0 (000l U ()61}
J

< OV YU @S U(=08]l 522U (0w U (-0)81)
J

< Gt )| w.. -
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