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A classification of mahonian maj-inv statistics

Introduction and main results

1.1. Introduction. Let X be a finite alphabet. Without loss of generality we may assume X = [r] := {1, 2, . . . , r}. Two of the most known and studied statistics on words (and permutations) are probably the inversion number (inv) and the major index (maj). They are defined for words w = x 1 x 2 . . . x n with letters in X by inv(w) = 1≤i<j≤n χ(x i > x j ) and maj(w) = n-1 i=1 i.χ(x i > x i+1 ), where, as usual, " > " is the natural order on X with r > r -1 > • • • > 2 > 1, and χ(A) = 1 if A is true, and χ(A) = 0 otherwise.

The major index, originally called greater index, was introduced by MacMahon [START_REF] Macmahon | The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects[END_REF]. As explained by Foata and Krattenthaler (see [START_REF] Foata | Graphical major indices II[END_REF] for a discussion), the origin of the inversion number is not clear but probably MacMahon [START_REF] Macmahon | The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects[END_REF][START_REF] Macmahon | Combinatory Analysis[END_REF] was the first to consider inversions of words instead of just permutations.

Let c = (c(1), c(2), . . . , c(r)) be a sequence of r non-negative integers and let v be the non-decreasing word v = 1 c(1) 2 c (2) . . . r c(r) . We will denote by R(v) (or by R(c) if there is no ambiguity) the rearrangement class of v, that is, the set of all words that can be obtained by permuting the letters of v. A well-known result of MacMahon states that the major index and the inversion number are equidistributed (i.e. have the same generating function) on each rearrangement class R(c). More precisely, MacMahon showed that the generating function of the statistics maj and inv on each R(c) is given by w∈R(c) q inv(w) = w∈R(c)

q maj(w) = c(1) + c(2) + • • • + c(r) c(1), c(2), • • • , c(r) q (1.1)
where, as usual in q-theory, the q-multinomial coefficient is given by

n 1 + n 2 + • • • + n k n 1 , n 2 , . . . , n k q = [n 1 + n 2 + . . . + n k ] q ! [n 1 ] q ![n 2 ] q ! • • • [n k ] q ! ,
and the q-factorial [n] q ! by [n] q ! := (1 + q)(1 + q + q 2 ) • • • (1 + q + q 2 + • • • + q n-1 ). In honor of MacMahon, a statistic which is equidistributed with inv (or maj) on each R(c) is said to be mahonian.

In 1996, Foata and Zeilberger [START_REF] Foata | Graphical major indices[END_REF] introduced natural generalizations of both "inv" and "maj", parametrized by relations, as follows. Recall that a relation U on X is a subset of the cartesian product X × X. For a, b ∈ X, if we have (a, b) ∈ U, we say that a is in relation U to b, and we express this also by aUb. For each such relation U, then associate the following statistics defined on each word w = x 1 . . . x n by inv ′ U (w) = 1≤i<j≤n χ(x i Ux j ) and maj ′ U (w) = n-1 i=1 i.χ(x i Ux i+1 ).

For instance, where U = " > " is the natural order on X, then maj ′ > = maj and inv ′ > = inv. The statistics maj ′ U and inv ′ U are called graphical major index and graphical inversion number since a relation on X can be represented by a directed graph on X.

MacMahon's result (1.1) motivates Foata and Zeilberger [START_REF] Foata | Graphical major indices[END_REF] to pose the following question:

For which relations U on X the statistics maj ′ U and inv ′ U are equidistributed on each rearrangement class R(c)?

Generalizing MacMahon's result, they have fully characterized such relations. In order to present their result, we first recall the following definition due to Foata and Zeilberger [START_REF] Foata | Graphical major indices[END_REF]. Definition 1.1. A relation U on X is said to be bipartitional if there exists an ordered partition (B 1 , B 2 , . . . , B k ) of X into blocks B l together with a sequence (β 1 , β 2 , . . . , β k ) of 0's and 1's such that xUy if and only either [START_REF] Foata | On the Netto inversion number of a sequence[END_REF] x ∈ B l , y ∈ B l ′ and l < l ′ , or [START_REF] Foata | Graphical major indices[END_REF] x, y ∈ B l and β l = 1.

In this paper, we will use the following axiomatic characterization of bipartitional relations due to Han [START_REF] Han | Ordres bipartitionnaires et statistiques sur les mots, (French) [Bipartition orders and statistics on words] The Foata Festschrift[END_REF]. In this paper, we are interesting with statistics which are obtained by summing a graphical major index and a graphical inversion number. In order to motivate this work, we present here two such statistics. The first one is the Rawlings major index. In [START_REF] Rawlings | The r-major index[END_REF], Rawlings have introduced statistics, denoted k-maj (k ≥ 1), which interpolate the major index and the inversion number and defined for words w =

x 1 • • • x n with letters in X by k-maj(w) = n-1 i=1 i.χ(x i ≥ x i+1 + k) + 1≤i<j≤n χ(x j + k > x i > x j ).
Note that 1-maj = maj while r-maj = inv. Now, if we set

U k = {(x, y) ∈ X 2 / x ≥ y + k} and V k = {(x, y) ∈ X 2 / y + k > x > y}, we have k-maj = maj ′ U k +inv ′ V k .
In [START_REF] Rawlings | The (q, r)-Simon Newcomb problem, Linear and Multilinear Algebra[END_REF], Rawlings proved that for each integer k ≥ 1, k-maj is a mahonian statistic. Since U k ∪V k is the natural order ">" on X, Rawlings 's result can be rewritten maj ′ U k + inv ′ V k and inv ′ U k ∪V k are equidistributed on each rearrangement class. The second statistic is more recent and defined on words with letters in a different alphabet. Let A = {A 1 , A 2 , • • • , A r } be a collection of non-empty, finite and mutually disjoints sets of non-negative integers. Combining two statistics introduced by Steingrimsson [START_REF] Steingrímsson | Statistics on ordered partitions of sets[END_REF], Zeng and the author [START_REF] Kasraoui | EulerMahonian statistics on ordered set partitions (II)[END_REF] have defined a statistic, denoted MAJ, on words

π = B 1 B 2 • • • B k with letters in A by MAJ(π) = 1≤i≤k-1 i.χ(min(B i ) > max(B i+1 )) + 1≤i<j≤k χ(max(B j ) ≥ min(B i ) > min(B j )).
For instance, if π = {3, 9} {2} {1, 4, 8} {7} {5, 6}, then MAJ(π) = (1 + 4) + (2) = 7. Let U A and V A be the relations defined on A by

(B, B ′ ) ∈ U A ⇔ min(B) > max(B ′ ), (B, B ′ ) ∈ V A ⇔ max(B ′ ) ≥ min(B) > min(B ′ ).

Then we have MAJ = maj

′ U A + inv ′ V A . It was proved in [6, Theorem 3.5] that π∈ R(A 1 A 2 •••Ar) q MAJ(π) = [r] q !. (1.2) Since U A ∪ V A is a total order on A, it follows from (1.1) that the generating function of inv ′ U A ∪V A on R(A 1 A 2 • • • A r
) is also given by the right-hand side of the above identity. It is then natural to ask if maj ′ U A + inv ′ V A and inv ′ U A ∪V A are equidistributed on each rearrangement class R(w) for words w with letters in A.

In view of the above two examples, it is natural to ask: For which relations U and V on X the statistics maj ′ U + inv ′ V and inv ′ U ∪V are • equidistributed on each rearrangement class R(c)?

• mahonian? The purpose of this paper is to answer these questions by fully characterizing all such relations U and V on X.

1.2. Main results. Denote by X * the set of all words with letters in X. In order to simplify the readability of the paper, we introduce the following definition. Definition 1.3. A statistic stat on X * is a maj-inv statistic if there exist two relations U and V on X such that stat = maj ′ U + inv ′ V . Clearly, the statistics inv, maj and k-maj are maj-inv statistics on X * , while MAJ is a maj-inv statistic on A * . In this paper, a kind of relations on X have a great interest for us. We call them the κ-extensible relations.

Definition 1.4. A relation U on X is said to be κ-extensible if there exists a relation S on X such that (1) U ⊆ S and (2) for any x, y, z ∈ X, xUy and z Uy =⇒ xSz and z Sx.

If a relation S on X satisfies conditions (1) and ( 2), we say that S is a κ-extension of U on X.

We give here some examples of κ-extensible relations. Example 1.1. (a) Suppose X = {x, y, z} and U = {(x, y)}. Then, S = {(x, y), (x, z)} is a κ-extension of U on X.

(b) The natural order ">" is a κ-extension of the relation

U k = {(x, y) ∈ X 2 / x ≥ y+k} on X for any k > 0. (c) Let A = {A 1 , A 2 , • • • , A r }
be a collection of non-empty and finite subsets of nonnegative integers, and let U A and S A be the relations on A defined by (B,

B ′ ) ∈ U A ⇔ min(B) > max(B ′ ) and (B, B ′ ) ∈ S A ⇔ min(B) > min(B ′ ). Then one can check that S A is a κ-extension of U A on A.
(d) Every total order is a κ-extension of itself.

In fact the notion of κ-extensible relation can be viewed, by means of the following result, as a generalization of the notion of bipartitional relation. We can now present the key result of the paper, which is a generalization of Theorem A. Theorem 1.6. Let U and S be two relations on X. The following conditions are equivalent.

(i) The statistics maj ′ U + inv ′ S\U and inv ′ S are equidistributed on each rearrangement class R(c).

(ii) S is a κ-extension of U.

Let U and V be two non-disjoint relations on X and let (x, y) ∈ U ∩ V . By definition, (maj

′ U + inv ′ V )(xy) = 1 + 1 = 2 > 1 ≥ inv ′ U ∪V (x 1 x 2 ) for any x 1 , x 2 ∈ X. It follows that if U ∩ V = ∅, the statistics maj ′ U + inv ′
V and inv ′ U ∪V are not equidistributed on R(xy). We then obtain immediately from Theorem 1.6 the following result.

Theorem 1.7. Let U and V be two relations on X. The following conditions are equivalent.

(i) The statistics maj ′ U + inv ′ V and inv ′ U ∪V are equidistributed on each rearrangement class R(c).

(ii) U ∩ V = ∅ and U ∪ V is a κ-extension of U.
Next, by noting that for a relation S on X, the graphical inversion number inv ′ S is mahonian if and only if S is a total order on X, we have obtained the following characterization of mahonian maj-inv statistics.

Theorem 1.8 (Classification of mahonian maj-inv statistics I). The mahonian maj-inv statistics on X * are exactly those which can be written maj ′ U + inv ′ S\U , where U and S satisfy the following conditions:

• S is a total order on X, • S is a κ-extension of U. Moreover, two mahonian maj-inv statistics maj ′ U + inv ′ S\U and maj ′ V + inv ′ T \V are equal on X * if and only if S = T and U = V . Example 1.2. (a) It follows from Example 1.1(b)
and the above theorem that the statistics k-maj, k ≥ 1, are mahonian, which was first proved by Rawlings [START_REF] Rawlings | The (q, r)-Simon Newcomb problem, Linear and Multilinear Algebra[END_REF].

(b) Let A = {A 1 , A 2 , • • • , A r }
be a collection of nonempty and finite subsets of nonnegative integers, and let U A and S A be the relations on A defined as in Example 1.1(c). It then follows from the above theorem and Example 1.1(c) that MAJ is mahonian on A * , which is a generalization of (1.2).

In fact, we have obtained more precise results on mahonian maj-inv statistics on X * . Indeed, given a total order S on X, we have characterized all κ-extensible relations U such that S is a κ-extension of U(see Proposition 6.3). As consequence, we have obtained the following result. Theorem 1.9 (Classification of mahonian maj-inv statistics II). The mahonian maj-inv statistics on X * are exactly the statistics stat f, g defined for words w

= x 1 • • • x n ∈ X * by stat f, g (w) = n-1 i=1 i.χ( f (x i ) ≥ g(f (x i+1 )) ) + 1≤i<j≤n χ( g(f (x j )) > f (x i ) > f (x j ) ),
with f a permutation of X and g : X → X ∪ {∞} a map satisfying g(y) > y for each y ∈ X.

Taking f = Id, where Id is the identity permutation, we obtain the following.

Corollary 1.10. The statistics stat g defined for w

= x 1 • • • x n ∈ X * by stat g (w) = n-1 i=1 i.χ( x i ≥ g(x i+1 ) ) + 1≤i<j≤n χ( g(x j ) > x i > x j ),
with g : X → X ∪ {∞} satisfying g(y) > y for each y ∈ X, are mahonian.

For instance, the Rawlings major index k-maj is obtained by taking in the previous result g : X → X ∪ {∞} defined by g(

x) = x + k if x + k ≤ r and g(x) = ∞ otherwise.
It is then easy to enumerate the mahonian maj-inv statistics on X * . Since there are exactly |X|! maps g : X → X ∪ {∞} satisfying g(y) > y, we have the following result.

Corollary 1.11. For each total order S on X, there are exactly |X|! mahonian maj-inv statistics on X * which can be written

maj ′ U + inv ′ S\U .
The paper is organized as follows. In section 2 and section 3, we prove Theorem 1.6. In section 4, we prove Theorem 1.8. In section 5, we characterize all κ-extensible relations on X and prove Theorem 1.9 in section 6. Finally, in section 7, we apply the results of this paper to give new original mahonian statistics on permutations and words.

Remark 1.12. As pointed by an anonymous referee, some proofs ( for instance the proof of the "only if" part of Theorem 1.6) presented in the paper have "simpler proofs" by using a computer algebra system (see e.g. [START_REF] Han | Une démonstration "vérificative" d'un résultat de Foata-Zeilberger sur les relations bipartitionnaires[END_REF]).

Proof of the 'if' part of Theorem 1.6

The first direct combinatorial proof of MacMahon's result on the equidistribution of the statistics maj and inv, that is a bijection which sends each word to another one in such a way that the major index of the image equals the number of inversions of the original, is due to Foata [START_REF] Foata | On the Netto inversion number of a sequence[END_REF].

Let U be a κ-extensible relation on X. In this section, we adapt Foata's map, also called second fundamental transformation (see e.g. [START_REF] Lothaire | Combinatorics on words. Reading[END_REF]), to construct a bijection Ψ U of each rearrangement class onto itself such that for each κ-extension S of U, we have

inv ′ S (Ψ U (w)) = (maj ′ U + inv ′ S\U )(w). (2.1)
2.1. Notations. The length of a word w ∈ X * , denoted by λ(w), is its number of letters. By convention, there is an unique word of length 0, the empty word ǫ. If Y and Z are subsets of X * , we designate by Y Z the set of words w = w ′ w ′′ with w ′ ∈ Y and w ′′ ∈ Z. Each x ∈ X determines a partition of X in two subsets L x and R x as follows: the set R x is formed with all y ∈ X such that yUx , while the set L x is formed with all y ∈ X such that y Ux.

2.2.

The map Ψ U . Let w be a word in X * and x ∈ X. If w = ǫ, we set γ U x (w) = ǫ. Otherwise two cases are to be considered:

(i) the last letter of w is in R x , (ii) the last letter of w is in L x . Let (w 1 x 1 , w 2 x 2 , . . . , w h x h ) be the factorization of w having the following properties:

• In case (i) x 1 , x 2 , . . . , x h are in R x and w 1 , w 2 , . . . , w h are words in L * x .

• In case (ii) x 1 , x 2 , . . . , x h are in L x and w 1 , w 2 , . . . , w h are words in R * x . Call x-factorization the above factorization. Clearly, each word has an unique x-factorization.

In both cases we have w = w 1 x 1 w 2 x 2 . . . w s x s , then define γ U

x (w) = x 1 w 1 x 2 w 2 . . . x s w s . The map Ψ U is then defined by induction on the length of words in the following way:

Ψ U (ǫ) = ǫ , (2.2) 
Ψ U (wx) = γ U x (Ψ U (w))
x for all x ∈ X and w ∈ X * .

(2.3)

Note that Foata's map correspond to the case U := " > " is the natural order.

Theorem 2.1. The map Ψ U is a bijection of X * onto itself such that for each w ∈ X * , we have Ψ U (w) ∈ R(w), both w and Ψ U (w) end with the same letter and for each κ-extension S of U, we have

inv ′ S (Ψ U (w)) = (maj ′ U + inv ′ S\U )(w). (2.4)
The proof of the above theorem is very similar to the proof in [START_REF] Foata | On the Netto inversion number of a sequence[END_REF][START_REF] Lothaire | Combinatorics on words. Reading[END_REF]. It is based on the following lemma. Let S be a κ-extension of U. For each w = x 1 . . . x n ∈ X * , denote by l x (w) (resp. r x (w)) the number of subscripts j for which x j ∈ L x (resp. x j ∈ R x ) and t x (w) designate the number of subscripts j such that x j Ux and x j Sx. Note that we always have l x (w) + r x (w) = λ(w) and r x (w) + t x (w) is the number of subscripts j for which x j Sx. Lemma 2.2. For each w ∈ X * and x ∈ X, the following identities hold:

inv ′ S (wx) = inv ′ S (w) + r x (w) + t x (w), (2.5) inv ′ S (γ U x (w)) = inv ′ S (w) -r x (w) if w ∈ X * L x , (2.6) inv ′ S (γ U x (w)) = inv ′ S (w) + l x (w) if w ∈ X * R x , (2.7) (maj ′ U + inv ′ S\U )(wx) = (maj ′ U + inv ′ S\U )(w) + t x (w) if w ∈ X * L x , (2.8) 
(maj ′ U + inv ′ S\U )(wx) = (maj ′ U + inv ′ S\U )(w) + t x (w) + λ(w) if w ∈ X * R x .
(2.9) Proof. By definition, we have the following identities:

inv ′ U (wx) = inv ′ U (w) + r x (w) inv ′ S\U (wx) = inv ′ S\U (w) + t x (w) maj ′ U (wx) = maj ′ U (w) if w ∈ X * L x , maj ′ U (wx) = maj ′ U (w) + λ(w) if w ∈ X * R
x , from which we derive immediately (2.8) and (2.9). To obtain (2.5), it suffices to note that inv

′ S = inv ′ U + inv ′ S\U (since U ∩ (S \ U) = ∅ and U ⊆ S). It remains to prove (2.

6) and (2.7).

Suppose w ∈ X * L x and let (w 1 x 1 , w 2 x 2 , . . . , w s x s ) be the x-factorization of w. First, assume that inv

′ S (x i w i ) = inv ′ S (w i x i ) -λ(w i ) for 1 ≤ i ≤ s. (2.10) Since γ x (w) = x 1 w 1 x 2 w 2 • • • x h w h , it is not hard to see that inv ′ S (γ x (w)) is equal to inv ′ S (wx) decreased by λ(w 1 ) + λ(w 2 ) + • • • + λ(w s ). Since s = l x (w), we get inv ′ S (γ x (w)) = inv ′ S (wx) -(λ(w) -s) = inv ′ S (wx) -r x (w)
, which is exactly (2.6). We now prove (2.10)

. Let τ = τ 1 τ 2 • • • τ m ∈ R *
x and y ∈ L x . By definition, we have τ i Ux for each i and y Ux. Since S is a κ-extension of U, it follows that for each i, τ i Sy and y Sτ i . We then have inv ′ S (yτ ) = inv ′ S (τ ) and inv ′ S (τ y) = inv ′ S (τ )+m = inv ′ S (yτ ) + λ(τ ). Equation (2.10) is obtained by noting that in the x-factorization of w ∈ X * L x , the words w 1 , . . . , w h are in R *

x and the letters x 1 , . . . , x h are in L x . Equation (2.7) has an analogous proof. Suppose w ∈ X * R x and let (w 1 x 1 , w 2 x 2 , . . . , w h x h ) be the x-factorization of w. First, assume that

inv ′ S (x i w i ) = inv ′ S (w i x i ) + λ(w i ) for 1 ≤ i ≤ h. (2.11) Since γ x (w) = x 1 w 1 x 2 w 2 • • • x h w h , it is not hard to see that inv ′ S (γ x (w)) is equal to inv ′ S (wx) increased by λ(w 1 ) + λ(w 2 ) + • • • + λ(w s ). Since h = r x (w), we get inv ′ S (γ U x (w)) = inv ′ S (wx) -(λ(w) -h) = inv ′ S (wx) + l x (w), which is exactly (2.7). It then remains to prove (2.11). Let τ = τ 1 τ 2 • • • τ m ∈ L *
x and y ∈ R x . By definition, we have yUx and τ i Ux for each i. Since S is a κ-extension of U, it follows that for each i, ySτ i . It is then easy to obtain inv ′ S (τ y) = inv ′ S (τ ) and inv ′ S (yτ

) = inv ′ S (τ ) + m = inv ′ S (τ y) + m. Equation (2.11
) is obtained by noting that in the x-factorization of w ∈ X * R x , the words w 1 , . . . , w h are in L *

x and the letters x 1 , . . . , x h are in R x .

Proof of Theorem 2.1: By construction, both w and Ψ U (w) end with the same letter. Let X n be the set of words in X * with length n. It is sufficient to verify by induction on n that for all n ≥ 0, the restriction Ψ U n of Ψ U to X n is a permutation of X n satisfying: for any w ∈ X n ,

Ψ U n (w) ∈ R(w) and inv ′ S (Ψ U n (w)) = (maj ′ U + inv ′ S\U )(w).
(2.12)

Since the induction is based on Lemma 2.2 and is very similar to the proof concerning the second fundamental transformation, we refer the reader to [START_REF] Foata | On the Netto inversion number of a sequence[END_REF][START_REF] Lothaire | Combinatorics on words. Reading[END_REF].

Proof of the 'only if' part of Theorem 1.6

Let U and S be two relations on X such that the statistics maj ′ U + inv ′ S\U and inv S are equidistributed on each rearrangement class R(w), w ∈ X * . We prove here that this imply that S is a κ-extension of U.

3.1.

The relation U is contained in S. By definition of the graphical statistics, we have that for all word w of length 2, maj ′ U (w) = inv ′ U (w). Moreover, for each pair (A, B) of disjoints relations, we have inv

′ A + inv ′ B = inv ′ A∪B . It then follows that for all w ∈ X * , λ(w) = 2, (maj ′ U + inv ′ S\U )(w) = (inv ′ U + inv ′ S\U )(w) = inv ′ S∪U (w) = (inv ′ S + inv ′ U \S )(w).
The equidistribution of maj ′ U + inv ′ S\U and inv ′ S on each R(w), λ(w) = 2, then implies that inv ′ U \S (w) = 0 for all w ∈ X * , λ(w) = 2, and thus, U \ S = ∅, i.e., U ⊆ S.

3.2.

For any x, y, z ∈ X, xUy and z Uy imply xSz and z Sx. To simplify the readability of the rest of the proof, we set V := S \ U, i.e. U ∩ V = ∅ and U ∪ V = S. In particular, for any 

x 1 , x 2 ∈ X, χ(x 1 Sx 2 ) = χ(x 1 Ux 2 ) + χ(x 1 Vx 2 ) and χ(x 1 Ux 2 ).χ(x 1 Vx 2 ) = 0. ( 3 
(xxz) = inv ′ S (xzx) = inv ′ S (zxx) = 1 < 2 = (maj ′ U + inv ′ S\U )(zxx)
, which contradict the equidistribution of our two statistics on R(x 2 z). Thus we have xSz and z Sx as desired.

3.2.2.

The case x = y. Two cases are to be considered.

Suppose y = z. We then have xUz and z Uz. Since U ⊆ S, we have xSz. It then suffices to show that z Sx. Suppose zSx. We then have

(maj ′ U + inv ′ S\U )(zxz) = χ(zUx) + 2χ(xUz) + χ(zVx) + χ(zVz) + χ(xVz) = 2 + χ(zUx) + χ(zVx) + χ(zVz) = 2 + χ(zSx) + χ(zVz) = 3 + χ(zVz),
and thus z Sz. Then, it is not hard to see that this imply that inv ′ S ≤ 2 on R(xz 2 ) which, considering (maj ′ U + inv ′ S\U )(zxz) = 3, contradict the equidistribution of our statistics on R(xz 2 ). It follows that z Sx as desired. It then remains to consider the last case.

Suppose y = z. Then x, y, z are three distinct elements satisfying xUy and z Uy. The next table gives the distribution of maj ′ U + inv ′ S\U and inv ′ S on R(xyz) after some simplifications obtained by using (3.1). 

w (maj ′ U + inv ′ S\U )(w) inv ′ S (w) xyz 1 + χ(ySz) + χ(yUz) + χ(xVz) 1 + χ(xSz) + χ(ySz) xzy χ(xSz) + χ(zVy) 1 + χ(xSz) + χ(zVy) yxz χ(ySx) + χ(xSz) + χ(xUz) + χ(yVz) χ(ySx) + χ(ySz) + χ(xSz) yzx χ(ySz) + χ(zSx) + χ(zUx) + χ(yVx) χ(ySz) + χ(ySx) + χ(zSx) zxy 2 + χ(zSx) + χ(zVy) 1 + χ(zSx) + χ(zVy) zyx χ(ySx) + χ(yUx) + χ(zVy) + χ(zVx) χ(zVy) + χ(zSx) + χ(ySx) ( 
′ S ≤ 1 on R(xyz), which is impossible since (maj ′ U + inv ′ S\U )(zxy) = 2.
(d) Finally, we have xSz and z Sx, and thus S is a κ-extension of U. This conclude the proof of the 'only if' part of Theorem 1.6.

mahonian maj-inv statistics

This section is dedicated to the proof of Theorem 1.8. We begin with two lemmas. Lemma 4.1. Let S be a relation on X. Then inv ′ S is mahonian on X * if and only if S is a total order. Lemma 4.2. Let U and V be two relations on X. Suppose that the statistic maj ′ U + inv ′ V is mahonian on X * . Then, U ∩ V = ∅, S := U ∪ V is a total order and a κ-extension of U.

It is now easy to prove the first part of Theorem 1.8. Indeed, suppose that S is a total order on X and a κ-extension of U. Then, it follows from Theorem 1.6 that maj ′ U + inv ′ S\U is equidistributed with inv ′ S which is mahonian by Lemma 4.1, and thus maj ′ U + inv ′ S\U is mahonian as desired. Reversely, suppose maj ′ U + inv ′ V is mahonian on X * . We then have by Lemma 4.2 V = S \ U where S := U ∪ V is a total order on X and a κ-extension of U.

We thus have proved that the mahonian maj-inv statistics on X * are exactly those which can be written maj ′ U + inv ′ S\U , with S a total order on X and a κ-extension of U.

We now prove the second part of Theorem 1.8. Let S and T be two total orders on X and suppose S (resp. T ) is a κ-extension of U (resp. V ). It suffices to show that if maj ′ U + inv ′ S\U and maj ′ V + inv ′ T \V are equal on X * then S = T and U = V . First suppose that S = T . Then we can assume without loss of generality that there exist x, y ∈ X such that xSy and x Ty. Since U ⊆ S and V ⊆ T , we then have maj ′ U + inv ′ S\U (xy) = 1 = 0 = maj ′ V + inv ′ T \V (xy) and thus the two statistics are different which contradict the hypothesis, thus S = T .

Suppose now U = V . Then we can assume without loss of generality that there exist x, y ∈ X such that xUy and x Vy. Since S = T is a total order and an extension of U and V we also have xSy, (x, y) ∈ S \ V and y Sy. It follows that maj

′ U + inv ′ S\U (xy 2 ) = 1 = 2 = maj ′ V + inv ′ T \V (xy 2 ), which is impossible thus U = V , as desired.
In order to complete the proof of Theorem 1.8, it then remains to prove the two above lemmas.

Proof of Lemma 4.1. It suffices to see that inv ′ S is mahonian imply that S is a total order since the reciprocal is an easy consequence of (1.1). Suppose that inv ′ S is mahonian, i.e. for each c, w∈R(c)

q inv ′ S (w) = c(1) + c(2) + • • • + c(r) c(1), c(2), • • • , c(r) q . ( 4.1) 
Suppose there exist x, y ∈ X, x = y, such that x Sy and y Sx. We then have inv ′ S (xy) = inv ′ S (yx) = 0, which contradict (4.1) (take w = xy). Thus for each x, y ∈ X, we have xSy or ySx, i.e., S is total.

Suppose there exist x ∈ X such that xSx, then inv ′ S (xx) = 1, which contradict (4.1) (take w = x 2 ). Thus x Sx and S is irreflexive.

Suppose there exist x, y ∈ X, x = y, such that xSy and ySx. We then have inv ′ S (xy) = inv ′ S (yx) = 1, which contradict (4.1) (take w = xy). Thus if xSy we have y Sx, i.e. S is antisymmetric.

Let x, y, z ∈ X satisfying xSy and ySz. Suppose x Sz. Since S is irreflexive, we have x = y and y = z. Since S is antisymmetric, we have x = z (otherwise we have xSy and ySx). Then x, y, z are distinct. We also have y Sx and z Sy (S is antisymmetric) and zSx (S is total). After simple computations (we left the details to the reader), we then get w∈R(xyz)

q inv ′ S (w) = 3q + 3q 2 = 3 1, 1, 1 q = 1 + 2q + 2q 2 + q 3 ,
which contradict (4.1) (take w = xyz). Thus xSz and S is transitive.

Proof of Lemma 4.2. Suppose U ∩ V = ∅ and let (x, y) ∈ U ∩ V . We then have maj ′ U (xy) + inv ′ V (xy) = 1 + 1 = 2, which contradict (4.1) (take w = xy if x = y and w = xx if x = y) and thus, U and V are disjoint.

The proof of "S is a total order on X" is essentially the same than the proof of Lemma 4.1, so we left the details to the reader.

It then remains to show that S = U ∪ V is a κ-extension of U. Since S is total, it follows from Lemma 4.1 that inv ′ S are mahonian on X * . Then by applying the part "(i) imply (ii)" of Theorem 1.6 to maj ′ U + inv ′ V and inv ′ S , we obtain that S is a κ-extension of U.

κ-extensible relations

Theorem 1.6 and Theorem 1.8 motivate to pose the following question: When does a relation have a κ-extension? Suppose X = {x, y, z} and consider the relation U = {(x, y), (y, z)} on X. Then, one can check by considering all the relations on X containing U (there are 2 3 2 -2 = 128 such relations) that U has no κ-extension. In this part, we give an axiomatic characterization of κ-extensible relations. (5.1) Proposition 5.2 (Characterization of κ-extensible relations). Let U be a relation on X.

The following conditions are equivalent.

(i) U is κ-extensible. (ii) cl κ (U) is a κ-extension of U. (iii) U is transitive and ∄ x, y, z, t ∈ X such that xUy z Uy (5.2) x Ut zUt.
For instance, if we consider the relation = {(x, y), (y, z)} on X = {x, y, z} given above, we have xUy, y Uy, x Uz and yUz and thus, we recover that U has no κ-extension. One can also check that the relation "| " ("divide") (on X = [r]) defined by x | y if and only if "x divide y" (i.e. y

x ∈ Z) has no κ-extension. Indeed, the elements 3,9,2,4 satisfy 3 | 9, 2 ∤ 9, 3 ∤ 4 and 2 | 4.

Proof. Clearly (ii) =⇒ (i).

(i) =⇒ (iii): Suppose U has a κ-extension S. Then (a) U is transitive: Indeed, let x, y, z ∈ X and suppose xUy and yUz. We want to show that xUz. Suppose x Uz, then since S is a κ-extension of U and yUz, it follows that ySx and x Sy. We thus have xUy and x Sy, which is impossible since U ⊆ S. Thus xUz. (b) ∄ x, y, z, t ∈ X satisfying xUy, z Uy, zUt and x Ut: Indeed, suppose the contrary.

Then, xUy and z Uy imply that xSz, while zUt and x Ut imply that x Sz. We thus have xSy and x Sy, which is impossible. (iii) =⇒ (ii): Suppose U satisfy (iii). We want to show that H := cl κ (U) is a κ-extension of U, that is for any x, y, z satisfying xUy and z Uy, we have xHz and z Hx. Let x, y, z satisfying xUy and z Uy. First, by definition of H, we have xHz. It then remains to show that z Hx. Suppose the contrary, i.e. zHx. We distinct two cases:

(a) zUx: since U is transitive and xUy, we have zUy, which contradicts z Uy.

(b) z Ux and zHx: by definition of H, there exists t such that zUt and x Ut. We thus four elements x, y, z, t satisfying xUy, z Uy, x Ut and zUt, which contradicts (iii).

The following proposition gives some properties of the κ-closure. Let V be a bipartitional relation on X and (B 1 , . . . , B k ), (β 1 , . . . , β k ) be the bipartition associated to V (see Definition 1.1). Suppose the block B l consists of the integer i 1 , i 2 , . . . , i p . It will be convenient to write c(B l ) for the sequence c(i 1 ), c(i 2 ), . . . , c(i p ) and m(B l ) = m l for the sum c(i 1 ) + c(i 2 ) + . . . + c(i p ). In particular, m l c(B l ) will denote the multinomial coefficient c(i 1 )+c(i 2 )+...+c(ip) c(i 1 ),c(i 2 ),...,c(ip) . Proposition 5.4. Let U be a κ-extensible relation. It follows that H := cl κ (U) is a bipartitional relation. Let (B 1 , . . . , B k ), (β 1 , . . . , β k ) be the bipartition associated to H. Then, w∈R(c) 6. Proof of Theorem 1.9

q (maj ′ U + inv ′ H\U )(w) = c(1) + c(2) + • • • + c(r) m 1 , m 2 , • • • , m k q k l=1 m l c(B l ) q β l( m l c(B l ) ) . ( 5 
Theorem 1.8 lead to the following question: Given a total order S on X, which are the relations U on X such that S is a κ-extension of U? Proposition 6.1. Let U be a relation on X. The following conditions are equivalent.

(i) The natural order ">" is a κ-extension of U.

(ii) There exists a map g : X → X ∪ {∞} satisfying g(y) > y for each y ∈ X such that xUy ⇔ x ≥ g(y).

Moreover, if U satisfy the condition (i), the map g is unique and defined by g(y) = min({x : xUy}), if ∃x such that xUy; ∞, otherwise.

Proof. (i) =⇒ (ii): Suppose ">" is a κ-extension of U and let y ∈ X. Then, define g(y) ∈ X ∪ {∞} by

• g(y) = min({x; xUy}) if ∃x ∈ X satisfying xUy, • g(y) = ∞ otherwise.
It is clear that g(y) > y for each y ∈ X because U ⊆ " > ". Let x, y ∈ X. By definition of g(y), we have xUy =⇒ x ≥ g(y). Now, suppose x ≥ g(y). Since x ∈ X, it follows that g(y) < ∞ and thus, there exists z ∈ X such that zUy. We can take z = g(y). Suppose x Uy. Since zUy and x Uy and " > " is a κ-extension of U, we then have z = g(y) > x which contradicts the fact that x ≥ g(y). It then follows that xUy. We thus have proved that x ≥ g(y) =⇒ xUy.

(ii) =⇒ (i): Let x, y, z ∈ X satisfying xUy and z Uy. It follows from (ii) that x ≥ g(y) and z < g(y), and thus x > z. We thus have proved that " > " is a κ-extension of U.

The proof of the following result is left to the reader. Lemma 6.2. The κ-extensibility on X is transposable by order isomorphism.

In other words, if S and T are two total orders on X and h is the unique order isomorphism h : (X, S) → (X, T ), i.e h is a permutation of X and xSy ⇔ h(x)T h(y). Then S is a κ-extension of a relation U on X if and only if the total order T is a κ-extension of the relation V := "h(U)" defined by xVy ⇔ h -1 (x)Uh -1 (y).

Combining the above Lemma and Proposition 6.1, we get immediately the following result. Proposition 6.3. Let S be a total order on X and U be a relation on X. We denote by f be the (unique) order isomorphism from (X, " > ") to (X, S). The following conditions are equivalent.

(i) S is a κ-extension of U. (ii) There exist an unique map g : X → X ∪ {∞} satisfying g(y) > y for each y ∈ X such that

xUy ⇔ f (x) ≥ g(f (y)).
Clearly, Theorem 1.9 is an immediate consequence of Theorem 1.8 and Proposition 6.3.

Applications: new mahonian statistics

In this section, we give some examples of mahonian maj-inv statistics on X * which can be derived from the results obtained in this paper. Such statistics are entirely characterized in Theorem 1.8 and Theorem 1.9.

Let g

k , k ∈ [1, ∞[, be the maps X → X ∪ {∞} defined for x ∈ X by g k (x) = ⌊kx + 1⌋.χ(kx < r) + ∞.χ(kx ≥ r) .
Clearly, for each x ∈ X, we have g k (x) > x. By applying Corollary 1.10 (or Theorem 1.9 with f = Id), we obtain immediately the following result.

Proposition 7.1. The statistics stat g k , k ∈ [1, ∞[, defined for w = x 1 x 2 . . . x n ∈ X * by stat g k (w) = n-1 i=1 i.χ( x i x i+1 > k) + 1≤i<j≤n χ(k ≥ x i x j > 1)
are mahonian on X * .

Note that stat g 1 = inv and stat gr = maj. Now for each B ⊆ X, let H B : X → X ∪ {∞} be the map defined for x ∈ X by H B (x) = (x+1).χ(x ∈ B, x = r)+∞.χ(x / ∈ B or x = r). Since H B (x) > x for each x ∈ X, we obtain by applying Corollary 1.10 the following result. Then the reader can check that S ′ A,B and S A,B are two κ-extensions of U A,B . Suppose A = {a 1 , a 2 , . . . , a k } > . It is then easy to see that S A,B is a bipartitional relation and its associated bipartition is the pair composed by the partition ({a 1 }, {a 2 }, . . . , {a k }, A c ), and the null vector 0 = (0, 0, . . . , 0, 0).

Set In particular, if S r is the symmetric group of order r, then σ∈ Sr

q stat E,O (σ) = r + 1 2 ! × [r] q ! [( r+1 2 )] q ! .

Definition 5 . 1 .

 51 The κ-closure of a relation U on a set X is the relation denoted by cl κ (U) and defined by cl κ (U) := U ∪ {(x, y)/ ∃ z ∈ X such that xUz and y Uz}.

Proposition 7 . 2 .

 72 The statistics stat H B , B ⊆ X, defined for w = x 1 x 2 . . . x n ∈ X * bystat H B (w) = n-1 i=1 i.χ(x i > x i+1 , x i+1 ∈ B) + 1≤i<j≤n χ(x i > x j , x j / ∈ B)are mahonian on X * .For instance, if B = {even numbers ≤ r}, then the statistic stat H B defined for words w = x 1 x 2 . . .x n ∈ X * by stat H B (w) = n-1 i=1 i.χ(x i > x i+1 , x i+1 is even) + 1≤i<j≤n χ(x i > x j , x j is odd) is mahonian on X * .More generally, for A, B ⊆ X, Let U A,B be the relation on X defined by (x, y) ∈ U A,B ⇐⇒ x ∈ A , y ∈ B and x > y .Suppose (x, y), (y, z) ∈ U A,B . By definition of U A,B , we have x, y ∈ A, y, z ∈ B and x > y and y > z. In particular, x ∈ A, z ∈ B and x > z, i.e. (x, z) ∈ U A,B . It follows that U A,B is transitive. Now suppose there exist x, y, z, t ∈ X such that (x, y), (z, t) ∈ U A,B and (x, t), (z, y) / ∈ U A,B . By definition of U A,B , we have x, z ∈ A, y, t ∈ B and x > y, z ≤ y, x ≤ t, z > t. In particular, x ≤ t and x > t, which is impossible. It then follows from Proposition 5.2 that U A,B is a κ-extensible relation on X. Let S A,B and S ′ A,B be the relation defined on X by S A,B = {(x, y) ∈ X 2 | x ∈ A, y / ∈ A} ∪ {(x, y) ∈ A 2 | x > y} S ′ A,B = S A,B ∪ {(x, y) ∈ (A c ) 2 | x > y}.

1 2 1 ) 2 + 1

 1121 stat A,B := maj ′ U A,B + inv ′ S A,B \U A,B and stat ′ A,B := maj ′ U A,B + inv ′ S ′ A,B \U A,B . By definition, the statistics stat A,B and stat ′ A,B are defined on words w = x 1 . .. x n ∈ X * by stat A,B (w) = n-1 i=1 i.χ(x i > x i+1 , x i ∈ A, x i+1 ∈ B) + 1≤i<j≤n χ(x i > x j , x i ∈ A, x j ∈ A \ B) + 1≤i<j≤n χ(x i ≤ x j , x i ∈ A, x j ∈ B \ A) + 1≤i<j≤n χ(x i ∈ A, x j / ∈ A ∪ B), stat ′ A,B (w) = stat A,B (w) + 1≤i<j≤n χ(x i > x j , x i and x j / ∈ A ).Applying Theorem 1.8 and Proposition 5.4, we obtain the following result.Proposition 7.3. The statistic stat ′ A,B is mahonian on X * and for each c, w∈R(c)q stat A,B (w) = m(A c ) c(A c ) c(1) + c(2) + • • • + c(r) c(a 1 ), c(a 2 ), . . . , c(a k ), m(A c ) q .For instance, if E ={even integers ≤ r} and O ={odd integers ≤ r}, then the statistics stat E,O and stat ′ E,O are defined for w = x 1 . . . x n ∈ X * by stat E,O (w) = n-1 i=1 i.χ(x i > x i+1 , x i even, x i+1 odd) + 1≤i<j≤n χ(x i > x j , x i and x j even )+ 1≤i<j≤n χ(x i ≤ x j , x i even, x j odd ), stat ′ E,O (w) = n-1 i=1 i.χ(x i > x i+1 , x i even, x i+1 odd) + 1≤i<j≤n χ(x i ≤ x j , x i even, x j odd ) + 1≤i<j≤nχ(x i > x j , x i and x j have the same parity ).It then follows from Proposition 7.3 that the statistic stat ′ E,O is mahonian and the generating function of stat E,O on each R(c) is given by w∈R(c) q stat E,O (w) = c(1) + c(3) + . . . + c(2 r-+ c(2) + • • • + c(r) c(2), c(4), . . . , c(2 r 2 ), c(1) + c(3) + . . . + c(2 r-1 ) q .

  Proposition 1.2. A relation U on X is bipartitional if and only if (1) it is transitive, i.e. xUy and yUz imply xUz, and (2) for each x, y, z ∈ X, xUy and z Uy imply xUz. Then Foata and Zeilberger [2, Theorem 2] proved the following. Theorem A. Let U be a relation on X. The statistics maj ′ U and inv ′ U are equidistributed on each rearrangement class R(c) if and only if U is bipartitional.

Proposition 1.5. A relation U on X is bipartitional if and only if it is a κ-extension of itself. Proof. Using Proposition 1.2, it suffices to see that a relation U is transitive if and only if for any

  x, y, z ∈ X, xUy and z Uy imply z Ux. Suppose U is transitive and let x, y, z satisfying xUy and z Uy. Suppose zUx, then since xUy, we have by transitivity zUy which contradict z Uy. Thus z Ux. Reversely, suppose that xUy and z Uy imply z Ux for each x, y, z. Let x 1 , x 2 , x 3 verifying x 1 Ux 2 and x 2 Ux 3 . Suppose x 1 Ux 3 . Since x 2 Ux 3 , it then follows that x 1 Ux 2 which is impossible. Thus x 1 Ux 3 and U is transitive.

  .1) Let x, y, z ∈ X verifying xUy and z Uy. First, note that x and z are distinct, otherwise we have xUy and x Uy. Thus x = z. 3.2.1. The case x = y. We then have xUx and z Ux and thus ≤ 3 for each word w of length 3, it follows that χ(zVx) = 0, i.e. z Vx. But z Ux and thus z Sx. Now, suppose x Sz. It follows that inv ′ S

	(maj ′ U + inv ′ S\U )(zxx) = χ(zUx) + 2χ(xUx) + 2χ(zVx) + χ(xVx) = 2 + 2χ(zVx). Since inv ′ S (w)

  a) Suppose xSz and zSx. We then have (maj ′ Sz and zSx. By a similar reasoning than in (a), we have z Vy and thus z Sy, which lead to the following table. Sz and z Sx. We then get the following table.

	w xyz 1 + χ(ySz) + χ(yUz) + χ(xVz) (maj ′ U + inv ′ S\U )(w) xzy 1 yxz 1 + χ(ySx) + χ(xUz) + χ(yVz) yzx 1 + χ(ySz) + χ(zUx) + χ(yVx) zxy 3 zyx χ(ySx) + χ(yUx) + χ(zVx) which imply that y Sx (otherwise, inv ′ S ≥ 2 on R(xyz) and (maj ′ inv ′ S (w) 2 + χ(ySz) 2 1 + χ(ySx) + χ(ySz) 1 + χ(ySx) + χ(ySz) 2 1 + χ(ySx) U + inv ′ S\U )(xzy) = 1, which is impossible) and thus, by using y Sx, we get w (maj ′ U + inv ′ S\U )(w) inv ′ S (w) xyz 1 + χ(ySz) + χ(yUz) + χ(xVz) 2 + χ(ySz) xzy 1 2 yxz 1 + χ(xUz) + χ(yVz) 1 + χ(ySz) yzx 1 + χ(ySz) + χ(zUx) + χ(yVx) 1 + χ(ySz) zxy 3 2 zyx χ(zVx) 1 Since (maj ′ U + inv ′ w (maj ′ U + inv ′ S\U )(w) inv ′ S (w) xyz 1 + χ(ySz) + χ(yUz) 1 + χ(ySz) xzy 0 1 yxz χ(ySx) + χ(yVz) χ(ySx) + χ(ySz) yzx 1 + χ(ySz) + χ(zUx) + χ(yVx) 1 + χ(ySx) + χ(ySz) zxy 3 2 zyx χ(ySx) + χ(yUx) + χ(zVx) 1 + χ(ySx) Since (maj ′ U + inv ′ S\U )(zxy) = 3, we must have ySz and ySx, which imply that inv ′ S ≥ 1 on R(xyz), which is impossible since (maj ′ U + inv ′ S\U )(xzy) = 0. (maj ′ U + inv ′ S\U )(w) inv ′ S (w) xyz 1 + χ(ySz) + χ(yUz) 1 + χ(ySz) xzy χ(zVy) 1 + χ(zVy) yxz χ(ySx) + χ(yVz) χ(ySx) + χ(ySz) yzx χ(ySz) + χ(yVx) χ(ySx) + χ(ySz) zxy 2 + χ(zVy) 1 + χ(zVy) zyx χ(ySx) + χ(yUx) + χ(zVy) χ(zVy) + χ(ySx) It then follows that inv ′ S ≤ 2 on R(xyz), and thus, by considering (maj ′ U + inv ′ S\U )(zxy) and (maj ′ U + inv ′ S\U )(xyz) = 1 + 2χ(yUz) + χ(yVz), we must have y Uz and z Vy, which lead to the following table. w (maj ′ U + inv ′ S\U )(w) inv ′ S (w) xyz 1 + χ(yVz) 1 + χ(yVz) xzy 0 1 yxz χ(ySx) + χ(yVz) χ(ySx) + χ(yVz) yzx χ(yVz) + χ(yVx) χ(ySx) + χ(yVz) zxy 2 1 zyx χ(ySx) + χ(yUx) χ(ySx) (c) Suppose x w Since (maj ′ U + inv ′
	U + inv ′ S\U )(zxy) = 3 + χ(zVy) and since S ≤ 3 on R(xyz), we have z Vy and thus z Sy. Using identities xSz, zSx and z Sy, we inv ′
	obtain the following table

S\U )(zxy) = 3, we have by equidistribution of our two statistics, ySz. It follows that zyx is the unique world in R(xyz) for which inv ′ S (zyx) = 1, while

(maj ′ U + inv ′ S\U )(zyx) ≤ (maj ′ U + inv ′ S\U )(xzy) ≤ 1,

which contradict the equidistribution of our two statistics on R(xyz).

(b) Suppose x S\U )(xzy) = 0, it follows that y Sx, and thus inv

  Proposition 5.3. Let U be a κ-extensible relation on X. Then,• cl κ (U) is the smallest κ-extension of U (by inclusion), i.e. every κ-extension of U contains cl κ (U).• cl κ (U) is a bipartitional relation.Proof. The first assumption is evident by definition of cl κ (U). Set H := cl κ (U). We claim that H is transitive. Indeed, let x, y, z ∈ X satisfy xHy and yHz. We want to show that xHz. We distinct four cases:(i) xUy, yUz: then, by transitivity of U, we have xUz and thus xHz (since U ⊆ H). (ii) xUy, y Uz and yHz: then by definition of H, there is t ∈ X such that yUt and z Ut. By transitivity of U, we have xUt. We thus have xUt and z Ut, which imply, by definition of H, that xHz. (iii) x Uy and xHy, yUz: then by definition of H, there is t ∈ X such that xUt and y Ut. Suppose x Uz, then the elements x, t, y, z satisfy xUt, y Ut, x Uz, yUz, which contradict (5.2). We thus have xUz, and in particular, xHz. (iv) x Uy and xHy, y Uz and yHz: by definition of H, there exist t, v ∈ X such that xUt, y Ut, yUv and z Uv. Suppose x Uv, then the elements x, t, y, v satisfy xUt, y Ut, x Uv y Uv, which contradict (5.2). Thus we have xUv, and since z Uv, we have by definition of H that xHz.

  .3) More generally, Equation (5.3) hold for each relation H satisfying (1) H is a κ-extension of U and (2) H is bipartitional on X.

	Proof. It is just a combination of Theorem 1.6, Proposition 5.3 and Proposition 2.1
	in [2].
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