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Abstract. Two well-known mahonian statistics on words are the inversion number and
the major index. In 1996, Foata and Zeilberger introduced generalizations, parametrized
by relations, of these statistics. In this paper, we study the statistics which can be
written as a sum of these generalized statistics. This leads to generalizations of some
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1. Introduction and main results

1.1. Introduction. Let X be a finite alphabet. Without loss of generality we may assume
X = [r] := {1, 2, . . . , r}. Two of the most known and studied statistics on words (and
permutations) are probably the inversion number (inv) and the major index (maj). They
are defined for words w = x1x2 . . . xn with letters in X by

inv(w) =
∑

1≤i<j≤n

χ(xi > xj) and maj(w) =

n−1
∑

i=1

i.χ(xi > xi+1),

where, as usual, ” > ” is the natural order on X with r > r − 1 > · · · > 2 > 1, and
χ(A) = 1 if A is true, and χ(A) = 0 otherwise.

The major index, originally called greater index, was introduced by MacMahon [8]. As
explained by Foata and Krattenthaler (see [3] for a discussion), the origin of the inversion
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number is not clear but probably MacMahon [8, 9] was the first to consider inversions of
words instead of just permutations.

Let c = (c(1), c(2), . . . , c(r)) be a sequence of r non-negative integers and let v be the
non-decreasing word v = 1c(1)2c(2) . . . rc(r). We will denote by R(v) (or by R(c) if there
is no ambiguity) the rearrangement class of v, that is, the set of all words that can be
obtained by permuting the letters of v. A well-known result of MacMahon states that the
major index and the inversion number are equidistributed (i.e. have the same generating
function) on each rearrangement class R(c). More precisely, MacMahon showed that the
generating function of the statistics maj and inv on each R(c) is given by

∑

w∈R(c)

qinv(w) =
∑

w∈R(c)

qmaj(w) =

[

c(1) + c(2) + · · ·+ c(r)

c(1), c(2), · · · , c(r)

]

q

(1.1)

where, as usual in q-theory, the q-multinomial coefficient is given by
[

n1 + n2 + · · ·+ nk

n1, n2, . . . , nk

]

q

=
[n1 + n2 + . . . + nk]q!

[n1]q![n2]q! · · · [nk]q!
,

and the q-factorial [n]q! by [n]q! := (1+ q)(1+ q + q2) · · · (1+ q + q2 + · · ·+ qn−1). In honor
of MacMahon, a statistic which is equidistributed with inv (or maj) on each R(c) is said
to be mahonian.

In 1996, Foata and Zeilberger [2] introduced natural generalizations of both ”inv” and
”maj”, parametrized by relations, as follows. Recall that a relation U on X is a subset
of the cartesian product X × X. For a, b ∈ X, if we have (a, b) ∈ U , we say that a is in
relation U to b, and we express this also by aUb. For each such relation U , then associate
the following statistics defined on each word w = x1 . . . xn by

inv′
U(w) =

∑

1≤i<j≤n

χ(xiUxj) and maj′U(w) =

n−1
∑

i=1

i.χ(xiUxi+1).

For instance, where U = ” > ” is the natural order on X, then maj′> = maj and
inv′

> = inv. The statistics maj′U and inv′
U are called graphical major index and graphical

inversion number since a relation on X can be represented by a directed graph on X.
MacMahon’s result (1.1) motivates Foata and Zeilberger [2] to pose the following ques-

tion:
For which relations U on X the statistics maj′U and inv′

U are equidistributed on each
rearrangement class R(c)?

Generalizing MacMahon’s result, they have fully characterized such relations. In order
to present their result, we first recall the following definition due to Foata and Zeil-
berger [2].

Definition 1.1. A relation U on X is said to be bipartitional if there exists an ordered
partition (B1, B2, . . . , Bk) of X into blocks Bl together with a sequence (β1, β2, . . . , βk) of
0’s and 1’s such that xUy if and only either (1) x ∈ Bl, y ∈ Bl′ and l < l′, or (2) x, y ∈ Bl

and βl = 1.

In this paper, we will use the following axiomatic characterization of bipartitional rela-
tions due to Han [4].
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Proposition 1.2. A relation U on X is bipartitional if and only if (1) it is transitive, i.e.
xUy and yUz imply xUz, and (2) for each x, y, z ∈ X, xUy and z 6Uy imply xUz.

Then Foata and Zeilberger [2, Theorem 2] proved the following.

Theorem A. Let U be a relation on X. The statistics maj′U and inv′
U are equidis-

tributed on each rearrangement class R(c) if and only if U is bipartitional.

In this paper, we are interesting with statistics which are obtained by summing a
graphical major index and a graphical inversion number. In order to motivate this work,
we present here two such statistics. The first one is the Rawlings major index. In [10],
Rawlings have introduced statistics, denoted k-maj (k ≥ 1), which interpolate the major
index and the inversion number and defined for words w = x1 · · ·xn with letters in X by

k-maj(w) =

n−1
∑

i=1

i.χ(xi ≥ xi+1 + k) +
∑

1≤i<j≤n

χ(xj + k > xi > xj).

Note that 1-maj = maj while r-maj = inv. Now, if we set

Uk = {(x, y) ∈ X2 / x ≥ y + k} and Vk = {(x, y) ∈ X2 / y + k > x > y},

we have k-maj = maj′Uk
+inv′

Vk
. In [11], Rawlings proved that for each integer k ≥ 1, k-maj

is a mahonian statistic. Since Uk∪Vk is the natural order ”>” on X, Rawlings ’s result can
be rewritten maj′Uk

+ inv′
Vk

and inv′
Uk∪Vk

are equidistributed on each rearrangement class.
The second statistic is more recent and defined on words with letters in a different

alphabet. Let A = {A1, A2, · · · , Ar} be a collection of non-empty, finite and mutually
disjoints sets of non-negative integers. Combining two statistics introduced by Stein-
grimsson [12], Zeng and the author [6] have defined a statistic, denoted MAJ, on words
π = B1B2 · · ·Bk with letters in A by

MAJ(π) =
∑

1≤i≤k−1

i.χ(min(Bi) > max(Bi+1)) +
∑

1≤i<j≤k

χ(max(Bj) ≥ min(Bi) > min(Bj)).

For instance, if π = {3, 9} {2} {1, 4, 8} {7} {5, 6}, then MAJ(π) = (1 + 4) + (2) = 7. Let
UA and VA be the relations defined on A by

(B, B′) ∈ UA ⇔ min(B) > max(B′),

(B, B′) ∈ VA ⇔ max(B′) ≥ min(B) > min(B′).

Then we have MAJ = maj′UA
+ inv′

VA
. It was proved in [6, Theorem 3.5] that

∑

π∈R(A1A2···Ar)

qMAJ(π) = [r]q!. (1.2)

Since UA ∪ VA is a total order on A, it follows from (1.1) that the generating function
of inv′

UA∪VA
on R(A1A2 · · ·Ar) is also given by the right-hand side of the above identity.

It is then natural to ask if maj′UA
+ inv′

VA
and inv′

UA∪VA
are equidistributed on each re-

arrangement class R(w) for words w with letters in A.

In view of the above two examples, it is natural to ask: For which relations U and V
on X the statistics maj′U + inv′

V and inv′
U∪V are

• equidistributed on each rearrangement class R(c)?
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• mahonian?

The purpose of this paper is to answer these questions by fully characterizing all such
relations U and V on X.

1.2. Main results. Denote by X∗ the set of all words with letters in X. In order to
simplify the readability of the paper, we introduce the following definition.

Definition 1.3. A statistic stat on X∗ is a maj-inv statistic if there exist two relations
U and V on X such that stat = maj′U + inv′

V .

Clearly, the statistics inv, maj and k-maj are maj-inv statistics on X∗, while MAJ is a
maj-inv statistic on A∗. In this paper, a kind of relations on X have a great interest for
us. We call them the κ-extensible relations.

Definition 1.4. A relation U on X is said to be κ-extensible if there exists a relation S
on X such that (1) U ⊆ S and (2) for any x, y, z ∈ X, xUy and z 6Uy =⇒ xSz and z 6Sx.

If a relation S on X satisfies conditions (1) and (2), we say that S is a κ-extension of
U on X.

We give here some examples of κ-extensible relations.

Example 1.1. (a) Suppose X = {x, y, z} and U = {(x, y)}. Then, S = {(x, y), (x, z)} is
a κ-extension of U on X.

(b) The natural order ”>” is a κ-extension of the relation Uk = {(x, y) ∈ X2 / x ≥ y+k}
on X for any k > 0.

(c) Let A = {A1, A2, · · · , Ar} be a collection of non-empty and finite subsets of non-
negative integers, and let UA and SA be the relations on A defined by (B, B′) ∈ UA ⇔
min(B) > max(B′) and (B, B′) ∈ SA ⇔ min(B) > min(B′). Then one can check that SA

is a κ-extension of UA on A.
(d) Every total order is a κ-extension of itself.

In fact the notion of κ-extensible relation can be viewed, by means of the following
result, as a generalization of the notion of bipartitional relation.

Proposition 1.5. A relation U on X is bipartitional if and only if it is a κ-extension of
itself.

Proof. Using Proposition 1.2, it suffices to see that a relation U is transitive if and only
if for any x, y, z ∈ X, xUy and z 6Uy imply z 6Ux. Suppose U is transitive and let x, y, z
satisfying xUy and z 6Uy. Suppose zUx, then since xUy, we have by transitivity zUy
which contradict z 6Uy. Thus z 6Ux. Reversely, suppose that xUy and z 6Uy imply z 6Ux for
each x, y, z. Let x1, x2, x3 verifying x1Ux2 and x2Ux3. Suppose x1 6Ux3. Since x2Ux3, it
then follows that x1 6Ux2 which is impossible. Thus x1Ux3 and U is transitive. �

We can now present the key result of the paper, which is a generalization of Theorem A.

Theorem 1.6. Let U and S be two relations on X. The following conditions are equiva-
lent.

(i) The statistics maj′U + inv′
S\U and inv′

S are equidistributed on each rearrangement

class R(c).
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(ii) S is a κ-extension of U .

Let U and V be two non-disjoint relations on X and let (x, y) ∈ U ∩ V . By definition,
(maj′U + inv′

V )(xy) = 1 + 1 = 2 > 1 ≥ inv′
U∪V (x1x2) for any x1, x2 ∈ X. It follows that if

U ∩ V 6= ∅, the statistics maj′U + inv′
V and inv′

U∪V are not equidistributed on R(xy). We
then obtain immediately from Theorem 1.6 the following result.

Theorem 1.7. Let U and V be two relations on X. The following conditions are equiv-
alent.

(i) The statistics maj′U + inv′
V and inv′

U∪V are equidistributed on each rearrangement
class R(c).

(ii) U ∩ V = ∅ and U ∪ V is a κ-extension of U .

Next, by noting that for a relation S on X, the graphical inversion number inv′
S is maho-

nian if and only if S is a total order on X, we have obtained the following characterization
of mahonian maj-inv statistics.

Theorem 1.8 (Classification of mahonian maj-inv statistics I). The mahonian maj-inv
statistics on X∗ are exactly those which can be written maj′U + inv′

S\U , where U and S
satisfy the following conditions:

• S is a total order on X,
• S is a κ-extension of U .

Moreover, two mahonian maj-inv statistics maj′U + inv′
S\U and maj′V + inv′

T\V are equal
on X∗ if and only if S = T and U = V .

Example 1.2. (a) It follows from Example 1.1(b) and the above theorem that the statistics
k-maj, k ≥ 1, are mahonian, which was first proved by Rawlings [11].

(b) Let A = {A1, A2, · · · , Ar} be a collection of nonempty and finite subsets of non-
negative integers, and let UA and SA be the relations on A defined as in Example 1.1(c).
It then follows from the above theorem and Example 1.1(c) that MAJ is mahonian on A∗,
which is a generalization of (1.2).

In fact, we have obtained more precise results on mahonian maj-inv statistics on X∗.
Indeed, given a total order S on X, we have characterized all κ-extensible relations U
such that S is a κ-extension of U(see Proposition 6.3). As consequence, we have obtained
the following result.

Theorem 1.9 (Classification of mahonian maj-inv statistics II). The mahonian maj-inv
statistics on X∗ are exactly the statistics statf, g defined for words w = x1 · · ·xn ∈ X∗ by

statf, g(w) =
n−1
∑

i=1

i.χ( f(xi) ≥ g(f(xi+1)) ) +
∑

1≤i<j≤n

χ( g(f(xj)) > f(xi) > f(xj) ),

with f a permutation of X and g : X 7→ X ∪ {∞} a map satisfying g(y) > y for each
y ∈ X.

Taking f = Id, where Id is the identity permutation, we obtain the following.
5



Corollary 1.10. The statistics statg defined for w = x1 · · ·xn ∈ X∗ by

statg(w) =
n−1
∑

i=1

i.χ( xi ≥ g(xi+1) ) +
∑

1≤i<j≤n

χ( g(xj) > xi > xj ),

with g : X 7→ X ∪ {∞} satisfying g(y) > y for each y ∈ X, are mahonian.

For instance, the Rawlings major index k-maj is obtained by taking in the previous
result g : X 7→ X ∪ {∞} defined by g(x) = x + k if x + k ≤ r and g(x) = ∞ otherwise.

It is then easy to enumerate the mahonian maj-inv statistics on X∗. Since there are
exactly |X|! maps g : X 7→ X ∪ {∞} satisfying g(y) > y, we have the following result.

Corollary 1.11. For each total order S on X, there are exactly |X|! mahonian maj-inv
statistics on X∗ which can be written maj′U + inv′

S\U .

The paper is organized as follows. In section 2 and section 3, we prove Theorem 1.6. In
section 4, we prove Theorem 1.8. In section 5, we characterize all κ-extensible relations
on X and prove Theorem 1.9 in section 6. Finally, in section 7, we apply the results of
this paper to give new original mahonian statistics on permutations and words.

Remark 1.12. As pointed by an anonymous referee, some proofs ( for instance the proof
of the ”only if” part of Theorem 1.6) presented in the paper have ”simpler proofs” by using
a computer algebra system (see e.g. [5]).

2. Proof of the ’if’ part of Theorem 1.6

The first direct combinatorial proof of MacMahon’s result on the equidistribution of the
statistics maj and inv, that is a bijection which sends each word to another one in such a
way that the major index of the image equals the number of inversions of the original, is
due to Foata [1].

Let U be a κ-extensible relation on X. In this section, we adapt Foata’s map, also
called second fundamental transformation (see e.g. [7]), to construct a bijection ΨU of
each rearrangement class onto itself such that for each κ-extension S of U , we have

inv′
S(ΨU(w)) = (maj′U + inv′

S\U)(w). (2.1)

2.1. Notations. The length of a word w ∈ X∗, denoted by λ(w), is its number of letters.
By convention, there is an unique word of length 0, the empty word ǫ. If Y and Z are
subsets of X∗, we designate by Y Z the set of words w = w′w′′ with w′ ∈ Y and w′′ ∈ Z.

Each x ∈ X determines a partition of X in two subsets Lx and Rx as follows: the set
Rx is formed with all y ∈ X such that yUx , while the set Lx is formed with all y ∈ X
such that y 6Ux.

2.2. The map ΨU . Let w be a word in X∗ and x ∈ X. If w = ǫ, we set γU
x (w) = ǫ.

Otherwise two cases are to be considered:

(i) the last letter of w is in Rx,
(ii) the last letter of w is in Lx.

Let (w1x1, w2x2, . . . , whxh) be the factorization of w having the following properties:

• In case (i) x1, x2, . . . , xh are in Rx and w1, w2, . . . , wh are words in L∗
x.
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• In case (ii) x1, x2, . . . , xh are in Lx and w1, w2, . . . , wh are words in R∗
x.

Call x-factorization the above factorization. Clearly, each word has an unique x-factorization.
In both cases we have w = w1x1w2x2 . . .wsxs, then define

γU
x (w) = x1w1x2w2 . . . xsws.

The map ΨU is then defined by induction on the length of words in the following way:

ΨU(ǫ) = ǫ , (2.2)

ΨU(wx) = γU
x (ΨU(w)) x for all x ∈ X and w ∈ X∗. (2.3)

Note that Foata’s map correspond to the case U := ” > ” is the natural order.

Theorem 2.1. The map ΨU is a bijection of X∗ onto itself such that for each w ∈ X∗, we
have ΨU(w) ∈ R(w), both w and ΨU(w) end with the same letter and for each κ-extension
S of U , we have

inv′
S(ΨU(w)) = (maj′U + inv′

S\U)(w). (2.4)

The proof of the above theorem is very similar to the proof in [1, 7]. It is based on
the following lemma. Let S be a κ-extension of U . For each w = x1 . . . xn ∈ X∗, denote
by lx(w) (resp. rx(w)) the number of subscripts j for which xj ∈ Lx (resp. xj ∈ Rx)
and tx(w) designate the number of subscripts j such that xj 6Ux and xjSx. Note that we
always have lx(w) + rx(w) = λ(w) and rx(w) + tx(w) is the number of subscripts j for
which xjSx.

Lemma 2.2. For each w ∈ X∗ and x ∈ X, the following identities hold:

inv′
S(wx) = inv′

S(w) + rx(w) + tx(w), (2.5)

inv′
S(γU

x (w)) = inv′
S(w) − rx(w) if w ∈ X∗Lx, (2.6)

inv′
S(γU

x (w)) = inv′
S(w) + lx(w) if w ∈ X∗Rx, (2.7)

(maj′U + inv′
S\U)(wx) = (maj′U + inv′

S\U)(w) + tx(w) if w ∈ X∗Lx, (2.8)

(maj′U + inv′
S\U)(wx) = (maj′U + inv′

S\U)(w) + tx(w) + λ(w) if w ∈ X∗Rx. (2.9)

Proof. By definition, we have the following identities:

inv′
U(wx) = inv′

U(w) + rx(w)

inv′
S\U(wx) = inv′

S\U(w) + tx(w)

maj′U(wx) = maj′U(w) if w ∈ X∗Lx,

maj′U(wx) = maj′U(w) + λ(w) if w ∈ X∗Rx,

from which we derive immediately (2.8) and (2.9). To obtain (2.5), it suffices to note that
inv′

S = inv′
U + inv′

S\U (since U ∩ (S \ U) = ∅ and U ⊆ S). It remains to prove (2.6) and

(2.7).
Suppose w ∈ X∗Lx and let (w1x1, w2x2, . . . , wsxs) be the x-factorization of w. First,

assume that

inv′
S(xiwi) = inv′

S(wixi) − λ(wi) for 1 ≤ i ≤ s. (2.10)
7



Since γx(w) = x1w1x2w2 · · ·xhwh, it is not hard to see that inv′
S(γx(w)) is equal to

inv′
S(wx) decreased by λ(w1) + λ(w2) + · · · + λ(ws). Since s = lx(w), we get

inv′
S(γx(w)) = inv′

S(wx) − (λ(w) − s) = inv′
S(wx) − rx(w),

which is exactly (2.6). We now prove (2.10). Let τ = τ1τ2 · · · τm ∈ R∗
x and y ∈ Lx. By

definition, we have τiUx for each i and y 6Ux. Since S is a κ-extension of U , it follows that
for each i, τiSy and y 6Sτi. We then have inv′

S(yτ) = inv′
S(τ) and inv′

S(τy) = inv′
S(τ)+m =

inv′
S(yτ) + λ(τ). Equation (2.10) is obtained by noting that in the x-factorization of

w ∈ X∗Lx, the words w1, . . . , wh are in R∗
x and the letters x1, . . . , xh are in Lx.

Equation (2.7) has an analogous proof. Suppose w ∈ X∗Rx and let (w1x1, w2x2, . . . , whxh)
be the x-factorization of w. First, assume that

inv′
S(xiwi) = inv′

S(wixi) + λ(wi) for 1 ≤ i ≤ h. (2.11)

Since γx(w) = x1w1x2w2 · · ·xhwh, it is not hard to see that inv′
S(γx(w)) is equal to

inv′
S(wx) increased by λ(w1) + λ(w2) + · · · + λ(ws). Since h = rx(w), we get

inv′
S(γU

x (w)) = inv′
S(wx) − (λ(w) − h) = inv′

S(wx) + lx(w),

which is exactly (2.7). It then remains to prove (2.11). Let τ = τ1τ2 · · · τm ∈ L∗
x and

y ∈ Rx. By definition, we have yUx and τi 6Ux for each i. Since S is a κ-extension of
U , it follows that for each i, ySτi. It is then easy to obtain inv′

S(τy) = inv′
S(τ) and

inv′
S(yτ) = inv′

S(τ) + m = inv′
S(τy) + m. Equation (2.11) is obtained by noting that in

the x-factorization of w ∈ X∗Rx, the words w1, . . . , wh are in L∗
x and the letters x1, . . . , xh

are in Rx.
�

Proof of Theorem 2.1: By construction, both w and ΨU(w) end with the same letter.
Let Xn be the set of words in X∗ with length n. It is sufficient to verify by induction on
n that for all n ≥ 0, the restriction ΨU

n of ΨU to Xn is a permutation of Xn satisfying:
for any w ∈ Xn,

ΨU
n (w) ∈ R(w) and inv′

S(ΨU
n (w)) = (maj′U + inv′

S\U)(w). (2.12)

Since the induction is based on Lemma 2.2 and is very similar to the proof concerning
the second fundamental transformation, we refer the reader to [1, 7]. �

3. Proof of the ’only if’ part of Theorem 1.6

Let U and S be two relations on X such that the statistics maj′U + inv′
S\U and invS

are equidistributed on each rearrangement class R(w), w ∈ X∗. We prove here that this
imply that S is a κ-extension of U .

3.1. The relation U is contained in S. By definition of the graphical statistics, we
have that for all word w of length 2, maj′U(w) = inv′

U(w). Moreover, for each pair (A, B)
of disjoints relations, we have inv′

A + inv′
B = inv′

A∪B. It then follows that for all w ∈ X∗,
λ(w) = 2,

(maj′U + inv′
S\U)(w) = (inv′

U + inv′
S\U)(w) = inv′

S∪U(w) = (inv′
S + inv′

U\S)(w).
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The equidistribution of maj′U + inv′
S\U and inv′

S on each R(w), λ(w) = 2, then implies

that inv′
U\S(w) = 0 for all w ∈ X∗, λ(w) = 2, and thus, U \ S = ∅, i.e., U ⊆ S.

3.2. For any x, y, z ∈ X, xUy and z 6Uy imply xSz and z 6Sx. To simplify the readability
of the rest of the proof, we set V := S \ U , i.e. U ∩ V = ∅ and U ∪ V = S. In particular,
for any x1, x2 ∈ X,

χ(x1Sx2) = χ(x1Ux2) + χ(x1Vx2) and χ(x1Ux2).χ(x1Vx2) = 0. (3.1)

Let x, y, z ∈ X verifying xUy and z 6Uy. First, note that x and z are distinct, otherwise
we have xUy and x 6Uy. Thus x 6= z.

3.2.1. The case x = y. We then have xUx and z 6Ux and thus
(maj′U + inv′

S\U)(zxx) = χ(zUx) + 2χ(xUx) + 2χ(zVx) + χ(xVx) = 2 + 2χ(zVx). Since

inv′
S(w) ≤ 3 for each word w of length 3, it follows that χ(zVx) = 0, i.e. z 6Vx. But z 6Ux

and thus z 6Sx. Now, suppose x 6Sz. It follows that inv′
S(xxz) = inv′

S(xzx) = inv′
S(zxx) =

1 < 2 = (maj′U + inv′
S\U)(zxx), which contradict the equidistribution of our two statistics

on R(x2z). Thus we have xSz and z 6Sx as desired.

3.2.2. The case x 6= y. Two cases are to be considered.
Suppose y = z. We then have xUz and z 6Uz. Since U ⊆ S, we have xSz. It then

suffices to show that z 6Sx. Suppose zSx. We then have

(maj′U + inv′
S\U)(zxz) = χ(zUx) + 2χ(xUz) + χ(zVx) + χ(zVz) + χ(xVz)

= 2 + χ(zUx) + χ(zVx) + χ(zVz) = 2 + χ(zSx) + χ(zVz)

= 3 + χ(zVz),

and thus z 6Sz. Then, it is not hard to see that this imply that inv′
S ≤ 2 on R(xz2)

which, considering (maj′U + inv′
S\U)(zxz) = 3, contradict the equidistribution of our sta-

tistics on R(xz2). It follows that z 6Sx as desired. It then remains to consider the last case.

Suppose y 6= z. Then x, y, z are three distinct elements satisfying xUy and z 6Uy. The
next table gives the distribution of maj′U + inv′

S\U and inv′
S on R(xyz) after some simpli-

fications obtained by using (3.1).

w (maj′U + inv′
S\U)(w) inv′

S(w)

xyz 1 + χ(ySz) + χ(yUz) + χ(xVz) 1 + χ(xSz) + χ(ySz)
xzy χ(xSz) + χ(zVy) 1 + χ(xSz) + χ(zVy)
yxz χ(ySx) + χ(xSz) + χ(xUz) + χ(yVz) χ(ySx) + χ(ySz) + χ(xSz)
yzx χ(ySz) + χ(zSx) + χ(zUx) + χ(yVx) χ(ySz) + χ(ySx) + χ(zSx)
zxy 2 + χ(zSx) + χ(zVy) 1 + χ(zSx) + χ(zVy)
zyx χ(ySx) + χ(yUx) + χ(zVy) + χ(zVx) χ(zVy) + χ(zSx) + χ(ySx)

(a) Suppose xSz and zSx. We then have (maj′U + inv′
S\U)(zxy) = 3 + χ(zVy) and since

inv′
S ≤ 3 on R(xyz), we have z 6Vy and thus z 6Sy. Using identities xSz, zSx and z 6Sy, we

obtain the following table
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w (maj′U + inv′
S\U)(w) inv′

S(w)

xyz 1 + χ(ySz) + χ(yUz) + χ(xVz) 2 + χ(ySz)
xzy 1 2
yxz 1 + χ(ySx) + χ(xUz) + χ(yVz) 1 + χ(ySx) + χ(ySz)
yzx 1 + χ(ySz) + χ(zUx) + χ(yVx) 1 + χ(ySx) + χ(ySz)
zxy 3 2
zyx χ(ySx) + χ(yUx) + χ(zVx) 1 + χ(ySx)

which imply that y 6Sx (otherwise, inv′
S ≥ 2 on R(xyz) and (maj′U + inv′

S\U)(xzy) = 1,

which is impossible) and thus, by using y 6Sx, we get

w (maj′U + inv′
S\U)(w) inv′

S(w)

xyz 1 + χ(ySz) + χ(yUz) + χ(xVz) 2 + χ(ySz)
xzy 1 2
yxz 1 + χ(xUz) + χ(yVz) 1 + χ(ySz)
yzx 1 + χ(ySz) + χ(zUx) + χ(yVx) 1 + χ(ySz)
zxy 3 2
zyx χ(zVx) 1

Since (maj′U + inv′
S\U)(zxy) = 3, we have by equidistribution of our two statistics,

ySz. It follows that zyx is the unique world in R(xyz) for which inv′
S(zyx) = 1, while

(maj′U + inv′
S\U)(zyx) ≤ (maj′U + inv′

S\U)(xzy) ≤ 1, which contradict the equidistribution

of our two statistics on R(xyz).

(b) Suppose x 6Sz and zSx. By a similar reasoning than in (a), we have z 6Vy and thus
z 6Sy, which lead to the following table.

w (maj′U + inv′
S\U)(w) inv′

S(w)

xyz 1 + χ(ySz) + χ(yUz) 1 + χ(ySz)
xzy 0 1
yxz χ(ySx) + χ(yVz) χ(ySx) + χ(ySz)
yzx 1 + χ(ySz) + χ(zUx) + χ(yVx) 1 + χ(ySx) + χ(ySz)
zxy 3 2
zyx χ(ySx) + χ(yUx) + χ(zVx) 1 + χ(ySx)

Since (maj′U +inv′
S\U)(zxy) = 3, we must have ySz and ySx, which imply that inv′

S ≥ 1

on R(xyz), which is impossible since (maj′U + inv′
S\U)(xzy) = 0.

(c) Suppose x 6Sz and z 6Sx. We then get the following table.
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w (maj′U + inv′
S\U)(w) inv′

S(w)

xyz 1 + χ(ySz) + χ(yUz) 1 + χ(ySz)
xzy χ(zVy) 1 + χ(zVy)
yxz χ(ySx) + χ(yVz) χ(ySx) + χ(ySz)
yzx χ(ySz) + χ(yVx) χ(ySx) + χ(ySz)
zxy 2 + χ(zVy) 1 + χ(zVy)
zyx χ(ySx) + χ(yUx) + χ(zVy) χ(zVy) + χ(ySx)

It then follows that inv′
S ≤ 2 on R(xyz), and thus, by considering (maj′U +inv′

S\U)(zxy)

and (maj′U + inv′
S\U)(xyz) = 1 + 2χ(yUz) + χ(yVz), we must have y 6Uz and z 6Vy, which

lead to the following table.

w (maj′U + inv′
S\U)(w) inv′

S(w)

xyz 1 + χ(yVz) 1 + χ(yVz)
xzy 0 1
yxz χ(ySx) + χ(yVz) χ(ySx) + χ(yVz)
yzx χ(yVz) + χ(yVx) χ(ySx) + χ(yVz)
zxy 2 1
zyx χ(ySx) + χ(yUx) χ(ySx)

Since (maj′U + inv′
S\U)(xzy) = 0, it follows that y 6Sx, and thus inv′

S ≤ 1 on R(xyz),

which is impossible since (maj′U + inv′
S\U)(zxy) = 2.

(d) Finally, we have xSz and z 6Sx, and thus S is a κ-extension of U . This conclude the
proof of the ’only if’ part of Theorem 1.6.

4. mahonian maj-inv statistics

This section is dedicated to the proof of Theorem 1.8. We begin with two lemmas.

Lemma 4.1. Let S be a relation on X. Then inv′
S is mahonian on X∗ if and only if S

is a total order.

Lemma 4.2. Let U and V be two relations on X. Suppose that the statistic maj′U + inv′
V

is mahonian on X∗. Then, U ∩ V = ∅, S := U ∪ V is a total order and a κ-extension
of U .

It is now easy to prove the first part of Theorem 1.8. Indeed, suppose that S is a total
order on X and a κ-extension of U . Then, it follows from Theorem 1.6 that maj′U +inv′

S\U

is equidistributed with inv′
S which is mahonian by Lemma 4.1, and thus maj′U + inv′

S\U is

mahonian as desired. Reversely, suppose maj′U + inv′
V is mahonian on X∗. We then have

by Lemma 4.2 V = S \U where S := U ∪V is a total order on X and a κ-extension of U .
We thus have proved that the mahonian maj-inv statistics on X∗ are exactly those

which can be written maj′U + inv′
S\U , with S a total order on X and a κ-extension of U .
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We now prove the second part of Theorem 1.8. Let S and T be two total orders on
X and suppose S (resp. T ) is a κ-extension of U (resp. V ). It suffices to show that if
maj′U + inv′

S\U and maj′V + inv′
T\V are equal on X∗ then S = T and U = V .

First suppose that S 6= T . Then we can assume without loss of generality that there
exist x, y ∈ X such that xSy and x 6Ty. Since U ⊆ S and V ⊆ T , we then have
maj′U + inv′

S\U(xy) = 1 6= 0 = maj′V + inv′
T\V (xy) and thus the two statistics are different

which contradict the hypothesis, thus S = T .
Suppose now U 6= V . Then we can assume without loss of generality that there exist

x, y ∈ X such that xUy and x 6Vy. Since S = T is a total order and an extension of U
and V we also have xSy, (x, y) ∈ S \ V and y 6Sy. It follows that
maj′U + inv′

S\U(xy2) = 1 6= 2 = maj′V + inv′
T\V (xy2), which is impossible thus U = V , as

desired.
In order to complete the proof of Theorem 1.8, it then remains to prove the two above

lemmas.

Proof of Lemma 4.1. It suffices to see that inv′
S is mahonian imply that S is a total

order since the reciprocal is an easy consequence of (1.1). Suppose that inv′
S is mahonian,

i.e. for each c,
∑

w∈R(c)

qinv′
S(w) =

[

c(1) + c(2) + · · ·+ c(r)

c(1), c(2), · · · , c(r)

]

q

. (4.1)

Suppose there exist x, y ∈ X, x 6= y, such that x 6Sy and y 6Sx. We then have inv′
S(xy) =

inv′
S(yx) = 0, which contradict (4.1) (take w = xy). Thus for each x, y ∈ X, we have xSy

or ySx, i.e., S is total.
Suppose there exist x ∈ X such that xSx, then inv′

S(xx) = 1, which contradict (4.1)
(take w = x2). Thus x 6Sx and S is irreflexive.

Suppose there exist x, y ∈ X, x 6= y, such that xSy and ySx. We then have inv′
S(xy) =

inv′
S(yx) = 1, which contradict (4.1) (take w = xy). Thus if xSy we have y 6Sx, i.e. S is

antisymmetric.
Let x, y, z ∈ X satisfying xSy and ySz. Suppose x 6Sz. Since S is irreflexive, we have

x 6= y and y 6= z. Since S is antisymmetric, we have x 6= z (otherwise we have xSy and
ySx). Then x, y, z are distinct. We also have y 6Sx and z 6Sy (S is antisymmetric) and zSx
(S is total). After simple computations (we left the details to the reader), we then get

∑

w∈R(xyz)

qinv′
S(w) = 3q + 3q2 6=

[

3

1, 1, 1

]

q

= 1 + 2q + 2q2 + q3,

which contradict (4.1) (take w = xyz). Thus xSz and S is transitive.
�

Proof of Lemma 4.2. Suppose U ∩ V 6= ∅ and let (x, y) ∈ U ∩ V . We then have
maj′U(xy) + inv′

V (xy) = 1 + 1 = 2, which contradict (4.1) (take w = xy if x 6= y and
w = xx if x = y) and thus, U and V are disjoint.

The proof of ”S is a total order on X” is essentially the same than the proof of
Lemma 4.1, so we left the details to the reader.

It then remains to show that S = U ∪ V is a κ-extension of U . Since S is total, it
follows from Lemma 4.1 that inv′

S are mahonian on X∗. Then by applying the part ”(i)
12



imply (ii)” of Theorem 1.6 to maj′U + inv′
V and inv′

S, we obtain that S is a κ-extension
of U .

�

5. κ-extensible relations

Theorem 1.6 and Theorem 1.8 motivate to pose the following question: When does a
relation have a κ-extension?

Suppose X = {x, y, z} and consider the relation U = {(x, y), (y, z)} on X. Then, one

can check by considering all the relations on X containing U (there are 232−2 = 128 such
relations) that U has no κ-extension. In this part, we give an axiomatic characterization
of κ-extensible relations.

Definition 5.1. The κ-closure of a relation U on a set X is the relation denoted by clκ(U)
and defined by

clκ(U) := U ∪ {(x, y)/ ∃ z ∈ X such that xUz and y 6Uz}. (5.1)

Proposition 5.2 (Characterization of κ-extensible relations). Let U be a relation on X.
The following conditions are equivalent.

(i) U is κ-extensible.
(ii) clκ(U) is a κ-extension of U .
(iii) U is transitive and ∄ x, y, z, t ∈ X such that

xUy z 6Uy (5.2)

x 6Ut zUt.

For instance, if we consider the relation U = {(x, y), (y, z)} on X = {x, y, z} given
above, we have xUy, y 6Uy, x 6Uz and yUz and thus, we recover that U has no κ-extension.
One can also check that the relation ”| ” (”divide”) (on X = [r]) defined by x | y if and
only if ”x divide y” (i.e. y

x
∈ Z) has no κ-extension. Indeed, the elements 3,9,2,4 satisfy

3 | 9, 2 ∤ 9, 3 ∤ 4 and 2 | 4.

Proof. Clearly (ii) =⇒ (i).
(i) =⇒ (iii): Suppose U has a κ-extension S. Then

(a) U is transitive: Indeed, let x, y, z ∈ X and suppose xUy and yUz. We want to
show that xUz. Suppose x 6Uz, then since S is a κ-extension of U and yUz, it
follows that ySx and x 6Sy. We thus have xUy and x 6Sy, which is impossible since
U ⊆ S. Thus xUz.

(b) ∄ x, y, z, t ∈ X satisfying xUy, z 6Uy, zUt and x 6Ut: Indeed, suppose the contrary.
Then, xUy and z 6Uy imply that xSz, while zUt and x 6Ut imply that x 6Sz. We
thus have xSy and x 6Sy, which is impossible.

(iii) =⇒ (ii): Suppose U satisfy (iii). We want to show that H := clκ(U) is a κ-extension
of U , that is for any x, y, z satisfying xUy and z 6Uy, we have xHz and z 6Hx. Let x, y, z
satisfying xUy and z 6Uy. First, by definition of H , we have xHz. It then remains to show
that z 6Hx. Suppose the contrary, i.e. zHx. We distinct two cases:

(a) zUx: since U is transitive and xUy, we have zUy, which contradicts z 6Uy.
13



(b) z 6Ux and zHx: by definition of H , there exists t such that zUt and x 6Ut. We thus
four elements x, y, z, t satisfying xUy, z 6Uy, x 6Ut and zUt, which contradicts (iii).

�

The following proposition gives some properties of the κ-closure.

Proposition 5.3. Let U be a κ-extensible relation on X. Then,

• clκ(U) is the smallest κ-extension of U (by inclusion), i.e. every κ-extension of U
contains clκ(U).

• clκ(U) is a bipartitional relation.

Proof. The first assumption is evident by definition of clκ(U). Set H := clκ(U). We claim
that H is transitive. Indeed, let x, y, z ∈ X satisfy xHy and yHz. We want to show that
xHz. We distinct four cases:

(i) xUy, yUz: then, by transitivity of U , we have xUz and thus xHz (since U ⊆ H).
(ii) xUy, y 6Uz and yHz: then by definition of H , there is t ∈ X such that yUt and

z 6Ut. By transitivity of U, we have xUt. We thus have xUt and z 6Ut, which imply,
by definition of H , that xHz.

(iii) x 6Uy and xHy, yUz: then by definition of H , there is t ∈ X such that xUt
and y 6Ut. Suppose x 6Uz, then the elements x, t, y, z satisfy xUt, y 6Ut, x 6Uz, yUz,
which contradict (5.2). We thus have xUz, and in particular, xHz.

(iv) x 6Uy and xHy, y 6Uz and yHz: by definition of H , there exist t, v ∈ X such that
xUt, y 6Ut, yUv and z 6Uv. Suppose x 6Uv, then the elements x, t, y, v satisfy xUt,
y 6Ut, x 6Uv y 6Uv, which contradict (5.2). Thus we have xUv, and since z 6Uv, we
have by definition of H that xHz.

�

Let V be a bipartitional relation on X and (B1, . . . , Bk), (β1, . . . , βk) be the biparti-
tion associated to V (see Definition 1.1). Suppose the block Bl consists of the integer
i1, i2, . . . , ip. It will be convenient to write c(Bl) for the sequence c(i1), c(i2), . . . , c(ip) and
m(Bl) = ml for the sum c(i1) + c(i2) + . . . + c(ip). In particular,

(

ml

c(Bl)

)

will denote the

multinomial coefficient
(

c(i1)+c(i2)+...+c(ip)
c(i1),c(i2),...,c(ip)

)

.

Proposition 5.4. Let U be a κ-extensible relation. It follows that H := clκ(U) is a
bipartitional relation. Let (B1, . . . , Bk), (β1, . . . , βk) be the bipartition associated to H.
Then,

∑

w∈R(c)

q(maj′U +inv′
H\U

)(w) =

[

c(1) + c(2) + · · ·+ c(r)

m1, m2, · · · , mk

]

q

k
∏

l=1

(

ml

c(Bl)

)

q
βl( ml

c(Bl)
)
. (5.3)

More generally, Equation (5.3) hold for each relation H satisfying (1) H is a κ-extension
of U and (2) H is bipartitional on X.

Proof. It is just a combination of Theorem 1.6, Proposition 5.3 and Proposition 2.1
in [2]. �

6. Proof of Theorem 1.9

Theorem 1.8 lead to the following question: Given a total order S on X, which are the
relations U on X such that S is a κ-extension of U?
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Proposition 6.1. Let U be a relation on X. The following conditions are equivalent.

(i) The natural order ”>” is a κ-extension of U .
(ii) There exists a map g : X 7→ X ∪ {∞} satisfying g(y) > y for each y ∈ X such

that

xUy ⇔ x ≥ g(y).

Moreover, if U satisfy the condition (i), the map g is unique and defined by

g(y) =

{

min({x : xUy}), if ∃x such that xUy;
∞, otherwise.

Proof. (i) =⇒ (ii): Suppose ”>” is a κ-extension of U and let y ∈ X. Then, define
g(y) ∈ X ∪ {∞} by

• g(y) = min({x; xUy}) if ∃x ∈ X satisfying xUy,
• g(y) = ∞ otherwise.

It is clear that g(y) > y for each y ∈ X because U ⊆ ” > ”. Let x, y ∈ X. By definition
of g(y), we have xUy =⇒ x ≥ g(y). Now, suppose x ≥ g(y). Since x ∈ X, it follows that
g(y) < ∞ and thus, there exists z ∈ X such that zUy. We can take z = g(y). Suppose
x 6Uy. Since zUy and x 6Uy and ” > ” is a κ-extension of U , we then have z = g(y) > x
which contradicts the fact that x ≥ g(y). It then follows that xUy. We thus have proved
that x ≥ g(y) =⇒ xUy.

(ii) =⇒ (i): Let x, y, z ∈ X satisfying xUy and z 6Uy. It follows from (ii) that x ≥ g(y)
and z < g(y), and thus x > z. We thus have proved that ” > ” is a κ-extension of U .

�

The proof of the following result is left to the reader.

Lemma 6.2. The κ-extensibility on X is transposable by order isomorphism.
In other words, if S and T are two total orders on X and h is the unique order isomor-

phism h : (X, S) 7→ (X, T ), i.e h is a permutation of X and xSy ⇔ h(x)T h(y). Then S
is a κ-extension of a relation U on X if and only if the total order T is a κ-extension of
the relation V := ”h(U)” defined by xVy ⇔ h−1(x)Uh−1(y).

Combining the above Lemma and Proposition 6.1, we get immediately the following
result.

Proposition 6.3. Let S be a total order on X and U be a relation on X. We denote by
f be the (unique) order isomorphism from (X, ” > ”) to (X, S). The following conditions
are equivalent.

(i) S is a κ-extension of U .
(ii) There exist an unique map g : X 7→ X ∪ {∞} satisfying g(y) > y for each y ∈ X

such that

xUy ⇔ f(x) ≥ g(f(y)).

Clearly, Theorem 1.9 is an immediate consequence of Theorem 1.8 and Proposition 6.3.
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7. Applications: new mahonian statistics

In this section, we give some examples of mahonian maj-inv statistics on X∗ which can
be derived from the results obtained in this paper. Such statistics are entirely character-
ized in Theorem 1.8 and Theorem 1.9.

Let gk, k ∈ [1,∞[, be the maps X 7→ X ∪ {∞} defined for x ∈ X by

gk(x) = ⌊kx + 1⌋.χ(kx < r) + ∞.χ(kx ≥ r) .

Clearly, for each x ∈ X, we have gk(x) > x. By applying Corollary 1.10 (or Theorem 1.9
with f = Id), we obtain immediately the following result.

Proposition 7.1. The statistics statgk
, k ∈ [1,∞[, defined for w = x1x2 . . . xn ∈ X∗ by

statgk
(w) =

n−1
∑

i=1

i.χ(
xi

xi+1
> k) +

∑

1≤i<j≤n

χ(k ≥
xi

xj

> 1)

are mahonian on X∗.

Note that statg1 = inv and statgr
= maj. Now for each B ⊆ X, let HB : X 7→ X ∪{∞}

be the map defined for x ∈ X by HB(x) = (x+1).χ(x ∈ B, x 6= r)+∞.χ(x /∈ B or x = r).
Since HB(x) > x for each x ∈ X, we obtain by applying Corollary 1.10 the following result.

Proposition 7.2. The statistics statHB
, B ⊆ X, defined for w = x1x2 . . . xn ∈ X∗ by

statHB
(w) =

n−1
∑

i=1

i.χ(xi > xi+1, xi+1 ∈ B) +
∑

1≤i<j≤n

χ(xi > xj , xj /∈ B)

are mahonian on X∗.

For instance, if B = {even numbers ≤ r}, then the statistic statHB
defined for words

w = x1x2 . . . xn ∈ X∗ by

statHB
(w) =

n−1
∑

i=1

i.χ(xi > xi+1, xi+1 is even) +
∑

1≤i<j≤n

χ(xi > xj , xj is odd)

is mahonian on X∗.
More generally, for A, B ⊆ X, Let UA,B be the relation on X defined by

(x, y) ∈ UA,B ⇐⇒ x ∈ A , y ∈ B and x > y .

Suppose (x, y), (y, z) ∈ UA,B. By definition of UA,B, we have x, y ∈ A, y, z ∈ B and
x > y and y > z. In particular, x ∈ A, z ∈ B and x > z, i.e. (x, z) ∈ UA,B. It follows that
UA,B is transitive. Now suppose there exist x, y, z, t ∈ X such that (x, y), (z, t) ∈ UA,B

and (x, t), (z, y) /∈ UA,B. By definition of UA,B, we have x, z ∈ A, y, t ∈ B and x > y,
z ≤ y, x ≤ t, z > t. In particular, x ≤ t and x > t, which is impossible. It then follows
from Proposition 5.2 that UA,B is a κ-extensible relation on X. Let SA,B and S ′

A,B be the
relation defined on X by

SA,B = {(x, y) ∈ X2 | x ∈ A, y /∈ A} ∪ {(x, y) ∈ A2 | x > y}

S ′
A,B = SA,B ∪ {(x, y) ∈ (Ac)2 | x > y}.
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Then the reader can check that S ′
A,B and SA,B are two κ-extensions of UA,B. Suppose

A = {a1, a2, . . . , ak}>. It is then easy to see that SA,B is a bipartitional relation and
its associated bipartition is the pair composed by the partition ({a1}, {a2}, . . . , {ak}, A

c),
and the null vector 0 = (0, 0, . . . , 0, 0).

Set statA,B := maj′UA,B
+ inv′

SA,B\UA,B
and stat′A,B := maj′UA,B

+ inv′
S′

A,B
\UA,B

. By defini-

tion, the statistics statA,B and stat′A,B are defined on words w = x1 . . . xn ∈ X∗ by

statA,B(w) =

n−1
∑

i=1

i.χ(xi > xi+1, xi ∈ A, xi+1 ∈ B) +
∑

1≤i<j≤n

χ(xi > xj , xi ∈ A, xj ∈ A \ B)

+
∑

1≤i<j≤n

χ(xi ≤ xj , xi ∈ A, xj ∈ B \ A) +
∑

1≤i<j≤n

χ(xi ∈ A, xj /∈ A ∪ B),

stat′A,B(w) = statA,B(w) +
∑

1≤i<j≤n

χ(xi > xj , xi and xj /∈ A ).

Applying Theorem 1.8 and Proposition 5.4, we obtain the following result.

Proposition 7.3. The statistic stat′A,B is mahonian on X∗ and for each c,

∑

w∈R(c)

qstatA,B(w) =

(

m(Ac)

c(Ac)

) [

c(1) + c(2) + · · · + c(r)

c(a1), c(a2), . . . , c(ak), m(Ac)

]

q

.

For instance, if E ={even integers ≤ r} and O ={odd integers ≤ r}, then the statistics
statE,O and stat′E,O are defined for w = x1 . . . xn ∈ X∗ by

statE,O(w) =
n−1
∑

i=1

i.χ(xi > xi+1, xi even, xi+1 odd) +
∑

1≤i<j≤n

χ(xi > xj , xi andxj even )

+
∑

1≤i<j≤n

χ(xi ≤ xj , xi even, xj odd ),

stat′E,O(w) =
n−1
∑

i=1

i.χ(xi > xi+1, xi even, xi+1 odd) +
∑

1≤i<j≤n

χ(xi ≤ xj , xi even, xj odd )

+
∑

1≤i<j≤n

χ(xi > xj , xi andxj have the same parity ).

It then follows from Proposition 7.3 that the statistic stat′E,O is mahonian and the gener-
ating function of statE,O on each R(c) is given by

∑

w∈R(c)

qstatE,O(w) =

(

c(1) + c(3) + . . . + c(2
⌊

r−1
2

⌋

+ 1)

c(1), c(3), . . . , c(2
⌊

r−1
2

⌋

+ 1)

)

×

[

c(1) + c(2) + · · · + c(r)

c(2), c(4), . . . , c(2
⌊

r
2

⌋

), c(1) + c(3) + . . . + c(2
⌊

r−1
2

⌋

+ 1)

]

q

.
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In particular, if Sr is the symmetric group of order r, then
∑

σ∈Sr

qstatE,O(σ) =

(⌊

r + 1

2

⌋)

! ×
[r]q!

[(
⌊

r+1
2

⌋

)]q!
.
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