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Semi-Blind Cancellation of IQ-Imbalances
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The technical realization of modern wireless receivers yields significant interfering IQ-imbalances, which have to be compensated digitally. To cancel these IQ-imbalances, we propose an algorithm using iterative blind source separation (IBSS) as well as information about the modulation scheme used (hence the term semi-blind). The novelty of our approach lies in the fact that we match the nonlinearity involved in the IBSS algorithm to the probability density function of the source signals. Moreover, we use approximations of the ideal non-linearity to achieve low computational complexity. For severe IQ-mismatch, the algorithm leads to 0.2 dB insertion loss in an AWGN channel and with 16-QAM modulation.
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Fig. 1. Block diagram of a zero-IF receiver with imbalances of phase (ϕ I , ϕ Q ) and amplitude (g I , g Q ) in I-and Q-path

II. SYSTEM MODEL

In this section, we describe the two main parts of our model. Each part on its own, is well known in the corresponding field of research.

A. Mixture Model

The received signal

s(t) = Re{d(t) exp(j2πf c t)} + n(t) (1) 
= Re{d(t)} cos(2πf c t) -Im{d(t)} sin(2πf c t) + n(t)

is split by the zero-IF receiver into the orthogonal I-component r I (t) and Q-component r Q (t) by multiplying with cos(2πf c t) and -sin(2πf c t), respectively. In this ideal case, the I-path contains the real part of the transmitted symbol Re{d(t)} = d I (t), some high frequency (HF) components and noise n(t), the Q-path includes the imaginary part Im{d(t)} = d Q (t), HF components and also some noise n(t). The HF components are removed by a low pass filter h LP (t) being assumed to be ideal.

The imperfection of the local oscillators (LO) yields phase errors (denoted as ϕ I for the I-path and ϕ Q for the Q-path (Figure 1)) which are assumed to be time invariant. Due to this maladjustment, the Q-component is interfered by the I-signal and vice versa. Furthermore, due to production imperfections, the mismatches in the circuitry cause amplitude imbalances. We model these as an imbalance in gain g I and g Q (Figure 1) which is also assumed to be invariant in time. Having defined these impairments, we are able to compute the disturbed I-and Q-signal by

r I (t) = g I cos(ϕ I )d I (t) -g I sin(ϕ I )d Q (t) r Q (t) = -g Q sin(ϕ Q )d I (t) + g Q cos(ϕ Q )d Q (t). (2) 
A common assumption in the literature is that ϕ I is zero and ϕ Q is only the phase difference between I-and Q-path. That means that the I-path is perfectly synchronised. In this paper, we don't make this assumption. Simulations in section IV show that small synchronisation errors are also compensated.

We define an observation vector #ř (t) = r

I (t) r Q (t) T , a source vector #ď (t) = d I (t) d Q (t)
T and a mixing matrix

H = h 11 h 12 h 21 h 22 = g I cos(ϕ I ) -g I sin(ϕ I ) -g Q sin(ϕ Q ) g Q cos(ϕ Q ) . (3) 
The mixture model is now given by

#ř (t) = H #ď (t) + #ň (t). (4) 
The task of the BSS algorithm is to estimate the separation matrix W * = H -1 such that the separated vector #y (t) =

y I (t) y Q (t) T fulfills #y (t) = W * #ř (t) = W * H #ď (t) = #ď (t)
when noise is neglected. Whenever W * H = I, where I is a 2 × 2 identity matrix, the IQ-imbalances are cancelled.

B. Separation System

The iterative inversion (II) [START_REF] Cruces | An iterative inversion approach to blind source separation[END_REF], [START_REF] Cruces | Una visión unificada de los algoritmos de separatión ciega de fuentes[END_REF] is an optimization algorithm with a maximum likelihood (ML) criterion [START_REF] Cardoso | Infomax and maximum likelihood for source separation[END_REF] (or equivalently, the mutual information criterion [START_REF] Pham | Blind separation of mixture of independent sources through a quasi-maximum likelihood approach[END_REF] and the INFOMAX criterion [START_REF] Bell | An information-maximization approach to blind separation and blind deconvolution[END_REF]). The purpose of these criteria is to restore the statistical independence of the source signals. Therewith the data sent over the I-and Q-path have to be statistically independent.

The optimization of all three criteria Ψ results in the condition for independence:

∂Ψ ∂W W=W * = R ψ( #y ) #x -W -T W=W * = 0 (5) 
which have to be fulfilled for the separation solution W * where R ψ( #y ) #x = E{ψ( #y ) #x T } is a correlation matrix and E{•} denotes the expectation operator. The score function [START_REF] Babaie-Zadeh | Differential of the mutual information[END_REF] ψ( #y ) acts component-wise and is given by

ψ( #y ) = -d ln p dQ (y Q )/dy Q -d ln p dI (y I )/dy I T = -p ′ dQ (y Q )/p dQ (y Q ) -p ′ dI (y I )/p dI (y I ) T (6) 
where p di (y i ) is the estimated pdf of the source signal d i and p ′ di (y i ) is its first derivation.

In [START_REF] Cruces | An iterative inversion approach to blind source separation[END_REF], equation ( 5) is solved numerically with a quasi-Newton algorithm. This algorithm approaches the separation solution W * iteratively as

W (n+1) = W (n) -µ (n) R (n) f ( #y )g( #y ) -I W (n) . (7) 
The correlation matrix R f ( #y )g( #y ) with two arbitrary non-linear functions replaces the exact correlation matrix R ψ( #y ) #y because ψ( #y ) is unknown if the separation is completely blind. However, in communication systems the modulation is usually known in advance and therewith the pdf of the source. This a-priori knowledge can be used to determine ψ( #y ) (section III)

and there is no need to approximate ψ( #y ) by f ( #y ). Following this idea and according to [START_REF] Amari | Blind source separation-semiparametric statistical approach[END_REF], the optimal function g( #y ) is simply #y .

In [START_REF] Cruces | An iterative inversion approach to blind source separation[END_REF], two methods are proposed for estimating R

(n) ψ( #y ) #y . The first one uses a single sample to estimate the correlation. This requires the least calculation effort and causes no additional delay. But, due to the bad estimation performance, the convergence behavior is degraded. The second technique averages the correlation by using a long fixed block (assuming stationarity and ergodicity), which leads to better estimation performance, at the cost of computational complexity and additional delay. In our approach, the delay and complexity are kept at a minimum by using a sliding window block of size L, enabling very small delay and low complexity by resorting to an adaptive implementation. Moreover, the block size L can be adjusted to optimize performance.

R (n) ψ( #y ) #y ≈ 1 L L l=0 ψ( #y [nL + l]) #y T [nL + l]. (8) 
Finally, the convergence characteristics of the iterative inversion algorithm [START_REF] Mailand | Blind iq-imbalance compensation using iterative inversion for arbitrary direct conversion receivers[END_REF] are determined by the step size

µ (n) = η 1 + η R (n) f ( #y )g( #y ) (9) 
It is defined in a way that prevents the estimation of the separation matrix W from crossing any discontinuities. This way, the convergence of the algorithm is assured (if 0 < η < 1) (convergence to a stationary point, which is not guaranteed to be a separation solution). For analyzing the quality of separation, we use the performance index (PI) [START_REF] Cichocki | Adaptive Blind Signal and Image Processing[END_REF]:

P I (n) = N i=1   N j=1 |G (n) ij | 2 max l {|G (n) il | 2 } -1   . . . + N j=1   N i=1 |G (n) ij | 2 max l {|G (n) lj | 2 } -1   (10) 
whereas G = WH is the transfer function of the whole system. The performance index provides the quadradic distance between the transfer function and closest permutation of the unity matrix.

III. NON-LINEARITIES

In this section we propose three non-linearities ψ( #y ) that depend on the sources pdfs (like suggested by equation ( 6)), leading to a semi-blind approach (i.e. using more a-priori information). To obtain the semi-blind source separation we have to specify the pdf-dependent non-linearities suited to digital communication signals. Therefore we assume that the widespread M 2 quadrature amplitude modulation (QAM) is used, which corresponds to the use of M pulse amplitude modulation (PAM) in I-and Q-path. The discrete pdf of a PAM signal d i is described by a sum of shifted and scaled Dirac impulses :

p di (y i ) = 1 M M m=1 δ (y i -k(2m -M -1)) , (11) 
with M being the number of different amplitudes and

k = M/2 M/2 n=1 2n -1 (12) 
as the half distance between two adjacent Dirac impulses. With this definition, unit variance of the source signals is guaranteed. Thus, it is not necessary to rescale the separated signals. The investigations of ( 6) and [START_REF] Cruces | An iterative inversion approach to blind source separation[END_REF] show that the denominator of ψ(y i )

is zero for most of the values of y i . To avoid the non-defined expressions, the Dirac function is approximated by a Gaussian or a Cauchy distribution.

A. Gaussian approximation based non-linearity

The limit of a Gaussian distribution for the variance at zero is the Dirac function. For a = √ 2σ the pdf of the M -PAM source is approximated by

p di (y i ) ≈ 1 a √ π M m=1 exp - y i -k(2m -M -1) a 2 . ( 13 
)
With this approximation, we obtain a non-linearity which is defined for any y i . Namely,

ψ G (y i ) = M m=1 2(yi-k(2m-M-1)) a 2 exp -(yi-k(2m-M-1)) 2 a 2 M m=1 exp -(yi-k(2m-M-1)) 2 a 2 . ( 14 
)
Figure 2(a) shows the Gaussian non-linearity for different a. For decreasing a the slope of the non-linearity increases and vice versa. Steep non-linearities lead to convergence problems, on the other hand less steep non-linearities denote a relatively large a which is equivalent to a poorly approximated Dirac function. An optimized slope can be determined by red investigating the PI, depending on the parameter a and η, with simulations. The optimization result is shown in Figure 3.

B. Cauchy approximation based non-linearity

Alike the Gaussian distribution, the limit of the Cauchy distribution for a going to zero is the Dirac function, too. With the Cauchy distribution we get an approximated pdf as follows:

p di (y i ) ≈ 1 π M m=1 a a 2 + (y i -k(2m -M -1)) 2 . ( 15 
)
The resulting approximation is used to calculate the Cauchy non-linearity:

ψ C (y i ) = - M m=1 2(yi-k(2m-M-1)) (a 2 +(yi-k(2m-M-1)) 2 ) 2 M m=1 1 a 2 +(yi-k(2m-M-1)) 2 . ( 16 
)
The Cauchy non-linearity is depicted in Figure 2(b). As for to the Gaussian non-linearity, the slope is optimized by computer simulations and the resulting optimized a-η-ratio is shown in Figure 3.

C. Simplified Cauchy non-linearity

The two proposed non-linearities are precise but require a large computational effort. To alleviate this, we propose a sinusoidal approximation of the Cauchy non-linearity (indeed, a linear approximation of the Gaussian non-linearity would lead only to decorrelation and not statistical independence). The period of the sine wave is determined by the distance between two PAM symbols. A whole oscillation has the length of 2k with zeros at the positions of the PAM symbols. The amplitude is fitted to the Cauchy non-linearity with a = 0.1 which is given in Table I for different constellations. Due to the importance of the correct slope, a scaling factor a ′ = -A/10a corresponding to the other non-linearities is introduced. Thereby the amplitudes of the Cauchy and the simplified Cauchy non-linearity match for a = 0.1. For the outer areas, linear functions are employed. We finally obtain the simplified Cauchy non-linearity expressed by: 

ψ SC (y i ) =          a ′ 2 (y i + k(M -0.5) + 2) y i < -k(M -0.5) a ′ sin π d y i otherwise a ′ 2 (y i -k(M -0.5) -2) y i > k(M -0.5) (17) 
by scaling and shifting the linear functions. As for the previous non-linearities, the scaling a is optimized by simulations (Figure 3).

Non-linearities for modulations with discrete points in their constellation diagram can be constructed similarly. For modulations like CPM or FSK the modeling of the pdf will have to be derived via a different approach.

IV. SIMULATIONS

In this section we evaluate the bit error rate (BER) of a zero-IF receiver combined with the proposed separation algorithm and the convergence characteristics of the separation algorithms. The analysis is carried out by Matlab simulations. To classify the performance of the proposed non-linearities, we compare them with the EASI algorithm [START_REF] Valkama | Advanced methods for i/q imbalance compensation in communication receivers[END_REF], [START_REF] Cardoso | Equivariant adaptive source separation[END_REF] and three conventional non-linearities:

• Mutual Information (MI) non-linearity [START_REF] Amari | A new learning algorithm for blind source separation[END_REF];

ψ MI (y i ) = 3 4 y 11 i + 25 4 y 9 i -14 3 y 7 i -47 4 y 5 i + 29 4 y 3 i , • Cubic non-linearity [START_REF] Cruces | An iterative inversion approach to blind source separation[END_REF]; ψ CU (y i ) = y 3 i and • Hyperbolic non-linearity [START_REF] Girolami | An alternative perspective on adaptive independent component analysis algorithms[END_REF]; ψ H (y i ) = y i -tanh(y i ). We investigate the behavior of these algorithms under the effect of additive white Gaussian noise (AWGN) within baseband.

A Gray coded 16-QAM signal which consists of two 4-PAM signals is used for the simulations. The phase and gain error are assumed to be random variables which are uniformly distributed between ±5 • and ±7.5%, respectively (which is a rather severe IQ mismatch). The BER of each algorithm is the result of 50 Monte Carlo runs over these two random variables. Next, the step size η is 0.01 for all six II algorithms. Therewith, we get (Fig. 3) the values of the slope a, namely, 0.17 for the Cauchy and Gaussian non-linearity and 0.11 for the simplified Cauchy non-linearity. The step size of the EASI algorithm is fixed to 0.001 such that the BER of the EASI algorithm and the II algorithm are almost equal. The batch length L is 40.

Figure 4 shows the resulting BER for typical signal to noise ratios (SNR -E S /N 0 ). The lower bold line is the BER of 16-QAM receiver without IQ-imbalances. Reaching this BER means complete cancellation of the IQ-imbalances. The upper bold line is the BER which is obtained with an inaccurate receiver and without cancellation of the IQ-imbalances. The gap between the two curves becomes more significant when the SNR is high due to the fact that the IQ-imbalances are then more dominant. We obtain almost the same result for all seven algorithms as intended by the choice of the step size η. Only the iterative inversion algorithm with the MI non-linearity is sensitive to very low noise. In this case the BER is even worse than the uncancelled signal which is the result of converging to an incorrect separation matrix. Furthermore, the BER degrades with growing step size η. A second property of a BSS-algorithm is the convergence time. To analyze the convergence behavior we use the performance index from equation [START_REF] Cardoso | Equivariant adaptive source separation[END_REF]. The convergence time increases at low SNR and decreases with growing step size η. Hence, the step size can be used to get a tradeoff between BER behavior and convergence time.

The convergence behavior of the algorithm is shown in Figure 5, where we performed 50 Monte Carlo simulations for a SNR of 12dB, a phase error of ϕ I = 6 • , ϕ Q = 3 • and an amplitude error g I = 1.05, g Q = 0.98. The semi-blind algorithms outperforms the EASI algorithm and the other three non-linearities. Figure 5(a) illustrates the convergence of the II algorithm with the three pdf dependent non-linearities ψ C , ψ G , ψ SC . The initial PI is shown as a dashed line. The zone of convergence can hardly be seen because only around 5 iterations are needed to reach a stable state. Figure 5(b), in contrast, shows the convergence properties of the EASI algorithm and the pdf independent non-linearities ψ MI , ψ CU , ψ H . The convergence of the algorithm based on pdf dependent non-linearities is much better than with the non-dependent non-linearities. This is a major advantage of our approach. Indeed, a short convergence time is needed in burst-mode communications, where the IQ-imbalance has to be corrected from the first symbols. To reduce the computational complexity, the separation matrix may be computed only at the start of the burst, under the assumption of slow IQ-imbalance evolution with time.

V. CONCLUSIONS

In this paper, a new semi-blind source separation algorithm for the cancellation of IQ-imbalances in zero IF-receiver has been introduced. The algorithm is based on an existing iterative inversion blind source separation algorithm, but uses the knowledge of the modulation to significantly enhance its performance.

Compared to the original algorithm, the semi-blind approach performs similarly to the blind one in steady-state. The main advantage of the semi-blind approach is its convergence time, which is very short and makes it suitable in bursty communications. Moreover, similarly to the blind algorithm, no additional bandwidth is necessary which makes the system attractive from the spectral point of view.

This paper considers only IQ-imbalance cancellation for zero-IF receiver but the proposed method is also applicable to low-IF receiver or other receiver architectures based on separate IQ-down-conversion. It is also possible to extend the algorithm to convolutive imbalances caused by the equivalent low pass filter (baseband) transfer function in I-and Q-paths. 
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 2 Fig. 2. Different approximations of pdf dependent non-linearities to separate 4-PAM signals with unity energy.
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 3 Fig. 3. Optimization result for the slope a as a function of step size η.
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 4 Fig. 4. BER comparison of receiver with pdf dependent (ψ G ,ψ C ,ψ SC ) and pdf independent II algorithms (ψ M I ,ψ CU ,ψ H ), with EASI algorithm, without separation (noSep) and without IQ-imbalances (noMix) .
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 5 Fig. 5. Comparison of the mean convergence behavior for a phase error ϕ I = 6 • , ϕ Q = 3 • and a amplitude error g I = 1.05, g Q = 0.98.

TABLE I MAXIMUM

 I AMPLITUDE A OF THE CAUCHY NON-LINEARITY FOR M-PAM

	M	4	8	16	64
	A 9.43 7.46 3.33 0.363
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