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Abstract

The technical realization of modern wireless receivers yields significant interfering IQ-imbalances, which have to becompen-
sated digitally. To cancel these IQ-imbalances, we proposean algorithm using iterative blind source separation (IBSS) as well as
information about the modulation scheme used (hence the term semi-blind). The novelty of our approach lies in the fact that we
match the nonlinearity involved in the IBSS algorithm to theprobability density function of the source signals. Moreover, we use
approximations of the ideal non-linearity to achieve low computational complexity. For severe IQ-mismatch, the algorithm leads
to 0.2 dB insertion loss in an AWGN channel and with 16-QAM modulation.

Index Terms

Semi-blind source separation, IQ-imbalances, zero-IF receiver

I. I NTRODUCTION

IN modern mobile communication systems, the amount of analogcomponents is minimised, in order to reduce both the cost

and the space of transceivers. A well known receiver architecture which follows this principle is the zero-IF receiver [1],

which enables efficient analog front-ends, but leads to non perfect orthogonality and amplitude matching between the In-phase

and Quadrature baseband signals (IQ-mismatch).

The zero-IF receiver, which is also know as direct-conversion or homodyne receiver, converts the bandpass signal directly

to the baseband without using an intermediate frequency (IF). For handling complex modulations, the down conversion inthe

I- and Q-path is done separately with a phase offset of 90◦. Due to tolerances in analog components, there is an amplitude

mismatch as well as a phase error, which culminates in a mixture of the I- and Q-components.

Estimation of the IQ-imbalance can be done with a pilot [2] orin a decision-directed way [3], [4]. Thereupon, the respective

compensation is now based on this estimation. Direct compensation can be done blindly by using signal separation techniques

to separate the I- and Q-signals [5]–[7]. This technique circumvents the use of a pilot tone and the delay due to decisions.

Under the assumption that the I- and Q-signals are statistically independent, Valkama [8], [9] showed how to separate this

mixture with an equivariant adaptive separation via independence (EASI) algorithm [10].

The statistical independence hypothesis does not catch thespecific nature of the signals, i.e. the fact that the signalsare

modulated data. We take this additional knowledge into account and exploit it within the blind source separation (BSS) to

enhance the performance of the EASI algorithm as follows. Toensure statistical independance of the I- and Q-signals, the

IBSS algorithm diagonalizes a correlation matrix between alinear transform and a non-linear transform of the receivedsignal.

By matching this non-linear transform to a specific functionof the pdf of the source, the separation is optimized.

The paper is organized as follows. In Section II, we describethe model which characterizes the IQ-imbalances and the

separation system. In Section III, we propose the pdf-dependent non-linearities and provide a simplification in order to reduce

the computational complexity. In Section IV, we compare theperformance of the proposed non-linearities, three widelyused

non-linearities and the EASI algorithm. In Section V, we draw the main conclusions and perspectives.
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Fig. 1. Block diagram of a zero-IF receiver with imbalances of phase (ϕI , ϕQ) and amplitude (gI , gQ) in I- and Q-path

II. SYSTEM MODEL

In this section, we describe the two main parts of our model. Each part on its own, is well known in the corresponding field

of research.

A. Mixture Model

The received signal

s(t) = Re{d(t) exp(j2πfct)} + n(t) (1)

= Re{d(t)} cos(2πfct) − Im{d(t)} sin(2πfct) + n(t)

is split by the zero-IF receiver into the orthogonal I-componentrI(t) and Q-componentrQ(t) by multiplying with cos(2πfct)

and − sin(2πfct), respectively. In this ideal case, the I-path contains the real part of the transmitted symbolRe{d(t)} =

dI(t), some high frequency (HF) components and noisen(t), the Q-path includes the imaginary partIm{d(t)} = dQ(t), HF

components and also some noisen(t). The HF components are removed by a low pass filterhLP (t) being assumed to be

ideal.

The imperfection of the local oscillators (LO) yields phaseerrors (denoted asϕI for the I-path andϕQ for the Q-path

(Figure 1)) which are assumed to be time invariant. Due to this maladjustment, the Q-component is interfered by the I-signal

and vice versa. Furthermore, due to production imperfections, the mismatches in the circuitry cause amplitude imbalances. We

model these as an imbalance in gaingI andgQ (Figure 1) which is also assumed to be invariant in time. Having defined these

impairments, we are able to compute the disturbed I- and Q-signal by

rI(t) = gI cos(ϕI)dI(t) − gI sin(ϕI)dQ(t)

rQ(t) = −gQ sin(ϕQ)dI(t) + gQ cos(ϕQ)dQ(t). (2)

A common assumption in the literature is thatϕI is zero andϕQ is only the phase difference between I- and Q-path. That

means that the I-path is perfectly synchronised. In this paper, we don’t make this assumption. Simulations in section IVshow

that small synchronisation errors are also compensated.

We define an observation vector#̌r (t) =
[

rI(t) rQ(t)
]T

, a source vector
#̌
d (t) =

[

dI(t) dQ(t)
]T

and a mixing matrix

H =

[

h11 h12

h21 h22

]

=

[

gI cos(ϕI) −gI sin(ϕI)

−gQ sin(ϕQ) gQ cos(ϕQ)

]

. (3)

The mixture model is now given by
#̌r (t) = H

#̌
d (t) + #̌n (t). (4)

The task of the BSS algorithm is to estimate the separation matrix W∗ = H
−1 such that the separated vector#̌y (t) =

[

yI(t) yQ(t)
]T

fulfills #̌y (t) = W∗

#̌r (t) = W∗H
#̌
d (t) =

#̌
d (t) when noise is neglected. WheneverW∗H = I, whereI

is a 2 × 2 identity matrix, the IQ-imbalances are cancelled.



B. Separation System

The iterative inversion (II) [11], [12] is an optimization algorithm with a maximum likelihood (ML) criterion [13] (or

equivalently, the mutual information criterion [14] and the INFOMAX criterion [15]). The purpose of these criteria is to

restore the statistical independence of the source signals. Therewith the data sent over the I- and Q-path have to be statistically

independent.

The optimization of all three criteriaΨ results in the condition for independence:

∂Ψ

∂W

∣

∣

∣

∣

W=W∗

= Rψ( #̌y ) #̌x − W
−T

∣

∣

∣

W=W∗

= 0 (5)

which have to be fulfilled for the separation solutionW∗ whereRψ( #̌y ) #̌x = E{ψ(#̌y )#̌x T } is a correlation matrix andE{•}
denotes the expectation operator. The score function [16]ψ(#̌y ) acts component-wise and is given by

ψ(#̌y ) =
[

−d ln pd̂Q
(yQ)/dyQ −d ln pd̂I

(yI)/dyI

]T

=
[

−p′
d̂Q

(yQ)/pd̂Q
(yQ) −p′

d̂I

(yI)/pd̂I
(yI)

]T

(6)

wherepd̂i
(yi) is the estimated pdf of the source signaldi andp′

d̂i

(yi) is its first derivation.

In [11], equation (5) is solved numerically with a quasi-Newton algorithm. This algorithm approaches the separation solution

W∗ iteratively as

W
(n+1) = W

(n) − µ(n)
(

R
(n)

f( #̌y )g( #̌y )
− I

)

W
(n). (7)

The correlation matrixRf( #̌y )g( #̌y ) with two arbitrary non-linear functions replaces the exactcorrelation matrixRψ( #̌y ) #̌y

becauseψ(#̌y ) is unknown if the separation is completely blind. However, in communication systems the modulation is usually

known in advance and therewith the pdf of the source. This a-priori knowledge can be used to determineψ(#̌y ) (section III)

and there is no need to approximateψ(#̌y ) by f(#̌y ). Following this idea and according to [17], the optimal function g(#̌y )

is simply #̌y .

In [11], two methods are proposed for estimatingR
(n)

ψ( #̌y ) #̌y
. The first one uses a single sample to estimate the correlation. This

requires the least calculation effort and causes no additional delay. But, due to the bad estimation performance, the convergence

behavior is degraded. The second technique averages the correlation by using a long fixed block (assuming stationarity and

ergodicity), which leads to better estimation performance, at the cost of computational complexity and additional delay. In our

approach, the delay and complexity are kept at a minimum by using a sliding window block of sizeL, enabling very small

delay and low complexity by resorting to an adaptive implementation. Moreover, the block sizeL can be adjusted to optimize

performance.

R
(n)

ψ( #̌y ) #̌y
≈ 1

L

L
∑

l=0

ψ(#̌y [nL+ l])#̌y T [nL+ l]. (8)

Finally, the convergence characteristics of the iterativeinversion algorithm (7) are determined by the step size

µ(n) =
η

1 + η
∥

∥

∥R
(n)

f( #̌y )g( #̌y )

∥

∥

∥

(9)

It is defined in a way that prevents the estimation of the separation matrixW from crossing any discontinuities. This way,

the convergence of the algorithm is assured (if0 < η < 1) (convergence to a stationary point, which is not guaranteed to be

a separation solution).
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Fig. 2. Different approximations of pdf dependent non-linearities to separate 4-PAM signals with unity energy.

For analyzing the quality of separation, we use the performance index (PI) [18]:

PI(n) =

N
∑

i=1





N
∑

j=1

|G(n)
ij |2

max
l
{|G(n)

il |2}
− 1





. . .+

N
∑

j=1





N
∑

i=1

|G(n)
ij |2

max
l
{|G(n)

lj |2}
− 1



 (10)

whereasG = WH is the transfer function of the whole system. The performance index provides the quadradic distance

between the transfer function and closest permutation of the unity matrix.

III. N ON-LINEARITIES

In this section we propose three non-linearitiesψ(#̌y ) that depend on the sources pdfs (like suggested by equation (6)),

leading to a semi-blind approach (i.e. using more a-priori information). To obtain the semi-blind source separation wehave

to specify the pdf-dependent non-linearities suited to digital communication signals. Therefore we assume that the widespread

M2 quadrature amplitude modulation (QAM) is used, which corresponds to the use ofM pulse amplitude modulation (PAM)

in I- and Q-path. The discrete pdf of a PAM signaldi is described by a sum of shifted and scaled Dirac impulses :

pdi
(yi) =

1

M

M
∑

m=1

δ (yi − k(2m−M − 1)) , (11)

with M being the number of different amplitudes and

k =

√

√

√

√

√

M/2
M/2
∏

n=1
2n− 1

(12)

as the half distance between two adjacent Dirac impulses. With this definition, unit variance of the source signals is guaranteed.

Thus, it is not necessary to rescale the separated signals. The investigations of (6) and (11) show that the denominator of ψ(yi)

is zero for most of the values ofyi. To avoid the non-defined expressions, the Dirac function isapproximated by a Gaussian

or a Cauchy distribution.



A. Gaussian approximation based non-linearity

The limit of a Gaussian distribution for the variance at zerois the Dirac function. Fora =
√

2σ the pdf of theM -PAM

source is approximated by

pdi
(yi) ≈

1

a
√
π

M
∑

m=1

exp

(

−yi − k(2m−M − 1)

a2

)

. (13)

With this approximation, we obtain a non-linearity which isdefined for anyyi. Namely,

ψG(yi) =

M
∑

m=1

2(yi−k(2m−M−1))
a2 exp

(

− (yi−k(2m−M−1))2

a2

)

M
∑

m=1
exp

(

− (yi−k(2m−M−1))2

a2

)

. (14)

Figure 2(a) shows the Gaussian non-linearity for differenta. For decreasinga the slope of the non-linearity increases and

vice versa. Steep non-linearities lead to convergence problems, on the other hand less steep non-linearities denote a relatively

largea which is equivalent to a poorly approximated Dirac function. An optimized slope can be determined by red investigating

the PI, depending on the parametera andη, with simulations. The optimization result is shown in Figure 3.

B. Cauchy approximation based non-linearity

Alike the Gaussian distribution, the limit of the Cauchy distribution for a going to zero is the Dirac function, too. With the

Cauchy distribution we get an approximated pdf as follows:

pdi
(yi) ≈

1

π

M
∑

m=1

a

a2 + (yi − k(2m−M − 1))2
. (15)

The resulting approximation is used to calculate the Cauchynon-linearity:

ψC(yi) = −

M
∑

m=1

2(yi−k(2m−M−1))
(a2+(yi−k(2m−M−1))2)2

M
∑

m=1

1
a2+(yi−k(2m−M−1))2

. (16)

The Cauchy non-linearity is depicted in Figure 2(b). As for to the Gaussian non-linearity, the slope is optimized by computer

simulations and the resulting optimizeda-η-ratio is shown in Figure 3.

C. Simplified Cauchy non-linearity

The two proposed non-linearities are precise but require a large computational effort. To alleviate this, we propose a sinusoidal

approximation of the Cauchy non-linearity (indeed, a linear approximation of the Gaussian non-linearity would lead only to

decorrelation and not statistical independence). The period of the sine wave is determined by the distance between two PAM

symbols. A whole oscillation has the length of2k with zeros at the positions of the PAM symbols. The amplitudeis fitted

to the Cauchy non-linearity witha = 0.1 which is given in Table I for different constellations. Due to the importance of the

correct slope, a scaling factora′ = −A/10a corresponding to the other non-linearities is introduced.Thereby the amplitudes

of the Cauchy and the simplified Cauchy non-linearity match for a = 0.1. For the outer areas, linear functions are employed.

We finally obtain the simplified Cauchy non-linearity expressed by:

TABLE I

MAXIMUM AMPLITUDE A OF THE CAUCHY NON-LINEARITY FOR M-PAM

M 4 8 16 64

A 9.43 7.46 3.33 0.363
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ψSC(yi) =



















a′

2 (yi + k(M − 0.5) + 2) yi < −k(M − 0.5)

a′ sin
(

π
d yi

)

otherwise

a′

2 (yi − k(M − 0.5)− 2) yi > k(M − 0.5)

(17)

by scaling and shifting the linear functions. As for the previous non-linearities, the scalinga is optimized by simulations

(Figure 3).

Non-linearities for modulations with discrete points in their constellation diagram can be constructed similarly. For modu-

lations like CPM or FSK the modeling of the pdf will have to be derived via a different approach.

IV. SIMULATIONS

In this section we evaluate the bit error rate (BER) of a zero-IF receiver combined with the proposed separation algorithm

and the convergence characteristics of the separation algorithms. The analysis is carried out by Matlab simulations. To classify

the performance of the proposed non-linearities, we compare them with the EASI algorithm [6], [10] and three conventional

non-linearities:

• Mutual Information (MI) non-linearity [19];

ψMI(yi) = 3
4y

11
i + 25

4 y
9
i − 14

3 y
7
i − 47

4 y
5
i + 29

4 y
3
i ,

• Cubic non-linearity [11];ψCU (yi) = y3
i and

• Hyperbolic non-linearity [20];ψH(yi) = yi − tanh(yi).

We investigate the behavior of these algorithms under the effect of additive white Gaussian noise (AWGN) within baseband.

A Gray coded 16-QAM signal which consists of two 4-PAM signals is used for the simulations. The phase and gain error

are assumed to be random variables which are uniformly distributed between±5◦and±7.5%, respectively (which is a rather

severe IQ mismatch). The BER of each algorithm is the result of 50 Monte Carlo runs over these two random variables. Next,

the step sizeη is 0.01 for all six II algorithms. Therewith, we get (Fig. 3) the values of the slope a, namely,0.17 for the

Cauchy and Gaussian non-linearity and0.11 for the simplified Cauchy non-linearity. The step size of theEASI algorithm is

fixed to 0.001 such that the BER of the EASI algorithm and theII algorithm are almost equal. The batch lengthL is 40.

Figure 4 shows the resulting BER for typical signal to noise ratios (SNR -ES/N0). The lower bold line is the BER of

16-QAM receiver without IQ-imbalances. Reaching this BER means complete cancellation of the IQ-imbalances. The upper

bold line is the BER which is obtained with an inaccurate receiver and without cancellation of the IQ-imbalances. The gap

between the two curves becomes more significant when the SNR is high due to the fact that the IQ-imbalances are then more

dominant. We obtain almost the same result for all seven algorithms as intended by the choice of the step sizeη. Only the

iterative inversion algorithm with the MI non-linearity issensitive to very low noise. In this case the BER is even worsethan

the uncancelled signal which is the result of converging to an incorrect separation matrix. Furthermore, the BER degrades with

growing step sizeη.
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A second property of a BSS-algorithm is the convergence time. To analyze the convergence behavior we use the performance

index from equation (10). The convergence time increases atlow SNR and decreases with growing step sizeη. Hence, the

step size can be used to get a tradeoff between BER behavior and convergence time.

The convergence behavior of the algorithm is shown in Figure5, where we performed 50 Monte Carlo simulations for a

SNR of 12dB, a phase error ofϕI = 6◦, ϕQ = 3◦and an amplitude errorgI = 1.05, gQ = 0.98.

The semi-blind algorithms outperforms the EASI algorithm and the other three non-linearities. Figure 5(a) illustrates the

convergence of theII algorithm with the three pdf dependent non-linearitiesψC , ψG, ψSC . The initial PI is shown as a dashed

line. The zone of convergence can hardly be seen because onlyaround 5 iterations are needed to reach a stable state. Figure

5(b), in contrast, shows the convergence properties of the EASI algorithm and the pdf independent non-linearitiesψMI , ψCU ,

ψH . The convergence of the algorithm based on pdf dependent non-linearities is much better than with the non-dependent

non-linearities. This is a major advantage of our approach.

Indeed, a short convergence time is needed in burst-mode communications, where the IQ-imbalance has to be corrected

from the first symbols. To reduce the computational complexity, the separation matrix may be computed only at the start of

the burst, under the assumption of slow IQ-imbalance evolution with time.

V. CONCLUSIONS

In this paper, a new semi-blind source separation algorithmfor the cancellation of IQ-imbalances in zero IF-receiver has been

introduced. The algorithm is based on an existing iterativeinversion blind source separation algorithm, but uses the knowledge

of the modulation to significantly enhance its performance.

Compared to the original algorithm, the semi-blind approach performs similarly to the blind one in steady-state. The

main advantage of the semi-blind approach is its convergence time, which is very short and makes it suitable in bursty

communications. Moreover, similarly to the blind algorithm, no additional bandwidth is necessary which makes the system

attractive from the spectral point of view.

This paper considers only IQ-imbalance cancellation for zero-IF receiver but the proposed method is also applicable tolow-

IF receiver or other receiver architectures based on separate IQ-down-conversion. It is also possible to extend the algorithm to

convolutive imbalances caused by the equivalent low pass filter (baseband) transfer function in I- and Q-paths.
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