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Semi-Blind Cancellation of 1Q-Imbalances

Matthias HesseStudent Member, IEEBVIarko Mailand,Student Member, IEEBHans-Joachim Jentschel,
Senior Member, IEEELuc DeneireMember, IEEEand Jérome Lebrun

Abstract

The technical realization of modern wireless receivertdgisignificant interfering 1Q-imbalances, which have tocbenpen-
sated digitally. To cancel these IQ-imbalances, we propwosalgorithm using iterative blind source separation (IB&Swell as
information about the modulation scheme used (hence the $emi-blind). The novelty of our approach lies in the factttive
match the nonlinearity involved in the IBSS algorithm to fitebability density function of the source signals. Moreowe use
approximations of the ideal non-linearity to achieve lownpatational complexity. For severe 1Q-mismatch, the atgor leads
to 0.2 dB insertion loss in an AWGN channel and with 16-QAM miagion.

Index Terms

Semi-blind source separation, IQ-imbalances, zero-IEivec

|. INTRODUCTION

N modern mobile communication systems, the amount of anaagponents is minimised, in order to reduce both the cost

I and the space of transceivers. A well known receiver arctite which follows this principle is the zero-IF receivéy,[
which enables efficient analog front-ends, but leads to resfept orthogonality and amplitude matching between thpHase
and Quadrature baseband signals (IQ-mismatch).

The zero-IF receiver, which is also know as direct-conegrsir homodyne receiver, converts the bandpass signaltlglirec
to the baseband without using an intermediate frequenqgy Fér handling complex modulations, the down conversiothi
I- and Q-path is done separately with a phase offset 6f 8le to tolerances in analog components, there is an amelitu
mismatch as well as a phase error, which culminates in a nedtithe |- and Q-components.

Estimation of the IQ-imbalance can be done with a pilot [2]roa decision-directed way [3], [4]. Thereupon, the respect
compensation is now based on this estimation. Direct cosgi@mn can be done blindly by using signal separation tegles
to separate the |- and Q-signals [5]-[7]. This techniquewrvents the use of a pilot tone and the delay due to decisions
Under the assumption that the I- and Q-signals are statilstindependent, Valkama [8], [9] showed how to separatg th
mixture with an equivariant adaptive separation via indej@mce (EASI) algorithm [10].

The statistical independence hypothesis does not catcbpibeific nature of the signals, i.e. the fact that the sigaats
modulated data. We take this additional knowledge into act@nd exploit it within the blind source separation (BS&®) t
enhance the performance of the EASI algorithm as followsefisure statistical independance of the I- and Q-signaés, th
IBSS algorithm diagonalizes a correlation matrix betwedinear transform and a non-linear transform of the recesigdal.

By matching this non-linear transform to a specific functafrthe pdf of the source, the separation is optimized.

The paper is organized as follows. In Sect@n II, we desctitee model which characterizes the IQ-imbalances and the
separation system. In Secti@ [1l, we propose the pdf-dégeinon-linearities and provide a simplification in orderéduce
the computational complexity. In Secti IV, we compare pleeformance of the proposed non-linearities, three widskyd
non-linearities and the EASI algorithm. In SectiEh V, wewdithe main conclusions and perspectives.
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Fig. 1. Block diagram of a zero-IF receiver with imbalancésgplaase ¢, ¢g) and amplitude 7, go) in I- and Q-path

Il. SYSTEM MODEL

In this section, we describe the two main parts of our modathEpart on its own, is well known in the corresponding field
of research.

A. Mixture Model

The received signal

s(t) = Re{d(t) exp(j2m fct)} + n(t) 1)
= Re{d(t)} cos(2m fct) — Im{d(t)} sin(27 f.t) + n(t)

is split by the zero-IF receiver into the orthogonal I-comentr;(t) and Q-componentg (t) by multiplying with cos(27 f.t)
and —sin(2w f.t), respectively. In this ideal case, the I-path contains ted part of the transmitted symb®e{d(t)} =
dr(t), some high frequency (HF) components and neisg, the Q-path includes the imaginary pai{d(¢)} = dg(t), HF
components and also some noisg). The HF components are removed by a low pass filtep(t) being assumed to be
ideal.

The imperfection of the local oscillators (LO) yields phaseors (denoted ag; for the I-path andpg for the Q-path
(FigureD.)) which are assumed to be time invariant. Due t® th@ladjustment, the Q-component is interfered by thenadig
and vice versa. Furthermore, due to production imperfastithe mismatches in the circuitry cause amplitude imlzaianwe
model these as an imbalance in gainand g¢ (Figureﬂ.) which is also assumed to be invariant in time. Hgndefined these
impairments, we are able to compute the disturbed I- andg@asiby

r1(t) = gr cos(pr)dr(t) — grsin(pr)de(t)
rQ(t) = —gq sin(pq)di(t) + gq cos(pq)dq(t). )

A common assumption in the literature is that is zero andp is only the phase difference between I- and Q-path. That
means that the I-path is perfectly synchronised. In thisepape don’t make this assumption. Simulations in sec@rslh‘ojw
that small synchronisation errors are also compensated.

~ T ~ T
We define an observation vectd (t) = {T;(t) rQ(t)} , a source vecto% (t) = [d;(t) dQ(t)} and a mixing matrix

H— hiv M| | g CO.S(W) —grsin(er) . 3)
hor  haa —gqsin(pq) g cos(vq)
The mixture model is now given by 3
# ) =HT )+ % 1) @)

The task of the BSS algorithm is to estimate the separatiom>m®, = H~! such that the separated vect@ﬁf (t) =
7 . 8 c -
[yl(t) yQ(t)} fulfills 7% (t) = N (t) = W*H#d (t) = #d (t) when noise is neglected. Whenewaf,. H = I, wherel
is a2 x 2 identity matrix, the IQ-imbalances are cancelled.



B. Separation System

The iterative inversionll) [11], [12] is an optimization algorithm with a maximum lilkeood (ML) criterion [13] (or
equivalently, the mutual information criterion [14] andethtNFOMAX criterion [15]). The purpose of these criteria 3 t
restore the statistical independence of the source sighlaésewith the data sent over the I- and Q-path have to biststatly
independent.

The optimization of all three criteri& results in the condition for independence:

ov _T‘

W |y, e E ~W =0 )

W=W,
which have to be fulfilled for the separation soluti®i. whereR, ## = E{w(% )%T} is a correlation matrix ané{e}
denotes the expectation operator. The score func'uonz[)lﬁ acts component-wise and is given by

. T
w() = {—dlnpdb (yQ)/dyq —dInpg, (yz)/dyz}
= [—ng Q) /P, (we) —p (ur)/py, (yf)]T (6)

wherep;. (y;) is the estimated pdf of the source S|g|dalandp ( ;) is its first derivation.
In [11], equation Kb) is solved numerically with a quasi- Newalgorlthm This algorithm approaches the separatitutiso
W, iteratively as
(n+1) — W _ ) (g (n)
W =W (Rfﬁﬁ )o(H) I) W )

The correlation matrimj,(#)g(ﬁ) with two arbitrary non-linear functions replaces the exeatrelation matriwa(;%v)qsgv
becausep(%v) is unknown if the separation is completely blind. Howevergdommunication systems the modulation is usually
known in advance and therewith the pdf of the source. This@iknowledge can be used to determrme% (sectlonm)
and there is no need to approxmdt(e% ) by f( 7% ). Following this idea and according to [17], the optimal ftion 9(7% )

is simply 7% .

In [11], two methods are proposed for estimatﬁhg(%) % The first one uses a single sample to estimate the corneldtas
requires the least calculation effort and causes no additidelay. But, due to the bad estimation performance, theezgence
behavior is degraded. The second technique averages tredation by using a long fixed block (assuming stationaritg a
ergodicity), which leads to better estimation performamtehe cost of computational complexity and additionabgleln our
approach, the delay and complexity are kept at a minimum lnygus sliding window block of sizd., enabling very small
delay and low complexity by resorting to an adaptive implatagon. Moreover, the block sizé can be adjusted to optimize
performance.

(n)
Ry 4~ Zz/J ‘L +1)% Tl +1). (8)
Finally, the convergence characteristics of the iteraitiversion algorithm |Z|7) are determined by the step size

) = : ©)
L+n HRfU% o %)H
It is defined in a way that prevents the estimation of the sdjmar matrix W from crossing any discontinuities. This way,
the convergence of the algorithm is assured)(i n < 1) (convergence to a stationary point, which is not guarahteebe

a separation solution).
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Fig. 2. Different approximations of pdf dependent non-dirnies to separate 4-PAM signals with unity energy.
For analyzing the quality of separation, we use the perfaceandex (PI) [18]:
N N | G(_r_l)|2
PIO =Y (Y
)12
i=1 \ j=1 mlax{|Gil 2}
N N | am 2
j=1 \i=1 mlax{|sz 1°}

whereasG = WH is the transfer function of the whole system. The performeaimclex provides the quadradic distance
between the transfer function and closest permutation efuthity matrix.

IIl. NON-LINEARITIES

In this section we propose three non-lineariti,@(s%v) that depend on the sources pdfs (like suggested by equﬁ)mn (
leading to a semi-blind approach (i.e. using more a-prioforimation). To obtain the semi-blind source separationhaee
to specify the pdf-dependent non-linearities suited tataigommunication signals. Therefore we assume that thiespread
M? quadrature amplitude modulation (QAM) is used, which cgpoads to the use df/ pulse amplitude modulation (PAM)
in I- and Q-path. The discrete pdf of a PAM sign&lis described by a sum of shifted and scaled Dirac impulses :

M
1
pa,(yi) = Hﬂ;ﬂm—k(?m—M— 1)), (11)
with M being the number of different amplitudes and

(12)

as the half distance between two adjacent Dirac impulseth #Mis definition, unit variance of the source signals isrgngeed.
Thus, it is not necessary to rescale the separated sigri@snvestigations oﬂG) ancﬂll) show that the denominéftat(g; )
is zero for most of the values af. To avoid the non-defined expressions, the Dirac functicapisroximated by a Gaussian

or a Cauchy distribution.



A. Gaussian approximation based non-linearity

The limit of a Gaussian distribution for the variance at zardhe Dirac function. Fon = v/2¢ the pdf of theM-PAM
source is approximated by

M
pa (i) ~ 3 exp (_ yi — k(2m — M — 1)) ' (13)

With this approximation, we obtain a non-linearity whichdsfined for anyy;. Namely,

$° 2kEmoMo1) (o (- Guztemorn?)
dJG(Uz) ==l i; - . (14)
S exp (_W;Mw)
m=1

Figure ) shows the Gaussian non-linearity for differenFor decreasing the slope of the non-linearity increases and
vice versa. Steep non-linearities lead to convergencelgma) on the other hand less steep non-linearities denakatvely
largea which is equivalent to a poorly approximated Dirac functidn optimized slope can be determined by red investigating
the PI, depending on the parameteandr, with simulations. The optimization result is shown in an@

B. Cauchy approximation based non-linearity

Alike the Gaussian distribution, the limit of the Cauchytdisution for a going to zero is the Dirac function, too. With the
Cauchy distribution we get an approximated pdf as follows:

M
a

1
P, (yi) = — mz:; a? + (yi — k(2m — M — 1))

(15)

The resulting approximation is used to calculate the Caurylinearity:

M
2(y;—k(2m—M—1))
m{:l (a?+(yi—k(2m—M—1))?)?

Vo(y) = —=; : (16)
mzzzl a2+(yi—k(21m—M—l))2

The Cauchy non-linearity is depicted in Fig(b). As foithhe Gaussian non-linearity, the slope is optimized by aserp
simulations and the resulting optimizeeh-ratio is shown in Figur(ﬂS.

C. Simplified Cauchy non-linearity

The two proposed non-linearities are precise but requiaegelcomputational effort. To alleviate this, we proposmasoidal
approximation of the Cauchy non-linearity (indeed, a Imapproximation of the Gaussian non-linearity would leadlydo
decorrelation and not statistical independence). Theodesf the sine wave is determined by the distance between At P
symbols. A whole oscillation has the length 2% with zeros at the positions of the PAM symbols. The amplitigdétted
to the Cauchy non-linearity with = 0.1 which is given in Tableﬂl for different constellations. Dwethe importance of the
correct slope, a scaling factaf = —A/10a corresponding to the other non-linearities is introducktereby the amplitudes
of the Cauchy and the simplified Cauchy non-linearity matwhaf= 0.1. For the outer areas, linear functions are employed.
We finally obtain the simplified Cauchy non-linearity exmed by:

TABLE |
MAXIMUM AMPLITUDE A OF THE CAUCHY NON-LINEARITY FOR M-PAM

M 4 8 16 64
A 943 746 3.33 0.363
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Fig. 3. Optimization result for the slope as a function of step size.

%y + K(M —0.5)+2) i < —k(M —0.5)
Vsc(yi) = { a sin (Sy;) otherwise (17)
9y — k(M —0.5)—2) y; > k(M — 0.5)

by scaling and shifting the linear functions. As for the poexs non-linearities, the scaling is optimized by simulations
(Figure[d).

Non-linearities for modulations with discrete points ireithconstellation diagram can be constructed similarly. fRodu-
lations like CPM or FSK the modeling of the pdf will have to beriged via a different approach.

IV. SIMULATIONS

In this section we evaluate the bit error rate (BER) of a zéroeceiver combined with the proposed separation algorith
and the convergence characteristics of the separationitalgs. The analysis is carried out by Matlab simulatiors classify
the performance of the proposed non-linearities, we coenffegm with the EASI algorithm [6], [10] and three conventibn
non-linearities:

o Mutual Information (MI) non-linearity [19];

bur(yi) = Juit + 2y — Sl — TP+ Ryl

« Cubic non-linearity [11]3cu (yi) = y3 and

« Hyperbolic non-linearity [20]% 1 (y;) = y; — tanh(y;).

We investigate the behavior of these algorithms under tfeetedf additive white Gaussian noise (AWGN) within basathan
A Gray coded 16-QAM signal which consists of two 4-PAM signa used for the simulations. The phase and gain error
are assumed to be random variables which are uniformlyildiséd betweent5°and +£7.5%, respectively (which is a rather
severe 1Q mismatch). The BER of each algorithm is the reguis0dVlonte Carlo runs over these two random variables. Next,
the step size) is 0.01 for all six Il algorithms. Therewith, we get (Fi@ 3) the values of the slap namely,0.17 for the
Cauchy and Gaussian non-linearity aind1 for the simplified Cauchy non-linearity. The step size of E¥SI algorithm is
fixed t0 0.001 such that the BER of the EASI algorithm and thealgorithm are almost equal. The batch lendgtls 40.

Figure|}1 shows the resulting BER for typical signal to noiggos (SNR -Es/Ny). The lower bold line is the BER of
16-QAM receiver without IQ-imbalances. Reaching this BERams complete cancellation of the 1Q-imbalances. The upper
bold line is the BER which is obtained with an inaccurate rnesreand without cancellation of the IQ-imbalances. The gap
between the two curves becomes more significant when the SN due to the fact that the IQ-imbalances are then more
dominant. We obtain almost the same result for all sevenridiigos as intended by the choice of the step sjz®nly the
iterative inversion algorithm with the MI non-linearity g&nsitive to very low noise. In this case the BER is even wtitaa
the uncancelled signal which is the result of convergingitanaorrect separation matrix. Furthermore, the BER deggadth
growing step size.
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A second property of a BSS-algorithm is the convergence.tifm@nalyze the convergence behavior we use the performance
index from equation@O). The convergence time increasdsvatSNR and decreases with growing step sizeHence, the
step size can be used to get a tradeoff between BER behadacamvergence time.

The convergence behavior of the algorithm is shown in Fi@rwhere we performed 50 Monte Carlo simulations for a
SNR of 12dB, a phase error gf; = 6°, o = 3°and an amplitude erray; = 1.05, gg = 0.98.

The semi-blind algorithms outperforms the EASI algorithndahe other three non-linearities. Fig(a) illustsatiee
convergence of th# algorithm with the three pdf dependent non-linearities ¢, ¥sc. The initial Pl is shown as a dashed
line. The zone of convergence can hardly be seen becausamnind 5 iterations are needed to reach a stable state.eFigur
@, in contrast, shows the convergence properties of &®l Elgorithm and the pdf independent non-linearities;, vcu,

v g. The convergence of the algorithm based on pdf dependentimearities is much better than with the non-dependent
non-linearities. This is a major advantage of our approach.

Indeed, a short convergence time is needed in burst-modenoaiations, where the IQ-imbalance has to be corrected
from the first symbols. To reduce the computational compjexie separation matrix may be computed only at the start of
the burst, under the assumption of slow 1Q-imbalance eimiuvith time.

V. CONCLUSIONS

In this paper, a new semi-blind source separation algorftirthe cancellation of IQ-imbalances in zero IF-receivas been
introduced. The algorithm is based on an existing iterdtiversion blind source separation algorithm, but uses titmvedge
of the modulation to significantly enhance its performance.

Compared to the original algorithm, the semi-blind applhogerforms similarly to the blind one in steady-state. The
main advantage of the semi-blind approach is its convemgéinee, which is very short and makes it suitable in bursty
communications. Moreover, similarly to the blind algonthno additional bandwidth is necessary which makes theesyst
attractive from the spectral point of view.

This paper considers only IQ-imbalance cancellation feo#E receiver but the proposed method is also applicablevte
IF receiver or other receiver architectures based on stpHlpadown-conversion. It is also possible to extend thewtigm to
convolutive imbalances caused by the equivalent low pass {ibaseband) transfer function in I- and Q-paths.
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