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Semi-Blind Cancellation of 1Q-Imbalances

Matthias HesseStudent Member, IEEBViarko Mailand,Student Member, IEEBHans-Joachim Jentschel,
Senior Member, IEEELuc DeneireMember, IEEEand Jérdbme Lebrun

Abstract—The technical realization of modern wireless re- COS(27 /el + 1) 7
ceivers yields significant interfering 1Q-imbalances, whth have }
to be compensated digitally. To cancel these IQ-imbalancesve
propose an algorithm using iterative blind source separatn
(IBSS) as well as information about the modulation scheme esl  s(¢)
(hence the term semi-blind). The novelty of our approach lis
in the fact that we match the nonlinearity involved in the IBSS 9Q
algorithm to the probability density function of the source signals.
Moreover, we use approximations of the ideal non-linearityto hrp(t) “%’A/D o (1) _(;)
achieve low computational complexity. For severe 1Q-mismzh, | Q Yo
the algorithm leads to 0.2 dB insertion loss in an AWGN channe _ sin(27 fot + ¢0)
and with 16-QAM modulation.

Index Terms— Semi-blind source separation, 1Q-imbalances,
zero-IF receiver
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Fig. 1. Block diagram of a zero-IF receiver with imbalancespbase
(1, @) and amplitude 7, gg) in I- and Q-path

|. INTRODUCTION are modulated data. We take this additional knowledge into

N modern mobile communication systems, the amount gtcount and exploit it within the blind source separatioS $3

analog components is minimised, in order to reduce bofh enhance the performance of the EASI algorithm as follows.
the cost and the space of transceivers. A well known receivey ensure statistical independance of the I- and Q-sigtias,
architecture which follows this principle is the zero-I€e&/er |BSS algorithm diagonalizes a correlation matrix between a
[1], which enables efficient analog front-ends, but leadsdo |inear transform and a non-linear transform of the received
perfect orthogonality and amplitude matching between the Isignal. By matching this non-linear transform to a specific
phase and Quadrature baseband signals (IQ-mismatch). function of the pdf of the source, the separation is optichize

The zero-IF receiver, which is also know as direct- The paper is organized as follows. In Section II, we describe
conversion or homodyne receiver, converts the bandpass $te model which characterizes the 1Q-imbalances and the sep
nal directly to the baseband without USing an intermedia&ation System_ In Section Ill, we propose the pdf-dependen
frequency (IF). For handling complex modulations, the dowion-linearities and provide a simplification in order to uee
conversion in the |- and Q-path is done separately with ag@ohagfe computational complexity. In Section IV, we compare the
offset of 90. Due to tolerances in analog components, thefyrformance of the proposed non-linearities, three widshd
is an amplitude mismatch as well as a phase error, whig@n-linearities and the EASI algorithm. In Section V, wewlra
culminates in a mixture of the I- and Q—Components. the main conclusions and perspectives_

Estimation of the 1Q-imbalance can be done with a pilot
[2] or in a decision-directed way [3], [4]. Thereupon, the
respective compensation is now based on this estimation.
Direct compensation can be done blindly by using signal In this section, we describe the two main parts of our model.
separation techniques to separate the I- and Q-signals [&ach part on its own, is well known in the corresponding field
[7]. This technique circumvents the use of a pilot tone araf research.
the delay due to decisions. Under the assumption that the
I- and Q-signals are statistically independent, Valkamp [8 .
[9] showed how to separate this mixture with an equivariaﬁ’r Mixture Model
adaptive separation via independence (EASI) algorithnj.[10 The received signal

The statistical independence hypothesis does not catch tr]s 1) = Re{d(t) exp(j2r f.)} + n(t) (1)

specific nature of the signals, i.e. the fact that the signalS
= Re{d(t)} cos(2m fot) — Im{d(¢t)} sin(27 f.t) + n(t)
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are removed by a low pass filtér, p(¢) being assumed to bewherep ;. (y;) is the estimated pdf of the source sigaaland
ideal. p; (yi) s its first derivation.

The imperfection of the local oscillators (LO) yields phase Yin [11], equation (5) is solved numerically with a quasi-

errors (denoted ag; for the I-path andpq for the Q-path Newton algorithm. This algorithm approaches the separatio
(Figure 1)) which are assumed to be time invariant. Due ® thip|ution W, iteratively as

maladjustment, the Q-component is interfered by the Iaign

and vice versa. Furthermore, due to production imperfastio wth —wr) ) (R(f?ﬁ)q@») - I) wm_ (@)
the mismatches in the circuitry cause amplitude imbalance?1 . . . .

We model these as an imbalance in gairand g (Figure 1) 1€ correlation matrdx® () with two arbitrary non-
which is also assumed to be invariant in time. Having defin gear functions replaces the exact correlation maRi y)y

these impairments, we are able to compute the disturbe F_causew(y) IS unknown .'f the separation s compIe:ter_
and Q-signal by ind. However, in communication systems the modulation is

usually known in advance and therewith the pdf of the source.
ri(t) = gr cos(er)dr(t) — grsin(er)do(t) This a-priori knowledge can be used to determinéy)
ro(t) = —gg sin(wg)dr(t) + gg cos(pg)do(t).  (2) (se_<>:ti0n ) gnd ther_e is no need to approximatey) by
f(¥). Following this idea and according to [17], the optimal
A common assumption in the literature is thgtis zero and fynction g(7) is simply 7.

©q is only the phase (_j|fference between I-_ and Q-pgth. ThatIn [11], two methods are proposed for estimatﬁgb_, N
means that the I-path is perfectly synchronised. In thisepap. . : . (V)Y
The first one uses a single sample to estimate the correla-

we don't make this assumption. Simulations in section IY . : .
o ion. This requires the least calculation effort and causes
show that small synchronisation errors are also compehsate

) . N T+ additional delay. But, due to the bad estimation perforreanc
We define an observation vectaf(t) = [ri(t) 1o(*)]", the convergence behavior is degraded. The second technigue

- T - ; . . . .
a source vectorl (t) = [d;(t) dg(t)]" and a mixing matrix averages the correlation by using a long fixed block (assgmin
. stationarity and ergodicity), which leads to better estioma
H— hi11 hiz| | greos(pr)  —grsin(er) 3) ; h ¢ onal loxi q
= lhor hoa| = |—gosin(pg) gocos(eq) | performance, at the cost of computational complexity an
. _ _ additional delay. In our approach, the delay and complexity
The mixture model is now given by are kept at a minimum by using a sliding window block of size
N — L, enabling very small delay and low complexity by resorting
t)=Hd(t t). 4
() (1) +7(t) @) to an adaptive implementation. Moreover, the block dizean
The task of the BSS algorithm is to estimate the separatiba adjusted to optimize performance.
matrix W, = H~! such that the separated vectgi(t) =

)

T - — — - L
lyr(t) yo(t)]” fulfils ¥(t) = W,7(t) = W.Hd(t) = (n) 1 N o
d (t) when noise is neglected. Wheneaf,H = I, wherel Rimv® T lzo:di(y (LAWY InL 41 (8)

is a2 x 2 identity matrix, the IQ-imbalances are cancelled.
Finally, the convergence characteristics of the iterative

version algorithm (7) are determined by the step size
B. Separation System

The iterative inversionIl) [11], [12] is an optimization a 1+77HR(n)_’ R ‘ ©)
algorithm with a maximum likelihood (ML) criterion [13] (or FF)e(¥)
equivalently, the mutual information criterion [14] andeth It is defined in a way that prevents the estimation of the
INFOMAX criterion [15]). The purpose of these criteria isseparation matri®dW from crossing any discontinuities. This
to restore the statistical independence of the source Isignavay, the convergence of the algorithm is assured (f < 1)
Therewith the data sent over the |- and Q-path have to [ronvergence to a stationary point, which is not guaranteed

statistically independent. be a separation solution).
The optimization of all three criterial results in the  For analyzing the quality of separation, we use the perfor-
condition for independence: mance index (PI) [18]:
ov 7 N [N (n) |2
W . Rypz - W yow, =0 ) Pro =S (S S N

max{|Gy;”2}

which have to be fulfilled for the separation solutid . =
where R, nz = E{¢(7)ZT} is a correlation matrix and N [N G2
Y(Y) X R | iJ |
E{e} denotes the expectation operator. The score function [16] oot Z Z — ey (10)
¥ (%) acts component-wise and is given by =1 \i=1 max{|Gy;7 |2}

whereasG = WH is the transfer function of the whole sys-
tem. The performance index provides the quadradic distance

©6) beftween the transfer function and closest permutation ®f th
unity matrix.

V() = [—dlnng(yQ)/dyQ —dlnpd}(yz)/dyzr

= [P 00)/Pa Q) =¥ /g 0)]
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Fig. 2. Different approximations of pdf dependent non-dinies to separate 4-PAM signals with unity energy.
1. N ON-LINEARITIES
In this section we propose three non-linearitigSy) that % 2(yi—k@m-M-1)) (_(yifk(Qm—I\lfl))z)
depend on the sources pdfs (like suggested by equation (6 ),( ) = e a? P a?
leading to a semi-blind approach (i.e. using more a-prioHi¢\¥i/ = M (e k(2m—M—1))2
information). To obtain the semi-blind source separatian w Zl €xp (——7 oZ )
have to specify the pdf-dependent non-linearities suited t "= (14)

digital communication signals. Therefore we assume that th Figure 2(a) shows the Gaussian non-linearity for different
widespreadM* quadrature amplitude modulation (QAM) isq. For decreasing the slope of the non-linearity increases
used, which corresponds to the use /af pulse amplitude and vice versa. Steep non-linearities lead to convergence
modulation (PAM) in I- and Q-path. The discrete pdf of @roblems, on the other hand less steep non-linearitiesteleno
PAM signal d; is described by a sum of shifted and scalegb|atively largex which is equivalent to a poorly approximated
Dirac impulses : Dirac function. An optimized slope can be determined by red
investigating the PI, depending on the parametandn, with

M
N ) simulations. The optimization result is shown in Figure 3.
pa(y) = 57 D 0y —k@m—M ~1)),  (11) P g
m=1

with M being the number of different amplitudes and B. Cauchy approximation based non-linearity
Alike the Gaussian distribution, the limit of the Cauchy
(12) distribution for a going to zero is the Dirac function, too.
With the Cauchy distribution we get an approximated pdf as

follows:
as the half distance between two adjacent Dirac impulses. 1 M a
With this definition, unit variance of the source signals is pa, (i) = = Y — 5 (15)
o v a?+ (y; — k(2m — M — 1))
guaranteed. Thus, it is not necessary to rescale the segarat m=1

signals. The investigations of (6) and (11) show that thEhe resulting approximation is used to calculate the Cauchy
denominator ofy(y;) is zero for most of the values a@f;. non-linearity:
To avoid the non-defined expressions, the Dirac function is
approximated by a Gaussian or a Cauchy distribution.

a’+(yi—k(2m—M—1))3)2
Yolyi) = —=—; . (16)
A. Gaussian approximation based non-linearity > a2+(yi_k(21m_M_1))2
m=1 :

The limit of a Gaussian distribution for the variance at zer? . e . -

, . . o } he Cauchy non-linearity is depicted in Figure 2(b). As for t

foatgeljigch;ligzt:gg{ezogy_ V2o the pdf of thel-PAM the Gaussian non-linearity, the slope is optimized by cdempu
simulations and the resulting optimizeeh-ratio is shown in

Figure 3.

M
2(y;—k(2m—M—1
21 ( (yi—k( )

M
pa, (y:) =~ ﬁ Z exp <_yi —k(2m - M — 1)> . (13)

With this approximation, we obtain a non-linearity which is The two proposed non-linearities are precise but require
defined for anyy;. Namely, a large computational effort. To alleviate this, we propase

C. Simplified Cauchy non-linearity
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Fig. 3. Optimization result for the slope as a function of step size.

sinusoidal approximation of the Cauchy non-linearity éad,

a linear approximation of the Gaussian non-linearity woul
lead only to decorrelation and not statistical independgnc
The period of the sine wave is determined by the distan
between two PAM symbols. A whole oscillation has the lengt
of 2k with zeros at the positions of the PAM symbols. The
amplitude is fitted to the Cauchy non-linearity with = Fig. 4. BER comparison of receiver with pdf dependent:(c,¥sc)
0.1 which is given in Table | for different constellations.and pdf independent Il algorithms)is s ov ibm), with EASI algorithm,
Due to the importance of the correct slope, a scaling fact§out separation (noSep) and without 1Q-imbalances GoM
a’ = —A/10a corresponding to the other non-linearities is
introduced. Thereby the amplitudes of the Cauchy and the
simplified Cauchy non-linearity match far = 0.1. For the
outer areas, linear functions are employed. We finally obtai
the simplified Cauchy non-linearity expressed by:

12 14 16

8 10
Es/No [dB]

o Mutual Information (MI) non-linearity [19];

Yur(ys) = 2yt + 2y) — 13—4%7 — ALyP + By3,

« Cubic non-linearity [11]cu (y;) = y¢ and
« Hyperbolic non-linearity [20]% x5 (y;) = y; — tanh(y;).

o We investigate the behavior of these algorithms under
Gy T R(M =05)+2) 4 < k(M =05) 0 offect of additive white Gaussian noise (AWGN) within
Usc(yi) = 4 a'sin (Fyi) otherwise baseband. A Gray coded 16-QAM signal which consists of
S (ys — k(M —0.5) =2) y; > k(M —0.5) two 4-PAM signals is used for the simulations. The phase
(17) and gain error are assumed to be random variables which are
by scaling and shifting the linear functions. As for the preaniformly distributed betweent5°and +7.5%, respectively
vious non-linearities, the scalingis optimized by simulations (which is a rather severe IQ mismatch). The BER of each
(Figure 3). algorithm is the result of 50 Monte Carlo runs over these two
Non-linearities for modulations with discrete points iith random variables. Next, the step sigds 0.01 for all six Il
constellation diagram can be constructed similarly. Fodmoalgorithms. Therewith, we get (Fig. 3) the values of the slop
ulations like CPM or FSK the modeling of the pdf will have,, namely,0.17 for the Cauchy and Gaussian non-linearity and

~ °~

to be derived via a different approach. 0.11 for the simplified Cauchy non-linearity. The step size of
the EASI algorithm is fixed t®.001 such that the BER of the
IV. SIMULATIONS EASI algorithm and thdl algorithm are almost equal. The

In this section we evaluate the bit error rate (BER) d¥atch lengthL is 40.
a zero-IF receiver combined with the proposed separationFigure 4 shows the resulting BER for typical signal to noise
algorithm and the convergence characteristics of the aéipar ratios (SNR -Eg/Ny). The lower bold line is the BER of
algorithms. The analysis is carried out by Matlab simulatio 16-QAM receiver without IQ-imbalances. Reaching this BER
To classify the performance of the proposed non-lineatitieneans complete cancellation of the |Q-imbalances. Theruppe
we compare them with the EASI algorithm [6], [10] and threbold line is the BER which is obtained with an inaccurate

conventional non-linearities: receiver and without cancellation of the I1Q-imbalancese Th
gap between the two curves becomes more significant when
TABLE | the SNR is high due to the fact that the IQ-imbalances are

MAXIMUM AMPLITUDE A OF THE CAUCHY NON-LINEARITY FOR M-PAM then more dominant. We obtain almost the same result for all
seven algorithms as intended by the choice of the step size
M 4 8 16 64 n. Only the iterative inversion algorithm with the MI non-

A 943 746 333 0363 !lneanty is sensitive to very low noise. In this case the BER
is even worse than the uncancelled signal which is the result




10° which is very short and makes it suitable in bursty com-

iiéﬁ munications. Moreover, similarly to the blind algorithme n
107 vH additional bandwidth is necessary which makes the system
. - - EASI attractive from the spectral point of view.
T 102\ This paper considers only IQ-imbalance cancellation for

. zero-IF receiver but the proposed method is also applicable
R ‘ to low-IF receiver or other receiver architectures based on
WMWWWWWWM separate 1Q-down-conversion. It is also possible to extead
10 107 R algorithm to convolutive imbalances caused by the equitale
0 500 1000 0 500 1000 |ow pass filter (baseband) transfer function in I- and Q-path

iterations iterations

~~~~~

(a) Pdf dependent non-linearities (b) EASI algorithm and universal
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