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The General Vector Addition System Reachability Problem
by Presburger Inductive Invariants

Jérdbme Leroux
Laboratoire Bordelais de Recherche en Informatique, CNRence, France
leroux@labri.fr

Abstract the reachability problem for VAS is still an open-problem.
Even an elementary upper-bound complexity is open. In
The reachability problem for Vector Addition Systems fact, the known general reachability algorithms are ex-
(VAS) is a central problem of net theory. The general prob- clusively based on the Kosaraju-Lambert-Mayr-Sacerdote-
lem is known decidable by algorithms exclusively based Tenney (KLMST) decomposition.
on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tgnne
decomposition. This decomposition is used in this pa-
per to prove that Parikh images of languages accepted by
VAS aresemi-pseudo-lineara class of sets that can be
precisely over-approximated by sets definable in the Pres-
burger arithmetic. We provide an application of this result
we prove that if a final configuration is not reachable from
an initial one, there exists a Presburger inductive invari-
ant proving this property. Since we can decide with any
decision procedure for the Presburger arithmetic if formu-
las denote inductive invariants, we deduce that there ex-
ist checkable certificates of non-reachability. In partay
there exists a simple algorithm for deciding the general VAS
reachability problem based on two semi-algorithms. A first
one that tries to prove the reachability by fairly enumerat-
ing finite sequence of actions and a second one that tries
to prove the non-reachability by fairly enumerating Pres-
burger formulas.

In this paper, by using the KLMST decomposition we
prove that Parikh images of languages accepted by VAS
are semi-pseudo-linear, a class of sets that can be pigcisel
over-approximated by Presburger sets, or equivalently by
semi-linear sets[[S]. We provide an application of this re-
sult; we prove that if a final configuration is not reach-
able from an initial one, there exists a Presburger induc-
tive invariant proving this property. Since we can decide
with any decision procedure for the Presburger arithmgtic i
Presburger formulas denote inductive invariants, we deduc
that there exist checkable certificates of non-reachgbilit
In particular, there exists a simple algorithm for deciding
the general VAS reachability problem based on two semi-
algorithms. A first one that tries to prove the reachability
by fairly enumerating finite sequence of actions and a sec-
ond one that tries to prove the non-reachability by fairly
enumerating Presburger formulas. N(ﬂe [5] that in general,
reachability sets are not definable in the Presburger arith-
metic. Presburger inductive invariants are obtained by ob-

. serving that reachability sets are semi-pseudo-linear.
1 Introduction 9 y P

Outline of the paper In Section|]2 we introduce the

Vector Addition Systems (VAS) or equivalently Petri VAS. In SectionﬂS we define the pseudo-linear sets, a class
Nets are one of the most popular formal methods for the of sets that can be precisely over-approximated by linear
representation and the analysis of parallel procesBes [2]sets calledinearization We also define the finite union
The reachability problem is central since many computa- of pseudo-linear sets called semi-pseudo-linear sets. In
tional problems (even outside the parallel processestedu Sectionl}l the class of pseudo-linear sets is proved stable
to the reachability problem. Sacerdote and Tenney providedby linear function images. In Sectidﬂ 5 Parikh images
in [E] a partial proof of the decidability of this problem. of languages accepted by VAS are proved semi-pseudo-
The proof was completed in 1981 by Maﬂ [9] and sim- linear. In Section[|6 we introduce a dimension function
plified by Kosaraju [[7] from [10[]9]. Ten years Iateﬂ [8], dim: P(Z") — {—0,0,...,n} and we provide few prop-
Lambert provided a more simplified version based |gn [7]. erties satisfied by this function. In Sectiﬂn 7 we prove that
This last proof still remains difficult and the upper-bound dim(L;NL2) < dim(X;UX5) whereL,, L, are lineariza-
complexity of the corresponding algorithm is just known tions of pseudo-linear sef$;, X> such thatX; N X; = (.
non-primitive recursive. Nowadays, the exact complexity o Finally in sectiorﬂ% we show that if a final configuration is



not reachable from an initial one, there exists a PresburgerL called alinearizationof X, and a semi-pseudo-linear set

inductive invariant proving this property.
2 Vector Addition Systems

In this section, we recall the definition of language ac-
cepted by a Vector Addition System.

Some notations As usual we denote b®,Q,7Z,N
respectively the set of rational values, non-negative+ati

nal values, the set of integers and the set of non-negative

integers. Thecardinal of a finite setX is denoted by
|X|. The components of a vectax € Q™ are denoted
by (x[1],...,x[n]). Given a functionf : E — F where
E, F are sets, we denote h§y(X) = {f(z) | x € X} for
any subsetX C FE. This definition naturally defines sets
X; + X5 whereXy, Xo C Q". With slight abuse of no-
tation, {x1} + X2 and X; + {x2} are simply denoted by
x1 + Xo andX; +x5. The total ordeK overQ is extended
component-wise to the partial order over Q" satisfying
x < x'if and only if x[¢{] < x'[{]] foranyl < i < n.
The set of minimal elements fot of a setX C N" is de-
noted bymin(X). As (N”, <) is a well partially ordered
set, note thamin(X) is finite andX C min(X) + N”
for any X C N™. An alphabetis a non-empty finite set
3. Set of words ove are denoted by>*. The num-
ber of occurrences € ¥ in awordo € ¥* is denoted
by |o|.. A Parikh imageof a languagel C ¥* is a set
X ={(|o]ays---»|0la,) | ¢ € L} whereay,...,a, IS a
finite sequence .

A Vector Addition System (VAB)a tupleV = (X, n, d)
where ¥ is an alphabetp, € N is the dimension and
0 € ¥ — Z" is thedisplacement functionA configura-
tionis a vector inN™. The binary relation, wherea € ¥
over the set of configurations is definedy>y, s’ if and
onlyifs" =s+d(a). Givenawortdr = aq ...a; of k € N
elementsa; € X, we denote by, the binary relation

is a finite union of pseudo-linear sets.

Let us first recall the definition afemi-linear setsThe
sub-monoidf (Z™, +) generatedby a setX C Z" is de-
noted byX* = {0} U {Zle xi | k> 1x; € X}. Afinite
setP C 7" is called aset of periodsA setL C 7" is said
linear [E] if there exists a vectds € Z" and a set of periods
P C 7" such thatL = b + P*. A semi-linear sefS C 7"
is a finite union of linear seté; C 7. Recall [3] that sets
definable inFO (Z, +, <) are exactly the semi-linear sets
and sets definable RO (N, +, <) also calledPresburger
setsare exactly the non-negative semi-linear sets.

The definition of pseudo-linear sets is based on the no-
tion of theinterior of monoidsTheinterior of a monoid\/
is the sefZ (M) of vectorsa € M such that for ank € M
there exists an integéY € N such thatVa € x + M. We
denote byZ (M) theinterior of M. The following Lemma
B.1 characterizes the sEtP*) whereP is a set of periods.
In particular, this lemma shows thatP*) is non empty.

Lemma 3.1 LetP = {ps,..., px} be asetof periods with
k € N. We haveZ(P*) = {0} if £k = 0 andZ(P*)
P (@ \{0})p1 + -+ - + (Qe\{0})pw) if £ > 1.

Proof : Since the cas& = 0 is immediate, we assume
thatk > 1. Let us first consider an interior vectar ¢
Z(P*). As 2521 p; € P* anda € Z(P*), there exists
N € N such thatNa ¢ (Z?lej) + P*. Letp € P*

such thatva = Zle p; + p. Asp +a € P* there

exists a sequenc@V; )<<, of elements inN such that
pt+a= Z?Zl N;pj. Combining this equality with the
previous one providea = Y% up;. Thusa
(Q+\{0})p1 + -+ + (Q+\{0})pk. Conversely, let us con-
sidera € P* (1 ((Q\{0})p1 + -+~ + (Q+\{0})px). Ob-

serve that there exists an integet> 1 large enough such

over the set of configurations that is equal to the concate-thatda € (N\{0})p1 +- - + (N\{0})px. In particular for

nation %5y, ... 25, if £ > 1 and that is equal to the
identity binary relation it = 0. We also denote by-y, the
reachability binary relationover the set of configurations
defined bys —, s’ if and only if there existgr € ¥* such
thats %, s’. Thelanguage acceptebly a tuple(s, V,s’)
where(s, s’) are two configurations of a VAY is the set
L(s,V,8') ={o e X |s Dy s’}

3 Semi-pseudo-linear Sets

In this section we recall the definition of semi-linear sets
and we introduce the class p$eudo-linear setandsemi-
pseudo-linear setsintuitively, a pseudo-linear seY is a
set that can be precisely over-approximated linear set

anyx € P* there existsV € N such thatVda € x + P*.
O

Example 3.2 Let P = {(1,1),(1,0)}. We haveP* =
{x € N? | x[2] < x[1]} and the interior ofP* is equal
toZ(P*) = {x € N? | 0 < x[2] < x[1]}.

A setX C 7" is saidpseudo-lineaif there existsb €
7™ and a set of periodB C Z" such thatX C b+ P* and
such that for any finite se® C Z(P*) there existx € X
suchthak+R* C X. Inthis caseP is called dinearizator
of X and the linear sef = b + P* is called dinearization
of X. A semi-pseudo-linear sé& a finite union ofpseudo-
linear sets



Example 3.3 The setP = {(1,1),(1,0)} is a linearizator
of the pseudo-linear se¥ = {x € N? | x[2] < x[1] <
2x[2I}. MoreoverP* is a linearization ofX .

4 Pseudo-Linear Set Images

In this section, the class of pseudo-linear sets is proved

stable by linear function images.

A function f : Z" — 7" is saidlinear if there exists a
matrix M € Z™*™ and a vector € Z" such thatf(x) =
Mx + v foranyx € Z™.

Proposition 4.1 ImagesX’ = f(X) of pseudo-linear sets
X by a linear functionf are pseudo-linear. Moreover the
linear set’ = f(L) is a linearization ofX’ for any lin-
earizationL of X

Proof : Let us consider a linear functiop : 2 — 7"
defined by a matri¥/ € Z"*"" and a vectoxr € Z". Let
us consider a pseudo-linear sétC 7™. As X is pseudo-
linear, there exists a linearizatidn of X. We are going
to prove thatl’ = f(L) is a linearization ofX’ = f(X).
There exists a vectds € Z™ and a set of period® C Z"
such thatl, = b + P*. Let us consideb’ = f(b) and
P’ = {Mp | p € P} and observe thal’ = b’ + (P’)*.
In particular’ is a linear set. Sinc& C L we deduce
that X’ C L'. Let us consider a se®’ = {r},...,rq’}
included in the interior of P')*. Asr} € (P’)* there exists
pi € P* such that; = Mp;. Lemma[3]L shows that
is a sum of vectors of the form; ,Mp over allp € P
where); , > 0 is a rational value. There exists an integer
n;, > 1 large enough such that;\; , € N\{0} for any
p € P. We deduce that; :épep n; A\ pP IS @ vector in
P*. Moreover, form Lemm 1 we deduce thrats in the
interior of P*. Observe that,r, = Mr;. Let us consider
the setR of vectorsr; + k;p; wherek; is an integer such
that0 < k; < n;. Asr; is in the interior ofP* andp; €
P* we deduce that; + k;p; is also in the interior ofP*.
We have proved thak C Z(P*). As L is a linearization
of X, there existsx € X such thatx + R* C X. We
deduce thatf(x) + MR* C X’. Let us considek’ =
f(x)+M (X%, r;) and let us prove that' + (R')* C X'.
Considerr’ € (R')*. There exists a sequen¢g;)i<i<q
of integers inN such thatr’ Zle wirl. The Euclid
division of i by n; shows thay, = k; + n;u; wherep,; €
N and0 < k; < n;. Fromn;r, = Mr; we deduce that
X4 = f(x)+M (X (ri+kipi)+ 3%, piri).Observe
thatr; 4+ k;p; andr; are both inR. We have proved that
x' +1' € f(x) + MR*. Thusx' 4+ (R")* C X'. We have
proved thatl.’ is a linearization ofX”. O

5 Parikh Images

Let V be a VAS and let, s’ be two configurations. In
this section, we prove that Parikh images(dt, V,s’) are
semi-pseudo-linear. In sub-sectipn]5.1 we recall the clas-
sical Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST)
decomposition. This decomposition is used in the next sub-
section5.P to establish the semi-pseudo-linearity ofkPari
images ofl(s, V), s').

5.1 The KLMST decomposition

We recall the KLMST decomposition by following nota-
tions introduced by Lamberf][8].

We first extend the set of integefswith an additional el-
ementT. The addition function- : Z x Z — Z is extended
to the totally-defined functionitZ U {T}) x (ZU{T} —
(ZU{T}) satisfyingzy + 20 = Tif 2y =T orze = T.
With slight abuse of notation we denote by— z the ele-
mentT whenzx € Z.

In the sequel, the elemefit is either interpreted as a
“very large integer” or a “don’t care integer”. More for-
mally, we denote byN+ the setN U {T}. The total order
< overN is extended oveNT by z; < x5 if and only if
22 = TV (z1,22 € NAz1 < 29). The equality= overN
is also extended to a partial ord€roverN+ by z; < x5 if
andonly ifxga = T V (21,22 € N A 21 = x2). Intuitively
elementT denotes a “very large integer” for the total order
< whereas it denotes a “don’t care integer” for the partial
order<. Given a sequencer;);>o in N+, we denote by
x = lim;— 1 o x; the element = T if forany r € N there
existsig > 0 such thate; > r for anyi > iy and the ele-
mentz € N if there existsiy > 0 such thatc; = « for any
i > i9. Whenz = lim;_,; o z; exists we say thatr;);>o
converges toward.

We also extends the semantics of VAS. A vectaKipis
called arextended configuratioof V. With slight abuse of
notation, the binary relatiod>,, wherea € ¥ is extended
over the set of extended configurations:by>, x’ if and
onlyif x’ = x+4(a). Givenawords = a; ...a; of k € N
elements,; € ¥, we denote by, the binary relation over
the set of extended configurations that is equal to the con-
catenation™>y, --- 2%, if k£ > 1 and that is equal to the
identity binary relation ift = 0. Given an extended con-
figurationx we denote by %y, if there exists an extended
configurationx’ such thatx %, x’ and symmetrically for
any extended configuratiod we denote by’ x’ if there
exists an extended configuratigrsuch thatc %y, x’.

Next we recall some elements of graph theorygraph
Gis atupleG = (Q, %, T) whereQ is a non-empty finite
set ofstates . is an alphabet, anfl C @ x X x @ is a finite



set oftransitions A pathwisawordr =t¢; ...t of k € N
transitionst; € T such that there existg,...,qx € @
andai,...,a, € ¥ such that; = (¢j—1,a;,q;) for any
1 < j < k. Inthis case we say thatis a path fromyg to g
labelled bys = a; . .. a; and we denote by gy ¢ g Or
simply g0 —¢ qr. Given a transitiort € 7', we denote by
||+ the number of occurrencestin 7. Whengy = g, the
pathr is called acycle Let us recall the following lemma.

Lemma 5.1 (Euler Cycles)Let G = (Q,%,T) be a
strongly connected graph. For any sequef@eg)cr of in-
tegersu; > 0 satisfying the following equality for any state
qo € Q, there exists a cycle such thatjz|, = p, for any
transitiont € T

Z Ht = Z !

t=(g,a,90)€T t'=(qo,a,9’)ET

A graph vectorG = (Q,%,T) for V is a graph such
that@) C N7 is a non-empty finite set of extended config-
urations, and” C @ x ¥ x @ is a finite set of transitions
(x,a,x) such thatx %, x’. Even if the proof of the fol-
lowing lemma is immediate by induction over the length of
o, itis central in the KLMST decomposition. In fact a path
x L x’ implies the relationx %y, x'.

Lemma 5.2 (Graph vector paths) For anyx %y, x/, for
any sequence&.).cn and (x.).cn of extended configu-
rations that converge toward = lim._, 4 xc andx’ =
lim,._, o X., there exists;y; € N such thatx. 2, and
Zsy x!, foranyc > cp.

A marked graph vectdior V is a tuple(m, x, G, x’, m’)
whereG is a graph vecto, x’ are two states of this graph
vector, andm < x andm’ < x’ are two extended configu-
rations.

A marked graph vector sequences (MG¥8)(s, V, s’)
is an alternating sequenég of marked graph vectors for
Y and actions of the following form whemn, = s and
mj =s’:

/ / / /
(mO;X07 G05X07 mO)a ai,y...,0ak, (mkaxk7 Gkaxla mk)

The language acceptetly a MGVSU/ is the setl (i) of
words of the formogayo; . .. aroy such that for any <

. . G‘j / .
J < k there exists a patk; — ¢, X} and there exists two
configurations; < m; ands; < mj such that:

oo /a1 o1 l / ak Ik /
So —y Sg —y S1 —yY S7...8¢k_1 —V Sk —V Sk

We observe thatb(i/) C L(s,V,s’) since (so,s)) =

(s,8).

We now associate a characteristic linear system to a

MGVS U. Denoting by, the number of occurrences of

4

a transitiont € Tj in the pathx; iGj x; we get a non-
negative sequencg; ). indexed byt € T;. We also obtain
a sequence = (s;, (15.¢)¢, sjf)j indexed by0 < j < k said
associatedo o. We observe thatis a non-negative integral
solution of the following linear system called tblearacter-
istic systermof the MGVSU wherexx(q) = 1 if ¢ = x and
wherexx(q) = 0 otherwise:

foralll1 <j <k

sj_1 +0(a;) =s;

forall0 <j <k

sj + Z wiid(a) = sJ’-

t=(q,a,q') €T}

forall0 <j<kandforalll <i<n
Sj[i] = mj[z] if mj[z] eN

sj[i] = mj[d] if mj[i] € N

forall0 < j < kand forallg; € Q;

alg)+ D me=xxglg) Y e

t=(q,a,q;)€T t'=(q5,a,9')ET

Naturally there exists non-negative integral solutignaf

the characteristic system that are not associated to axtept
words. In particular even if there exists non-negative-inte
gral solutions of the characteristic linear system we canno
conclude thatt(i/) # (. However, under the following
perfectcondition, we can prove that({) # 0.

The homogeneous form of the characteristic system, ob-
tained by replacing constants by zero is called hibeno-
geneous characteristic systemiof In the sequel, a solu-
tion of the homogeneous characteristic system is denoted
by o = (0,4, (10,5.t)t,505");-

A perfectMGVS U/ is an MGVS such that the grahy
is strongly connected and = x3 forany0 < j < k, the
characteristic system has an integral solution, therdsais
non-negative rational solutiofy = (soj, (1t0,5,t)t, S0.j’);
of the homogeneous characteristic system satisfying the
following additional inequalities wheré < j; < k and
1< <n

e sgj[i] > 0if m;[i] = T, and
® sg;[i] > 0if mi[i] =T, and
® Lo+ > 0foranyt e Tj.
and such that forany < j < kandl <i < n:

e there exists a cycld; = (x; icj x;) such that
m; —-y and such thaimj + §(w;) > m; and
d(w;)[¢] > 0if my[i] € N andx;[i] = T, and



w/_ 70,5

o there exists a cyclé; = (x{ —¢, x}) such that (x; —>, xj) such thagmo ;e = p0,5.¢ — (10;l¢ +105]¢)

o foranyt¢ € T}. Note that we haveg j + 6(w;) + (o0 ;) +
—>y mj and such thatmj — é(w}) > mj and §(wh) = sp ;-
—5(w')[i if m/[i i) = ’ _ :

0(wi)lil > 0if mili] € N andx;fi] = T. In the sequel we provide technical lemmas that prove to-
. gether thatl(i/) # (). These lemmas are also used in the
In the sequel, even i&; = xJ’. forany0 < j < k, we next sub-sectio@.z.

still use both notations; andx; in order to keep results

symmetrical. Lemma 5.6 For anyc > 0 we have:
Let us recall without proof the fundamental decomposi- we
tion theorem. sj+csoy —v  sj+c(soy+d(ws))
» ’ ’ S(w' (wj)* ’ ’
Theorem 5.3 (Fundamental Decompositiof}8])For any sj + c(sg,; — d(wy)) Vv 851 8o

tuple(s, V, s’), we can effectively compute a finite sequence

of perfect MGV 3/, . .., U; for this tuple such that:

Lemma 5.7 There existgy > 0 such that for any: > c¢y:
L(s,V,8) =L(U)U...ULU)

c

ey
. . . . sj + c(so5 + 0(wy))  —Hv s+ c(spy — 0(w)))
In the remaining of this section, we associate to a perfect

MGVS U, a non-negative integral solutignof its charac-
_teristic system and a non—n_eg_ative integral soluﬁ@mf Lemma 5.8 There exists’ > 0 such that for any: > ¢';
its homogeneous characteristic system that explains why
LU) # 0. These two solution§ and¢ are respectively si+c(sh: — o)) Zoy  sh+clsy. — 6w
0, % c(so. (w5))
defined in Lemm4 5|4 and Lemrhal5.5. ! ’ ’ ! ! !
Now, let us consider an integer > 0 satisfyingec >
Lemma 5.4 There exists a hon-negative integral solution co andec > ¢’ wherecy andc’ are respectively defined by
& = (sj, (nj.1)1,s}); of the characteristic system of a perfect Lemma[5.y and Lemmla $.8. Note that we have proved the
MGVS such thati;; > 0 for any0 < j < k andt € T following relation:
. wj ’w; / . CyC 5. rye
and such thas; —y and—y, sj forany0 < j < k. s; + co wiog ;o5 (w)) y Sg + CSb,j
Lemma 5.5 There exists a non-negative integral solution Therefore there exists a word&{/) associated t§+ c&o.
o = (S0, (1o,j,t)t,80;); Of the homogeneous charac- |n particular we have proved thati/) + 0.
teristic system of a perfect MGM$ such thatug ;: >

0] + 105 forany0 < j < kandt € Tj, and such 52 Parikh images of perfect MGVS
thatforany0 < j < kandl <i < n:

Parikh images of. (i) are proved pseudo-linear for any

L > (5 i ifm;:lil = T.
* Soj 2 0andsoyli] > 0ifand only ifm;[i] =T perfect MGVSU for (s,V,s’). From Theoren] 5|3 we

® s ; > 0andsg ;[i] > 0if and only ifmj[i] = T. deduce that Parikh images 6fs, V), s’) are semi-pseudo-
’ ’ linear.
j+0(w;) > 0and(se;+d(w;))[¢] > 0ifand onl
* ;0;_[1-] war) - (S0 +3(w;)) i y Let us consider a perfect MGV for (s, V,s’):
500 =T.
o s);—3(w}) > 0and(soy —5(w))[i] > 0ifandonly (Mo Xo,Go,Xo,mp), a1, ax, (Mie; X, G, Xie, M)
if x{[i] =T

We denote byH the non-negative integral solutions of the
characteristic system @f and we denote by{’ the sub-
Now, let us consider a perfect MG\l&and letus fixtwo et of 7 corresponding to the sequenga@ssociated to a
tupless = (sj, (1,t)¢,87); and&o = (so.j, (1o,5.¢)t,S0,5) word in L (U). Observe that Parikh images&fi/) are im-
satisfying respectively Lemmp $.4 and Lemfng 5.5. As ages by linear functions aff’. From Propositioff 41 it is
pje > 0foranyt € T; andG; is strongly connected,  syfficient to prove thafl’ is pseudo-linear. Intuitively, a

Lemma[5.]L shows that there exists a cycje= (x; igj linearizator forH’ is obtained by considering the sHj, of

x}) such thap; + = |;|; for anyt € T;. Note that we have  non-negative integral solutions of the homogeneous charac
sj + d(o;) = s;. Moreover, agu; s — |0;]¢ + [0;/|¢ > 0 for teristic system. More formally, we are going to prove that
anyt € T; we also deduce that there exists a cyelg = Py = min(Hy\{0}) is a linearizator fo’.



Let us considet € H and&y € H satisfying the fol-
lowing Lemma[5)0. Sincél, = P, we deduce thakl’ is
included in the linear set— & + Py.

Lemma 5.9 There existg € H and¢, € Hy such that
o+ H C &+ Hp.

Now, let us consider a séty = {&1,...,&a} included
in the interior of Hy. We are going to prove that there ex-
ists¢’ € H' such that’ + R C H’. We first prove the
following lemma.

Lemma 5.10 For any & = ((si,j), (Hi,jt)j.t: (Si);) inte-

rior vector of H, there exists a cycle; ; = (x; %Gj x})

such thatu; j, = |m; ;| foranyt € T; and any0 < j < k.

Now, let us consider a solutiof of the characteristic
system and a solutiofy of the homogeneous characteristic
system satisfying respectively Leminal5.4 and Lerhnia 5.5.

Lemma 5.11 There existg; > 0 such thatforany < j <
kandc > ¢;:

sj + c(so0,; + 0(w;)) + sij
O'iyj

LN
sj + c(s0,5 + 0(wy)) + s

Now, let us consider an integer> 0 such that > ¢,
c > c andc > ¢; foranyl < i < d wherecy, c, ¢; are

6 Dimension
In this section, we introducedmension functiomdim :
P(Z™) — {—0,0,...,n}.

The dimensiondim(X') of a non-empty sek C Z" is
the minimal integet! € {0, ..., n} such that:

XNn{=k,...,k}"
X0 =k B3

400
{—k,... .k}

sup
k>0

The dimension of the empty-set set is denotedivy(() =

—o0. Let us observe some immediate properties satisfied by
the dimension function. First of all, we hadém(X) < 0

if and only if X is finite. The dimension function is mono-
tonic dim(X;) < dim(X5y) for any X; C X,. Moreover

it satisfiesdim(X; U X3) = max{dim(X;),dim(X5)}
anddim(X; + X2) < dim(X;) + dim(X3). In particu-

lar dim(v + X) = dim(X) for anyv € Z" and for any

X Ccz™

7 Pseudo-linear Intersections

In this section we prove that linearizatiods, L, of
two pseudo-linear set&’;, X> with an empty intersection
X1 N Xy = () satisfy the strict inequalitdim(L; N L) <
dim(X; U X3). In sub-sectiof 7}1 we characterize the di-
mension of linear sets and pseudo-linear sets. This charac-

respectively defined in Lemnfa k.7, Lemfng 5.8 and Lemmaterization is used in the next sub-sectfor] 7.2 to prove the
B.11. From these lemmas and Lemn3 5.6 we deduce thagtrict inequality.

for any sequencey, ..
relation:

.,ng € N we have the following

d
Sj +¢So,j + E niSi,j
i=1

c _mni ng _ . _c /e
Wiy 5-%a 5959, (w5)

%
d
$j+esp g+ ) mist
=1

We have proved that there exists a wordlifi/) associated
with £ + c€o + Zle ni&. Let& = £ + c&o. We deduce
that¢’ + Ry C H'. ThusH' is pseudo-linear. We deduce
the following proposition:

Proposition 5.12 Parikh images of (/) are pseudo-linear
for any perfect MGV# for (s, V,s').

From Theoren 5|3 and the previous Proposifion|5.12, we

get the following Theorerp 5.13.

Theorem 5.13 Parikh images ofL(s,V,s’) are semi-
pseudo-linear.

In these two sub-sectiongctor spaceare used. Arec-
tor spaceV of Q" is a subsel/ C Q" that contains the
zero vectol0 € V, that is stable by additiol” + V C V
and that is stable by produgyv € V forany A € Q and
foranyv € V. Observe that for any séf C Q" the set
V={0}Uu{X Axi|k>1)€Qx € X} isthe
unigue minimal for the inclusion vector space that contains
X. This vector space is called the vector space generated by
X. Recall that for any vector spadé of Q™ there exists a
finite setX C V that generateg. The minimal for< inte-
gerd € N such that there exists a finite s€tthat generated
V is called therank of V and it is denoted byank (V).

7.1 Dimension of (pseudo-)linear sets

In this section, we prove that the dimension of a pseudo-
linear setX is equal to the rank of the vector spacegen-
erated by any linearizatd? of X.

We first prove the following Lemmds J.1.

Lemma 7.1 We havelim(M) = rank(V') whereV is the
vector space generated by a mondid



Proof : SinceM C 7Z™ NV it is sufficient to prove that
dim(M) > rank(V) anddim(Z" NV) < rank(V). Letus
denote by||x||,, = max{|x[1]],...,|x[k]|} the usualo-
normof a vectorx € Q™. As M generates the vector space
V recall that there exists a sequeneq,...,mq € M
with d = rank(V') that generate¥’. Since the casé = 0
is immediate we assume thdt> 1. We denote byf :
Q? — V the rational linear functiorf (x) = Zle x[i]m;.

Let us first prove thaflim(A/) > d. By minimality of
d = rank(V') note thatf is injective. In particular the car-
dinal of £({0,...,k}?) is equal to(1 + k)?. Note that a
vectorm in this set satisfie§m|| < k Z‘f:l |lmy]| ., and
m € M. We deduce thatim(M) > d.

Now, let us prove thadim(Z™ N V') < d. Since for any

Proof : Let us consider an enumerati@q, ..., p;ik; Of
the k; > 0 vectors inP; wherei € {1,2}. If k; = 0 or
if k2 = 0thenP;” = {0} or Py = {0} and the lemma is
immediate. Thus, we can assume thatk, > 1.

Let us consider the seX of vectors (A1, X2) €
NF x NF2 such thatby + Y58 Ai[jlp1j = bz +
Zf; A2[j]p2,;. Let us also consider the séf, of vec-
tors (A1, \2) € NF1 x N*2 such thath;l Mlilp1y =

Zfil Az2[j]p2,;. Observe thak = Z + X, whereZ is the
finite setZ = min(X) and X, = Z whereZ, is the finite
setZy = min(Xo\{0}).

Let us denote byB the finite set of vectorb € 7"
such that there existé\1,\2) € Z satisfying by +

matrix, the rank of the column vectors is equal to the rank 2?1:1 Mljlp1j=b=Dba + Z?; A2[j]p2,;- Letus also

of the line vectors, there exists a sequehce j; < --- <
jq < mn such that the rational linear functign: Q" — Q¢
defined byg(x) = (x[j1],...,x[jq]) satisfiesh = go f is
a bijective rational linear function. In particular we dedu
that for anyv € Z" NV N {—k,...,k}" there exists a
vectorx = g(v) € {—k,...,k}¥suchthav = foh~!(x).
ThereforelZ" NV N {—k,...,k}"| < (1 + 2k)? for any
k € N. We deduce thatim(Z" NV) < d. O

Lemma 7.2 For any pseudo-linear seX C Z", we have
dim(X) = rank(V') whereV is the vector space generated
by any linearizatorP of X .

Proof : Let P be a linearizator of a pseudo-linear seét
and letV be the vector space generated By Note that
there exists a vectds € Z"™ such thatX C b + P*. From
Lemmg[7 JL we havéim(b+ P*) = rank(V'). In particular
dim(X) < rank(V'). Conversely, let us consider an interior
vectora € Z(P*) and observe thak = {a} U (a+ P) C
Z(P*). As X is pseudo-linear, there existsc X such that
x + R* C X. Note that the vector space generatedibig
equal toV’. Thus, from Lemm& 7.1 we deduce thiatn (x +
R*) = rank(V). In particulardim(X) > rank(V). We
have proved the equalityim(X) = rank(V). O

7.2 Pseudo-linear sets intersection

In this section we prove that linearizatiohs, L of two
pseudo-linear set¥;, X» with an empty intersectiof’; N
X9 = ] SatiSfydiHl(Ll N LQ) < dlm(X1 @] XQ)

We first characterize the intersection of two linear sets.

Lemma 7.3 For any set of period®;, P, there exists a set
of periodsP such thatP; N Py = P*. Moreover, for any

by1,be € 7", there exists a finite se8 C Z™ such that

(b1 + Pf)N (b2 + Py) =B+ (PfNF;).

denote byP the finite set of vectorp € Z" such that there
exists (\1,\2) € Zo satisfying>-", M[jlp1; = p =
S22 A2[j]p2j. Remark thatby + Py) N (by + P5) =
B+ P*andP; N Py = P*. 0

In order to prove the following proposition, we introduce
the definition ofgroups A group G of Z" is a monoid of
7™ such that any element admits an invers€ C G. Ob-
serve that for any seX C 7", the setG = X* — X* is the
unique minimal for the inclusion sub-group @", +) that
containsX. This group is called the sub-group 8f gen-
erated byX. Now, let us consider the groug = M — M
generated by a monoitd and observe that a vectaris in
the interior of M if and only if for anyg € G there exists
N € Nsuchthag + Na e M.

Lemma 7.4 For any vectorv € V whereV is the vector
space generated by a grodf there exists an integelr > 1
such thatlv € G.

Proof : A vectorv € V can be decomposed into a sum
v = Zle Aigiwith k € N, \; € Qandg; € G. Letus
consider an integef > 1 such thatd\; € Z and observe
thatdv € G. O

Now, we prove the main result of this section.

Proposition 7.5 Let Ly, L, be linearizations of pseudo-
linear setsX;, X, C Z™ with an empty intersectioX; N
X5 = (. We have:

dim(L1 N Lg) < dim(X1 U Xg)

Proof : Let Ly, Lo be linearizations of two pseudo-linear
setsX, Xo C Z". For the moment, we do not assume that
X7 N X, is empty. There exists some linearizatéts P
of the pseudo-linear sefs;, X5 and vectord,, b, € Z"



such thatl; = by + P andLy, = bs + Py are lineariza-
tions of X1, X5. Let us denote by, V5 the vector spaces
generated byP;, P,. Lemma[7.R shows thatim(X;) =
rank(V;) and dim(X,) = rank(Vz). From Lemmd 7]3
there exists a set of period3 and a finite setB C 7"
such thatP] N Py = P* andL,; N Ly, = B + P*. Observe
that if B = () the proposition is immediate. Thus, we can
assume that there exidtbsc B. Let V' be the vector space
generated by?. Lemma[7]L shows thalim(B + P*)
rank(V). Observe thal” C V4 N V4. Thus, if there ex-
istsj € {1,2} such thatV is strictly included inV; then
rank(V) < rank(V;) and in this caselim(L; N Ly) <
max{dim(X1),dim(X2)} = dim(X; U X3).

So we can assume thiet = V' = V5. We prove in the
sequel thatX; N X> # 0. We denote byG1, G, G, the
groups generated respectively By, P, P,. Note that the
vector spaces generated®y, G, G are equal td’, V, V5.

Let a be an interior vector oP* and let us prove that
ac€I(Pf)NI(Py). Letj € {1,2}. Note thata € P* C
Pr. Letp € Z(P}). Since—p € V andV is the vector
space generated Iy, Lemma shows that there exists
an integerd > 1 such that-dp € G. Froma —dp € G
anda € Z(P*) we deduce that there exislé € N such
thata — dp + Na € P*. FromP* C P’ we deduce that
a € L (dp + P;). Fromp € Z(P;) and Lemmd 3]1 we

1+N 8
geta € Z(F;).

Let R; = {a} U (a + P;). Froma € Z(P}), Lemma
B.3 shows thaf?; C Z(P}). As X is pseudo-linear, there
existsx; € X; such thatx; + R; C X;. Fromb,x; €
bj+P; we deduce that;—b € G;. Asthe group generated
by R; is equal toG;, there existsj,rj € R such that
xj +1j = b +13j.

AsV isthe vector space generated®yandr;, € R C
Vo = V, Lemmd 7.} shows that there exists an intefer
1 such thatdir, € G;. Asa € Z(FPy), there exists an
integerN; > 0 such thatd,r, + Nia € Pf. As P C
R; — Na, we deduce that there exists an inte@&r > 0
such thatl;r, + (N1 + N{)a € R}. We denote by this
vector. Symmetrically, there exist some integéss> 1
and N3, NJ > 0 such that the vectafar] + (N2 + Nj)a
denoted byj is in R5. We get:
1
x1+ 11+ (do — 1)r] + 1] + (Na + Nb)a 2
=b +dory + diry + (N1 + Ni + Na + Nj)a *
Xg + 12+ (dy — 1)ry + 145 + (N7 + Nj)a
=b + diry + dorj + (No + Nj + N1 + Ni)a

We have proved that these two last vectors are equal.
deduce thafx; + R}) N (x2 + R3) is hon empty. In par-
ticular X, N Xy # 0. O
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8 Separators

The reachability problem for a tuple, V,s’) consists
to decide ifs —y s’. This problem can be reformu-
lated by introducing the definition of separators. A pair
(S, S") of configuration sets is called separatorfor V if
post};(S) N pre},(S’) = 0 wherepost],(S) andpre;,(S”)
are respectively the set odachable states fromf and the
set ofco-reachable states frosf formally defined by:

post(S)={s'EN"|Is €S s—ys'}
pref,(S) = {s€N"|3I' €85 s—yps'}
Naturally, a pair(s,s’) is in the complement of the reach-
ability relation—, if and only if the pair({s}, {s'}) is a
separator. A separatdf, I') is saidinductiveif I is afor-
ward invariantpost{,(/) € I andI’ is abackward invariant
pre§,(I') C I' foranya € ¥ wherepost$,(.S) andpres, (S’)
are defined for any, S’ C N™ by:

posts,(S) ={s' eN" |Fs€ S s Ly s’}
pref,(S ) ={seN"|3s' € " sy s’}

As (post3;(S), pre},(S’)) is an inductive separator for any
separator(S, S’), we deduce that separators are included
into inductive separators.

We are interested in inductive separators definable in the
decidable Presburger logitO (N, 4, <). Note that a pair
(v(x),v’(x)) of Presburger formulas denotes an inductive
separato(I, I’) if and only if ¢)(x) A ¢’ (x) and the follow-
ing formulas are unsatisfiable for anye . In particular
we can effectively decide ify(x), ¢’ (x)) denotes an in-
ductive separator.

A
A

—(x')
—¢'(x)

That means a paip(x), ¢(x’)) of Presburger formulas de-
noting an inductive separators providesteeckable certifi-
cate of non-reachabilitior any pair(c, ¢’) of configurations

satisfying(¢(x), o(x').

Reachability(s € N*, V = (X, n,T) a VAS,s’ € N")
repeat forever
fairly select o € ¥*
ifsDys
r et ur n “reachable”
fairly select (9 (x), 4’ (x))
formulas in FO (N, +, <)
Hf (1(x), v (x))
inductive separatorf or ({s},{s'})
r et ur n “unreachable”




In this section we prove that Presburger separators arghere exists inductive separators with non-empty domains.
included in Presburger inductive separators. We deduceHowever, a separator with an empty domain is necessary
that algorithmReachability(s,),s’) decides the reachabil- inductive.
ity problem. The termination is guaranteed by the previous

1 * * / H
result. Note b th:_;\tln gen/eré.j)ostv(S),prev(_S )) is not approximate a Presburger separaftch,S)) is obtain
Presburger even i and .S’ are reduced to single vectors . . . .
inductively. We build a non-decreasing sequence

S = {s} andS’ = {s’}. That means, this inductive separa- ) :
tor must be over-approximated by another inductive separa—.(Sj’SJ’)J20 of Presburger separators starting from the

I ) :
tor. Intuitively, the approximation is obtained by obseuyi |n|t|aI_ Presburger separato(rSo, ‘30) such /thgt th? di
) . ; mension of the domaiD; = N"\(S; U S%) is strictly

that for any Presburger sefs.S’ of configurations, the sets : Lo J

. , o ) : decreasing. In order to obtain this sequence, observe that
post},(S) N S" andS N pre,(S’) aresemi-pseudo-linear .~ -

: . . . it is sufficient to show that for any Presburger separator

This property is proved in sub-sect|8.1. In the next sub- ) . . .

: . i . (So,.5;) with a non-empty domainD,, there exists a
section 8.2, we provide an induction to compute Presburger,

) . . Presburger separatgf, S’) 2 (S, S;) with a domainD
inductive separators that over-approximate Presburger se such thatlim(D) < dim(D).

The Presburger inductive separator that over-

arators.
We first define a se$’ that over-approximates; and
8.1 Reachability sets such that(Sy, S’) remains a separator. A% and D, are
Presburger, Theorefn 8.1 shows thakt(Sy) N Dy is
We prove thaposti,(S) NS’ andS Npres, (S’) are semi- equal to a finite union of pseudo-linear sats, . .., Xj. Let
pseudo-linear for any semi-linear sétsS’ C N”. us consider some linearizatiohs, . . . , L, of these pseudo-

) o N . ) linear sets and let us define the following Presburgefset
Since semi-linear sets are finite unions of linear sets we

only prove this result for the special case of two linear sets k
S =s+ P*andS = s’ + (P')* wheres,s’ € N and S =S5 U (Do\(|J Ly))
whereP, P’ are two set of periods df”. We consider two j=1

alphabets.p, ¥ p/ disjoint of ¥ and a displacement func-

tion § defined ovel = ¥p U U X p that extends such Ve observe thapost}, (o) N S” = 0 sinceposty, (So) N

that: Sh = O andpost;,(So) Do € U5_; L;. Thusposts,(So)n
pre},(S) = 0 and we have proved that containsS; and
P={5a)|acSp} P'={-6(a)|acXp} (So, S") is a separator.

Now we define symmetrically a sef that over-
approximatesS, and such thatsS, S’) remains a separa-
tor. As Dy and S’ are Presburger, Theorem&l shows

We consider the VAS) = (£,n,0). Let us consider the
displacement function$> andép- defined oveb: by:

~ S(a) ifaeyx that Do N pre,(S’) is equal to a finite union of pseudo-
op(a) { h P linear setsX1, ..., X;,. Letus consider some linearizations
0 otherwise Ly,..., L, of these pseudo-linear sets and let us define the
5 (a) —6(a) faeXp following Presburger sef.
rla) =
r 0 otherwise W
S =SoU(Do\(|J L}))

Just observe thatost},(S) N S’ = s' + §pr(L(s, V,s'))
andS Npre},(S') = s+0p(L(s,V,s")). In particular these
two sets are images by linear functions of Parikh imagesOnce again, note that N pre},(S’) = (. ThusS contains
of L(s,V,s’). Theorem 5.13 shows that Parikh images of Sy and(S, 5) is a separator.

L(s,V,s') are semi-pseudo-linear. From Propositfor] 4.1 Let D be the domain of the separatf$, '). From
Do = N™\(Sp U S}), we get the following equality.

=1

we deduce the following theorem:

Theorem 8.1 For any semi-linear setS§, S’ C N™, the sets
posty,(S) NS” and S N pre, (S’) are semi-pseudo-linear.
v(5) v(5) P D=Don| |J &;nLy)

8.2 Induction with domains 1sj<k
1< <k

Given a pair(S, S") € (N",N") of disjoint sets, the set  From X;, X/, C Do we getdim(X; U X7,) < dim(Dy).
D =N"\(Su ") is called thedomainof (5, S’). Note that ~ As X; C post},(Sp) C posty,(S) and X%, C prej,(S)



and (S, S’) is a separator, we deduce thef and X, are

two pseudo-linear sets with an empty intersection. From the

main result proved in sectidf 3, we géim(L; N L},) <
dim(X; U X7,). We deducelim(D) < dim(Dy). We have
proved the following theorem.

Theorem 8.2 Presburger separators are included in Pres-

burger inductive separators.

9 Conclusion

Thanks to the classical KLMST decomposition we have
proved that Parikh Images of languages accepted by VASs

are semi-pseudo-linear.

As application, we have proved the termination of a
simple algorithm for deciding the reachability problem for
VAS. Even tough the proof of termination is based on the
classical KLMST decomposition, the complexity of the al-
gorithm does not depend on this decomposition. In fact, |
the complexity depends on the size of the minimal pair of
Presburger formulas denoting an inductive separator when

({c},{c'}) is separable and the size of a mininak %*
such that: %, ¢ otherwise. This algorithm is theery first

onethat does not require the KLMST decomposition for its

implementation.

We left as an open question the problem of computing
a lower bound and a upper bound of the size of a pair of
Presburger formulas denoting an inductive separator. Note
that the VAS exhibiting a large (Ackermann size) but fi-
nite reachability set given irﬂ[4] does not directly provide

[2] J. Esparza and M. Nielsen. Decidability issues for

petri nets - a surveyBulletin of the European Associ-
ation for Theoretical Computer Sciencs2:245-262,
1994.

S. Ginsburg and E. H. Spanier. Semigroups, Pres-
burger formulas and languagesPacific Journal of
Math.,, 16(2):285-296, 1966.

M. Hack. The recursive equivalence of the reacha-
bility problem and the liveness problem for petri nets
and vector addition systems. Irbth Annual Sympo-
sium on Switching and Automata Theory, 14-16 Octo-
ber 1974, The University of New Orleans, Uages
156-164. IEEE, 1974.

[5] J. E. Hopcroft and J.-J. Pansiot. On the reachability

problem for 5-dimensional vector addition systems.
Theor. Comput. Sgi8:135-159, 1979.

] R. Jhala and K. L. McMillan. A Practical and Com-

plete Approach to Predicate Refinement. Rroc.

of 12th Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 08)l-
ume 3920 oLNCS pages 459-473. Springer, 2006.

S. R. Kosaraju. Decidability of reachability in vec-
tor addition systems (preliminary version). Rro-
ceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, (STOC 1982), 5-7 May
1982, San Francisco, California, USAages 267—
281. ACM, 1982.

a lower-bound for this size since inductive separators can [g] J. L. Lambert. A structure to decide reachability in

over-approximate reachability sets.

We also left as an open question the problem of adapt-

ing such an algorithm to obtain a compl&@eunter Exam-
ple Guided Abstract Refinemeayproach 1] for the VAS
reachability problem based for instanceioterpolants[ﬁ]

for FO (N, +, <). In practice, such an algorithm should be
more efficient than the enumeration-based algorithm pro-

vided in this paper.
Acknowledgment: We thankJean Luc Lamberfor a fruit-

ful discussion during a Post-doc in 2005 at IRISA (INRIA

Rennes, France) and for his work on semi-linear VAS.

References

[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction refine-

ment. In E. A. Emerson and A. P. Sistla, edit@sm-

puter Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000,

Proceedingsvolume 1855 of_ecture Notes in Com-
puter Sciencgpages 154-169. Springer, 2000.

10

petri nets. Theoretical Computer Scienc89(1):79—
104, 1992.

E. W. Mayr. An algorithm for the general petri net
reachability problem. IrConference Proceedings of
the Thirteenth Annual ACM Symposium on Theory of
Computation, (STOC 1981), 11-13 May 1981, Mil-
waukee, Wisconsin, USpages 238—-246. ACM, 1981.

G. S. Sacerdote and R. L. Tenney. The decidability of
the reachability problem for vector addition systems
(preliminary version). InConference Record of the
Ninth Annual ACM Symposium on Theory of Comput-
ing, 2-4 May 1977, Boulder, Colorado, USpages
61-76. ACM, 1977.



A Proofs of Section[5.]L e csoj > 0 andcsg[i] > 0if and only if m;[i] = T.
o> rg i if mi[i] =

Lemma 5.4 There exists a non-negative integral solution * S50 andCSUvJ[Z] > Oifand only if mJ[Z] T

€ = (sj, (1j,t)¢, 85); of the characteristic system of a perfect

) Let us considell < i < n and let us prove that there
MGVS such that; forany0 < j < kandt € T; . . - =
A, > 0 ; yo<j < €4 exists an integer; > 0 such that for any: > ¢; we have

and such thas; 2, and iy s; forany0 <j <k. (cs0,j+0(wj))[i] > 0and(csg j+9(w;))[i] > 0if and only

if x;{¢] = T. Note thatm;[i] < x;[i] thus eithem;[i] =
Proof : The definition of perfect MGVS requires that x;[i] € N, or (m;[i],x;[i]) € N x {T}, orm;[i] = x;[i] =
there exists an integral solutigh= (s;, (11;.¢):,s}); of its T. We separate the proof following these three cases. Letus
characteristic system. This solution is non-necessary non first consider the case;[i] = x;[i] € N. Asm;[i| € N and
negative. However, there exists a non-negative rational so &o is solution of the homogeneous characteristic system, we
lution {o = (so,j, (K0,5,¢)t: Sg ;); Of the homogeneous char-  getsg ;[i] = 0. Moreover the cycld; = (x; ﬂ@j Xj)
acteristic system satisfying the perfect MGVS condition. shows thatx; + 6(w;) = x;. Fromx;[i] € N we deduce
Naturally, by replacing, by a sequence ifiN\{0})& we thatd(w;)[¢] = 0. In particular(cse ; + d(w;))[i] = 0 and
can assume thdp is a non-negative integral solution also we have proved the casa;[i] = x;[i] € N by considering
satisfying the perfect MGVS condition. Now, just observe ¢; = 0. Let us consider the second cadse;[i], x;[i]) € Nx
that there exists an integeg > 0 large enough such that {T}. As in the previous case, sines;[i] € N we deduce
£+ coéo is @ non-negative integral solution of the character- thatsg ;[i] = 0. Note that the perfect condition shows that
istic system satisfying;  +copo,5,¢ > Oforanyt € Tyand  §(w;)[i] > 0 in this case. In particular for any > 0 we

forany0 < j < k. Moreover, adim.—, o (sj + ¢So,j) = have(cso ; + d(w;))[i] > 0 and we have proved the case
m; andlim,_, oo (s} + csf ;) = mj, the relationan; >, (my[i], x;[i]) € Nx {T} by considering; = 0. Finally, let

us consider the casm;[i] = x;[i] = T. Asm;[i| = T we
_ w; deduce thaso ;[i] > 0 in particular there exists an integer
integerc > ¢y large enough such thas; + cso;) —v ¢ > 0 large enough such thétse ; + d(w;))[i] > 0 for

and—y, (s} + csp ;). Therefore + c&o is a non-negative ~ 2MY¢ = ¢i- We have proved the three cases.

integral solUtion of the characteristic system satisfytimg Symmetrically, for anyl < i < n, there exists an integer
lemma. U ¢; > 0 such that for any > c_’i we have(c_sgyjfé(w}))[z‘] >
0 and(csq ; — 6(w;))[i] > 0 if and only if x;[i] = T.
Lemma 5.5 There exists a non-negative integral solution Finally, aspo ;; > 0 for anyt e T; and for any0 <
o = (S0, (Ho,.t)t,03); Of the homogeneous charac- ;j < k, we deduce that there exists an integer 0 large
teristic system of a perfect MGM$ such thatug ;: > enough such thatug ; , > |0;], + |0;|, for anyt € T; for
|01¢ + 10| for any0 < j < kandt € T}, and such  any0 < j < k. Naturally, we can also assume that 1,
thatforany0 < j < kandl <i < n: ¢ > ¢;ande > ¢ forany1l < i < n. We deduce thaté,
satisfies the lemma. O

and 5y, m| and Lemmg 5|2 shows that there exists an

e sg; > 0andsg;[i] > 0if and only ifm;[i] = T.

* sg; > 0andsg ;[i] > 0if and only ifmji] = T. Lemma 5.6 For anyc > 0 we have:

e soj+d(wj) > 0and(se;+d(w;))[i] > 0ifand only we
if x;[i] = T. siteso; —v  sjtc(se;+o(w;))
® so;—0(wj) > 0and(se,; —d(w}))[i] > 0if and only s} + (s ; — O(w})) ﬂ)v s§ + csp 5
if x{[i] =T

Proof : Since the two relations are symmetrical, we just
Proof : Let{o = (so,j; (10,j,t)t:S0;); be a non-negative  prove the first one. The choice éfsatisfying Lemmd 5|4
rati_ona_l solution of the homogene_o_us characteris_tic 8yste  chows thats; i, The conditionssg; > 0, so; +
satisfying the perfect MGVS condition. By replaciégby S(w;) > 0 ands; 5. with an immediate induction on

(N\{0})&o we can assume thgg is a non-negative integral _ . : .
solution satisfying the perfect condition. We are going to the integer: > 0 provides the required relation. -

prove that there exists an integee N large enough such

thatcéo satisfies the lemma. Lemma 5.7 There existgy > 0 such that for any: > c¢y:
First of all, observe that for any > 1 and for anyl < o6 , )
i < n, we have: sj + c(soj +d(wj))  —>v  sj+c(sey— d(w;))
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Proof : Let us recall thatk; = x{. We denote byu the
vector in{0, 1} satisfyingu[i] = 1 if x;[i] = T = x{[]
and satisfyingu[¢{] = 0 otherwise. From the choice g}
satisfying Lemmd 5] 5, we observe that; + d(w;) > u
andsg ; — d(w}) > u. Note thatlim. . (s; + cu) = x;.

Asx; g, x}, Lemma[5.P proves that there exists an
integercy > 0 such thats; + cou m»v. Now, let us
consider integers > 1 andc¢’ > 0 such thatt + ¢’ > ¢
and let us prove the relation:

8j + ¢(s0,j + d(wy)) + (80,5 — (w)))

90,5

209,
sj + (¢ = 1)(s0,5 +0(wy)) + (¢ + D)(so 3 — (wf))
Fromsg; + d(w;) > u andsg ; — d(w}) > u we deduce
that c(so ; + d(w;)) + c’(s{)_’j - 5(w2)) > (¢c+ d)u >
cou. Thus, the previous relation directly comes frejm-
cou 2Ly, andso,j +d(w;)+0(09,;) +6(wj) = sq ;. Now,

c
[

an immediate induction provideg+c(sg j+d(w;)) —>y

s + c(sgd- — o(wj)) foranye > co. O

Lemma 5.8 There existg’ > 0 such that for any: > ¢’:
S+ (st — 0(w)) o s+ clshy — 0(w)))

Proof : As lim.— (s} + c(sp; — 6(w}))) = xj and

x; ~5¢, x|, Lemma[5P proves that there exists> 0

such that™>, (8§ +c(sp ; — 6(wj))) foranyc > ¢'. Since
sj + 0(0;) = sj we are done. O

B Proofs of Sectiof5]2

Lemma 5.9 There existg € H and¢, € Hy such that
o+ H C &+ Hp.

Proof : As the MGVSU is perfect the self is non empty.
Let us consider the sdtof components such that[:] is
independent of € H. As the MGVS is perfect we deduce
that for any integee > 0 there exist € H such that
&[i] > cforanyi ¢ I. Asmin(H) is finite, we deduce that
there existg € H suchthat > ¢’ forany¢’ € min(H). In
particularfo = 3¢/ ¢ pincs (€ — &) isin Ho. Let us prove
thatég + H C £ + Hy. Considert” € H. By definition
of min(H), there existg”’ € min(H) such that”’ < ¢”.
The definition of¢y shows thaty, — (£ — £") is equal to
a sum of termg¢ — &’) indexed by’ € min(H)\{¢"'}.
Thereforefp — (£ — ") € Hy. As&’ — &' € Hy we have
proved that the sum afp — (¢ — &¢') and¢” — ¢ is also
in Hy. Note that this sum is equal fg — £ + £”. We have
provedthaty + ¢ € £+ Hy. Thereforeg + H C & + Hy.
(I
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Lemma 5.10 For any&; = ((sig);, (i) (), inte-
rior vector of Hy there exists a cycle; ; = (x; m—’%gj x})
such thaty; ;. = |m; ;| foranyt € T and any0 < j < k.

Proof : Sincel/ is perfect, for anyt € T,, there ex-
ists a solutiorfg = (s ;, (uo,jyt)t,sgd)j in Hy such that
to, ¢ > 0. As Hy Py, for anyt € T there ex-
ists g € P, satisfying the same property. Lemr@s.l
shows that; = (sij, (14i,5,t)¢,8;;); IS @ sum over all so-
lutions&y € Py of terms of the form\&y wherel > 0 is

a rational value that naturally depends &n In particu-
lar we deduce that; ;. > 0 for anyt € T; and for any
0<j<k Lemma shows that there exists a cycle
mig = (x5 —hg, x}) such thatu; j, = |m; |, for any
teT;andanyl <j <k. O

Lemma 5.11 There exists; > 0 such thatforany < j <
kandc > ¢;:

sj + c(soj +6(wj)) + sijj
O'i,j

LN
sj + c(so,j + d(wy)) + st 5

Proof : As lim.—y(s; + ¢(so; + d(w;))) = x; and
x; ¢, x;, Lemma[5P proves that there exists an in-
tegerc; > 0 such that(s; + c(soj + 6(w;))) —y for
anyc > ¢; and forany0 < j < k. Ass;; > 0 and
sij+0(oi;) = sgﬁj > 0 we deduce the lemma. O



