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ABSTRACT
The reachability problem for Vector Addition Systems (VAS)
or equivalently for Petri Nets is a central problem of net the-
ory. The general problem is known decidable by algorithms
exclusively based on the classical Kosaraju-Lambert-Mayr-
Sacerdote-Tenney (KLMST) decomposition. This decom-
position is difficult and it just has a non-primitive recursive
upper-bound complexity. In this paper, we prove that if a
configuration is not reachable from an initial configuration,
there exists a semi-linear inductive invariant that proves this
property. We deduce an easy algorithm for deciding the
reachability problem based on two semi-algorithms. A first
one that tries to prove the reachability by fairly enumerating
the possible paths and a second one that tries to prove the
unreachability by fairly enumerating semi-linear inductive
invariants. This algorithm is the very first one that does not
require the KLMST decomposition. In particular, this algo-
rithm is the first candidate to obtain a precise (eventually
elementary) upper-bound complexity for the VAS reachabil-
ity problem.

1. INTRODUCTION
Vector Addition Systems (VAS) or equivalently Petri Nets
are one of the most popular formal methods for the represen-
tation and the analysis of parallel processes [2]. The reacha-
bility problem is central since many computational problems
(even outside the parallel processes) reduce to the reachabil-
ity problem. Sacerdote and Tenney provided in [10] a par-
tial proof of the decidability of this problem. The proof was
completed in 1981 by Mayr [9] and simplified by Kosaraju
[7] from [10, 9]. Ten years later [8], Lambert provided a more
simplified version based on [7]. This last proof still remains
difficult and the upper-bound complexity of the correspond-
ing algorithm is just known non-primitive recursive. Nowa-
days, the exact complexity of the reachability problem for
VAS is still an open-problem. Even an elementary upper-
bound complexity is open. In fact, the known general reach-
ability algorithms are exclusively based on the Kosaraju-
Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

In this paper, we prove that if a configuration is not reach-
able from an initial configuration, there exists a semi-linear
set or equivalently a formula in the Presburger arithmetic
[3] that denotes an inductive invariant proving this property.
We deduce an easy algorithm for deciding the reachability
problem based on two semi-algorithms. A first one that tries
to prove the reachability by fairly enumerating the possible
paths and a second one that tries to prove the unreacha-
bility by fairly enumerating semi-linear inductive invariants.
This algorithm is the very first one that does not require
the KLMST decomposition. In particular, this algorithm
should be a good candidate to obtain a precise (eventually
elementary) upper-bound complexity for the VAS reacha-
bility problem. Note [5] that in general, reachability sets
are not semi-linear. Semi-linear inductive invariants are ob-
tained by observing that reachability sets can be precisely
over-approximated by semi-linear sets.

Outline of the paper : In section 2, the unreachability prob-
lem for VAS is reduced to the existence of separators (a
pair of inductive invariants). In section 3 we introduce the
class of semi-pseudo-linear sets, a class of sets that can be
precisely over-approximated by semi-linear sets. In section
4, reachability sets are proved semi-pseudo-linear. Finally
in section 5 we show the existence of semi-linear separators
proving the unreachability of a pair of configurations. In
order to simplify the presentation of this paper, the inde-
pendant parts of sections 3 and 4 with the remaining of the
paper are presented in some sub-sections. That means the



reader may safely skip these sub-sections in order to read
other sections of the paper.

2. VECTOR ADDITION SYSTEMS
In this section, the unreachability problem for Vector Addi-
tion Systems is reduced to the existence of separators.

1 Reachability (s ∈ Nn, V = (Σ, n, T ) a VAS, s′ ∈ Nn)
2 repeat forever
3 fairly select σ ∈ Σ∗

4 if s
σ
−→V s′

5 return ‘‘reachable ’’
6 fairly select (ψ(x), ψ′(x)) formulas in FO (N,+,≤)
7 if (ψ(x), ψ′(x)) denotes separator for ({s}, {s′})
8 return ‘‘unreachable’’

Some notations : As usual we denote by Q,Q+,Z,N re-
spectively the set of rational values, non-negative rational
values, the set of integers and the set of non-negative inte-
gers. The components of a vector x ∈ Qn are denoted by
(x[1], . . . ,x[n]). Given a function f : E → F where E,F are
sets, we denote by f(X) = {f(x) | x ∈ X} for any subset
X ⊆ E. This definition naturally defines sets X1+X2 where
X1,X2 ⊆ Qn. With slightly abusing notations, {x1} + X2

and X1 +{x2} are simply denoted by x1 +X2 and X1 +x2.
The total order ≤ over Q is extended component-wise to the
partial order ≤ satisfying x ≤ x′ if and only if x[i] ≤ x′[i]
for any 1 ≤ i ≤ n. The set of minimal elements for ≤
of a set X ⊆ Nn is denoted by min(X). As (Nn,≤) is a
well partially ordered set, recall that min(X) is finite and
X ⊆ min(X) + Nn for any X ⊆ Nn.

A Vector Addition System (VAS) is a tuple V = (Σ, n, δ)
where Σ is a non-empty finite alphabet, n ∈ N is the dimen-
sion and δ ∈ Σ → Zn is the displacement function. A con-
figuration is a vector in Nn. The binary relation

a
−→V where

a ∈ Σ over the set of configurations is defined by s
a
−→V s′

if and only if s′ = s + δ(a). Given a word σ = a1 . . . ak

of k ∈ N elements ai ∈ Σ, we denote by
σ
−→V the binary

relation over the set of configurations that is equal to the

concatenation
a1−→V · · ·

ak−→V if k ≥ 1 and that is equal to
the identity binary relation if k = 0. We also denote by
→V the reachability binary relation over the set of configu-
rations defined by s →V s′ if and only if there exists σ ∈ Σ∗

such that s
σ
−→V s′. Given two sets S, S′ of configurations,

we denote by post∗V(S) and pre∗V(S′) respectively the set of
reachable states from S and the set of co-reachable states
from S′ formally defined by:

post∗V(S) = {s′ ∈ Nn | ∃s ∈ S s →V s
′}

pre∗V(S′) = {s ∈ Nn | ∃s′ ∈ S
′

s →V s
′}

The reachability problem for a tuple (s,V, s′) where s, s′ are
two configurations of a VAS V consists to decide if s →V s′.
This problem can be reformulated by introducing the defi-
nition of separators. A pair (S, S′) of configuration sets is
said separable if post∗V(S) ∩ pre∗V(S′) = ∅. Naturally, a pair
(s, s′) is in the complement of the reachability relation →V

if and only if the pair ({s}, {s′}) is separable. A separa-
tor for a pair (S, S′) of configuration sets is a pair (I, I ′)

such that I ∩ I ′ = ∅ and such that I is a forward invari-
ant post∗V(I) = I containing S ⊆ I and I ′ is a backward
invariant pre∗V(I ′) = I ′ containing S′ ⊆ I ′. Observe that
in this case (S, S′) is separable. As (post∗V(S),pre∗V(S′)) is
a separator for any separable pair (S, S′), we deduce that a
pair (S, S′) is separable if and only if there exists a separator
(I, I ′) for (S, S′).

We are interested in separators definable in the decidable
logic FO (N,+,≤). Note that a pair (ψ(x), ψ′(x)) of for-
mulas in this logic denotes a separator (I, I ′) if and only
if ψ(x) ∧ ψ′(x) and the following formulas are unsatisfiable
for any a ∈ Σ. In particular we can effectively decide if
(ψ(x), ψ′(x)) denotes a separator.

ψ(x) ∧ x′ = x + δ(a) ∧ ¬ψ(x′)
ψ′(x′) ∧ x′ = x + δ(a) ∧ ¬ψ′(x)

In this paper we prove that there exists a separator (I, I ′)
definable in FO (N,+,≤) for any pair (S, S′) of separable
sets definable in FO (N,+,≤). We deduce that algorithm
Reachability(s,V,s′) decides the reachability problem. The
termination is guaranteed by the previous result. Note [5]
that in general, the separator (post∗V(S),pre∗V(S′)) is not de-
finable in FO (N,+,≤) even if S and S′ are reduced to single
vectors S = {s} and S′ = {s′}. That means, this separa-
tor must be over-approximated by another separator (I, I ′)
definable in FO (N,+,≤). Intuitively, the approximation is
obtained by observing that post∗V(S) ∩ S′ and S ∩ pre∗V(S′)
are semi-pseudo-linear for any pair (S, S′) of sets definable
in FO (N,+,≤), a class of sets that can be precisely over-
approximated by sets definable in FO (N,+,≤).

3. SEMI-PSEUDO-LINEAR SETS
In this section we introduce the class of pseudo-linear sets
and semi-pseudo-linear sets. We show that a pseudo-linear
set X can be precisely over-approximated by a linear set
L called a linearization of X. We also introduce a mono-
tonic function dim : (P (Zn),⊆) → ({−∞, 0, . . . , n},≤) that
associates to any set X ⊆ Zn a dimension dim(X). We
show that dim(X1 ∪X2) = max{dim(X1),dim(X2)} for any
X1,X2 ⊆ Zn. Essentially, in this section, we prove that
any linearizations L1, L2 of pseudo-linear sets X1,X2 with
an empty intersection X1 ∩X2 = ∅ satisfy dim(L1 ∩ L2) <
max{dim(X1),dim(X2)}.

We first associate a dimension to sets X ⊆ Zn. The dimen-
sion dim(X) of a non-empty set X ⊆ Zn is the minimal
integer d ∈ {0, . . . , n} such that:

sup
k≥0

|X ∩ {−k, . . . , k}n|

(1 + 2k)d
< +∞

The dimension of the empty-set set is denoted by dim(∅) =
−∞. Let us observe some immediate properties satisfied by
the dimension function. First of all, we have dim(X) ≤ 0 if
and only if X is finite. The dimension function is monotonic
dim(X1) ≤ dim(X2) for any X1 ⊆ X2. Moreover it satisfies
dim(X1 ∪ X2) = max{dim(X1),dim(X2)} and dim(X1 +
X2) ≤ dim(X1) + dim(X2). In particular dim(v + X) =
dim(X) for any v ∈ Zn and for any X ⊆ Zn.



Now, let us recall the definition of semi-linear sets. A monoid
M of Zn is a subset M ⊆ Zn that contains the zero vector
0 ∈ M and that is stable by addition M +M ⊆ M . Given
any subset X ⊆ Zn, observe that X∗ = {

∑k

i=1 xi | k ∈N xi ∈ X} is the unique minimal for the inclusion monoid
that contains X. It is called the monoid generated by X. A
finite set P ⊆ Zn is called a set of periods. A set L ⊆ Zn

is said linear [3] if there exists a vector b ∈ Zn and a set
of periods P ⊆ Zn such that L = b + P ∗. A semi-linear
set S ⊆ Zn is a finite union of linear sets Li ⊆ Zn. Recall
[3] that sets definable in FO (Z,+,≤) are exactly the semi-
linear sets and sets definable in FO (N,+,≤) are exactly the
non-negative semi-linear sets.

The definition of semi-pseudo-linear sets requires the defini-
tion of attractors of a monoid. Given a vector x in a monoid
M , we observe that x +M is a subset of M . We are inter-
ested in vectors a ∈ M such that for any set x +M where
x ∈M there exists an integer N ∈ N such that Na ∈ x+M .
More formally, an attractor of a monoid M is a vector a ∈M

such that (Na)∩ (x+M) 6= ∅ for any x ∈M . We denote by
A(M) the set of attractors of M . The following Lemma 1
characterizes the set A(P ∗) where P is a set of periods. In
particular, this lemma shows that A(P ∗) is non empty.

Lemma 1. We have A(P ∗) = {0} if k = 0 and A(P ∗) =
P ∗ ∩ ((Q+\{0})p1 + · · · + (Q+\{0})pk) if k ≥ 1 for any set
of periods P = {p1, . . . ,pk}.

Proof. Since the case k = 0 is immediate, we assume
that k ≥ 1. Let us first consider an attractor a ∈ A(P ∗).

As
∑k

j=1 pj ∈ P ∗ and a ∈ A(P ∗), there exists N ∈ N
such that Na ∈ (

∑k

j=1 pj) + P ∗. Let p ∈ P ∗ such that

Na =
∑k

j=1 pj + p. As p + a ∈ P ∗, there exists a sequence

(Nj)1≤j≤k of elements in N such that p + a =
∑k

j=1Njpj.
Combining this equality with the previous one provides a =
∑k

j=1

1+Nj

1+N
pj. Thus a ∈ (Q+\{0})p1 + · · · + (Q+\{0})pk .

Conversely, let us consider a ∈ P ∗ ∩ ((Q+\{0})p1 + · · · +
(Q+\{0})pk). Observe that there exists an integer d ≥ 1
large enough such that da ∈ (N\{0})p1 + · · · + (N\{0})pk .
In particular for any x ∈ P ∗ there exists N ∈ N such that
Nda ∈ x + P ∗.

Example 1. Let P = {(1, 1), (1, 0)}. The monoid gener-
ated by P is equal to P ∗ = {x ∈ N2 | x[2] ≤ x[1]}, and the
set of attractors of P ∗ is equal to A(P ∗) = {x ∈ N2 | 0 <
x[2] < x[1]}.

A set X ⊆ Zn is said pseudo-linear if there exists b ∈ Zn

and a set of periods P ⊆ Zn such that X ⊆ b+P ∗ and such
that for any finite set R ⊆ A(P ∗) there exists x ∈ X such
that x+R∗ ⊆ X. In this case, P is called a linearizator of X
and the linear set L = b +P ∗ is called a linearization of X.
A semi-pseudo-linear set is a finite union of pseudo-linear
sets.

Example 2. The set P = {(1, 1), (1, 0)} is a linearizator

of the pseudo-linear set X = {x ∈ N2 | x[2] ≤ x[1] ≤ 2x[2]}.
Moreover P ∗ is a linearization of X.

All other results and notations introduced in this section
are not used in the sequel. The reader may safely skip
the remaining of this section to read the other ones. In
sub-section 3.1 we characterize the dimension of linear sets
and pseudo-linear sets. This characterization is used in the
next sub-section 3.2 to prove that linearizations L1, L2 of
two pseudo-linear sets X1,X2 with an empty intersection
X1 ∩ X2 = ∅ satisfy the strict inequality dim(L1 ∩ L2) <
max{dim(X1),dim(X2)}.

In these two sub-sections, vector spaces are used. A vector
space V of Qn is a subset V ⊆ Qn that contains the zero
vector 0 ∈ V , that is stable by addition V + V ⊆ V and
that is stable by rational product λv ∈ V for any λ ∈ Q
and for any v ∈ V . Observe that for any set X ⊆ Qn

the set V = {
∑k

i=1 λixi | k ∈ N λi ∈ Q xi ∈ X} is the
unique minimal for the inclusion vector space that contains
X. This vector space is called the vector space generated
by X. Recall that for any vector space V of Qn there exists
a finite set X ⊆ V that generates V . The minimal for ≤
integer d ∈ N such that there exists a finite set X that
generated V is called the rank of V and it is denoted by
rank(V ).

3.1 Dimension of (pseudo-)linear sets
In this section, we prove that the dimension of a pseudo-
linear set X is equal to the rank of the vector space V gen-
erated by any linearizator P of X.

We first prove the following Lemmas 2.

Lemma 2. We have dim(M) = rank(V ) where V is the
vector space generated by a monoid M .

Proof. Since M ⊆ Zn ∩ V it is sufficient to prove that
dim(M) ≥ rank(V ) and dim(Zn ∩ V ) ≤ rank(V ). Let us
denote by ||x||

∞
= max{|x[1]|, . . . , |x[k]|} the usual ∞-norm

of a vector x ∈ Qn. As M generates the vector space V
recall that there exists a sequence m1, . . . ,md ∈ M with
d = rank(V ) that generates V . Since the case d = 0 is
immediate we assume that d ≥ 1. We denote by f : Qd → V

the linear function f(x) =
∑d

i=1 x[i]mi.

Let us first prove that dim(M) ≥ d. By minimality of d =
rank(V ) note that f is injective. In particular the cardinal
of f({0, . . . , k}d) is equal to (1 + k)d. Note that a vector m

in this set satisfies ||m||∞ ≤ k
∑d

i=1 ||mi||∞ and m ∈ M .
We deduce that dim(M) ≥ d.

Now, let us prove that dim(Zn ∩ V ) ≤ d. Since for any
matrix, the rank of the column vectors is equal to the rank
of the line vectors, there exists a sequence 1 ≤ j1 < · · · <
jd ≤ n such that the linear function g : Qn → Qd defined
by g(x) = (x[j1], . . . ,x[jd]) satisfies h = g ◦ f is a bijective
linear function. In particular we deduce that for any v ∈Zn ∩ V ∩ {−k, . . . , k}n there exists a vector x = g(v) ∈
{−k, . . . , k}d such that v = f ◦h−1(x). Therefore |Zn ∩V ∩
{−k, . . . , k}n| ≤ (1 + 2k)d for any k ∈ N. We deduce that
dim(Zn ∩ V ) ≤ d.



Lemma 3. For any pseudo-linear set X ⊆ Zn, we have
dim(X) = rank(V ) where V is the vector space generated by
any linearizator P of X.

Proof. Let P be a linearizator of a pseudo-linear set X
and let V be the vector space generated by P . Note that
there exists a vector b ∈ Zn such that X ⊆ b + P ∗. From
Lemma 2 we have dim(b + P ∗) = rank(V ). In particular
dim(X) ≤ rank(V ). Conversely, let us consider an attractor
a ∈ A(P ∗) and observe that R = {a}∪(a+P ) ⊆ A(P ∗). As
X is pseudo-linear, there exists x ∈ X such that x + R∗ ⊆
X. Note that the vector space generated by R is equal to
V . Thus, from Lemma 2 we deduce that dim(x + R∗) =
rank(V ). In particular dim(X) ≥ rank(V ). We have proved
the equality dim(X) = rank(V ).

3.2 Pseudo-linear sets intersection
In this section we prove that linearizations L1, L2 of two
pseudo-linear sets X1,X2 with an empty intersection X1 ∩
X2 = ∅ satisfy dim(L1 ∩ L2) < max{dim(X1),dim(X2)}.

We first characterize the intersection of two linear sets.

Lemma 4. For any set of periods P1, P2 there exists a set
of periods P such that P ∗

1 ∩ P ∗
2 = P ∗. Moreover, for any

b1,b2 ∈ Zn, there exists a finite set B ⊆ Zn such that
(b1 + P ∗

1 ) ∩ (b2 + P ∗
2 ) = B + (P ∗

1 ∩ P ∗
2 ).

Proof. Let us consider an enumeration pi,1, . . . ,pi,ki
of

the ki ≥ 0 vectors in Pi where i ∈ {1, 2}. If k1 = 0 or
if k2 = 0 then P ∗

1 = {0} or P ∗
2 = {0} and the lemma is

immediate. Thus, we can assume that k1, k2 ≥ 1.

Let us consider the set X of vectors (λ1, λ2) ∈ Nk1 × Nk2

such that b1 +
∑k1

j=1 λ1[j]p1,j = b2 +
∑k2

j=1 λ2[j]p2,j. Let

us also consider the set X0 of vectors (λ1, λ2) ∈ Nk1 × Nk2

such that
∑k1

j=1 λ1[j]p1,j =
∑k2

j=1 λ2[j]p2,j. Observe that

X = Z + X0 where Z is the finite set Z = min(X) and
X0 = Z∗

0 where Z0 is the finite set Z0 = min(X0\{0}).

Let us denote by B the finite set of vectors b ∈ Zn such that
there exists (λ1, λ2) ∈ Z satisfying b1 +

∑k1

j=1 λ1[j]p1,j =

b = b2 +
∑k2

j=1 λ2[j]p2,j. Let us also denote by P the finite

set of vectors p ∈ Zn such that there exists (λ1, λ2) ∈ Z0

satisfying
∑k1

j=1 λ1[j]p1,j = p =
∑k2

j=1 λ2[j]p2,j. Remark

that (b1 +P ∗
1 )∩(b2 +P ∗

2 ) = B+P ∗ and P ∗
1 ∩P ∗

2 = P ∗.

In order to prove the following proposition, we introduce
the definition of groups. A group G of Zn is a monoid of Zn

such that any element admits an inverse −G ⊆ G. Observe
that for any set X ⊆ Zn, the set G = X∗−X∗ is the unique
minimal for the inclusion group that containsX. This group
is called the group generated by X. Now, let us consider the
group G = M −M generated by a monoid M and observe
that a vector a is an attractor of M if and only if for any
g ∈ G there exists N ∈ N such that g +Na ∈M .

Lemma 5. For any vector v ∈ V where V is the vector
space generated by a group G, there exists an integer d ≥ 1
such that dv ∈ G.

Proof. A vector v ∈ V can be decomposed into a sum
v =

∑k

i=1 λigi with k ∈ N, λi ∈ Q and gi ∈ G. Let us
consider an integer d ≥ 1 such that dλi ∈ Z and observe
that dv ∈ G.

Now, we prove the main result of this section.

Proposition 1. Let L1, L2 be linearizations of pseudo-
linear sets X1, X2 ⊆ Zn with an empty intersection X1 ∩
X2 = ∅. We have:

dim(L1 ∩ L2) < max{dim(X1),dim(X2)}

Proof. Let L1, L2 be linearizations of two pseudo-linear
sets X1,X2 ⊆ Zn. For the moment, we do not assume that
X1 ∩X2 is empty. There exists some linearizators P1, P2 of
the pseudo-linear sets X1,X2 and vectors b1,b2 ∈ Zn such
that L1 = b1 + P ∗

1 and L2 = b2 + P ∗
2 are linearizations of

X1,X2. Let us denote by V1, V2 the vector spaces generated
by P1, P2. Lemma 3 shows that dim(X1) = rank(V1) and
dim(X2) = rank(V2). From Lemma 4 there exists a set of
periods P and a finite set B ⊆ Zn such that P ∗

1 ∩ P ∗
2 =

P ∗ and L1 ∩ L2 = B + P ∗. Observe that if B = ∅ the
proposition is immediate. Thus, we can assume that there
exists b ∈ B. Let V be the vector space generated by P .
Lemma 2 shows that dim(B+P ∗) = rank(V ). Observe that
V ⊆ V1 ∩ V2. Thus, if there exists j ∈ {1, 2} such that V is
strictly included in Vj then rank(V ) < rank(Vj) and in this
case dim(L1 ∩ L2) < max{dim(X1),dim(X2)}.

So we can assume that V1 = V = V2. We prove in the sequel
that X1 ∩ X2 6= ∅ providing the proposition. We denote
by G1, G,G2 the groups generated respectively by P1, P, P2.
Note that the vector spaces generated by G1, G,G2 are equal
to V1 = V = V2.

Let a be an attractor of P ∗ and let us prove that a ∈ A(P ∗
j ).

Note that a ∈ P ∗ ⊆ P ∗
j . Let p ∈ A(P ∗

j ). Since −p ∈ V

and V is the vector space generated by G, Lemma 5 shows
that there exists an integer d ≥ 1 such that −dp ∈ G. From
a − dp ∈ G and a ∈ A(P ∗) we deduce that there exists
N ∈ N such that a − dp + Na ∈ P ∗. From P ∗ ⊆ P ∗

j we
deduce that a ∈ 1

1+N
(dp + P ∗

j ). From p ∈ A(P ∗
j ) and

Lemma 1 we get a ∈ A(P ∗
j ).

Let Rj = {a} ∪ (a + Pj). From a ∈ A(P ∗
j ), Lemma 1

shows that Rj ⊆ A(P ∗
j ). AsXj is pseudo-linear, there exists

xj ∈ Xj such that xj + R∗
j ⊆ Xj . From b,xj ∈ bj + P ∗

j we
deduce that xj − b ∈ Gj . As the group generated by Rj is
equal toGj , there exists rj, r

′
j ∈ R∗

j such that xj+rj = b+r′j.

As V is the vector space generated by G1 and r′2 ∈ R∗
2 ⊆

V2 = V , Lemma 5 shows that there exists an integer d1 ≥
1 such that d1r

′
2 ∈ G1. As a ∈ A(P ∗

1 ), there exists an
integer N1 ≥ 0 such that d1r

′
2 + N1a ∈ P ∗

1 . As P ∗
1 ⊆



R∗
1 − Na, we deduce that there exists an integer N ′

1 ≥ 0
such that d1r

′
2 + (N1 + N ′

1)a ∈ R∗
1 . We denote by r′′1 this

vector. Symmetrically, there exist some integers d2 ≥ 1 and
N2, N

′
2 ≥ 0 such that the vector d2r

′
1 + (N2 +N ′

2)a denoted
by r′′2 is in R∗

2 . We get:

x1 + r1 + (d2 − 1)r′1 + r
′′
1 + (N2 +N

′
2)a

= b + d2r
′
1 + d1r

′
2 + (N1 +N

′
1 +N2 +N

′
2)a

x2 + r2 + (d1 − 1)r′2 + r
′′
2 + (N1 +N

′
1)a

= b + d1r
′
2 + d2r

′
1 + (N2 +N

′
2 +N1 +N

′
1)a

We have proved that this last vector is in (x1 +R∗
1)∩ (x2 +

R∗
2). In particular X1 ∩X2 6= ∅.

4. REACHABILITY SETS
In this section we prove that post∗V(S)∩S′ and S∩pre∗V(S′)
are semi-pseudo-linear for any semi-linear sets S, S′ ⊆ Nn.
All other results and notations introduced in this section
are not used in the sequel. The reader may safely skip the
remaining of this section in order to read the other ones.
In sub-section 4.1 we recall the classical Kosaraju-Lambert-
Mayr-Sacerdote-Tenney (KLMST) decomposition. This de-
composition is used in the next sub-section 4.2 to establish
the semi-pseudo-linearity of the reachability sets.

4.1 Languages Accepted
The language accepted L(b,V,b′) by a tuple (b,V,b′) where
(b,b′) are two configurations of a VAS V is the set of words

σ ∈ Σ∗ such that b
σ
−→V b′. In this section we recall the

KLMST decomposition by following notations introduced
by Lambert [8].

We first extend the set of non-negative integers N with an
additional element ⊤. In the sequel, this element is either
interpreted as a“very large integer” or a“don’t care integer”.
More formally, we denote by N⊤ the set N∪ {⊤}. The total
order ≤ over N is extended over N⊤ by x1 ≤ x2 if and only
if x2 = ⊤ ∨ (x1, x2 ∈ N ∧ x1 ≤ x2). The equality = overN is also extended to a partial order � over N⊤ by x1 � x2

if and only if x2 = ⊤ ∨ (x1, x2 ∈ N ∧ x1 = x2). Intuitively
element ⊤ denotes a “very large integer” for the total order
≤ whereas it denotes a “don’t care integer” for the partial
order �. Given a sequence (xi)i≥0 in N⊤, we denote by
x = limi→+∞ xi the element x = ⊤ if for any r ∈ N there
exists i0 ≥ 0 such that xi ≥ r for any i ≥ i0 and the element
x ∈ N if there exists i0 ≥ 0 such that xi = x for any i ≥ i0.
When x = limi→+∞ xi exists we say that (xi)i≥0 converges
toward x.

We also extends the semantics of VAS. A vector in Nn
⊤ is

called an extended configuration of V. The addition function
+ : Z×Z→ Z is extended to the totally-defined function in
(Z ∪ {⊤}) × (Z ∪ {⊤} → (Z ∪ {⊤}) satisfying x1 + x2 = ⊤
if x1 = ⊤ or x2 = ⊤. With slightly abusing notations,
the binary relation

a
−→V where a ∈ Σ over the set of ex-

tended configurations is defined by x
a
−→V x′ if and only if

x′ = x + δ(a). Given a word σ = a1 . . . ak of k ∈ N ele-

ments ai ∈ Σ, we denote by
σ
−→V the binary relation over

the set of extended configurations that is equal to the con-

catenation
a1−→V · · ·

ak−→V if k ≥ 1 and that is equal to the

identity binary relation if k = 0. Given an extended config-
uration x we denote by x

σ
−→V if there exists an extended

configuration x′ such that x
σ
−→V x′ and symmetrically for

any extended configuration x′ we denote by
σ
−→V x′ if there

exists an extended configuration x such that x
σ
−→V x′.

Next we recall some elements of graph theory. An alphabet
Σ is a non-empty finite set. We denote by Σ∗ the set of finite
words over Σ. A graph G is a tuple G = (Q,Σ, T ) where
Q is a non-empty finite set of states, Σ is an alphabet, and
T ⊆ Q × Σ × Q is a finite set of transitions. A path π is
a word π = t1 . . . tk of k ∈ N transitions ti ∈ T such that
there exists q0, . . . , qk ∈ Q and a1, . . . , ak ∈ Σ such that ti =
(qj−1, aj , qj) for any 1 ≤ j ≤ k. In this case we say that π is
a path from q0 to qk labelled by σ = a1 . . . ak and we denote
π by q0

σ
−→G qk or simply q0 →G qk. Given a transition

t ∈ T , we denote by |π|t the number of occurrences of t in
π. When q0 = qk, the path π is called a cycle. Let us recall
the following lemma.

Lemma 6 (Euler Cycles). Let G = (Q,Σ, T ) be a
strongly connected graph. For any sequence (µt)t∈T of in-
tegers µt > 0 satisfying the following equality for any state
q0 ∈ Q, there exists a cycle π such that |π|t = µt for any
transition t ∈ T :

∑

t=(q,a,q0)∈T

µt =
∑

t′=(q0,a,q′)∈T

µt′

A graph vector G = (Q,Σ, T ) for V is a graph such that
Q ⊆ Nn

⊤ is a non-empty finite set of extended configurations,
and T ⊆ Q×Σ×Q is a finite set of transitions (x, a,x′) such

that x
a
−→V x′. Even if the proof of the following lemma is

immediate by induction over the length of σ, it is central in
the KLMST decomposition. In fact a path x

σ
−→G x′ implies

the relation x
σ
−→V x′.

Lemma 7 (Graph vector paths). For any x
σ
−→V x′,

for any sequences (xc)c∈N and (x′
c)c∈N of extended config-

urations that converge toward x = limc→+∞ xc and x′ =

limc→+∞ x′
c, there exists c0 ∈ N such that xc

σ
−→V and

σ
−→V x′

c for any c ≥ c0.

A marked graph vector for V is a tuple (m,x, G,x′,m′)
where G is a graph vector, x,x′ are two states of this graph
vector, and m � x and m′

� x′ are two extended configura-
tions.

A marked graph vector sequences (MGVS) for (b,V,b′) is
an alternating sequence of marked graph vectors for V and
actions of the following form where m0 = b and m′

k = b′:

U = (m0,x0, G0,x
′
0,m

′
0), a1, . . . , ak, (mk,xk, Gk,x

′
k,m

′
k)

The language accepted by a MGVS U is the set L(U) of words
of the form σ0a1σ1 . . . akσk such that for any 0 ≤ j ≤ k there

exists a path xj

σj
−→Gj

x′
j and there exists two configurations

sj � mj and s′j � m′
j such that:

s0
σ0−→V s

′
0

a1−→V s1
σ1−→V s

′
1 . . . s

′
k−1

ak−→V sk
σk−−→V s

′
k



We observe that L(U) ⊆ L(b,V,b′) since (s0, s
′
k) = (b,b′).

We now associate a characteristic linear system to a MGVS
U . Denoting by µj,t the number of occurrences of a transi-

tion t ∈ Tj in the path xj

σj
−→Gj

x′
j we get a non-negative se-

quence (µj,t)t indexed by t ∈ Tj . We also obtain a sequence
ξ of the form ξ = (sj, (µj,t)t, s

′
j)j indexed by 0 ≤ j ≤ k said

associated to σ. We observe that ξ is a non-negative integral
solution of the following linear system called the character-
istic system of the MGVS U where χx(q) = 1 if q = x and
where χx(q) = 0 otherwise:














































































































for all 1 ≤ j ≤ k

s′j−1 + δ(aj) = sj

for all 0 ≤ j ≤ k

sj +
∑

t=(q,a,q′)∈Tj

µj,tδ(a) = s
′
j

for all 0 ≤ j ≤ k and for all 1 ≤ i ≤ n

sj[i] = mj[i] if mj[i] ∈ N
s′j[i] = m′

j[i] if m′
j[i] ∈ N

for all 0 ≤ j ≤ k and for all qj ∈ Qj

χxj
(qj) +

∑

t=(q,a,qj)∈T

µj,t = χx′

j
(qj) +

∑

t′=(qj ,a,q′)∈T

µj,t′

Naturally there exists non-negative integral solutions ξ of
the characteristic system that are not associated to an ac-
cepted word. In particular even if there exists non-negative
integral solutions of the characteristic linear system we can-
not conclude that L(U) 6= ∅. However, under the following
perfect condition, we can prove that L(U) 6= ∅.

The homogeneous form of the characteristic system, ob-
tained by replacing constants by zero is called the homo-
geneous characteristic system of U . In the sequel, a solu-
tion of the homogeneous characteristic system is denoted by
ξ0 = (s0,j, (µ0,j,t)t, sj,0

′)j .

A perfect MGVS U is an MGVS such that the graph Gj

is strongly connected and xj = x′
j for any 0 ≤ j ≤ k, the

characteristic system has an integral solution, there exists a
non-negative rational solution ξ0 = (s0,j, (µ0,j,t)t, s0,j

′)j of
the homogeneous characteristic system satisfying the follow-
ing additional inequalities where 0 ≤ j ≤ k and 1 ≤ i ≤ n:

• s0,j[i] > 0 if mj[i] = ⊤, and

• s′0,j[i] > 0 if m′
j[i] = ⊤, and

• µ0,j,t > 0 for any t ∈ Tj .

and such that for any 0 ≤ j ≤ k and 1 ≤ i ≤ n:

• there exists a cycle θj = (xj

wj
−−→Gj

xj) such that

mj

wj
−−→V and such that mj+δ(wj) ≥ mj and δ(wj)[i] >

0 if mj[i] ∈ N and xj[i] = ⊤, and

• there exists a cycle θ′j = (x′
j

w′

j
−−→Gj

x′
j) such that

w′

j
−−→V

m′
j and such that m′

j − δ(w′
j) ≥ m′

j and −δ(w′
j)[i] > 0

if m′
j[i] ∈ N and x′

j[i] = ⊤.

In the sequel, even if xj = x′
j for any 0 ≤ j ≤ k, we still use

both notations xj and x′
j in order to keep results symmetri-

cal. Let us recall without proof the fundamental decompo-
sition theorem.

Theorem 1 (Fundamental Decomposition[8]). For
any tuple (b,V,b′), we can effectively compute a finite se-
quence of perfect MGVS U1, . . . ,Ul for this tuple such that:

L(b,V,b′) = L(U1) ∪ . . . ∪ L(Ul)

In the remaining of this section, we associate to a perfect
MGVS U , a non-negative integral solution ξ of its charac-
teristic system and a non-negative integral solution ξ0 of
its homogeneous characteristic system that explains why
L(U) 6= ∅. This two solutions ξ and ξ0 are respectively
defined in Lemma 8 and Lemma 9. These two lemmas are
independent of each other and can be read in any order.

Lemma 8. There exists a non-negative integral solution
ξ = (sj, (µj,t)t, s

′
j)j of the characteristic system of a perfect

MGVS such that µj,t > 0 for any 0 ≤ j ≤ k and t ∈ Tj and

such that sj
wj
−−→V and

w′

j
−−→V s′j for any 0 ≤ j ≤ k.

Proof. The definition of perfect MGVS requires that
there exists an integral solution ξ = (sj, (µj,t)t, s

′
j)j of its

characteristic system. This solution is non-necessary non-
negative. However, there exists a non-negative rational so-
lution ξ0 = (s0,j, (µ0,j,t)t, s

′
0,j)j of the homogeneous charac-

teristic system satisfying the perfect MGVS condition. Nat-
urally, by replacing ξ0 by a sequence in (N\{0})ξ0 we can
assume that ξ0 is a non-negative integral solution also satis-
fying the perfect MGVS condition. Now, just observe that
there exists an integer c0 ≥ 0 large enough such that ξ+c0ξ0
is a non-negative integral solution of the characteristic sys-
tem satisfying µj,t + c0µ0,j,t > 0 for any t ∈ Tj and for
any 0 ≤ j ≤ k. Moreover, as limc→+∞(sj + cs0,j) = mj

and limc→+∞(s′j + cs′0,j) = m′
j, the relations mj

σj
−→V and

σj
−→V m′

j and Lemma 7 shows that there exists an integer c

large enough such that sj + cs0,j

σj
−→V and

σ′

j
−→V s′j + cs′0,j.

Therefore ξ + cξ0 is a non-negative integral solution of the
characteristic system satisfying the lemma.

Lemma 9. There exists a non-negative integral solution
ξ0 = (s0,j, (µ0,j,t)t, s

′
0,j)j of the homogeneous characteristic

system of a perfect MGVS U such that µ0,j,t > |θj |t+|θ′j |t for
any 0 ≤ j ≤ k and t ∈ Tj , and such that for any 0 ≤ j ≤ k

and 1 ≤ i ≤ n:

• s0,j ≥ 0 and s0,j[i] > 0 if and only if mj[i] = ⊤.

• s′0,j ≥ 0 and s′0,j[i] > 0 if and only if m′
j[i] = ⊤.



• s0,j + δ(wj) ≥ 0 and (s0,j + δ(wj))[i] > 0 if and only
if xj[i] = ⊤.

• s′0,j − δ(w′
j) ≥ 0 and (s0,j

′ − δ(w′
j))[i] > 0 if and only

if x′
j[i] = ⊤.

Proof. Let ξ0 = (s0,j, (µ0,j,t)t, s
′
0,j)j be a non-negative

rational solution of the homogeneous characteristic system
satisfying the perfect MGVS condition. By replacing ξ0 by
(N\{0})ξ0 we can assume that ξ0 is a non-negative integral
solution satisfying the perfect condition. We are going to
prove that there exists an integer c ∈ N large enough such
that cξ0 satisfies the lemma.

First of all, observe that for any c ≥ 1 and for any 1 ≤ i ≤ n,
we have:

• cs0,j ≥ 0 and cs0,j[i] > 0 if and only if mj[i] = ⊤.

• cs′0,j ≥ 0 and cs′0,j[i] > 0 if and only if m′
j[i] = ⊤.

Let us consider 1 ≤ i ≤ n and let us prove that there exists
an integer ci ≥ 0 such that for any c ≥ ci we have (cs0,j +
δ(wj))[i] ≥ 0 and (cs0,j + δ(wj))[i] > 0 if and only if xj[i] =
⊤. Note that mj[i] � xj[i] thus either mj[i] = xj[i] ∈ N, or
(mj[i], xj[i]) ∈ N × {⊤}, or mj[i] = xj[i] = ⊤. We separate
the proof following these three cases. Let us first consider
the case mj[i] = xj[i] ∈ N. As mj[i] ∈ N and ξ0 is solution of
the homogeneous characteristic system, we get s0,j[i] = 0.

Moreover the cycle θj = (xj

wj
−−→Gj

xj) shows that xj +
δ(wj) = xj. From xj[i] ∈ N we deduce that δ(wj)[i] = 0. In
particular (cs0,j + δ(wj))[i] = 0 and we have proved the case
mj[i] = xj[i] ∈ N by considering ci = 0. Let us consider
the second case (mj[i],xj[i]) ∈ N× {⊤}. As in the previous
case, since mj[i] ∈ N we deduce that s0,j[i] = 0. Note that
the perfect condition shows that δ(wj)[i] > 0 in this case.
In particular for any c ≥ 0 we have (cs0,j + δ(wj))[i] > 0
and we have proved the case (mj[i],xj[i]) ∈ N × {⊤} by
considering ci = 0. Finally, let us consider the case mj[i] =
xj[i] = ⊤. As mj[i] = ⊤ we deduce that s0,j[i] > 0 in
particular there exists an integer ci ≥ 0 large enough such
that (cs0,j + δ(wj))[i] > 0 for any c ≥ ci. We have proved
the three cases.

Symmetrically, for any 1 ≤ i ≤ n, there exists an integer
c′i ≥ 0 such that for any c ≥ c′i we have (cs′0,j− δ(w

′
j))[i] ≥ 0

and (cs′0,j − δ(wj))[i] > 0 if and only if x′
j[i] = ⊤.

Finally, as µ0,j,t > 0 for any t ∈ Tj and for any 0 ≤ j ≤ k,
we deduce that there exists an integer c ≥ 0 large enough
such that cµ0,j,t > |θj |t + |θj′ |t for any t ∈ Tj for any 0 ≤
j ≤ k. Naturally, we can also assume that c ≥ 1, c ≥ ci and
c ≥ c′i for any 1 ≤ i ≤ n. We deduce that cξ0 satisfies the
lemma.

Now, let us consider a perfect MGVS U and let us fix two
tuples ξ = (sj, (µj,t)t, s

′
j)j and ξ0 = (s0,j, (µ0,j,t)t, s

′
0,j)j sat-

isfying respectively Lemma 8 and Lemma 9. As µj,t > 0

for any t ∈ Tj and Gj is strongly connected, Lemma 6

shows that there exists a cycle πj = (xj

σj
−→Gj

x′
j) such that

µj,t = |πj |t for any t ∈ Tj . Note that we have sj+δ(σj) = s′j.
Moreover, as µj,t − |θj |t + |θj′ |t > 0 for any t ∈ Tj we also

deduce that there exists a cycle π0,j = (xj

σ0,j
−−−→Gj

x′
j) such

that |π0,j |t = µ0,j,t− (|θj |t + |θj′ |t) for any t ∈ Tj . Note that
we have s0,j + δ(wj) + δ(σ0,j) + δ(w′

j) = s′0,j.

In the sequel we provide technical lemmas that prove to-
gether that L(U) 6= ∅. These lemmas are also used in the
next sub-section 4.2.

Lemma 10. For any c ≥ 0 we have:

sj + cs0,j

wc
j

−−→V sj + c(s0,j + δ(wj))

s
′
j + c(s′0,j − δ(w′

j))
(w′

j)c

−−−→V s
′
j + cs

′
0,j

Proof. Since the two relations are symmetrical, we just
prove the first one. The choice of ξ satisfying Lemma 8 shows

that sj
wj
−−→V . The conditions s0,j ≥ 0, s0,j + δ(wj) ≥ 0 and

sj
wj
−−→V with an immediate induction on the integer c ≥ 0

provides the required relation.

Lemma 11. There exists c0 ≥ 0 such that for any c ≥ c0:

sj + c(s0,j + δ(wj))
σc
0,j

−−−→V sj + c(s′0,j − δ(w′
j))

Proof. Let us recall that xi = x′
i. We denote by u the

vector in {0, 1}n satisfying u[i] = 1 if xi[i] = ⊤ = x′
i[i]

and satisfying u[i] = 0 otherwise. From the choice of ξ0
satisfying Lemma 9, we observe that s0,j + δ(wj) ≥ u and
s′0,j − δ(w′

j) ≥ u. Note that limc→+∞(sj + cu) = xj. As

xj

σ0,j
−−−→Gj

x′
j, Lemma 7 proves that there exists an integer

c0 ≥ 0 such that sj + c0u
σ0,j
−−−→V . Now, let us consider

integers c ≥ 1 and c′ ≥ 0 such that c + c′ ≥ c0 and let us
prove the relation:

sj + c(s0,j + δ(wj)) + c
′(s′0,j − δ(w′

j))
σ0,j
−−−→V

sj + (c− 1)(s0,j + δ(wj)) + (c′ + 1)(s′0,j − δ(w′
j))

From s0,j + δ(wj) ≥ u and s′0,j − δ(w′
j) ≥ u we deduce that

c(s0,j+δ(wj))+c
′(s′0,j−δ(w

′
j)) ≥ (c+c′)u ≥ c0u. Thus, the

previous relation directly comes from sj + c0u
σ0,j
−−−→V and

s0,j + δ(wj) + δ(σ0,j) + δ(w′
j) = s′0,j. Now, an immediate

induction provides sj + c(s0,j + δ(wj))
σc
0,j

−−−→V sj + c(s′0,j −
δ(w′

j)) for any c ≥ c0.

Lemma 12. There exists c′ ≥ 0 such that for any c ≥ c′:

sj + c(s′0,j − δ(w′
j))

σj
−→V s

′
j + c(s′0,j − δ(w′

j))



Proof. As limc→+∞(s′j+c(s
′
0,j−δ(w

′
j))) = x′

j and xj

σj
−→Gj

x′
j, Lemma 7 proves that there exists c′ ≥ 0 such that

σj
−→V (s′j+c(s

′
0,j−δ(w

′
j))) for any c ≥ c′. Since sj+δ(σj) = s′j

we are done.

Now, let us consider an integer c ≥ 0 satisfying c ≥ c0 and
c ≥ c′ where c0 and c′ are respectivelly defined by Lemma
11 and Lemma 12. Note that we have proved the following
relation:

sj + cs0,j

wc
j σc

0,jσj(w′

j )c

−−−−−−−−−−→V s
′
j + cs

′
0,j

Therefore there exists a word in L(U) associated to ξ+ cξ0.
In particular we have proved that L(U) 6= ∅.

4.2 Semi-pseudo-linear Reachability Sets
In this section post∗V(S) ∩ S′ and S ∩ pre∗V(S′) are proved
semi-pseudo-linear for any semi-linear sets S, S′ ⊆ Nn.

Let us reduce our problem to the forward case with S =
{b} and S′ = b + Z∗ where b,b′ ∈ Nn and Z ⊆ Nn is
a set of periods. Since post∗V(X) = pre∗−V(X) for any set
X ⊆ Nn where −V = (Σ, n,−δ), the problem reduces to
prove that post∗V(S) ∩ S′ is semi-pseudo-linear. Note also
that a semi-linear set is a finite union of linear sets. As
post∗V(L1 ∪ . . .∪Lk) = post∗V(L1)∪ . . .∪post∗V(Lk), we have
reduced the problem to prove that post∗V(L) ∩ L′ is semi-
pseudo-linear for any linear sets L, L′. Let us consider a
linear set L = b + P ∗ where b ∈ Nn and P ⊆ Nn is a finite
set of periods. Without loss of generality we can assume
that P ∩ Σ = ∅. Let us consider the VAS VP = (ΣP , n, δP )
where ΣP = Σ ∪ P and δP extends δ by δP (p) = p for
any p ∈ P . We observe that post∗V(L) = post∗VP

({b}). In
particular we can assume that L = {b}. We have proved
the proposed reduction.

So, let us consider two configurations b,b′ ∈ Nn, a set of
periods Z ⊆ Nn and let us prove that post∗V({b})∩(b′+Z∗)
is semi-pseudo-linear. We can assume that Z ∩ Σ = ∅. As
expected, we consider the VAS VZ = (ΣZ , n, δZ) obtained
from V by considering the alphabet ΣZ = Σ ∪ Z and the
displacement function δZ that extends δ by δZ(z) = −z for
any z ∈ Z. The displacement function δ is also extended
into another displacement function still denoted by δ and
defined by δ(z) = 0 for any z ∈ Z. Observe that we have
the following equality:

post∗V({b}) ∩ (b′ + Z
∗) = δ(L(b,VZ ,b

′))

From Theorem 1, it is sufficient to prove that δ(L(U)) is
pseudo-linear for any perfect MGVS U for (b,VZ ,b

′). So
let us consider such a perfect MGVS U of the following form
(note that l1, . . . , lk ∈ Σ ∪ Z):

U = (m0,x0, G0,x
′
0,m

′
0), l1, . . . , lk, (mk,xk, Gk,x

′
k,m

′
k)

Intuitively, the linearizator P of δ(L(U)) is obtained from
the homogeneous characteristic system of U . We denote by
H the non-negative integral solutions of the characteristic
system and we denote by H0 the set of non-negative integral

solutions of the homogeneous characteristic system. Observe
that H = min(H) +H0 and H0 = min(H0\{0})

∗.

Given a solution ξ = ((sj)j , (µj,t)j,t, (s
′
j)j) of the character-

istic system and a solution ξ0 = ((s0,j)j , (µ0,j,t)j,t, (s
′
0,j)j)

of the homogeneous characteristic system, we consider the
vectors β0(ξ0) and β(ξ) defined by the following equalities:

β(ξ) = δ(l1 . . . lk) +
∑

0≤j≤k

t=(q,l,q′)∈Tj

µj,tδ(l)

β0(ξ0) =
∑

0≤j≤k

t=(q,l,q′)∈Tj

µ0,j,tδ(l)

We observe that δ(σ) = β(ξ) if ξ is associated to a word
σ ∈ L(U). Thus δ(L(U)) ⊆ β(H).

We are going to prove that the following set of periods P is
a linearizator for δ(L(U)):

P = β0(min(H0\{0}))

Lemma 13. There exists ξ ∈ H and ξ0 ∈ H0 such that
ξ0 +H ⊆ ξ +H0.

Proof. As the MGVS U is perfect the set H is non
empty. Let us consider the set I of components i such that
ξ[i] is independent of ξ ∈ H . As the MGVS is perfect we de-
duce that for any integer c ≥ 0 there exists ξ ∈ H such that
ξ[i] ≥ c for any i 6∈ I . As min(H) is finite, we deduce that
there exists ξ ∈ H such that ξ ≥ ξ′ for any ξ′ ∈ min(H). In
particular ξ0 =

∑

ξ′∈min(H)(ξ − ξ′) is in H0. Let us prove

that ξ0 + H ⊆ ξ + H0. Consider ξ′′ ∈ H . By definition of
min(H), there exists ξ′′′ ∈ min(H) such that ξ′′′ ≤ ξ′′. The
definition of ξ0 shows that ξ0 − (ξ − ξ′′′) is equal to a sum
of terms (ξ − ξ′) indexed by ξ′ ∈ min(H)\{ξ′′′}. Therefore
ξ0 − (ξ − ξ′′′) ∈ H0. As ξ′′ − ξ′′′ ∈ H0 we have proved that
the sum of ξ0 − (ξ − ξ′′′) and ξ′′ − ξ′′′ is also in H0. Note
that this sum is equal to ξ0 − ξ + ξ′′. We have proved that
ξ0 + ξ′′ ∈ ξ +H0. Therefore ξ0 +H ⊆ ξ +H0.

Let us consider ξ ∈ H and ξ0 ∈ H0 satisfying the previous
lemma and let us apply β to the inclusion ξ0 +H ⊆ ξ+H0.
We deduce that β0(ξ0) + β(H) ⊆ β(ξ) + β0(H0). Since
β0(H0) = P ∗ and δ(L(U)) ⊆ β(H), we have proved the
following inclusion:

δ(L(U)) ⊆ β(ξ) − β0(ξ0) + P
∗

Now, let us consider a set R0 = {ξ1, . . . , ξd} of attractors of
H0. We are going to prove that there exists a vector x such
that x + β0(R

∗
0) ⊆ δ(L(U)). We first prove the following

lemma.

Lemma 14. For any ξi = ((si,j)j , (µi,j,t)j,t, (s
′
i,j)j) attrac-

tor of H0 there exists a cycle πi,j = (xj

σi,j
−−→Gj

x′
j) such that

µi,j,t = |πi,j |t for any t ∈ Tj and any 0 ≤ j ≤ k.



Proof. Since U is perfect, for any t ∈ Tj , there exists a
solution ξ0 = (s0,j, (µ0,j,t)t, s

′
0,j)j in H0 such that µ0,j,t > 0.

As H0 is the monoid generated by min(H0\{0}), for any
t ∈ Tj there exists ξ0 ∈ min(H0\{0}) satisfying the same
property. Lemma 1 shows that ξi = (si,j, (µi,j,t)t, s

′
i,j)j is

a sum over all solutions ξ0 ∈ min(H0\{0}) of terms of the
form λξ0 where λ > 0 is a rational value that naturally
depends on ξ0. In particular we deduce that µi,j,t > 0 for
any t ∈ Tj and for any 0 ≤ j ≤ k. Lemma 6 shows that there

exists a cycle πi,j = (xj

σi,j
−−→Gj

x′
j) such that µi,j,t = |πi,j |t

for any t ∈ Tj and any 1 ≤ j ≤ k.

Now, let us consider a solution ξ of the characteristic system
and a solution ξ0 of the homogeneous characteristic system
satisfying respectively Lemma 8 and Lemma 9.

Lemma 15. There exists ci ≥ 0 such that for any 1 ≤ j ≤
k and c ≥ ci:

sj + c(s0,j + δZ(wj)) + si,j
σi,j
−−→VZ

sj + c(s0,j + δZ(wj)) + s
′
i,j

Proof. As limc→+∞(sj + c(s0,j + δZ(wj))) = xj and

xj

σi,j
−−→Gj

xj, Lemma 7 proves that there exists an integer

ci ≥ 0 such that (sj+c(s0,j+δZ(wj)))
σi,j
−−→VZ

for any c ≥ ci
and for any 0 ≤ j ≤ k. As si,j ≥ 0 and si,j+δ(σi,j) = s′i,j ≥ 0

we deduce the lemma.

Now, let us consider an integer c ≥ 0 such that c ≥ c0,
c ≥ c′ and c ≥ ci for any 1 ≤ i ≤ d where c0, c

′, ci are
respectivelly defined in Lemma 11, Lemma 12 and Lemma
15. From these lemmas and Lemma 10 we deduce that for
any sequence n1, . . . , nd ∈ N we have the following relation:

sj + cs0,j +
d

∑

i=1

nisi,j

wc
j σ

n1

1,j
...σ

nd
d,j

σjσc
0,j(w′

j)c

−−−−−−−−−−−−−−−−→VZ

s
′
j + cs

′
0,j +

d
∑

i=1

nis
′
i,j

We have proved that there exists a word σ ∈ L(U) associated

with ξ + cξ0 +
∑d

i=1 niξi. By applying β to the previous

tuple, we deduce that δ(σ) = x +
∑d

i=1 niβ0(ξi) where x =
β(ξ) + cβ0(ξ0). We have proved the following inclusion:

x + β0(R
∗
0) ⊆ δ(L(U))

The following lemma shows that P is a linearizator of δ(L(U)).

Lemma 16. For any set of attractors R ⊆ A(P ∗) there
exists a finite set of attractors R0 ⊆ A(H0) and a vector
r ∈ R∗ such that:

r +R
∗ ⊆ β0(R

∗
0)

Proof. Let us consider a set R = {r1, . . . , rd} of attrac-
tors of P ∗. As ri ∈ P ∗, there exists ξi ∈ H0 such that
ri = β0(ξi). Lemma 1 shows that any ri ∈ R is a sum
of vectors of the form λβ0(ξ0) over all ξ0 ∈ min(H0\{0})
where λ > 0 is a rational value that naturally depends on
ξ0. Thus there exists an integer Ni ≥ 1 large enough and
an attractor ξ′i of H0 such that Niri = β0(ξ

′
i). Let us con-

sider the set R0 of solutions of the form ξ′i + λiξi where λi

is an integer such that 0 ≤ λi < Ni. As ξ′i is an attrac-
tor of H0 and ξi ∈ H0 we deduce that ξ′i + λiξi is also an
attractor of H0. We have proved that R0 ⊆ A(H0). Let

us consider the vector r =
∑d

i=1Niri and let us prove that

r + R∗ ⊆ β0(R
∗
0). Note that r = β0(

∑d

i=1 ξ
′
i). Consider

r′ ∈ R∗. There exists a sequence (µi)1≤i≤d of integers inN such that r′ =
∑d

i=1 µiri. The Euclid division of µi by
Ni shows that µi = µ′

i + Niλi where λi ∈ N and µ′
i is an

integer such that 0 ≤ µ′
i < Ni. From Niri = β0(ξ

′
i) we de-

duce that r+r′ = β0(
∑d

i=1 λiξ
′
i +

∑d

i=1(ξ
′
i +µ

′
iξi)). Observe

that ξ′i and ξ′i + µ′
iξi are both in R0. We have proved that

r +R∗ ⊆ β0(R
∗
0).

Therefore, we have proved the following theorem:

Theorem 2. For any pair S, S′ ⊆ Nn of semi-linear sets,
the sets post∗V(S) ∩ S′ and S ∩ pre∗V(S′) are semi-pseudo-
linear.

5. SEMI-LINEAR SEPARATORS
In this section we prove that there exists a semi-linear sep-
arator for any pair of semi-linear separable pair.

Given a pair (S, S′) of separable sets of configurations, the
set D = Nn\(S∪S′) is called the co-domain of (S,S′). Note
that a separable pair (S, S′) with an empty co-domain D

is a separator, and there exist separators with a non-empty
co-domain.

The semi-linear separator for a semi-linear separable pair
(S0, S

′
0) is obtain inductively. We build a non-decreasing

sequence (Sj , S
′
j)j≥0 of semi-linear separable sets starting

from the initial semi-linear separable pair (S0, S
′
0) such that

the dimension of the co-domain Dj = Nn\(Sj∪S
′
j) is strictly

decreasing. In order to obtain this sequence, observe that it
is sufficient to show that for any semi-linear separable pair
(S0, S

′
0) of configuration sets with a non-empty co-domain

D0, there exists a semi-linear separable pair (S, S′) ⊇ (S0, S
′
0)

with a co-domain D such that dim(D) < dim(D0).

We first define a set S′ that over-approximates S′
0 and such

that (S0, S
′) remains separable. As S0 and D0 are semi-

linear, the main result of section 4 shows that post∗V(S0)∩D0

is equal to a finite union of pseudo-linear sets X1, . . . ,Xk.
Let us consider some linearizations L1, . . . , Lk of these pseudo-
linear sets and let us define the following semi-linear set S′.

S
′ = S

′
0 ∪ (D0\(

k
⋃

j=1

Lj))

We observe that post∗V(S0)∩S
′ = ∅ since post∗V(S0)∩S

′
0 = ∅

and post∗V(S0)∩D0 ⊆
⋃k

j=1 Lj . Thus post∗V(S0)∩pre∗V(S′) =



∅ and we have proved that S′ contains S′
0 and (S0, S

′) is
separable.

Now we define symmetrically a set S that over-approximates
S0 and such that (S, S′) remains separable. AsD0 and S′ are
semi-linear, the main result proved in section 4 shows that
D0 ∩pre∗V(S′) is equal to a finite union of pseudo-linear sets
X ′

1, . . . ,X
′
k′ . Let us consider some linearizations L′

1, . . . , L
′
k′

of these pseudo-linear sets and let us define the following
semi-linear set S.

S = S0 ∪ (D0\(
k′

⋃

j=1

L
′
j))

Once again, note that S ∩ pre∗V(S′) = ∅. Thus S contains
S0 and (S, S′) is separable.

Let D be the co-domain of the separable pair (S, S′). From
D0 = Nn\(S0 ∪ S

′
0), we get the following equality.

D = D0 ∩









⋃

1≤j1≤k

1≤j2≤k′

(Lj1 ∩ L′
j2

)









From Xj1 ,X
′
j2

⊆ D0 we get max{dim(Xj1 ),dim(X ′
j2

)} ≤
dim(D0). As Xj1 ⊆ post∗V(S0) ⊆ post∗V(S) and X ′

j2
⊆

pre∗V(S′) and (S, S′) is separable, we deduce that Xj1 and
X ′

j2
are two pseudo-linear sets with an empty intersection.

From the main result proved in section 3, we get dim(Lj1 ∩
L′

j2
) < max{dim(Xj1),dim(X ′

j2
)}. We deduce dim(D) <

dim(D0). We have proved the following theorem.

Theorem 3. There exists a semi-linear separator for any
pair of semi-linear separable sets.

6. CONCLUSION
We have proved the termination of the algorithm Reachabil-

ity. Even tough the proof is based on the classical KLMST
decomposition, its complexity does not depend on this de-
composition. In fact, the complexity of this algorithm de-
pends on the size of the minimal pair of Presburger formulas
denoting a separator for a separable pair ({s}, {s′}). This
algorithm is the very first one that does not require the
KLMST decomposition. In particular, this algorithm is the
first candidate to obtain a precise (eventually elementary)
upper-bound complexity for the VAS reachability problem.

We left as an open question the problem of computing a
lower bound and a upper bound of the size of a pair of Pres-
burger formulas denoting a separator for a separable pair
({s}, {s′}). Note that the VAS exhibiting a large (Acker-
mann size) but finite reachability set given in [4] does not
directly provide a lower-bound for this size since separators
can over-approximate reachability sets.

We also left as an open question the problem of adapting
such an algorithm to obtain a complete Counter Example
Guided Abstract Refinement approach [1] for the VAS reach-
ability problem based on interpolants [6] for FO (N,+,≤).

In practice, such an algorithm should be more efficient than
the enumeration-based algorithm provided in this paper.
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