An Easy Algorithm For The General Vector Addition System Reachability Problem

Jérôme Leroux

To cite this version:

Jérôme Leroux. An Easy Algorithm For The General Vector Addition System Reachability Problem. 2008. hal-00272667v6

HAL Id: hal-00272667
https://hal.science/hal-00272667v6
Preprint submitted on 11 Jul 2008 (v6), last revised 8 Jun 2009 (v12)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An Easy Algorithm For The General Vector Addition System Reachability Problem

Jérôme Leroux
Laboratoire Bordelais de Recherche en Informatique
CNRS UMR 5800, Talence, France
leroux@labri.fr

Abstract

The reachability problem for Vector Addition Systems (VAS) or equivalently for Petri Nets is a central problem of net theory. The general problem is known decidable by algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition. This decomposition is difficult and it just has a non-primitive recursive upper-bound complexity. In this paper, we prove that if a configuration is not reachable from an initial configuration, there exists a semi-linear inductive invariant that proves this property. We deduce an easy algorithm for deciding the reachability problem based on two semi-algorithms. A first one that tries to prove the reachability by fairly enumerating the possible paths and a second one that tries to prove the unreachability by fairly enumerating semi-linear inductive invariants. This algorithm is the very first one that does not require the KLMST decomposition. In particular, this algorithm is the first candidate to obtain a precise (eventually elementary) upper-bound complexity for the VAS reachability problem.

1. INTRODUCTION

Vector Addition Systems (VAS) or equivalently Petri Nets are one of the most popular formal methods for the representation and the analysis of parallel processes [2]. The reachability problem is central since many computational problems (even outside the parallel processes) reduce to the reachability problem. Sacerdote and Tenney provided in 10 a partial proof of the decidability of this problem. The proof was completed in 1981 by Mayr 9 and simplified by Kosaraju (7) from [10, 9]. Ten years later [8], Lambert provided a more simplified version based on [7]. This last proof still remains difficult and the upper-bound complexity of the corresponding algorithm is just known non-primitive recursive. Nowadays, the exact complexity of the reachability problem for VAS is still an open-problem. Even an elementary upperbound complexity is open. In fact, the known general reachability algorithms are exclusively based on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

In this paper, we prove that if a configuration is not reachable from an initial configuration, there exists a semi-linear set or equivalently a formula in the Presburger arithmetic
(3) that denotes an inductive invariant proving this property. We deduce an easy algorithm for deciding the reachability problem based on two semi-algorithms. A first one that tries to prove the reachability by fairly enumerating the possible paths and a second one that tries to prove the unreachability by fairly enumerating semi-linear inductive invariants. This algorithm is the very first one that does not require the KLMST decomposition. In particular, this algorithm should be a good candidate to obtain a precise (eventually elementary) upper-bound complexity for the VAS reachability problem. Note 5 that in general, reachability sets are not semi-linear. Semi-linear inductive invariants are obtained by observing that reachability sets can be precisely over-approximated by semi-linear sets.

Outline of the paper: In section 2, the unreachability problem for VAS is reduced to the existence of separators (a pair of inductive invariants). In section 3 we introduce the class of semi-pseudo-linear sets, a class of sets that can be precisely over-approximated by semi-linear sets. In section 4, reachability sets are proved semi-pseudo-linear. Finally in section 5 we show the existence of semi-linear separators proving the unreachability of a pair of configurations. In order to simplify the presentation of this paper, the independant parts of sections 3 and with the remaining of the paper are presented in some sub-sections. That means the
reader may safely skip these sub-sections in order to read other sections of the paper.

2. VECTOR ADDITION SYSTEMS

In this section, the unreachability problem for Vector Addition Systems is reduced to the existence of separators.

```
Reachability (s\in\mp@subsup{\mathbb{N}}{}{n},\mathcal{V}=(\Sigma,n,T) a VAS, s}\mp@subsup{\mathbf{s}}{}{\prime}\in\mp@subsup{\mathbb{N}}{}{n}
    repeat forever
        fairly select }\sigma\in\mp@subsup{\Sigma}{}{*
            if s}\xrightarrow{}{\sigma}v\mp@subsup{s}{}{\prime
                return "reachable"
            fairly select ( }\psi(\mathbf{x}),\mp@subsup{\psi}{}{\prime}(\mathbf{x}))\mathrm{ formulas in FO(N, +, \)
            if (\psi(\mathbf{x}),\mp@subsup{\psi}{}{\prime}(\mathbf{x}))\mathrm{ denotes separator for ({s},{s'}})
                return "unreachable"
```

Some notations : As usual we denote by $\mathbb{Q}, \mathbb{Q}_{+}, \mathbb{Z}, \mathbb{N}$ respectively the set of rational values, non-negative rational values, the set of integers and the set of non-negative integers. The components of a vector $\mathbf{x} \in \mathbb{Q}^{n}$ are denoted by $(\mathbf{x}[1], \ldots, \mathbf{x}[n])$. Given a function $f: E \rightarrow F$ where E, F are sets, we denote by $f(X)=\{f(x) \mid x \in X\}$ for any subset $X \subseteq E$. This definition naturally defines sets $X_{1}+X_{2}$ where $X_{1}, X_{2} \subseteq \mathbb{Q}^{n}$. With slightly abusing notations, $\left\{\mathbf{x}_{1}\right\}+X_{2}$ and $X_{1}+\left\{\mathbf{x}_{\mathbf{2}}\right\}$ are simply denoted by $\mathbf{x}_{\mathbf{1}}+X_{2}$ and $X_{1}+\mathbf{x}_{\mathbf{2}}$. The total order \leq over \mathbb{Q} is extended component-wise to the partial order \leq satisfying $\mathbf{x} \leq \mathbf{x}^{\prime}$ if and only if $\mathbf{x}[i] \leq \mathbf{x}^{\prime}[i]$ for any $1 \leq i \leq n$. The set of minimal elements for \leq of a set $X \subseteq \mathbb{N}^{n}$ is denoted by $\min (X)$. As $\left(\mathbb{N}^{n}, \leq\right)$ is a well partially ordered set, recall that $\min (X)$ is finite and $X \subseteq \min (X)+\mathbb{N}^{n}$ for any $X \subseteq \mathbb{N}^{n}$.

A Vector Addition System $(V A S)$ is a tuple $\mathcal{V}=(\Sigma, n, \delta)$ where Σ is a non-empty finite alphabet, $n \in \mathbb{N}$ is the dimension and $\delta \in \Sigma \rightarrow \mathbb{Z}^{n}$ is the displacement function. A configuration is a vector in \mathbb{N}^{n}. The binary relation $\xrightarrow{a} \mathcal{V}$ where $a \in \Sigma$ over the set of configurations is defined by $\mathbf{s} \xrightarrow{a} \mathcal{V} \mathbf{s}^{\prime}$ if and only if $\mathbf{s}^{\prime}=\mathbf{s}+\delta(a)$. Given a word $\sigma=a_{1} \ldots a_{k}$ of $k \in \mathbb{N}$ elements $a_{i} \in \Sigma$, we denote by $\xrightarrow{\sigma} \mathcal{V}$ the binary relation over the set of configurations that is equal to the concatenation $\xrightarrow{a_{1}} \mathcal{V} \cdots \xrightarrow{a_{k}} \mathcal{V}$ if $k \geq 1$ and that is equal to the identity binary relation if $k=0$. We also denote by $\rightarrow \nu$ the reachability binary relation over the set of configurations defined by $\mathbf{s} \rightarrow \nu \mathrm{s}^{\prime}$ if and only if there exists $\sigma \in \Sigma^{*}$ such that $\mathbf{s} \xrightarrow{\sigma} \mathcal{V} \mathbf{s}^{\prime}$. Given two sets S, S^{\prime} of configurations, we denote by $\operatorname{post}_{\mathcal{V}}^{*}(S)$ and $\operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ respectively the set of reachable states from S and the set of co-reachable states from S^{\prime} formally defined by:

$$
\left.\begin{array}{l}
\operatorname{post}_{\mathcal{V}}^{*}(S)=\left\{\mathbf{s}^{\prime} \in \mathbb{N}^{n} \mid \exists \mathbf{s} \in S\right. \\
\operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)=\left\{\mathbf{v} \mathbf{s}^{\prime}\right\}
\end{array}\right\}
$$

The reachability problem for a tuple ($\mathbf{s}, \mathcal{V}, \mathbf{s}^{\prime}$) where $\mathbf{s}, \mathbf{s}^{\prime}$ are two configurations of a VAS \mathcal{V} consists to decide if $s \rightarrow \mathcal{v} \mathbf{s}^{\prime}$. This problem can be reformulated by introducing the definition of separators. A pair $\left(S, S^{\prime}\right)$ of configuration sets is said separable if $\operatorname{post}_{\mathcal{V}}^{*}(S) \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)=\emptyset$. Naturally, a pair $\left(\mathbf{s}, \mathbf{s}^{\prime}\right)$ is in the complement of the reachability relation $\rightarrow \mathcal{v}$ if and only if the pair ($\{\mathbf{s}\},\left\{\mathbf{s}^{\prime}\right\}$) is separable. A separator for a pair $\left(S, S^{\prime}\right)$ of configuration sets is a pair $\left(I, I^{\prime}\right)$
such that $I \cap I^{\prime}=\emptyset$ and such that I is a forward invariant $\operatorname{post}_{\mathcal{V}}^{*}(I)=I$ containing $S \subseteq I$ and I^{\prime} is a backward invariant $\operatorname{pre}_{\mathcal{V}}^{*}\left(I^{\prime}\right)=I^{\prime}$ containing $S^{\prime} \subseteq I^{\prime}$. Observe that in this case $\left(S, S^{\prime}\right)$ is separable. As ($\operatorname{post}_{\mathcal{V}}^{*}(S), \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$) is a separator for any separable pair $\left(S, S^{\prime}\right)$, we deduce that a pair $\left(S, S^{\prime}\right)$ is separable if and only if there exists a separator $\left(I, I^{\prime}\right)$ for $\left(S, S^{\prime}\right)$.

We are interested in separators definable in the decidable logic $\operatorname{FO}(\mathbb{N},+, \leq)$. Note that a pair $\left(\psi(\mathbf{x}), \psi^{\prime}(\mathbf{x})\right)$ of formulas in this logic denotes a separator (I, I^{\prime}) if and only if $\psi(\mathbf{x}) \wedge \psi^{\prime}(\mathbf{x})$ and the following formulas are unsatisfiable for any $a \in \Sigma$. In particular we can effectively decide if $\left(\psi(\mathbf{x}), \psi^{\prime}(\mathbf{x})\right)$ denotes a separator.

$$
\begin{array}{ccc}
\psi(\mathbf{x}) & \wedge & \mathbf{x}^{\prime}=\mathbf{x}+\delta(a) \\
\mathbf{x}^{\prime}\left(\mathbf{x}^{\prime}\right) & \wedge & \wedge \\
\mathbf{x}^{\prime}=\mathbf{x}+\delta(a) & \left.\wedge \mathbf{x}^{\prime}\right) \\
\psi^{\prime}(\mathbf{x})
\end{array}
$$

In this paper we prove that there exists a separator $\left(I, I^{\prime}\right)$ definable in $\mathrm{FO}(\mathbb{N},+, \leq)$ for any pair (S, S^{\prime}) of separable sets definable in $\mathrm{FO}(\mathbb{N},+, \leq)$. We deduce that algorithm Reachability $\left(\mathbf{s}, \mathcal{V}, \mathbf{s}^{\prime}\right)$ decides the reachability problem. The termination is guaranteed by the previous result. Note $\left.{ }^{5}\right]$ that in general, the separator ($\operatorname{post}_{\mathcal{V}}^{*}(S), \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$) is not definable in $\mathrm{FO}(\mathbb{N},+, \leq)$ even if S and S^{\prime} are reduced to single vectors $S=\{\mathbf{s}\}$ and $S^{\prime}=\left\{\mathbf{s}^{\prime}\right\}$. That means, this separator must be over-approximated by another separator (I, I^{\prime}) definable in $\mathrm{FO}(\mathbb{N},+, \leq)$. Intuitively, the approximation is obtained by observing that post ${ }_{\mathcal{V}}^{*}(S) \cap S^{\prime}$ and $S \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ are semi-pseudo-linear for any pair $\left(S, S^{\prime}\right)$ of sets definable in $\mathrm{FO}(\mathbb{N},+, \leq)$, a class of sets that can be precisely overapproximated by sets definable in $\mathrm{FO}(\mathbb{N},+, \leq)$.

3. SEMI-PSEUDO-LINEAR SETS

In this section we introduce the class of pseudo-linear sets and semi-pseudo-linear sets. We show that a pseudo-linear set X can be precisely over-approximated by a linear set L called a linearization of X. We also introduce a monotonic function $\operatorname{dim}:\left(P\left(\mathbb{Z}^{n}\right), \subseteq\right) \rightarrow(\{-\infty, 0, \ldots, n\}, \leq)$ that associates to any set $X \subseteq \mathbb{Z}^{n}$ a dimension $\operatorname{dim}(X)$. We show that $\operatorname{dim}\left(X_{1} \cup X_{2}\right)=\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}$ for any $X_{1}, X_{2} \subseteq \mathbb{Z}^{n}$. Essentially, in this section, we prove that any linearizations L_{1}, L_{2} of pseudo-linear sets X_{1}, X_{2} with an empty intersection $X_{1} \cap X_{2}=\emptyset$ satisfy $\operatorname{dim}\left(L_{1} \cap L_{2}\right)<$ $\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}$.

We first associate a dimension to sets $X \subseteq \mathbb{Z}^{n}$. The dimension $\operatorname{dim}(X)$ of a non-empty set $X \subseteq \mathbb{Z}^{n}$ is the minimal integer $d \in\{0, \ldots, n\}$ such that:

$$
\sup _{k \geq 0} \frac{\left|X \cap\{-k, \ldots, k\}^{n}\right|}{(1+2 k)^{d}}<+\infty
$$

The dimension of the empty-set set is denoted by $\operatorname{dim}(\emptyset)=$ $-\infty$. Let us observe some immediate properties satisfied by the dimension function. First of all, we have $\operatorname{dim}(X) \leq 0$ if and only if X is finite. The dimension function is monotonic $\operatorname{dim}\left(X_{1}\right) \leq \operatorname{dim}\left(X_{2}\right)$ for any $X_{1} \subseteq X_{2}$. Moreover it satisfies $\operatorname{dim}\left(X_{1} \cup X_{2}\right)=\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}$ and $\operatorname{dim}\left(X_{1}+\right.$ $\left.X_{2}\right) \leq \operatorname{dim}\left(X_{1}\right)+\operatorname{dim}\left(X_{2}\right)$. In particular $\operatorname{dim}(\mathbf{v}+X)=$ $\operatorname{dim}(X)$ for any $\mathbf{v} \in \mathbb{Z}^{n}$ and for any $X \subseteq \mathbb{Z}^{n}$.

Now, let us recall the definition of semi-linear sets. A monoid M of \mathbb{Z}^{n} is a subset $M \subseteq \mathbb{Z}^{n}$ that contains the zero vector $\mathbf{0} \in M$ and that is stable by addition $M+M \subseteq M$. Given any subset $X \subseteq \mathbb{Z}^{n}$, observe that $X^{*}=\left\{\sum_{i=1}^{\bar{k}} \mathbf{x}_{\mathbf{i}} \mid k \in\right.$ $\left.\mathbb{N} \mathbf{x}_{\mathbf{i}} \in X\right\}$ is the unique minimal for the inclusion monoid that contains X. It is called the monoid generated by X. A finite set $P \subseteq \mathbb{Z}^{n}$ is called a set of periods. A set $L \subseteq \mathbb{Z}^{n}$ is said linear [3] if there exists a vector $\mathbf{b} \in \mathbb{Z}^{n}$ and a set of periods $P \subseteq \mathbb{Z}^{n}$ such that $L=\mathbf{b}+P^{*}$. A semi-linear set $S \subseteq \mathbb{Z}^{n}$ is a finite union of linear sets $L_{i} \subseteq \mathbb{Z}^{n}$. Recall that sets definable in $\mathrm{FO}(\mathbb{Z},+, \leq)$ are exactly the semilinear sets and sets definable in $\mathrm{FO}(\mathbb{N},+, \leq)$ are exactly the non-negative semi-linear sets.

The definition of semi-pseudo-linear sets requires the definition of attractors of a monoid. Given a vector \mathbf{x} in a monoid M, we observe that $\mathbf{x}+M$ is a subset of M. We are interested in vectors $\mathbf{a} \in M$ such that for any set $\mathbf{x}+M$ where $\mathbf{x} \in M$ there exists an integer $N \in \mathbb{N}$ such that $N \mathbf{a} \in \mathbf{x}+M$. More formally, an attractor of a monoid M is a vector $\mathbf{a} \in M$ such that $(\mathbb{N} \mathbf{a}) \cap(\mathbf{x}+M) \neq \emptyset$ for any $\mathbf{x} \in M$. We denote by $\mathcal{A}(M)$ the set of attractors of M. The following Lemma 1 characterizes the set $\mathcal{A}\left(P^{*}\right)$ where P is a set of periods. In particular, this lemma shows that $\mathcal{A}\left(P^{*}\right)$ is non empty.

Lemma 1. We have $\mathcal{A}\left(P^{*}\right)=\{\mathbf{0}\}$ if $k=0$ and $\mathcal{A}\left(P^{*}\right)=$ $P^{*} \cap\left(\left(\mathbb{Q}_{+} \backslash\{0\}\right) \mathbf{p}_{1}+\cdots+\left(\mathbb{Q}_{+} \backslash\{0\}\right) \mathbf{p}_{\mathbf{k}}\right)$ if $k \geq 1$ for any set of periods $P=\left\{\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{k}}\right\}$.

Proof. Since the case $k=0$ is immediate, we assume that $k \geq 1$. Let us first consider an attractor $\mathbf{a} \in \mathcal{A}\left(P^{*}\right)$. As $\sum_{j=1}^{k} \mathbf{p}_{\mathbf{j}} \in P^{*}$ and $\mathbf{a} \in \mathcal{A}\left(P^{*}\right)$, there exists $N \in \mathbb{N}$ such that $N \mathbf{a} \in\left(\sum_{j=1}^{k} \mathbf{p}_{\mathbf{j}}\right)+P^{*}$. Let $\mathbf{p} \in P^{*}$ such that $N \mathbf{a}=\sum_{j=1}^{k} \mathbf{p}_{\mathbf{j}}+\mathbf{p}$. As $\mathbf{p}+\mathbf{a} \in P^{*}$, there exists a sequence $\left(N_{j}\right)_{1 \leq j \leq k}$ of elements in \mathbb{N} such that $\mathbf{p}+\mathbf{a}=\sum_{j=1}^{k} N_{j} \mathbf{p}_{\mathbf{j}}$. Combining this equality with the previous one provides $\mathbf{a}=$ $\sum_{j=1}^{k} \frac{1+N_{j}}{1+N} \mathbf{p}_{\mathbf{j}}$. Thus $\mathbf{a} \in\left(\mathbb{Q}_{+} \backslash\{0\}\right) \mathbf{p}_{1}+\cdots+\left(\mathbb{Q}_{+} \backslash\{0\}\right) \mathbf{p}_{\mathbf{k}}$. Conversely, let us consider $\mathbf{a} \in P^{*} \cap\left(\left(\mathbb{Q}_{+} \backslash\{0\}\right) \mathbf{p}_{\mathbf{1}}+\cdots+\right.$ $\left.\left(\mathbb{Q}_{+} \backslash\{0\}\right) \mathbf{p}_{\mathbf{k}}\right)$. Observe that there exists an integer $d \geq 1$ large enough such that $d \mathbf{a} \in(\mathbb{N} \backslash\{0\}) \mathbf{p}_{\mathbf{1}}+\cdots+(\mathbb{N} \backslash\{0\}) \mathbf{p}_{\mathbf{k}}$. In particular for any $\mathbf{x} \in P^{*}$ there exists $N \in \mathbb{N}$ such that $N d \mathbf{a} \in \mathbf{x}+P^{*}$.

Example 1. Let $P=\{(1,1),(1,0)\}$. The monoid generated by P is equal to $P^{*}=\left\{\mathbf{x} \in \mathbb{N}^{2} \mid \mathbf{x}[2] \leq \mathbf{x}[1]\right\}$, and the set of attractors of P^{*} is equal to $\mathcal{A}\left(P^{*}\right)=\left\{\mathbf{x} \in \mathbb{N}^{2} \mid 0<\right.$ $\mathbf{x}[2]<\mathbf{x}[1]\}$.

A set $X \subseteq \mathbb{Z}^{n}$ is said pseudo-linear if there exists $\mathbf{b} \in \mathbb{Z}^{n}$ and a set of periods $P \subseteq \mathbb{Z}^{n}$ such that $X \subseteq \mathbf{b}+P^{*}$ and such that for any finite set $\bar{R} \subseteq \mathcal{A}\left(P^{*}\right)$ there exists $\mathbf{x} \in X$ such that $\mathbf{x}+R^{*} \subseteq X$. In this case, P is called a linearizator of X and the linear set $L=\mathbf{b}+P^{*}$ is called a linearization of X. A semi-pseudo-linear set is a finite union of pseudo-linear sets.

Example 2. The set $P=\{(1,1),(1,0)\}$ is a linearizator of the pseudo-linear set $X=\left\{\mathbf{x} \in \mathbb{N}^{2} \mid \mathbf{x}[2] \leq \mathbf{x}[1] \leq 2^{\mathbf{x}[2]}\right\}$. Moreover P^{*} is a linearization of X.

All other results and notations introduced in this section are not used in the sequel. The reader may safely skip the remaining of this section to read the other ones. In sub-section 3.1 we characterize the dimension of linear sets and pseudo-linear sets. This characterization is used in the next sub-section 3.2 to prove that linearizations L_{1}, L_{2} of two pseudo-linear sets X_{1}, X_{2} with an empty intersection $X_{1} \cap X_{2}=\emptyset$ satisfy the strict inequality $\operatorname{dim}\left(L_{1} \cap L_{2}\right)<$ $\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}$.

In these two sub-sections, vector spaces are used. A vector space V of \mathbb{Q}^{n} is a subset $V \subseteq \mathbb{Q}^{n}$ that contains the zero vector $\mathbf{0} \in V$, that is stable by addition $V+V \subseteq V$ and that is stable by rational product $\lambda \mathbf{v} \in V$ for any $\lambda \in \mathbb{Q}$ and for any $\mathbf{v} \in V$. Observe that for any set $X \subseteq \mathbb{Q}^{n}$ the set $V=\left\{\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{\mathbf{i}} \mid k \in \mathbb{N} \lambda_{i} \in \mathbb{Q} \mathbf{x}_{\mathbf{i}} \in X\right\}$ is the unique minimal for the inclusion vector space that contains X. This vector space is called the vector space generated by X. Recall that for any vector space V of \mathbb{Q}^{n} there exists a finite set $X \subseteq V$ that generates V. The minimal for \leq integer $d \in \mathbb{N}$ such that there exists a finite set X that generated V is called the rank of V and it is denoted by $\operatorname{rank}(V)$.

3.1 Dimension of (pseudo-)linear sets

In this section, we prove that the dimension of a pseudolinear set X is equal to the rank of the vector space V generated by any linearizator P of X.

We first prove the following Lemmas

Lemma 2. We have $\operatorname{dim}(M)=\operatorname{rank}(V)$ where V is the vector space generated by a monoid M.

Proof. Since $M \subseteq \mathbb{Z}^{n} \cap V$ it is sufficient to prove that $\operatorname{dim}(M) \geq \operatorname{rank}(V)$ and $\operatorname{dim}\left(\mathbb{Z}^{n} \cap V\right) \leq \operatorname{rank}(V)$. Let us denote by $\|\mathbf{x}\|_{\infty}=\max \{|\mathbf{x}[1]|, \ldots,|\mathbf{x}[k]|\}$ the usual ∞-norm of a vector $\mathbf{x} \in \mathbb{Q}^{n}$. As M generates the vector space V recall that there exists a sequence $\mathbf{m}_{\mathbf{1}}, \ldots, \mathbf{m}_{\mathbf{d}} \in M$ with $d=\operatorname{rank}(V)$ that generates V. Since the case $d=0$ is immediate we assume that $d \geq 1$. We denote by $f: \mathbb{Q}^{d} \rightarrow V$ the linear function $f(\mathbf{x})=\sum_{i=1}^{\bar{d}} \mathbf{x}[i] \mathbf{m}_{\mathbf{i}}$.

Let us first prove that $\operatorname{dim}(M) \geq d$. By minimality of $d=$ $\operatorname{rank}(V)$ note that f is injective. In particular the cardinal of $f\left(\{0, \ldots, k\}^{d}\right)$ is equal to $(1+k)^{d}$. Note that a vector \mathbf{m} in this set satisfies $\|\mathbf{m}\|_{\infty} \leq k \sum_{i=1}^{d}\left\|\mathbf{m}_{\mathbf{i}}\right\|_{\infty}$ and $\mathbf{m} \in M$. We deduce that $\operatorname{dim}(M) \geq \bar{d}$.

Now, let us prove that $\operatorname{dim}\left(\mathbb{Z}^{n} \cap V\right) \leq d$. Since for any matrix, the rank of the column vectors is equal to the rank of the line vectors, there exists a sequence $1 \leq j_{1}<\cdots<$ $j_{d} \leq n$ such that the linear function $g: \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{d}$ defined by $g(\mathbf{x})=\left(\mathbf{x}\left[j_{1}\right], \ldots, \mathbf{x}\left[j_{d}\right]\right)$ satisfies $h=g \circ f$ is a bijective linear function. In particular we deduce that for any $\mathbf{v} \in$ $\mathbb{Z}^{n} \cap V \cap\{-k, \ldots, k\}^{n}$ there exists a vector $\mathbf{x}=g(\mathbf{v}) \in$ $\{-k, \ldots, k\}^{d}$ such that $\mathbf{v}=f \circ h^{-1}(\mathbf{x})$. Therefore $\mid \mathbb{Z}^{n} \cap V \cap$ $\{-k, \ldots, k\}^{n} \mid \leq(1+2 k)^{d}$ for any $k \in \mathbb{N}$. We deduce that $\operatorname{dim}\left(\mathbb{Z}^{n} \cap V\right) \leq d$.

Lemma 3. For any pseudo-linear set $X \subseteq \mathbb{Z}^{n}$, we have $\operatorname{dim}(X)=\operatorname{rank}(V)$ where V is the vector space generated by any linearizator P of X.

Proof. Let P be a linearizator of a pseudo-linear set X and let V be the vector space generated by P. Note that there exists a vector $\mathbf{b} \in \mathbb{Z}^{n}$ such that $X \subseteq \mathbf{b}+P^{*}$. From Lemma 2 we have $\operatorname{dim}\left(\mathbf{b}+P^{*}\right)=\operatorname{rank}(V)$. In particular $\operatorname{dim}(X) \leq \operatorname{rank}(V)$. Conversely, let us consider an attractor $\mathbf{a} \in \mathcal{A}\left(P^{*}\right)$ and observe that $R=\{\mathbf{a}\} \cup(\mathbf{a}+P) \subseteq \mathcal{A}\left(P^{*}\right)$. As X is pseudo-linear, there exists $\mathbf{x} \in X$ such that $\mathbf{x}+R^{*} \subseteq$ X. Note that the vector space generated by R is equal to V. Thus, from Lemma 2 we deduce that $\operatorname{dim}\left(\mathrm{x}+R^{*}\right)=$ $\operatorname{rank}(V)$. In particular $\operatorname{dim}(X) \geq \operatorname{rank}(V)$. We have proved the equality $\operatorname{dim}(X)=\operatorname{rank}(V)$.

3.2 Pseudo-linear sets intersection

In this section we prove that linearizations L_{1}, L_{2} of two pseudo-linear sets X_{1}, X_{2} with an empty intersection $X_{1} \cap$ $X_{2}=\emptyset$ satisfy $\operatorname{dim}\left(L_{1} \cap L_{2}\right)<\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}$.

We first characterize the intersection of two linear sets.

Lemma 4. For any set of periods P_{1}, P_{2} there exists a set of periods P such that $P_{1}^{*} \cap P_{2}^{*}=P^{*}$. Moreover, for any $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}} \in \mathbb{Z}^{n}$, there exists a finite set $B \subseteq \mathbb{Z}^{n}$ such that $\left(\mathbf{b}_{1}+P_{1}^{*}\right) \cap\left(\mathbf{b}_{\mathbf{2}}+P_{2}^{*}\right)=B+\left(P_{1}^{*} \cap P_{2}^{*}\right)$.

Proof. Let us consider an enumeration $\mathbf{p}_{\mathbf{i}, \mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{i}, \mathbf{k}_{\mathbf{i}}}$ of the $k_{i} \geq 0$ vectors in P_{i} where $i \in\{1,2\}$. If $k_{1}=0$ or if $k_{2}=0$ then $P_{1}^{*}=\{\mathbf{0}\}$ or $P_{2}^{*}=\{\mathbf{0}\}$ and the lemma is immediate. Thus, we can assume that $k_{1}, k_{2} \geq 1$.

Let us consider the set X of vectors $\left(\lambda_{1}, \lambda_{\mathbf{2}}\right) \in \mathbb{N}^{k_{1}} \times \mathbb{N}^{k_{2}}$ such that $\mathbf{b}_{\mathbf{1}}+\sum_{j=1}^{k_{1}} \lambda_{\mathbf{1}}[j] \mathbf{p}_{\mathbf{1}, \mathbf{j}}=\mathbf{b}_{\mathbf{2}}+\sum_{j=1}^{k_{2}} \lambda_{\mathbf{2}}[j] \mathbf{p}_{\mathbf{2}, \mathbf{j}}$. Let us also consider the set X_{0} of vectors $\left(\lambda_{\mathbf{1}}, \lambda_{\mathbf{2}}\right) \in \mathbb{N}^{k_{1}} \times \mathbb{N}^{k_{2}}$ such that $\sum_{j=1}^{k_{1}} \lambda_{\mathbf{1}}[j] \mathbf{p}_{\mathbf{1}, \mathbf{j}}=\sum_{j=1}^{k_{2}} \lambda_{\mathbf{2}}[j] \mathbf{p}_{\mathbf{2}, \mathbf{j}}$. Observe that $X=Z+X_{0}$ where Z is the finite set $Z=\min (X)$ and $X_{0}=Z_{0}^{*}$ where Z_{0} is the finite set $Z_{0}=\min \left(X_{0} \backslash\{\mathbf{0}\}\right)$.

Let us denote by B the finite set of vectors $\mathbf{b} \in \mathbb{Z}^{n}$ such that there exists $\left(\lambda_{\mathbf{1}}, \lambda_{\mathbf{2}}\right) \in Z$ satisfying $\mathbf{b}_{\mathbf{1}}+\sum_{j=1}^{k_{1}} \lambda_{\mathbf{1}}[j] \mathbf{p}_{\mathbf{1}, \mathbf{j}}=$ $\mathbf{b}=\mathbf{b}_{\mathbf{2}}+\sum_{j=1}^{k_{2}} \lambda_{\mathbf{2}}[j] \mathbf{p}_{\mathbf{2}, \mathbf{j}}$. Let us also denote by P the finite set of vectors $\mathbf{p} \in \mathbb{Z}^{n}$ such that there exists $\left(\lambda_{\mathbf{1}}, \lambda_{\mathbf{2}}\right) \in Z_{0}$ satisfying $\sum_{j=1}^{k_{1}} \lambda_{1}[j] \mathbf{p}_{1, \mathbf{j}}=\mathbf{p}=\sum_{j=1}^{k_{2}} \lambda_{\mathbf{2}}[j] \mathbf{p}_{\mathbf{2}, \mathbf{j}}$. Remark that $\left(\mathbf{b}_{\mathbf{1}}+P_{1}^{*}\right) \cap\left(\mathbf{b}_{\mathbf{2}}+P_{2}^{*}\right)=B+P^{*}$ and $P_{1}^{*} \cap P_{2}^{*}=P^{*}$.

In order to prove the following proposition, we introduce the definition of groups. A group G of \mathbb{Z}^{n} is a monoid of \mathbb{Z}^{n} such that any element admits an inverse $-G \subseteq G$. Observe that for any set $X \subseteq \mathbb{Z}^{n}$, the set $G=X^{*}-X^{*}$ is the unique minimal for the inclusion group that contains X. This group is called the group generated by X. Now, let us consider the group $G=M-M$ generated by a monoid M and observe that a vector a is an attractor of M if and only if for any $\mathbf{g} \in G$ there exists $N \in \mathbb{N}$ such that $\mathbf{g}+N \mathbf{a} \in M$.

Lemma 5. For any vector $\mathbf{v} \in V$ where V is the vector space generated by a group G, there exists an integer $d \geq 1$ such that $d \mathbf{v} \in G$.

Proof. A vector $\mathbf{v} \in V$ can be decomposed into a sum $\mathbf{v}=\sum_{i=1}^{k} \lambda_{i} \mathbf{g}_{\mathbf{i}}$ with $k \in \mathbb{N}, \lambda_{i} \in \mathbb{Q}$ and $\mathbf{g}_{\mathbf{i}} \in G$. Let us consider an integer $d \geq 1$ such that $d \lambda_{i} \in \mathbb{Z}$ and observe that $d \mathbf{v} \in G$.

Now, we prove the main result of this section.

Proposition 1. Let L_{1}, L_{2} be linearizations of pseudolinear sets $X_{1}, X_{2} \subseteq \mathbb{Z}^{n}$ with an empty intersection $X_{1} \cap$ $X_{2}=\emptyset$. We have:

$$
\operatorname{dim}\left(L_{1} \cap L_{2}\right)<\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}
$$

Proof. Let L_{1}, L_{2} be linearizations of two pseudo-linear sets $X_{1}, X_{2} \subseteq \mathbb{Z}^{n}$. For the moment, we do not assume that $X_{1} \cap X_{2}$ is empty. There exists some linearizators P_{1}, P_{2} of the pseudo-linear sets X_{1}, X_{2} and vectors $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}} \in \mathbb{Z}^{n}$ such that $L_{1}=\mathbf{b}_{1}+P_{1}^{*}$ and $L_{2}=\mathbf{b}_{\mathbf{2}}+P_{2}^{*}$ are linearizations of X_{1}, X_{2}. Let us denote by V_{1}, V_{2} the vector spaces generated by P_{1}, P_{2}. Lemma 3 shows that $\operatorname{dim}\left(X_{1}\right)=\operatorname{rank}\left(V_{1}\right)$ and $\operatorname{dim}\left(X_{2}\right)=\operatorname{rank}\left(V_{2}\right)$. From Lemma there exists a set of periods P and a finite set $B \subseteq \mathbb{Z}^{n}$ such that $P_{1}^{*} \cap P_{2}^{*}=$ P^{*} and $L_{1} \cap L_{2}=B+P^{*}$. Observe that if $B=\emptyset$ the proposition is immediate. Thus, we can assume that there exists $\mathbf{b} \in B$. Let V be the vector space generated by P. Lemma 2 shows that $\operatorname{dim}\left(B+P^{*}\right)=\operatorname{rank}(V)$. Observe that $V \subseteq V_{1} \cap V_{2}$. Thus, if there exists $j \in\{1,2\}$ such that V is strictly included in V_{j} then $\operatorname{rank}(V)<\operatorname{rank}\left(V_{j}\right)$ and in this case $\operatorname{dim}\left(L_{1} \cap L_{2}\right)<\max \left\{\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right\}$.

So we can assume that $V_{1}=V=V_{2}$. We prove in the sequel that $X_{1} \cap X_{2} \neq \emptyset$ providing the proposition. We denote by G_{1}, G, G_{2} the groups generated respectively by P_{1}, P, P_{2}. Note that the vector spaces generated by G_{1}, G, G_{2} are equal to $V_{1}=V=V_{2}$.

Let a be an attractor of P^{*} and let us prove that $\mathbf{a} \in \mathcal{A}\left(P_{j}^{*}\right)$. Note that $\mathbf{a} \in P^{*} \subseteq P_{j}^{*}$. Let $\mathbf{p} \in \mathcal{A}\left(P_{j}^{*}\right)$. Since $-\mathbf{p} \in V$ and V is the vector space generated by G, Lemma shows that there exists an integer $d \geq 1$ such that $-d \mathbf{p} \in G$. From $\mathbf{a}-d \mathbf{p} \in G$ and $\mathbf{a} \in \mathcal{A}\left(P^{*}\right)$ we deduce that there exists $N \in \mathbb{N}$ such that $\mathbf{a}-d \mathbf{p}+N \mathbf{a} \in P^{*}$. From $P^{*} \subseteq P_{j}^{*}$ we deduce that $\mathbf{a} \in \frac{1}{1+N}\left(d \mathbf{p}+P_{j}^{*}\right)$. From $\mathbf{p} \in \mathcal{A}\left(P_{j}^{*}\right)$ and Lemma il we get $\mathbf{a} \in \mathcal{A}\left(P_{j}^{*}\right)$.

Let $R_{j}=\{\mathbf{a}\} \cup\left(\mathbf{a}+P_{j}\right)$. From $\mathbf{a} \in \mathcal{A}\left(P_{j}^{*}\right)$, Lemma 1 shows that $R_{j} \subseteq \mathcal{A}\left(P_{j}^{*}\right)$. As X_{j} is pseudo-linear, there exists $\mathbf{x}_{\mathbf{j}} \in X_{j}$ such that $\mathbf{x}_{\mathbf{j}}+R_{j}^{*} \subseteq X_{j}$. From $\mathbf{b}, \mathbf{x}_{\mathbf{j}} \in \mathbf{b}_{\mathbf{j}}+P_{j}^{*}$ we deduce that $\mathbf{x}_{\mathbf{j}}-\mathbf{b} \in G_{j}$. As the group generated by R_{j} is equal to G_{j}, there exists $\mathbf{r}_{\mathbf{j}}, \mathbf{r}_{\mathbf{j}}^{\prime} \in R_{j}^{*}$ such that $\mathbf{x}_{\mathbf{j}}+\mathbf{r}_{\mathbf{j}}=\mathbf{b}+\mathbf{r}_{\mathbf{j}}^{\prime}$.

As V is the vector space generated by G_{1} and $\mathbf{r}_{\mathbf{2}}^{\prime} \in R_{2}^{*} \subseteq$ $V_{2}=V$, Lemma 5 shows that there exists an integer $d_{1} \geq$ 1 such that $d_{1} \mathbf{r}_{2}^{\prime} \in G_{1}$. As $\mathbf{a} \in \mathcal{A}\left(P_{1}^{*}\right)$, there exists an integer $N_{1} \geq 0$ such that $d_{1} \mathbf{r}_{2}^{\prime}+N_{1} \mathbf{a} \in P_{1}^{*}$. As $P_{1}^{*} \subseteq$
$R_{1}^{*}-\mathbb{N} \mathbf{a}$, we deduce that there exists an integer $N_{1}^{\prime} \geq 0$ such that $d_{1} \mathbf{r}_{\mathbf{2}}^{\prime}+\left(N_{1}+N_{1}^{\prime}\right) \mathbf{a} \in R_{1}^{*}$. We denote by $\mathbf{r}_{1}^{\prime \prime}$ this vector. Symmetrically, there exist some integers $d_{2} \geq 1$ and $N_{2}, N_{2}^{\prime} \geq 0$ such that the vector $d_{2} \mathbf{r}_{1}^{\prime}+\left(N_{2}+N_{2}^{\prime}\right) \mathbf{a}$ denoted by $\mathbf{r}_{2}^{\prime \prime}$ is in R_{2}^{*}. We get:

$$
\begin{aligned}
& \mathbf{x}_{1}+\mathbf{r}_{1}+\left(d_{2}-1\right) \mathbf{r}_{1}^{\prime}+\mathbf{r}_{1}^{\prime \prime}+\left(N_{2}+N_{2}^{\prime}\right) \mathbf{a} \\
& =\mathbf{b}+d_{2} \mathbf{r}_{1}^{\prime}+d_{1} \mathbf{r}_{2}^{\prime}+\left(N_{1}+N_{1}^{\prime}+N_{2}+N_{2}^{\prime}\right) \mathbf{a} \\
& \mathbf{x}_{2}+\mathbf{r}_{2}+\left(d_{1}-1\right) \mathbf{r}_{2}^{\prime}+\mathbf{r}_{2}^{\prime \prime}+\left(N_{1}+N_{1}^{\prime}\right) \mathbf{a} \\
& =\mathbf{b}+d_{1} \mathbf{r}_{2}^{\prime}+d_{2} \mathbf{r}_{1}^{\prime}+\left(N_{2}+N_{2}^{\prime}+N_{1}+N_{1}^{\prime}\right) \mathbf{a}
\end{aligned}
$$

We have proved that this last vector is in $\left(\mathbf{x}_{\mathbf{1}}+R_{1}^{*}\right) \cap\left(\mathbf{x}_{\mathbf{2}}+\right.$ R_{2}^{*}). In particular $X_{1} \cap X_{2} \neq \emptyset$.

4. REACHABILITY SETS

In this section we prove that $\operatorname{post}_{\mathcal{V}}^{*}(S) \cap S^{\prime}$ and $S \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ are semi-pseudo-linear for any semi-linear sets $S, S^{\prime} \subseteq \mathbb{N}^{n}$. All other results and notations introduced in this section are not used in the sequel. The reader may safely skip the remaining of this section in order to read the other ones. In sub-section 4.1 we recall the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition. This decomposition is used in the next sub-section 4.2 to establish the semi-pseudo-linearity of the reachability sets.

4.1 Languages Accepted

The language accepted $\mathcal{L}\left(\mathbf{b}, \mathcal{V}, \mathbf{b}^{\prime}\right)$ by a tuple $\left(\mathbf{b}, \mathcal{V}, \mathbf{b}^{\prime}\right)$ where $\left(\mathbf{b}, \mathbf{b}^{\prime}\right)$ are two configurations of a VAS \mathcal{V} is the set of words $\sigma \in \Sigma^{*}$ such that $\mathbf{b} \xrightarrow{\sigma} \nu \mathbf{b}^{\prime}$. In this section we recall the KLMST decomposition by following notations introduced by Lambert [$[8]$.

We first extend the set of non-negative integers \mathbb{N} with an additional element T. In the sequel, this element is either interpreted as a "very large integer" or a "don't care integer". More formally, we denote by \mathbb{N}_{\top} the set $\mathbb{N} \cup\{T\}$. The total order \leq over \mathbb{N} is extended over \mathbb{N}_{\top} by $x_{1} \leq x_{2}$ if and only if $x_{2}=\mathrm{T} \vee\left(x_{1}, x_{2} \in \mathbb{N} \wedge x_{1} \leq x_{2}\right)$. The equality $=$ over \mathbb{N} is also extended to a partial order \unlhd over $\mathbb{N}_{\text {T }}$ by $x_{1} \unlhd x_{2}$ if and only if $x_{2}=\mathrm{T} \vee\left(x_{1}, x_{2} \in \mathbb{N} \wedge x_{1}=x_{2}\right)$. Intuitively element T denotes a "very large integer" for the total order \leq whereas it denotes a "don't care integer" for the partial order \unlhd. Given a sequence $\left(x_{i}\right)_{i \geq 0}$ in \mathbb{N}_{T}, we denote by $x=\lim _{i \rightarrow+\infty} x_{i}$ the element $x=\top$ if for any $r \in \mathbb{N}$ there exists $i_{0} \geq 0$ such that $x_{i} \geq r$ for any $i \geq i_{0}$ and the element $x \in \mathbb{N}$ if there exists $i_{0} \geq 0$ such that $x_{i}=x$ for any $i \geq i_{0}$. When $x=\lim _{i \rightarrow+\infty} x_{i}$ exists we say that $\left(x_{i}\right)_{i \geq 0}$ converges toward x.

We also extends the semantics of VAS. A vector in \mathbb{N}_{T}^{n} is called an extended configuration of \mathcal{V}. The addition function $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is extended to the totally-defined function in $(\mathbb{Z} \cup\{T\}) \times\left(\mathbb{Z} \cup\{\top\} \rightarrow(\mathbb{Z} \cup\{T\})\right.$ satisfying $x_{1}+x_{2}=\top$ if $x_{1}=\top$ or $x_{2}=\top$. With slightly abusing notations, the binary relation $\xrightarrow{a} \mathcal{V}$ where $a \in \Sigma$ over the set of extended configurations is defined by $\mathbf{x} \xrightarrow{a} \mathcal{V} \mathbf{x}^{\prime}$ if and only if $\mathbf{x}^{\prime}=\mathbf{x}+\delta(a)$. Given a word $\sigma=a_{1} \ldots a_{k}$ of $k \in \mathbb{N}$ elements $a_{i} \in \Sigma$, we denote by $\xrightarrow{\sigma} \mathcal{V}$ the binary relation over the set of extended configurations that is equal to the concatenation $\xrightarrow{a_{1}} \mathcal{v} \cdots \xrightarrow{a_{k}} \mathcal{v}$ if $k \geq 1$ and that is equal to the
identity binary relation if $k=0$. Given an extended configuration \mathbf{x} we denote by $\mathbf{x} \xrightarrow[\rightarrow]{\sigma}$ if there exists an extended configuration \mathbf{x}^{\prime} such that $\mathbf{x} \xrightarrow{\sigma} \mathcal{V} \mathbf{x}^{\prime}$ and symmetrically for any extended configuration x^{\prime} we denote by $\xrightarrow{\sigma} \nu \mathrm{x}^{\prime}$ if there exists an extended configuration \mathbf{x} such that $\mathbf{x} \xrightarrow{\sigma} \mathcal{V} \mathbf{x}^{\prime}$.

Next we recall some elements of graph theory. An alphabet Σ is a non-empty finite set. We denote by Σ^{*} the set of finite words over Σ. A graph G is a tuple $G=(Q, \Sigma, T)$ where Q is a non-empty finite set of states, Σ is an alphabet, and $T \subseteq Q \times \Sigma \times Q$ is a finite set of transitions. A path π is a word $\pi=t_{1} \ldots t_{k}$ of $k \in \mathbb{N}$ transitions $t_{i} \in T$ such that there exists $q_{0}, \ldots, q_{k} \in Q$ and $a_{1}, \ldots, a_{k} \in \Sigma$ such that $t_{i}=$ $\left(q_{j-1}, a_{j}, q_{j}\right)$ for any $1 \leq j \leq k$. In this case we say that π is a path from q_{0} to q_{k} labelled by $\sigma=a_{1} \ldots a_{k}$ and we denote π by $q_{0} \xrightarrow{\sigma}{ }_{G} q_{k}$ or simply $q_{0} \rightarrow_{G} q_{k}$. Given a transition $t \in T$, we denote by $|\pi|_{t}$ the number of occurrences of t in π. When $q_{0}=q_{k}$, the path π is called a cycle. Let us recall the following lemma.

Lemma 6 (Euler Cycles). Let $G=(Q, \Sigma, T)$ be a strongly connected graph. For any sequence $\left(\mu_{t}\right)_{t \in T}$ of integers $\mu_{t}>0$ satisfying the following equality for any state $q_{0} \in Q$, there exists a cycle π such that $|\pi|_{t}=\mu_{t}$ for any transition $t \in T$:

$$
\sum_{t=\left(q, a, q_{0}\right) \in T} \mu_{t}=\sum_{t^{\prime}=\left(q_{0}, a, q^{\prime}\right) \in T} \mu_{t^{\prime}}
$$

A graph vector $G=(Q, \Sigma, T)$ for \mathcal{V} is a graph such that $Q \subseteq \mathbb{N}^{n}$ is a non-empty finite set of extended configurations, and $T \subseteq Q \times \Sigma \times Q$ is a finite set of transitions ($\mathbf{x}, a, \mathbf{x}^{\prime}$) such that $\mathbf{x} \xrightarrow{a} \mathcal{V} \mathbf{x}^{\prime}$. Even if the proof of the following lemma is immediate by induction over the length of σ, it is central in the KLMST decomposition. In fact a path $\mathbf{x} \xrightarrow{\sigma}{ }_{G} \mathbf{x}^{\prime}$ implies the relation $\mathbf{x} \xrightarrow{\sigma} \mathcal{V} \mathbf{x}^{\prime}$.

Lemma 7 (Graph vector paths). For any $\mathbf{x} \xrightarrow{\sigma} \mathcal{V} \mathbf{x}^{\prime}$, for any sequences $\left(\mathbf{x}_{\mathbf{c}}\right)_{c \in \mathbb{N}}$ and $\left(\mathbf{x}_{\mathbf{c}}^{\prime}\right)_{c \in \mathbb{N}}$ of extended configurations that converge toward $\mathbf{x}=\lim _{c \rightarrow+\infty} \mathbf{x}_{\mathbf{c}}$ and $\mathbf{x}^{\prime}=$ $\lim _{c \rightarrow+\infty} \mathbf{x}_{\mathbf{c}}^{\prime}$, there exists $c_{0} \in \mathbb{N}$ such that $\mathbf{x}_{\mathbf{c}} \xrightarrow{\sigma} \mathcal{V}$ and $\xrightarrow{\sigma} \mathcal{V} \mathbf{x}_{\mathbf{c}}^{\prime}$ for any $c \geq c_{0}$.

A marked graph vector for \mathcal{V} is a tuple ($\mathbf{m}, \mathbf{x}, G, \mathbf{x}^{\prime}, \mathbf{m}^{\prime}$) where G is a graph vector, $\mathbf{x}, \mathbf{x}^{\prime}$ are two states of this graph vector, and $\mathbf{m} \unlhd \mathbf{x}$ and $\mathbf{m}^{\prime} \unlhd \mathbf{x}^{\prime}$ are two extended configurations.

A marked graph vector sequences ($M G V S$) for $\left(\mathbf{b}, \mathcal{V}, \mathbf{b}^{\prime}\right)$ is an alternating sequence of marked graph vectors for \mathcal{V} and actions of the following form where $\mathbf{m}_{\mathbf{0}}=\mathbf{b}$ and $\mathbf{m}_{\mathbf{k}}^{\prime}=\mathbf{b}^{\prime}$:

$$
\mathcal{U}=\left(\mathbf{m}_{\mathbf{0}}, \mathbf{x}_{\mathbf{0}}, G_{0}, \mathbf{x}_{\mathbf{0}}^{\prime}, \mathbf{m}_{\mathbf{0}}^{\prime}\right), a_{1}, \ldots, a_{k},\left(\mathbf{m}_{\mathbf{k}}, \mathbf{x}_{\mathbf{k}}, G_{k}, \mathbf{x}_{\mathbf{k}}^{\prime}, \mathbf{m}_{\mathbf{k}}^{\prime}\right)
$$

The language accepted by a MGVS \mathcal{U} is the set $\mathcal{L}(\mathcal{U})$ of words of the form $\sigma_{0} a_{1} \sigma_{1} \ldots a_{k} \sigma_{k}$ such that for any $0 \leq j \leq k$ there exists a path $\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{j}}{ }_{G_{j}} \mathbf{x}_{\mathbf{j}}^{\prime}$ and there exists two configurations $\mathbf{s}_{\mathbf{j}} \unlhd \mathbf{m}_{\mathbf{j}}$ and $\mathbf{s}_{\mathbf{j}}^{\prime} \unlhd \mathbf{m}_{\mathbf{j}}^{\prime}$ such that:

$$
\mathbf{s o}_{0} \xrightarrow{\sigma_{0}} \mathcal{V} \mathbf{s}_{\mathbf{0}}^{\prime} \xrightarrow{a_{1}} \mathcal{V} \mathbf{s}_{\mathbf{1}} \xrightarrow{\sigma_{1}} \mathcal{V} \mathbf{s}_{\mathbf{1}}^{\prime} \ldots \mathrm{s}_{\mathbf{k}-\mathbf{1}}^{\prime} \xrightarrow{a_{k}} \mathcal{V} \mathbf{s}_{\mathbf{k}} \xrightarrow{\sigma_{k}} \mathcal{V} \mathrm{~s}_{\mathbf{k}}^{\prime}
$$

We observe that $\mathcal{L}(\mathcal{U}) \subseteq \mathcal{L}\left(\mathbf{b}, \mathcal{V}, \mathbf{b}^{\prime}\right)$ since $\left(\mathbf{s}_{\mathbf{o}}, \mathbf{s}_{\mathbf{k}}^{\prime}\right)=\left(\mathbf{b}, \mathbf{b}^{\prime}\right)$.

We now associate a characteristic linear system to a MGVS \mathcal{U}. Denoting by $\mu_{j, t}$ the number of occurrences of a transition $t \in T_{j}$ in the path $\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{j}} G_{j} \mathbf{x}_{\mathbf{j}}^{\prime}$ we get a non-negative sequence $\left(\mu_{j, t}\right)_{t}$ indexed by $t \in T_{j}$. We also obtain a sequence ξ of the form $\xi=\left(\mathbf{s}_{\mathbf{j}},\left(\mu_{j, t}\right)_{t}, \mathbf{s}_{\mathbf{j}}^{\prime}\right)_{j}$ indexed by $0 \leq j \leq k$ said associated to σ. We observe that ξ is a non-negative integral solution of the following linear system called the characteristic system of the MGVS \mathcal{U} where $\chi_{\mathbf{x}}(q)=1$ if $q=\mathbf{x}$ and where $\chi_{\mathbf{x}}(q)=0$ otherwise:
$\left\{\begin{array}{l}\frac{\text { for all } 1 \leq j \leq k}{\mathbf{s}_{\mathbf{j}-\mathbf{1}}^{\prime}+\delta\left(a_{j}\right)=\mathbf{s}_{\mathbf{j}}} \\ \frac{\text { for all } 0 \leq j \leq k}{\mathbf{s}_{\mathbf{j}}+\sum_{t=\left(q, a, q^{\prime}\right) \in T_{j}}} \mu_{j, t} \delta(a)=\mathbf{s}_{\mathbf{j}}^{\prime} \\ \frac{\text { for all } 0 \leq j \leq k \text { and for all } 1 \leq i \leq n}{\mathbf{s}_{\mathbf{j}}[i]=\mathbf{m}_{\mathbf{j}}[i] \text { if } \mathbf{m}_{\mathbf{j}}[i] \in \mathbb{N}} \\ \mathbf{s}_{\mathbf{j}}^{\prime}[i]=\mathbf{m}_{\mathbf{j}}^{\prime}[i] \text { if } \mathbf{m}_{\mathbf{j}}^{\prime}[i] \in \mathbb{N} \\ \frac{\text { for all } 0 \leq j \leq k \text { and for all } q_{j} \in Q_{j}}{\chi_{\mathbf{x}_{\mathbf{j}}}\left(q_{j}\right)+\sum_{t=\left(q, a, q_{j}\right) \in T} \mu_{j, t}=\chi_{\mathbf{x}_{\mathbf{j}}^{\prime}}\left(q_{j}\right)+\sum_{t^{\prime}=\left(q_{j}, a, q^{\prime}\right) \in T} \mu_{j, t^{\prime}}}\end{array}\right.$
Naturally there exists non-negative integral solutions ξ of the characteristic system that are not associated to an accepted word. In particular even if there exists non-negative integral solutions of the characteristic linear system we cannot conclude that $\mathcal{L}(\mathcal{U}) \neq \emptyset$. However, under the following perfect condition, we can prove that $\mathcal{L}(\mathcal{U}) \neq \emptyset$.

The homogeneous form of the characteristic system, obtained by replacing constants by zero is called the homogeneous characteristic system of \mathcal{U}. In the sequel, a solution of the homogeneous characteristic system is denoted by $\xi_{\mathbf{o}}=\left(\mathbf{s}_{\mathbf{o}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{j}, \mathbf{o}}{ }^{\prime}\right)_{j}$.

A perfect MGVS \mathcal{U} is an MGVS such that the graph G_{j} is strongly connected and $\mathbf{x}_{\mathbf{j}}=\mathbf{x}_{\mathbf{j}}^{\prime}$ for any $0 \leq j \leq k$, the characteristic system has an integral solution, there exists a non-negative rational solution $\xi_{\mathbf{0}}=\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}{ }^{\prime}\right)_{j}$ of the homogeneous characteristic system satisfying the following additional inequalities where $0 \leq j \leq k$ and $1 \leq i \leq n$:

- $\mathbf{s}_{\mathbf{o}, \mathbf{j}}[i]>0$ if $\mathbf{m}_{\mathbf{j}}[i]=\top$, and
- $\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}[i]>0$ if $\mathbf{m}_{\mathbf{j}}^{\prime}[i]=\top$, and
- $\mu_{0, j, t}>0$ for any $t \in T_{j}$.
and such that for any $0 \leq j \leq k$ and $1 \leq i \leq n$:
- there exists a cycle $\theta_{j}=\left(\mathbf{x}_{\mathbf{j}} \xrightarrow{w_{j}} G_{j} \mathbf{x}_{\mathbf{j}}\right)$ such that $\mathbf{m}_{\mathbf{j}} \xrightarrow{w_{j}} \mathcal{V}$ and such that $\mathbf{m}_{\mathbf{j}}+\delta\left(w_{j}\right) \geq \mathbf{m}_{\mathbf{j}}$ and $\delta\left(w_{j}\right)[i]>$ 0 if $\mathbf{m}_{\mathbf{j}}[i] \in \mathbb{N}$ and $\mathbf{x}_{\mathbf{j}}[i]=\top$, and
- there exists a cycle $\theta_{j}^{\prime}=\left(\mathbf{x}_{\mathbf{j}}^{\prime} \xrightarrow{w_{j}^{\prime}} G_{j} \mathbf{x}_{\mathbf{j}}^{\prime}\right)$ such that $\xrightarrow{w_{j}^{\prime}} \mathcal{V}$ $\mathbf{m}_{\mathbf{j}}^{\prime}$ and such that $\mathbf{m}_{\mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right) \geq \mathbf{m}_{\mathbf{j}}^{\prime}$ and $-\delta\left(w_{j}^{\prime}\right)[i]>0$ if $\mathbf{m}_{\mathbf{j}}^{\prime}[i] \in \mathbb{N}$ and $\mathbf{x}_{\mathbf{j}}^{\prime}[i]=\mathrm{T}$.

In the sequel, even if $\mathbf{x}_{\mathbf{j}}=\mathbf{x}_{\mathbf{j}}^{\prime}$ for any $0 \leq j \leq k$, we still use both notations $\mathbf{x}_{\mathbf{j}}$ and $\mathbf{x}_{\mathbf{j}}^{\prime}$ in order to keep results symmetrical. Let us recall without proof the fundamental decomposition theorem.

Theorem 1 (Fundamental Decomposition 8]). For any tuple $\left(\mathbf{b}, \mathcal{V}, \mathbf{b}^{\prime}\right)$, we can effectively compute a finite sequence of perfect $M G V S \mathcal{U}_{1}, \ldots, \mathcal{U}_{l}$ for this tuple such that:

$$
\mathcal{L}\left(\mathbf{b}, \mathcal{V}, \mathbf{b}^{\prime}\right)=\mathcal{L}\left(\mathcal{U}_{1}\right) \cup \ldots \cup \mathcal{L}\left(\mathcal{U}_{l}\right)
$$

In the remaining of this section, we associate to a perfect MGVS \mathcal{U}, a non-negative integral solution ξ of its characteristic system and a non-negative integral solution ξ_{0} of its homogeneous characteristic system that explains why $\mathcal{L}(\mathcal{U}) \neq \emptyset$. This two solutions ξ and ξ_{0} are respectively defined in Lemma 8 and Lemma 9 . These two lemmas are independent of each other and can be read in any order.

Lemma 8. There exists a non-negative integral solution $\xi=\left(\mathbf{s}_{\mathbf{j}},\left(\mu_{j, t}\right)_{t}, \mathbf{s}_{\mathbf{j}}^{\prime}\right)_{j}$ of the characteristic system of a perfect $M G V S$ such that $\mu_{j, t}>0$ for any $0 \leq j \leq k$ and $t \in T_{j}$ and such that $\mathbf{s}_{\mathbf{j}} \xrightarrow{w_{j}} \mathcal{V}$ and $\xrightarrow{w_{j}^{\prime}} \mathcal{V} \mathbf{s}_{\mathbf{j}}^{\prime}$ for any $0 \leq j \leq k$.

Proof. The definition of perfect MGVS requires that there exists an integral solution $\xi=\left(\mathbf{s}_{\mathbf{j}},\left(\mu_{j, t}\right)_{t}, \mathbf{s}_{\mathbf{j}}^{\prime}\right)_{j}$ of its characteristic system. This solution is non-necessary nonnegative. However, there exists a non-negative rational solution $\xi_{\mathbf{0}}=\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)_{j}$ of the homogeneous characteristic system satisfying the perfect MGVS condition. Naturally, by replacing ξ_{0} by a sequence in $(\mathbb{N} \backslash\{0\}) \xi_{0}$ we can assume that ξ_{0} is a non-negative integral solution also satisfying the perfect MGVS condition. Now, just observe that there exists an integer $c_{0} \geq 0$ large enough such that $\xi+c_{0} \xi_{0}$ is a non-negative integral solution of the characteristic system satisfying $\mu_{j, t}+c_{0} \mu_{0, j, t}>0$ for any $t \in T_{j}$ and for any $0 \leq j \leq k$. Moreover, as $\lim _{c \rightarrow+\infty}\left(\mathbf{s}_{\mathbf{j}}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}\right)=\mathbf{m}_{\mathbf{j}}$ and $\lim _{c \rightarrow+\infty}\left(\mathbf{s}_{\mathbf{j}}^{\prime}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)=\mathbf{m}_{\mathbf{j}}^{\prime}$, the relations $\mathbf{m}_{\mathbf{j}} \xrightarrow{\sigma_{j}} \mathcal{V}$ and $\xrightarrow{\sigma_{j}} \mathcal{V} \mathbf{m}_{\mathbf{j}}^{\prime}$ and Lemma 7 shows that there exists an integer c large enough such that $\mathbf{s}_{\mathbf{j}}+c \mathbf{S}_{\mathbf{0}, \mathbf{j}} \xrightarrow{\sigma_{j}} \mathcal{V}$ and $\xrightarrow{\sigma_{j}^{\prime}} \mathcal{V} \mathbf{s}_{\mathbf{j}}^{\prime}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}$. Therefore $\xi+c \xi_{0}$ is a non-negative integral solution of the characteristic system satisfying the lemma.

LEMMA 9. There exists a non-negative integral solution $\xi_{\mathbf{0}}=\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)_{j}$ of the homogeneous characteristic system of a perfect $M G V S \mathcal{U}$ such that $\mu_{0, j, t}>\left|\theta_{j}\right|_{t}+\left|\theta_{j}^{\prime}\right|_{t}$ for any $0 \leq j \leq k$ and $t \in T_{j}$, and such that for any $0 \leq j \leq k$ and $1 \leq i \leq n$:

- $\mathbf{s}_{\mathbf{0}, \mathbf{j}} \geq \mathbf{0}$ and $\mathbf{s}_{\mathbf{0}, \mathbf{j}}[i]>0$ if and only if $\mathbf{m}_{\mathbf{j}}[i]=\top$.
- $\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime} \geq \mathbf{0}$ and $\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}[i]>0$ if and only if $\mathbf{m}_{\mathbf{j}}^{\prime}[i]=\top$.
- $\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right) \geq \mathbf{0}$ and $\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)[i]>0$ if and only if $\mathbf{x}_{\mathbf{j}}[i]=\top$.
- $\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right) \geq \mathbf{0}$ and $\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}{ }^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)[i]>0$ if and only if $\mathbf{x}_{\mathbf{j}}^{\prime}[i]=T$.

Proof. Let $\xi_{0}=\left(\mathbf{s}_{\mathbf{o}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)_{j}$ be a non-negative rational solution of the homogeneous characteristic system satisfying the perfect MGVS condition. By replacing ξ_{0} by $(\mathbb{N} \backslash\{0\}) \xi_{0}$ we can assume that ξ_{0} is a non-negative integral solution satisfying the perfect condition. We are going to prove that there exists an integer $c \in \mathbb{N}$ large enough such that $c \xi_{0}$ satisfies the lemma.

First of all, observe that for any $c \geq 1$ and for any $1 \leq i \leq n$, we have:

- $c \mathbf{s}_{\mathbf{0}, \mathbf{j}} \geq \mathbf{0}$ and $c \mathbf{s}_{\mathbf{0}, \mathbf{j}}[i]>0$ if and only if $\mathbf{m}_{\mathbf{j}}[i]=T$.
- $c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime} \geq \mathbf{0}$ and $c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}[i]>0$ if and only if $\mathbf{m}_{\mathbf{j}}^{\prime}[i]=\top$.

Let us consider $1 \leq i \leq n$ and let us prove that there exists an integer $c_{i} \geq 0$ such that for any $c \geq c_{i}$ we have $\left(c \mathbf{s}_{\mathbf{0}, \mathbf{j}}+\right.$ $\left.\delta\left(w_{j}\right)\right)[i] \geq 0$ and $\left(c \mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)[i]>0$ if and only if $\mathbf{x}_{\mathbf{j}}[i]=$ \top. Note that $\mathbf{m}_{\mathbf{j}}[i] \unlhd \mathbf{x}_{\mathbf{j}}[i]$ thus either $\mathbf{m}_{\mathbf{j}}[i]=\mathbf{x}_{\mathbf{j}}[i] \in \mathbb{N}$, or $\left(\mathbf{m}_{\mathbf{j}}[i], \mathbf{x}_{\mathbf{j}}[i]\right) \in \mathbb{N} \times\{\top\}$, or $\mathbf{m}_{\mathbf{j}}[i]=\mathbf{x}_{\mathbf{j}}[i]=\top$. We separate the proof following these three cases. Let us first consider the case $\mathbf{m}_{\mathbf{j}}[i]=\mathbf{x}_{\mathbf{j}}[i] \in \mathbb{N}$. As $\mathbf{m}_{\mathbf{j}}[i] \in \mathbb{N}$ and $\xi_{\mathbf{0}}$ is solution of the homogeneous characteristic system, we get $\mathbf{s}_{\mathbf{0}, \mathbf{j}}[i]=0$. Moreover the cycle $\theta_{j}=\left(\mathbf{x}_{\mathbf{j}} \xrightarrow{w_{j}} G_{j} \mathbf{x}_{\mathbf{j}}\right)$ shows that $\mathbf{x}_{\mathbf{j}}+$ $\delta\left(w_{j}\right)=\mathbf{x}_{\mathbf{j}}$. From $\mathbf{x}_{\mathbf{j}}[i] \in \mathbb{N}$ we deduce that $\delta\left(w_{j}\right)[i]=0$. In particular $\left(c \mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)[i]=0$ and we have proved the case $\mathbf{m}_{\mathbf{j}}[i]=\mathbf{x}_{\mathbf{j}}[i] \in \mathbb{N}$ by considering $c_{i}=0$. Let us consider the second case $\left(\mathbf{m}_{\mathbf{j}}[i], \mathbf{x}_{\mathbf{j}}[i]\right) \in \mathbb{N} \times\{T\}$. As in the previous case, since $\mathbf{m}_{\mathbf{j}}[i] \in \mathbb{N}$ we deduce that $\mathbf{s}_{\mathbf{o}, \mathbf{j}}[i]=0$. Note that the perfect condition shows that $\delta\left(w_{j}\right)[i]>0$ in this case. In particular for any $c \geq 0$ we have $\left(c \mathbf{c}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)[i]>0$ and we have proved the case $\left(\mathbf{m}_{\mathbf{j}}[i], \mathbf{x}_{\mathbf{j}}[i]\right) \in \mathbb{N} \times\{\top\}$ by considering $c_{i}=0$. Finally, let us consider the case $\mathbf{m}_{\mathbf{j}}[i]=$ $\mathbf{x}_{\mathbf{j}}[i]=\top$. As $\mathbf{m}_{\mathbf{j}}[i]=\top$ we deduce that $\mathbf{s}_{\mathbf{0}, \mathbf{j}}[i]>0$ in particular there exists an integer $c_{i} \geq 0$ large enough such that $\left(c \mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)[i]>0$ for any $c \geq c_{i}$. We have proved the three cases.

Symmetrically, for any $1 \leq i \leq n$, there exists an integer $c_{i}^{\prime} \geq 0$ such that for any $c \geq c_{i}^{\prime}$ we have $\left(c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)[i] \geq 0$ and $\left(c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}\right)\right)[i]>0$ if and only if $\mathbf{x}_{\mathbf{j}}^{\prime}[i]=\top$.

Finally, as $\mu_{0, j, t}>0$ for any $t \in T_{j}$ and for any $0 \leq j \leq k$, we deduce that there exists an integer $c \geq 0$ large enough such that $c \mu_{0, j, t}>\left|\theta_{j}\right|_{t}+\left|\theta_{j^{\prime}}\right|_{t}$ for any $t \in T_{j}$ for any $0 \leq$ $j \leq k$. Naturally, we can also assume that $c \geq 1, c \geq c_{i}$ and $c \geq c_{i}^{\prime}$ for any $1 \leq i \leq n$. We deduce that $c \xi_{0}$ satisfies the lemma.

Now, let us consider a perfect MGVS \mathcal{U} and let us fix two tuples $\xi=\left(\mathbf{s}_{\mathbf{j}},\left(\mu_{j, t}\right)_{t}, \mathbf{s}_{\mathbf{j}}^{\prime}\right)_{j}$ and $\xi_{\mathbf{0}}=\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)_{j}$ satisfying respectively Lemma 8 and Lemma 9 As $\mu_{j, t}>0$
for any $t \in T_{j}$ and G_{j} is strongly connected, Lemma 6 shows that there exists a cycle $\pi_{j}=\left(\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{j}} G_{j} \mathbf{x}_{\mathbf{j}}^{\prime}\right)$ such that $\mu_{j, t}=\left|\pi_{j}\right|_{t}$ for any $t \in T_{j}$. Note that we have $\mathbf{s}_{\mathbf{j}}+\delta\left(\sigma_{j}\right)=\mathbf{s}_{\mathbf{j}}^{\prime}$. Moreover, as $\mu_{j, t}-\left|\theta_{j}\right|_{t}+\left|\theta_{j^{\prime}}\right|_{t}>0$ for any $t \in T_{j}$ we also deduce that there exists a cycle $\pi_{0, j}=\left(\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{0, j}} G_{j} \mathbf{x}_{\mathbf{j}}^{\prime}\right)$ such that $\left|\pi_{0, j}\right|_{t}=\mu_{0, j, t}-\left(\left|\theta_{j}\right|_{t}+\left|\theta_{j^{\prime}}\right|_{t}\right)$ for any $t \in T_{j}$. Note that we have $\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)+\delta\left(\sigma_{0, j}\right)+\delta\left(w_{j}^{\prime}\right)=\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}$.

In the sequel we provide technical lemmas that prove together that $\mathcal{L}(\mathcal{U}) \neq \emptyset$. These lemmas are also used in the next sub-section 4.2.

Lemma 10. For any $c \geq 0$ we have:

$$
\begin{array}{cl}
\mathbf{s}_{\mathbf{j}}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}} & \stackrel{w_{j}^{c}}{\longrightarrow} \mathcal{V} \\
\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right) \\
\mathbf{s}_{\mathbf{j}}^{\prime}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right) & \xrightarrow{\left(w_{j}^{\prime}\right)^{c}} \mathcal{V}
\end{array} \mathbf{s}_{\mathbf{j}}^{\prime}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime} .
$$

Proof. Since the two relations are symmetrical, we just prove the first one. The choice of ξ satisfying Lemma shows that $\mathbf{s}_{\mathbf{j}} \xrightarrow{w_{j}} \mathcal{V}$. The conditions $\mathbf{s}_{\mathbf{0}, \mathbf{j}} \geq \mathbf{0}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right) \geq \mathbf{0}$ and $\mathbf{s}_{\mathbf{j}} \xrightarrow{w_{j}} \mathcal{V}$ with an immediate induction on the integer $c \geq 0$ provides the required relation.

LEMMA 11. There exists $c_{0} \geq 0$ such that for any $c \geq c_{0}$:

$$
\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right) \quad \xrightarrow{\sigma_{0, j}^{c}} \mathcal{V} \quad \mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)
$$

Proof. Let us recall that $\mathbf{x}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}^{\prime}$. We denote by \mathbf{u} the vector in $\{0,1\}^{n}$ satisfying $\mathbf{u}[i]=1$ if $\mathbf{x}_{\mathbf{i}}[i]=\top=\mathbf{x}_{\mathbf{i}}^{\prime}[i]$ and satisfying $\mathbf{u}[i]=0$ otherwise. From the choice of ξ_{0} satisfying Lemma 9 , we observe that $\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right) \geq \mathbf{u}$ and $\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right) \geq \mathbf{u}$. Note that $\lim _{c \rightarrow+\infty}\left(\mathbf{s}_{\mathbf{j}}+c \mathbf{u}\right)=\mathbf{x}_{\mathbf{j}}$. As $\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{0, j}} G_{j} \mathbf{x}_{\mathbf{j}}^{\prime}$, Lemma 7 proves that there exists an integer $c_{0} \geq 0$ such that $\mathbf{s}_{\mathbf{j}}+c_{0} \mathbf{u} \xrightarrow{\sigma_{0, j}} \mathcal{V}$. Now, let us consider integers $c \geq 1$ and $c^{\prime} \geq 0$ such that $c+c^{\prime} \geq c_{0}$ and let us prove the relation:

$$
\begin{gathered}
\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)+c^{\prime}\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right) \\
\xrightarrow{\sigma_{0, j}} \mathcal{V} \\
\mathbf{s}_{\mathbf{j}}+(c-1)\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)+\left(c^{\prime}+1\right)\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)
\end{gathered}
$$

From $\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right) \geq \mathbf{u}$ and $\mathbf{s}_{\mathbf{o}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right) \geq \mathbf{u}$ we deduce that $c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right)+c^{\prime}\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right) \geq\left(c+c^{\prime}\right) \mathbf{u} \geq c_{0} \mathbf{u}$. Thus, the previous relation directly comes from $\mathbf{s}_{\mathbf{j}}+c_{0} \mathbf{u} \xrightarrow{\sigma_{0, j}} \mathcal{V}$ and $\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)+\delta\left(\sigma_{0, j}\right)+\delta\left(w_{j}^{\prime}\right)=\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}$. Now, an immediate induction provides $\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta\left(w_{j}\right)\right) \xrightarrow{\sigma_{0, j}^{c}} \mathcal{V} \mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\right.$ $\left.\delta\left(w_{j}^{\prime}\right)\right)$ for any $c \geq c_{0}$.

Lemma 12. There exists $c^{\prime} \geq 0$ such that for any $c \geq c^{\prime}$:

$$
\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right) \quad \xrightarrow{\sigma_{j}} \mathcal{V} \quad \mathbf{s}_{\mathbf{j}}^{\prime}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)
$$

Proof. As $\lim _{c \rightarrow+\infty}\left(\mathbf{s}_{\mathbf{j}}^{\prime}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)\right)=\mathbf{x}_{\mathbf{j}}^{\prime}$ and $\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{j}} G_{j}$ $\mathrm{x}_{\mathbf{j}}^{\prime}$, Lemma 7 proves that there exists $c^{\prime} \geq 0$ such that $\xrightarrow{\sigma_{j}} \mathcal{V}\left(\mathbf{s}_{\mathbf{j}}^{\prime}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}-\delta\left(w_{j}^{\prime}\right)\right)\right)$ for any $c \geq c^{\prime}$. Since $\mathbf{s}_{\mathbf{j}}+\delta\left(\sigma_{j}\right)=\mathbf{s}_{\mathbf{j}}^{\prime}$ we are done.

Now, let us consider an integer $c \geq 0$ satisfying $c \geq c_{0}$ and $c>c^{\prime}$ where c_{0} and c^{\prime} are respectivelly defined by Lemma 11 and Lemma 12. Note that we have proved the following relation:

$$
\mathbf{s}_{\mathbf{j}}+c \mathbf{s}_{\mathbf{o}, \mathbf{j}} \xrightarrow{w_{j}^{c} \sigma_{0, j}^{c} \sigma_{j}\left(w_{j}^{\prime}\right)^{c}} \mathcal{V} \quad \mathbf{s}_{\mathbf{j}}^{\prime}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}
$$

Therefore there exists a word in $\mathcal{L}(\mathcal{U})$ associated to $\xi+c \xi_{0}$. In particular we have proved that $\mathcal{L}(\mathcal{U}) \neq \emptyset$.

4.2 Semi-pseudo-linear Reachability Sets

In this section $\operatorname{post}_{\mathcal{V}}^{*}(S) \cap S^{\prime}$ and $S \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ are proved semi-pseudo-linear for any semi-linear sets $S, S^{\prime} \subseteq \mathbb{N}^{n}$.

Let us reduce our problem to the forward case with $S=$ $\{\mathbf{b}\}$ and $S^{\prime}=\mathbf{b}+Z^{*}$ where $\mathbf{b}, \mathbf{b}^{\prime} \in \mathbb{N}^{n}$ and $Z \subseteq \mathbb{N}^{n}$ is a set of periods. Since $\operatorname{post}_{\mathcal{V}}^{*}(X)=\operatorname{pre}_{-\mathcal{V}}^{*}(X)$ for any set $X \subseteq \mathbb{N}^{n}$ where $-\mathcal{V}=(\Sigma, n,-\delta)$, the problem reduces to prove that $\operatorname{post}_{\mathcal{V}}^{*}(S) \cap S^{\prime}$ is semi-pseudo-linear. Note also that a semi-linear set is a finite union of linear sets. As $\operatorname{post}_{\mathcal{V}}^{*}\left(L_{1} \cup \ldots \cup L_{k}\right)=\operatorname{post}_{\mathcal{V}}^{*}\left(L_{1}\right) \cup \ldots \cup \operatorname{post}_{\mathcal{V}}^{*}\left(L_{k}\right)$, we have reduced the problem to prove that $\operatorname{post}_{\mathcal{V}}^{*}(L) \cap L^{\prime}$ is semi-pseudo-linear for any linear sets L, L^{\prime}. Let us consider a linear set $L=\mathbf{b}+P^{*}$ where $\mathbf{b} \in \mathbb{N}^{n}$ and $P \subseteq \mathbb{N}^{n}$ is a finite set of periods. Without loss of generality we can assume that $P \cap \Sigma=\emptyset$. Let us consider the VAS $\mathcal{V}_{P}=\left(\Sigma_{P}, n, \delta_{P}\right)$ where $\Sigma_{P}=\Sigma \cup P$ and δ_{P} extends δ by $\delta_{P}(\mathbf{p})=\mathbf{p}$ for any $\mathbf{p} \in P$. We observe that post ${ }_{\mathcal{V}}^{*}(L)=\operatorname{post}_{\mathcal{V}_{P}}(\{\mathbf{b}\})$. In particular we can assume that $L=\{\mathbf{b}\}$. We have proved the proposed reduction.

So, let us consider two configurations $\mathbf{b}, \mathbf{b}^{\prime} \in \mathbb{N}^{n}$, a set of periods $Z \subseteq \mathbb{N}^{n}$ and let us prove that post ${ }_{\mathcal{V}}^{*}(\{\mathbf{b}\}) \cap\left(\mathbf{b}^{\prime}+Z^{*}\right)$ is semi-pseudo-linear. We can assume that $Z \cap \Sigma=\emptyset$. As expected, we consider the $\operatorname{VAS} \mathcal{V}_{Z}=\left(\Sigma_{Z}, n, \delta_{Z}\right)$ obtained from \mathcal{V} by considering the alphabet $\Sigma_{Z}=\Sigma \cup Z$ and the displacement function δ_{Z} that extends δ by $\delta_{Z}(\mathbf{z})=-\mathbf{z}$ for any $\mathbf{z} \in Z$. The displacement function δ is also extended into another displacement function still denoted by δ and defined by $\delta(\mathbf{z})=\mathbf{0}$ for any $\mathbf{z} \in Z$. Observe that we have the following equality:

$$
\operatorname{post}_{\mathcal{V}}^{*}(\{\mathbf{b}\}) \cap\left(\mathbf{b}^{\prime}+Z^{*}\right)=\delta\left(\mathcal{L}\left(\mathbf{b}, \mathcal{V}_{Z}, \mathbf{b}^{\prime}\right)\right)
$$

From Theorem 1, it is sufficient to prove that $\delta(\mathcal{L}(\mathcal{U}))$ is pseudo-linear for any perfect MGVS \mathcal{U} for $\left(\mathbf{b}, \mathcal{V}_{z}, \mathbf{b}^{\prime}\right)$. So let us consider such a perfect MGVS \mathcal{U} of the following form (note that $l_{1}, \ldots, l_{k} \in \Sigma \cup Z$):

$$
\mathcal{U}=\left(\mathbf{m}_{\mathbf{0}}, \mathbf{x}_{\mathbf{0}}, G_{0}, \mathbf{x}_{\mathbf{0}}^{\prime}, \mathbf{m}_{\mathbf{0}}^{\prime}\right), l_{1}, \ldots, l_{k},\left(\mathbf{m}_{\mathbf{k}}, \mathbf{x}_{\mathbf{k}}, G_{k}, \mathbf{x}_{\mathbf{k}}^{\prime}, \mathbf{m}_{\mathbf{k}}^{\prime}\right)
$$

Intuitively, the linearizator P of $\delta(\mathcal{L}(\mathcal{U}))$ is obtained from the homogeneous characteristic system of \mathcal{U}. We denote by H the non-negative integral solutions of the characteristic system and we denote by H_{0} the set of non-negative integral
solutions of the homogeneous characteristic system. Observe that $H=\min (H)+H_{0}$ and $H_{0}=\min \left(H_{0} \backslash\{\mathbf{0}\}\right)^{*}$.

Given a solution $\xi=\left(\left(\mathbf{s}_{\mathbf{j}}\right)_{j},\left(\mu_{j, t}\right)_{j, t},\left(\mathbf{s}_{\mathbf{j}}^{\prime}\right)_{j}\right)$ of the characteristic system and a solution $\xi_{\mathbf{o}}=\left(\left(\mathbf{s}_{\mathbf{o}, \mathbf{j}}\right)_{j},\left(\mu_{0, j, t}\right)_{j, t},\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)_{j}\right)$ of the homogeneous characteristic system, we consider the vectors $\beta_{0}\left(\xi_{0}\right)$ and $\beta(\xi)$ defined by the following equalities:

$$
\begin{aligned}
& \beta(\xi)=\delta\left(l_{1} \ldots l_{k}\right)+\sum_{\substack{0 \leq j \leq k \\
t=\left(q, l q^{\prime}\right) \in T_{j}}} \mu_{j, t} \delta(l) \\
& \beta_{0}\left(\xi_{0}\right)=\sum_{\substack{0 \leq j \leq k \\
t=\left(q, l, q^{\prime}\right) \in T_{j}}} \mu_{0, j, t} \delta(l)
\end{aligned}
$$

We observe that $\delta(\sigma)=\beta(\xi)$ if ξ is associated to a word $\sigma \in \mathcal{L}(\mathcal{U})$. Thus $\delta(\mathcal{L}(\mathcal{U})) \subseteq \beta(H)$.

We are going to prove that the following set of periods P is a linearizator for $\delta(\mathcal{L}(\mathcal{U}))$:

$$
P=\beta_{0}\left(\min \left(H_{0} \backslash\{\mathbf{0}\}\right)\right)
$$

Lemma 13. There exists $\xi \in H$ and $\xi_{0} \in H_{0}$ such that $\xi_{0}+H \subseteq \xi+H_{0}$.

Proof. As the MGVS \mathcal{U} is perfect the set H is non empty. Let us consider the set I of components i such that $\xi[i]$ is independent of $\xi \in H$. As the MGVS is perfect we deduce that for any integer $c \geq 0$ there exists $\xi \in H$ such that $\xi[i] \geq c$ for any $i \notin I$. As $\min (H)$ is finite, we deduce that there exists $\xi \in H$ such that $\xi \geq \xi^{\prime}$ for any $\xi^{\prime} \in \min (H)$. In particular $\xi_{0}=\sum_{\xi^{\prime} \in \min (H)}\left(\xi-\xi^{\prime}\right)$ is in H_{0}. Let us prove that $\xi_{0}+H \subseteq \xi+H_{0}$. Consider $\xi^{\prime \prime} \in H$. By definition of $\min (H)$, there exists $\xi^{\prime \prime \prime} \in \min (H)$ such that $\xi^{\prime \prime \prime} \leq \xi^{\prime \prime}$. The definition of ξ_{0} shows that $\xi_{0}-\left(\xi-\xi^{\prime \prime \prime}\right)$ is equal to a sum of terms $\left(\xi-\xi^{\prime}\right)$ indexed by $\xi^{\prime} \in \min (H) \backslash\left\{\xi^{\prime \prime \prime}\right\}$. Therefore $\xi_{0}-\left(\xi-\xi^{\prime \prime \prime}\right) \in H_{0}$. As $\xi^{\prime \prime}-\xi^{\prime \prime \prime} \in H_{0}$ we have proved that the sum of $\xi_{0}-\left(\xi-\xi^{\prime \prime \prime}\right)$ and $\xi^{\prime \prime}-\xi^{\prime \prime \prime}$ is also in H_{0}. Note that this sum is equal to $\xi_{0}-\xi+\xi^{\prime \prime}$. We have proved that $\xi_{0}+\xi^{\prime \prime} \in \xi+H_{0}$. Therefore $\xi_{\mathbf{0}}+H \subseteq \xi+H_{0}$.

Let us consider $\xi \in H$ and $\xi_{\mathbf{0}} \in H_{0}$ satisfying the previous lemma and let us apply β to the inclusion $\xi_{0}+H \subseteq \xi+H_{0}$. We deduce that $\beta_{0}\left(\xi_{\mathbf{o}}\right)+\beta(H) \subseteq \beta(\xi)+\beta_{0}\left(H_{0}\right)$. Since $\beta_{0}\left(H_{0}\right)=P^{*}$ and $\delta(\mathcal{L}(\mathcal{U})) \subseteq \beta(H)$, we have proved the following inclusion:

$$
\delta(\mathcal{L}(\mathcal{U})) \subseteq \beta(\xi)-\beta_{0}\left(\xi_{0}\right)+P^{*}
$$

Now, let us consider a set $R_{0}=\left\{\xi_{1}, \ldots, \xi_{\mathrm{d}}\right\}$ of attractors of H_{0}. We are going to prove that there exists a vector \mathbf{x} such that $\mathbf{x}+\beta_{0}\left(R_{0}^{*}\right) \subseteq \delta(\mathcal{L}(\mathcal{U}))$. We first prove the following lemma.

Lemma 14. For any $\xi_{\mathbf{i}}=\left(\left(\mathbf{s}_{\mathbf{i}, \mathbf{j}}\right)_{j},\left(\mu_{i, j, t}\right)_{j, t},\left(\mathbf{s}_{\mathbf{i}, \mathbf{j}}^{\prime}\right)_{j}\right)$ attractor of H_{0} there exists a cycle $\pi_{i, j}=\left(\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{i, j}}{ }_{G_{j}} \mathbf{x}_{\mathbf{j}}^{\prime}\right)$ such that $\mu_{i, j, t}=\left|\pi_{i, j}\right|_{t}$ for any $t \in T_{j}$ and any $0 \leq j \leq k$.

Proof. Since \mathcal{U} is perfect, for any $t \in T_{j}$, there exists a solution $\xi_{\mathbf{0}}=\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}},\left(\mu_{0, j, t}\right)_{t}, \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}\right)_{j}$ in H_{0} such that $\mu_{0, j, t}>0$. As H_{0} is the monoid generated by $\min \left(H_{0} \backslash\{\mathbf{0}\}\right)$, for any $t \in T_{j}$ there exists $\xi_{0} \in \min \left(H_{0} \backslash\{\mathbf{0}\}\right)$ satisfying the same property. Lemma il shows that $\xi_{\mathbf{i}}=\left(\mathbf{s}_{\mathbf{i}, \mathbf{j}},\left(\mu_{i, j, t}\right)_{t}, \mathbf{s}_{\mathbf{i}, \mathbf{j}}^{\prime}\right)_{j}$ is a sum over all solutions $\xi_{0} \in \min \left(H_{0} \backslash\{\mathbf{0}\}\right)$ of terms of the form $\lambda \xi_{0}$ where $\lambda>0$ is a rational value that naturally depends on ξ_{0}. In particular we deduce that $\mu_{i, j, t}>0$ for any $t \in T_{j}$ and for any $0 \leq j \leq k$. Lemma shows that there exists a cycle $\pi_{i, j}=\left(\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{i, j}}{ }_{G_{j}} \mathbf{x}_{\mathbf{j}}^{\prime}\right)$ such that $\mu_{i, j, t}=\left|\pi_{i, j}\right|_{t}$ for any $t \in T_{j}$ and any $1 \leq j \leq k$.

Now, let us consider a solution ξ of the characteristic system and a solution ξ_{0} of the homogeneous characteristic system satisfying respectively Lemma and Lemma 9 .

Lemma 15. There exists $c_{i} \geq 0$ such that for any $1 \leq j \leq$ k and $c \geq c_{i}$:

$$
\begin{aligned}
& \mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{o}, \mathbf{j}}+\delta_{Z}\left(w_{j}\right)\right)+\mathbf{s}_{\mathbf{i}, \mathbf{j}} \\
& \stackrel{\sigma_{i, j}}{{ }_{2}} \mathcal{V}_{Z} \\
& \mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{o}, \mathbf{j}}+\delta_{Z}\left(w_{j}\right)\right)+\mathbf{s}_{\mathbf{i}, \mathbf{j}}^{\prime}
\end{aligned}
$$

Proof. As $\lim _{c \rightarrow+\infty}\left(\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{o}, \mathbf{j}}+\delta_{Z}\left(w_{j}\right)\right)\right)=\mathbf{x}_{\mathbf{j}}$ and $\mathbf{x}_{\mathbf{j}} \xrightarrow{\sigma_{i, j}}{ }_{G_{j}} \mathbf{x}_{\mathbf{j}}$, Lemma ${ }^{7}$ proves that there exists an integer $c_{i} \geq 0$ such that $\left(\mathbf{s}_{\mathbf{j}}+c\left(\mathbf{s}_{\mathbf{0}, \mathbf{j}}+\delta_{Z}\left(w_{j}\right)\right)\right) \xrightarrow{\sigma_{i, j}} \mathcal{V}_{Z}$ for any $c \geq c_{i}$ and for any $0 \leq j \leq k$. As $\mathbf{s}_{\mathbf{i}, \mathbf{j}} \geq \mathbf{0}$ and $\mathbf{s}_{\mathbf{i}, \mathbf{j}}+\delta\left(\sigma_{i, j}\right)=\mathbf{s}_{\mathbf{i}, \mathbf{j}}^{\prime} \geq \mathbf{0}$ we deduce the lemma.

Now, let us consider an integer $c \geq 0$ such that $c \geq c_{0}$, $c \geq c^{\prime}$ and $c \geq c_{i}$ for any $1 \leq i \leq d$ where c_{0}, c^{\prime}, c_{i} are respectivelly defined in Lemma 11, Lemma 12 and Lemma 15. From these lemmas and Lemma 10 we deduce that for any sequence $n_{1}, \ldots, n_{d} \in \mathbb{N}$ we have the following relation:

$$
\begin{gathered}
\mathbf{s}_{\mathbf{j}}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}+\sum_{i=1}^{d} n_{i} \mathbf{s}_{\mathbf{i}, \mathbf{j}} \\
{ }_{w_{j}^{c} \sigma_{1, j}^{n_{1}} \ldots \sigma_{d, j}^{n_{d}} \sigma_{j} \sigma_{0, j}^{c}\left(w_{j}^{\prime}\right)^{c}}^{\longrightarrow} \mathcal{V}_{Z} \\
\mathbf{s}_{\mathbf{j}}^{\prime}+c \mathbf{s}_{\mathbf{0}, \mathbf{j}}^{\prime}+\sum_{i=1}^{d} n_{i} \mathbf{s}_{\mathbf{i}, \mathbf{j}}^{\prime}
\end{gathered}
$$

We have proved that there exists a word $\sigma \in \mathcal{L}(\mathcal{U})$ associated with $\xi+c \xi_{0}+\sum_{i=1}^{d} n_{i} \xi_{\mathbf{i}}$. By applying β to the previous tuple, we deduce that $\delta(\sigma)=\mathbf{x}+\sum_{i=1}^{d} n_{i} \beta_{0}\left(\xi_{\mathrm{i}}\right)$ where $\mathbf{x}=$ $\beta(\xi)+c \beta_{0}\left(\xi_{0}\right)$. We have proved the following inclusion:

$$
\mathbf{x}+\beta_{0}\left(R_{0}^{*}\right) \subseteq \delta(\mathcal{L}(\mathcal{U}))
$$

The following lemma shows that P is a linearizator of $\delta(\mathcal{L}(\mathcal{U}))$.

Lemma 16. For any set of attractors $R \subseteq \mathcal{A}\left(P^{*}\right)$ there exists a finite set of attractors $R_{0} \subseteq \mathcal{A}\left(H_{0}\right)$ and a vector $\mathbf{r} \in R^{*}$ such that:

$$
\mathbf{r}+R^{*} \subseteq \beta_{0}\left(R_{0}^{*}\right)
$$

Proof. Let us consider a set $R=\left\{\mathbf{r}_{\mathbf{1}}, \ldots, \mathbf{r}_{\mathbf{d}}\right\}$ of attractors of P^{*}. As $\mathbf{r}_{\mathbf{i}} \in P^{*}$, there exists $\xi_{\mathbf{i}} \in H_{0}$ such that $\mathbf{r}_{\mathbf{i}}=\beta_{0}\left(\xi_{\mathbf{i}}\right)$. Lemma 1 shows that any $\mathbf{r}_{\mathbf{i}} \in R$ is a sum of vectors of the form $\lambda \beta_{0}\left(\xi_{\mathbf{0}}\right)$ over all $\xi_{\mathbf{0}} \in \min \left(H_{0} \backslash\{\mathbf{0}\}\right)$ where $\lambda>0$ is a rational value that naturally depends on ξ_{0}. Thus there exists an integer $N_{i} \geq 1$ large enough and an attractor $\xi_{\mathbf{i}}^{\prime}$ of H_{0} such that $N_{i} \mathbf{r}_{\mathbf{i}}=\beta_{0}\left(\xi_{\mathbf{i}}^{\prime}\right)$. Let us consider the set R_{0} of solutions of the form $\xi_{\mathrm{i}}^{\prime}+\lambda_{i} \xi_{\mathrm{i}}$ where λ_{i} is an integer such that $0 \leq \lambda_{i}<N_{i}$. As $\xi_{\mathrm{i}}^{\prime}$ is an attractor of H_{0} and $\xi_{\mathbf{i}} \in H_{0}$ we deduce that $\xi_{\mathbf{i}}^{\prime}+\lambda_{i} \xi_{\mathbf{i}}$ is also an attractor of H_{0}. We have proved that $R_{0} \subseteq \mathcal{A}\left(H_{0}\right)$. Let us consider the vector $\mathbf{r}=\sum_{i=1}^{d} N_{i} \mathbf{r}_{\mathbf{i}}$ and let us prove that $\mathbf{r}+R^{*} \subseteq \beta_{0}\left(R_{0}^{*}\right)$. Note that $\mathbf{r}=\beta_{0}\left(\sum_{i=1}^{d} \xi_{\mathbf{i}}^{\prime}\right)$. Consider $\mathbf{r}^{\prime} \in R^{*}$. There exists a sequence $\left(\mu_{i}\right)_{1 \leq i \leq d}$ of integers in \mathbb{N} such that $\mathbf{r}^{\prime}=\sum_{i=1}^{d} \mu_{i} \mathbf{r}_{\mathbf{i}}$. The Euclid division of μ_{i} by N_{i} shows that $\mu_{i}=\mu_{i}^{\prime}+N_{i} \lambda_{i}$ where $\lambda_{i} \in \mathbb{N}$ and μ_{i}^{\prime} is an integer such that $0 \leq \mu_{i}^{\prime}<N_{i}$. From $N_{i} \mathbf{r}_{\mathbf{i}}=\beta_{0}\left(\xi_{i}^{\prime}\right)$ we deduce that $\mathbf{r}+\mathbf{r}^{\prime}=\beta_{0}\left(\sum_{i=1}^{d} \lambda_{i} \xi_{i}^{\prime}+\sum_{i=1}^{d}\left(\xi_{i}^{\prime}+\mu_{i}^{\prime} \xi_{i}\right)\right)$. Observe that ξ_{i}^{\prime} and $\xi_{i}^{\prime}+\mu_{i}^{\prime} \xi_{i}$ are both in R_{0}. We have proved that $\mathbf{r}+R^{*} \subseteq \beta_{0}\left(R_{0}^{*}\right)$.

Therefore, we have proved the following theorem:

Theorem 2. For any pair $S, S^{\prime} \subseteq \mathbb{N}^{n}$ of semi-linear sets, the sets $\operatorname{post}_{\mathcal{V}}^{*}(S) \cap S^{\prime}$ and $S \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ are semi-pseudolinear.

5. SEMI-LINEAR SEPARATORS

In this section we prove that there exists a semi-linear separator for any pair of semi-linear separable pair.

Given a pair (S, S^{\prime}) of separable sets of configurations, the set $D=\mathbb{N}^{n} \backslash\left(S \cup S^{\prime}\right)$ is called the co-domain of $\left(S, S^{\prime}\right)$. Note that a separable pair (S, S^{\prime}) with an empty co-domain D is a separator, and there exist separators with a non-empty co-domain.

The semi-linear separator for a semi-linear separable pair (S_{0}, S_{0}^{\prime}) is obtain inductively. We build a non-decreasing sequence $\left(S_{j}, S_{j}^{\prime}\right)_{j \geq 0}$ of semi-linear separable sets starting from the initial semi-linear separable pair $\left(S_{0}, S_{0}^{\prime}\right)$ such that the dimension of the co-domain $D_{j}=\mathbb{N}^{n} \backslash\left(S_{j} \cup S_{j}^{\prime}\right)$ is strictly decreasing. In order to obtain this sequence, observe that it is sufficient to show that for any semi-linear separable pair (S_{0}, S_{0}^{\prime}) of configuration sets with a non-empty co-domain D_{0}, there exists a semi-linear separable pair $\left(S, S^{\prime}\right) \supseteq\left(S_{0}, S_{0}^{\prime}\right)$ with a co-domain D such that $\operatorname{dim}(D)<\operatorname{dim}\left(D_{0}\right)$.

We first define a set S^{\prime} that over-approximates S_{0}^{\prime} and such that $\left(S_{0}, S^{\prime}\right)$ remains separable. As S_{0} and D_{0} are semilinear, the main result of section 1 shows that post ${ }_{\mathcal{V}}^{*}\left(S_{0}\right) \cap D_{0}$ is equal to a finite union of pseudo-linear sets X_{1}, \ldots, X_{k}. Let us consider some linearizations L_{1}, \ldots, L_{k} of these pseudolinear sets and let us define the following semi-linear set S^{\prime}.

$$
S^{\prime}=S_{0}^{\prime} \cup\left(D_{0} \backslash\left(\bigcup_{j=1}^{k} L_{j}\right)\right)
$$

We observe that $\operatorname{post}_{\mathcal{V}}^{*}\left(S_{0}\right) \cap S^{\prime}=\emptyset$ since $\operatorname{post}_{\mathcal{V}}^{*}\left(S_{0}\right) \cap S_{0}^{\prime}=\emptyset$ and $\operatorname{post}_{\mathcal{V}}^{*}\left(S_{0}\right) \cap D_{0} \subseteq \bigcup_{j=1}^{k} L_{j}$. Thus post ${ }_{\mathcal{V}}^{*}\left(S_{0}\right) \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)=$
\emptyset and we have proved that S^{\prime} contains S_{0}^{\prime} and $\left(S_{0}, S^{\prime}\right)$ is separable.

Now we define symmetrically a set S that over-approximates S_{0} and such that $\left(S, S^{\prime}\right)$ remains separable. As D_{0} and S^{\prime} are semi-linear, the main result proved in section 4 shows that $D_{0} \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ is equal to a finite union of pseudo-linear sets $X_{1}^{\prime}, \ldots, X_{k^{\prime}}^{\prime}$. Let us consider some linearizations $L_{1}^{\prime}, \ldots, L_{k^{\prime}}^{\prime}$ of these pseudo-linear sets and let us define the following semi-linear set S.

$$
S=S_{0} \cup\left(D_{0} \backslash\left(\bigcup_{j=1}^{k^{\prime}} L_{j}^{\prime}\right)\right)
$$

Once again, note that $S \cap \operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)=\emptyset$. Thus S contains S_{0} and $\left(S, S^{\prime}\right)$ is separable.

Let D be the co-domain of the separable pair $\left(S, S^{\prime}\right)$. From $D_{0}=\mathbb{N}^{n} \backslash\left(S_{0} \cup S_{0}^{\prime}\right)$, we get the following equality.

$$
D=D_{0} \cap\left(\bigcup_{\substack{1 \leq j_{1} \leq k \\ 1 \leq j_{2} \leq k^{\prime}}}\left(L_{j_{1}} \cap L_{j_{2}}^{\prime}\right)\right)
$$

From $X_{j_{1}}, X_{j_{2}}^{\prime} \subseteq D_{0}$ we get $\max \left\{\operatorname{dim}\left(X_{j_{1}}\right), \operatorname{dim}\left(X_{j_{2}}^{\prime}\right)\right\} \leq$ $\operatorname{dim}\left(D_{0}\right) . \quad$ As $\bar{X}_{j_{1}} \subseteq \operatorname{post}_{\mathcal{V}}^{*}\left(S_{0}\right) \subseteq \operatorname{post}_{\mathcal{V}}^{*}(S)$ and $X_{j_{2}}^{\prime} \subseteq$ $\operatorname{pre}_{\mathcal{V}}^{*}\left(S^{\prime}\right)$ and $\left(S, S^{\prime}\right)$ is separable, we deduce that $X_{j_{1}}$ and $X_{j_{2}}^{\prime}$ are two pseudo-linear sets with an empty intersection. From the main result proved in section 3, we get $\operatorname{dim}\left(L_{j_{1}} \cap\right.$ $\left.L_{j_{2}}^{\prime}\right)<\max \left\{\operatorname{dim}\left(X_{j_{1}}\right), \operatorname{dim}\left(X_{j_{2}}^{\prime}\right)\right\}$. We deduce $\operatorname{dim}(D)<$ $\operatorname{dim}\left(D_{0}\right)$. We have proved the following theorem.

THEOREM 3. There exists a semi-linear separator for any pair of semi-linear separable sets.

6. CONCLUSION

We have proved the termination of the algorithm Reachability. Even tough the proof is based on the classical KLMST decomposition, its complexity does not depend on this decomposition. In fact, the complexity of this algorithm depends on the size of the minimal pair of Presburger formulas denoting a separator for a separable pair ($\{\mathbf{s}\},\left\{\mathbf{s}^{\prime}\right\}$). This algorithm is the very first one that does not require the KLMST decomposition. In particular, this algorithm is the first candidate to obtain a precise (eventually elementary) upper-bound complexity for the VAS reachability problem.

We left as an open question the problem of computing a lower bound and a upper bound of the size of a pair of Presburger formulas denoting a separator for a separable pair ($\{\mathbf{s}\},\left\{\mathbf{s}^{\prime}\right\}$). Note that the VAS exhibiting a large (Ackermann size) but finite reachability set given in (4] does not directly provide a lower-bound for this size since separators can over-approximate reachability sets.

We also left as an open question the problem of adapting such an algorithm to obtain a complete Counter Example Guided Abstract Refinement approach 11 for the VAS reachability problem based on interpolants for $\operatorname{FO}(\mathbb{N},+, \leq)$.

In practice, such an algorithm should be more efficient than the enumeration-based algorithm provided in this paper.

Acknowledgment: We thank Jean Luc Lambert for a fruitful discussion during a Post-doc in 2005 at IRISA (INRIA Rennes, France) and for his work on semi-linear VAS.

7. REFERENCES

[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science, pages 154-169. Springer, 2000.
[2] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey. Bulletin of the European Association for Theoretical Computer Science, 52:245-262, 1994.
[3] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages. Pacific Journal of Math., 16(2):285-296, 1966.
[4] M. Hack. The recursive equivalence of the reachability problem and the liveness problem for petri nets and vector addition systems. In 15th Annual Symposium on Switching and Automata Theory, 14-16 October 1974, The University of New Orleans, USA, pages 156-164. IEEE, 1974.
[5] J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci., 8:135-159, 1979.
[6] R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement. In Proc. of 12 th Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'06), volume 3920 of $L N C S$, pages 459-473. Springer, 2006.
[7] S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary version). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, (STOC 1982), 5-7 May 1982, San Francisco, California, USA, pages 267-281. ACM, 1982.
[8] J. L. Lambert. A structure to decide reachability in petri nets. Theoretical Computer Science, 99(1):79-104, 1992.
[9] E. W. Mayr. An algorithm for the general petri net reachability problem. In Conference Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computation, (STOC 1981), 11-13 May 1981, Milwaukee, Wisconsin, USA, pages 238-246. ACM, 1981.
[10] G. S. Sacerdote and R. L. Tenney. The decidability of the reachability problem for vector addition systems (preliminary version). In Conference Record of the Ninth Annual ACM Symposium on Theory of Computing, 2-4 May 1977, Boulder, Colorado, USA, pages 61-76. ACM, 1977.

