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Abstract

The reachability problem for Vector Addition Systems
(VASs) is a central problem of net theory. The general
problem is known decidable by algorithms exclusively
based on the classical Kosaraju-Lambert-Mayr-Sacerdote-
Tenney decomposition. This decomposition is used in this
paper to prove that the Parikh images of languages
accepted by VASs are semi-pseudo-linear; a class that
extends the semi-linear sets, a.k.a. the sets definable in
the Presburger arithmetic. We provide an application of
this result; we prove that a final configuration is not
reachable from an initial one if and only if there exists a
Presburger formula denoting a forward inductive invariant
that contains the initial configuration but not the final one.
Since we can decide if a Preburger formula denotes an
inductive invariant, we deduce that there exist checkable
certificates of non-reachability. In particular, there exists
a simple algorithm for deciding the general VAS reacha-
bility problem based on two semi-algorithms. A first one
that tries to prove the reachability by enumerating finite
sequences of actions and a second one that tries to prove
the non-reachability by enumerating Presburger formulas.

I. Introduction

Vector Addition Systems (VASs) or equivalently Petri
Nets are one of the most popular formal methods for
the representation and the analysis of parallel processes
[2]. The reachability problem is central since many com-
putational problems (even outside the parallel processes)
reduce to the reachability problem. Sacerdote and Tenney
provided in [10] a partial proof of decidability of this
problem. The proof was completed in 1981 by Mayr
[8] and simplified by Kosaraju [6] from [8], [10]. Ten
years later [7], Lambert provided a more simplified version

based on [6]. This last proof still remains difficult and the
upper-bound complexity of the corresponding algorithm is
just known non-primitive recursive. Nowadays, the exact
complexity of the reachability problem for VASs is still
an open-problem. Even an elementary upper-bound com-
plexity is open. In fact, the known general reachability
algorithms are exclusively based on the Kosaraju-Lambert-
Mayr-Sacerdote-Tenney (KLMST) decomposition.

In this paper, by using the KLMST decomposition
we prove that the Parikh images of languages accepted
by VASs are semi-pseudo-linear, a class that extends the
semi-linear sets, a.k.a. the sets definable in the Presburger
arithmetic [3]. We provide an application of this result; we
prove that a final configuration is not reachable from an
initial one if and only if there exists a Presburger formula
denoting a forward inductive invariant that contains the
initial configuration but not the final one. Since we can de-
cide if a Presburger formula denotes an inductive invariant,
we deduce that there exist checkable certificates of non-
reachability. In particular, there exists a simple algorithm
for deciding the general VAS reachability problem based
on two semi-algorithms. A first one that tries to prove the
reachability by enumerating finite sequences of actions and
a second one that tries to prove the non-reachability by
enumerating Presburger formulas.

Outline of the paper: Section II introduces the class
of Vector Addition Systems (VASs). Section III recalls
the class of MRGSs and the KLMST decomposition of
languages accepted by VASs into finite unions of languages
accepted by perfect MRGSs. Semi-pseudo-linear sets are
introduced in Section IV. In Section V, Parikh images of
languages accepted by perfect MRGSs are proved pseudo-
linear. In Section VI we introduce the class of locally
semi-pseudo-linear sets a subclass of the semi-pseudo-
linear sets stable by intersection with any semi-linear set.
Reachability sets of VASs from semi-linear sets are proved
locally semi-pseudo-linear in this section. In Section VII



we study approximations of two pseudo-linear sets having
an empty intersection. Finally in Section VIII we deduce
that if a final configuration is not reachable from an initial
one, there exists a Presburger formula denoting a forward
inductive invariant that contains the initial configuration
but not the final one.

II. Vector Addition Systems

We denote by Q,Q+,Z,N respectively the set of ratio-
nal values, non-negative rational values, the set of integers
and the set of non-negative integers. The components of
a vector x ∈ Qn are denoted by (x[1], . . . ,x[n]). Let
x1,x2,x ∈ Qn and r ∈ Q. The sum x1 + x2 and the
product rx are naturally defined component wise. Given
a function f : E → F where E,F are sets, we denote
by f(X) = {f(x) | x ∈ X} for any subset X ⊆ E.
This definition naturally defines sets X1 + X2 and RX
where X1, X2, X ⊆ Qn and R ⊆ Q. With slight abuse
of notation, {x1}+X2, X1 + {x2}, {r}X and R{x} are
simply denoted by x1 +X2, X1 + x2, rX and Rx.

The lattice (N,≤) is completed with an additional
element > such that k ≤ > for any k ∈ N ∪ {>}. The
set N ∪ {>} is denoted by N>. Given a non-decreasing
sequence (xi)i≥0 in (N>,≤) we denote by limi→+∞(xi)
the least upper bound in N>. The > element is interpreted
as a “don’t care value” by introducing the partial order
� over N> defined by x1 � x2 if and only if x1 = x2

or x2 = >. Orders ≤ and � are extended component-
wise over Nn>. The set of minimal elements for ≤ of a
set X ⊆ Nn is denoted by min(X). As (Nn,≤) is a
well partially ordered set, note that min(X) is finite and
X ⊆ min(X) + Nn for any X ⊆ Nn.

An alphabet is a non-empty finite set Σ. The set of
words over Σ is denoted by Σ∗. The empty word is denoted
by ε. The concatenation of two words σ1 and σ2 is simply
denoted by σ1σ2. The concatenation of r ≥ 1 times a word
σ is denoted by σr. By definition σ0 = ε. The number of
occurrences of an element a ∈ Σ in a word σ ∈ Σ∗ is
denoted by |σ|a. The Parikh image of a word σ over Σ
is the function ||σ||Σ : Σ → N defined by ||σ||Σ (a) =
|σ|a for any a ∈ Σ. This function is simply denoted by
||σ|| when Σ is known without any ambiguity. The Parikh
image ||L|| of a language L ⊆ Σ∗ is defined as the set of
functions ||σ|| over the words σ ∈ L.

A Vector Addition System (VAS) is a tuple V = (Σ, n, δ)
where Σ is an alphabet, n ∈ N is the dimension, and
δ : Σ → Zn. Functions δ : Σ → Zn are called displace-
ment functions. These functions are naturally extended
to functions δ : Σ∗ → Zn satisfying δ(ε) = 0 and
δ(σ) =

∑k
i=1 δ(ai) for any word σ = a1 . . . ak of k ≥ 1

elements ai ∈ Σ. A configuration is a vector in Nn and

an extended configuration is a vector in Nn>. For a ∈ Σ,
the binary relation a−→V is defined over the set of extended
configurations by x a−→V x′ if and only if x′ = x + δ(a)
with > + z = > by definition for any z ∈ Z. Let k ≥ 1.
Given a word σ = a1 . . . ak of elements ai ∈ Σ, we denote
by σ−→V the concatenation a1−→V · · ·

ak−→V . By definition
ε−→V is the identity binary relation over the set of extended

configurations. We denote by ∗−→V the reachability binary
relation over the set of extended configurations defined by
x ∗−→V x′ if and only if there exists σ ∈ Σ∗ such that
x σ−→V x′. Observe that in this case x[i] = > if and only
if x′[i] = >. Intuitively the > element provides a simple
way to get rid of some components of a VAS since these
components remain equal to >. The reachability problem
for (s,V, s′) where (s, s′) are two configurations of a VAS
V consists to decide if s ∗−→V s′. The language accepted
by (s,V, s′) is the set L(s,V, s′) = {σ ∈ Σ∗ | s σ−→V s′}.
Given two sets S, S′ of configurations, the set post∗V(S) of
reachable configurations from S and the set pre∗V(S′) of
co-reachable configurations from S′ are formally defined
by:

post∗V(S) = {s′ ∈ Nn | ∃s ∈ S s ∗−→V s′}
pre∗V(S′) = {s ∈ Nn | ∃s′ ∈ S′ s ∗−→V s′}

s
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Figure 1. A Vector Addition System.

Example II.1 A VAS V = (Σ, n, δ) with Σ = {a, b},
n = 2, δ(a) = (1, 1) and δ(b) = (−1,−2) is depicted

in Figure 1. Observe that s a4b3−−−→V s′ with s = (0, 2) and
s′ = (1, 0). Note that post∗V({s}) = {x ∈ N2 | x[2] ≤
x[1]+2} and pre∗V({s′}) = {x ∈ N2 | x[2] ≥ 2(x[1]−1)}.

A graph is a tuple G = (Q,Σ, T ) where Q is a finite
set of states, Σ is an alphabet, T ⊆ Q×Σ×Q is a finite set
of transitions. A path π is a word π = t1 . . . tk of k ∈ N
transitions ti ∈ T such that there exists q0, . . . , qk ∈ Q and
there exists a1, . . . , ak ∈ Σ such that ti = (qj−1, aj , qj)
for any 1 ≤ j ≤ k. In this case we say that π is a path
labeled by σ = a1 . . . ak from q0 to qk. We also denote π
by q0

σ−→G qk. When the states q0 and qk are equal, the path
π is called a cycle on this state. As usual a graph is said
strongly connected if for any pair of states (q, q′) ∈ Q×Q,
there exists a path for q to q′.
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Figure 2. A VASS taken from [5].

Remark II.2 A Vector Addition System with States
(VASS) is a tuple (Q,Σ, T, n, δ) where G = (Q,Σ, T )
is a graph and V = (Σ, n, δ) is a VAS. A couple in
Q× Nn is called a VASS configuration. Let σ ∈ Σ∗. The
VASS semantics is defined over the VASS configurations
by (q, s) σ−→ (q′, s′) if and only if q σ−→G q′ and s σ−→V s′.
Note [5] that n-dim VASSs can be simulated by (n+3)-dim
VASs.

Example II.3 Recall [5] that sets post∗V(S) and pre∗V(S′)
are definable in the Presburger arithmetic FO (N,+,≤)
when S and S′ are definable in this logic and n ≤ 5.
Moreover from [5] we deduce an example of 6-dim VAS V
and a pair of configurations (s, s′) 6∈ ∗−→V such that neither
post∗V({s}) nor pre∗V({s′}) are definable in the Presburger
arithmetic. This example is obtained by considering the
VASS depicted at Figure 2. This VASS has a loop on state
p and another loop on state q. Intuitively iterating loop
on state p transfers the content of the first counter to the
second counter whereas iterating the loop on state q trans-
fers and multiply by two the content of the second counter
to the first counter. The third counter is incremented each
time we come back to state p from q. In [5] the set of
reachable configurations from (p, (1, 0, 0)) is proved equal
to ({p} × {x ∈ N3 | x[1] + x[2] ≤ 2x[3]}) ∪ ({q} × {x ∈
N3 | x[1] + 2x[2] ≤ 2x[3]+1}).

III. The KLMST decomposition

The emptiness of L(s,V, s′) can be decided with the
Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) de-
composition. This decomposition shows that L(s,V, s′)
is effectively decomposable as a finite union

⋃
U∈F L(U)

where L(U) is the language accepted by a perfect MRGS
U . We provide in Section III-A a new definition of perfect
MRGS that does not require complex constructions. This
definition is proved equivalent to the original one [7]
in Section III-B. Finally in Section III-C we recall the
KLMST decomposition.

A. The Perfect MRGSs

In this section we introduce the class of Marked Reach-
ability Graph Sequences (MRGSs) by following notations

introduced by Lambert [7]. We also provide a new defini-
tion for the class of MRGS said to be perfect [7].

A reachability graph for a VAS V = (Σ, n, δ) is a
graph G = (Q,Σ, T ) with Q ⊆ Nn> and T ⊆ {(q, a, q′) ∈
Q × Σ × Q | q a−→V q′}. A marked reachability graph
M = (m,x, G,x′,m′) for V is a strongly connected
reachability graph G for V equipped with two extended
configurations x,x′ ∈ Q respectively called the input state
and the output state, and equipped with two extended
configurations m,m′ satisfying m � x and m′ � x′

respectively called the input constraint and the output
constraint. An accepted tuple for M is a tuple (s, π, s′)
where π = (x σ−→G x′) is a path in G labeled by σ from the
input state x to the output state x′ and where s, s′ ∈ Nn are
two configurations such that s�m, s σ−→V s′ and s′�m′.
Intuitively the graph G and the input/output states enforce
σ to label a path in G from x to x′. The input/output
constraints enforce s[i] and s′[i] to be equal to m[i] and
m′[i] respectively when m[i] and m′[i] are not equal to
the “don’t care value” >.

Remark III.1 As >+z = > for any z ∈ Z, there exists a
set I ⊆ {1, . . . , n} such that for any state y ∈ Q we have
y[i] ∈ N if and only if i ∈ I . This set I is called the set of
rigid components [6]. Observe that for any decomposition
of π into π = (x w−→G y w′

−→G x′) the unique configuration

r satisfying s w−→V r w′

−→V s′ also satisfies r[i] = y[i] for
any i ∈ I .

A marked reachability graph sequence (MRGS) U for
(s,V, s′) is a sequence U = M0a1M1 . . . akMk that
alternates elements aj ∈ Σ and marked reachability graphs
Mj = (mj,xj, Gj ,x′j,m

′
j) such that m0 = s and

m′k = s′. An accepted sequence for U is a sequence
(sj, πj , s′j)0≤j≤k such that (sj, πj , s′j) is an accepted tuple
for Mj for any 0 ≤ j ≤ k and such that s′j−1

aj−→V sj
for any 1 ≤ j ≤ k. The language accepted by U is the
set of words of the form σ = σ0a1σ1 . . . akσk such that
there exists an accepted sequence (sj, πj , s′j)0≤j≤k where
πj is labeled by σj . This set is denoted by L(U). Since
m0 = s and m′k = s′ are two vectors in Nn (without any
> element), relations s0 �m0 and s′k �m′k are equivalent
to s0 = m0 and s′k = m′k. In particular the inclusion
L(U) ⊆ L(s,V, s′) holds.

Definition III.2 A MRGS U is said to be perfect if for any
c ∈ N, there exists an accepted sequence (sj, πj , s′j)0≤j≤k
for U such that for any 0 ≤ j ≤ k:
• sj[i] ≥ c for any i such that mj[i] = >,
• there exists a prefix xj

wj−−→Gj
xj of πj and a

configuration rj such that sj
wj−−→V rj and such that

rj[i] ≥ c for any i such that xj[i] = >, and



• |πj |t ≥ c for any t ∈ Tj ,

• there exists a suffix x′j
w′

j−−→Gj x′j of πj and a

configuration r′j such that r′j
w′

j−−→V s′j and such that
r′j[i] ≥ c for any i such that x′j[i] = >.

• s′j[i] ≥ c for any i such that m′j[i] = >,

B. Original perfect condition

The perfect condition given in Definition III.2 is proved
equivalent to the original one [7]. The original definition
requires additional results recalled in this section. These
results are used in Section V to establish the pseudo-
linearity of Parikh images of language accepted by perfect
MRGSs.

Let M = (m,x, G,x′,m′) by a marked reachability
graph. We say that M satisfies the input loop condition
if there exists a sequence (x wc−−→G x)c of cycles and a
non-decreasing sequence (mc)c of extended configurations
such that m wc−−→V mc for any c and limc→+∞mc = x.
Symmetrically, we say that M satisfies the output loop

condition if there exists a sequence (x′
w′

c−−→G x′)c of
cycles and a non-decreasing sequence (m′c)c of extended

configurations such that m′c
w′

c−−→V m′ for any c and
limc→+∞m′c = x′. The following lemmas show that these
conditions are decidable in EXPSPACE since they reduce
to covering problems [9].

Lemma III.3 The input loop condition is satisfied by M
iff there exist a cycle x w−→G x and an extended configu-
ration y satisfying m w−→V y and satisfying y[i] > m[i]
for any i such that m[i] < x[i].

Lemma III.4 The output loop condition is satisfied by
M iff there exist a cycle x′ w′

−→G x′ and an extended
configuration y′ satisfying y′ w′

−→V m′ and satisfying
y′[i] > m′[i] for any i such that m′[i] < x′[i].

The Parikh image ||π|| of a path π from a state q to
a state q′ in a graph G = (Q,Σ, T ) provides a function
µ = ||π|| that satisfies the following linear system where
e : Q×Q→ {0, 1} denotes the function that takes the one
value iff its two arguments are equal:

χq,G,q′(µ) :=
∧
p∈Q


∑

t=(p0,a,p)∈T

µ(t) + e(q, p)

=
∑

t=(p,a,p1)∈T

µ(t) + e(p, q′)


The Euler lemma provides a converse result. In fact, if G
is strongly connected then any solution µ : T → N\{0} of
χq,G,q′ is the Parikh image of a path from q to q′. Since
χq,G,q does not depend on q ∈ Q, this linear system is

simply denoted by χG in the sequel. Naturally, the Parikh
image of a cycle satisfies this linear system.8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

for all 1 ≤ j ≤ k
s′j−1 + δ(aj) = sj

for all 0 ≤ j ≤ k
sj +

X
t∈Tj

µj(t)δ(t) = s′j

for all 0 ≤ j ≤ k, 1 ≤ i ≤ n
sj[i] = mj[i] if mj[i] ∈ N
s′j[i] = m′j[i] if m′j[i] ∈ N

for all 0 ≤ j ≤ k
χxj,Gj ,x′

j
(µj)

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

for all 1 ≤ j ≤ k
s′0,j−1 = s0,j

for all 0 ≤ j ≤ k
s0,j +

X
t∈Tj

µ0,j(t)δ(t) = s′0,j

for all 0 ≤ j ≤ k, 1 ≤ i ≤ n
s0,j[i] = 0 if mj[i] ∈ N
s′0,j[i] = 0 if m′j[i] ∈ N

for all 0 ≤ j ≤ k
χGj (µ0,j)

Figure 3. On left the characteristic system. On
right the homogeneous characteristic sys-
tem.

Let (sj, πj , s′j)0≤j≤k be an accepted sequence of a
MRGS U . We consider the sequence ξ = (sj, µj , s′j)0≤j≤k
where µj = ||πj ||. The sequence ξ is said associated to
the accepted sequence (sj, πj , s′j)0≤j≤k. We observe that ξ
is a solution of the linear system given in Figure 3 where
δ(t) denotes δ(a) for any transition t = (q, a, q′). This
linear system is called the characteristic system of U .The
homogeneous form of the characteristic system, obtained
by replacing constant terms by zero is called the homo-
geneous characteristic system of U . This system is given
in Figure 3. In the sequel, a solution of the homogeneous
characteristic system is denoted by ξ0 = (s0,j, µ0,j , s0,j′)j .

We say that U satisfies the large solution condition if
there exists a non-decreasing sequence (ξc)c∈N of solutions
ξc = (sj,c, µj,c, s′j,c)j with components in N of the
characteristic system such that:
• limc→+∞ sj,c = mj for any j,
• limc→+∞ µj,c(t) = > for any j and t ∈ Tj , and
• limc→+∞ sj,c = m′j for any j.

The following lemma shows that the large solution con-
dition is decidable in polynomial time since condition (i)
is decidable in polynomial time with the Hermite decom-
position and condition (ii) is decidable in polynomial time
with the interior points method.

Lemma III.5 The large solution condition is satisfied by
U iff the following conditions (i) and (ii) hold:
(i) Its characteristic system has a solution ξ with com-

ponents in Z,
(ii) Its homogeneous characteristic system has a solution

ξ0 = (s0,j, µ0,j , s0,j′)j with components in Q satisfy-
ing for any j:



? s0,j[i] > 0 for any i such that mj[i] = >,
? µ0,j(t) > 0 for any t ∈ Tj , and
? s′0,j[i] > 0 for any i such that m′j[i] = >.

By adapting [7], we deduce that the perfect condition
given in Definition III.2 is equivalent to the original one
[7] (also equivalent to the θ-condition [6]). More formally,
we prove the following Proposition III.6.

Proposition III.6 A MRGS U is perfect if and only if
it satisfies the large solution condition and if its marked
reachability graphs satisfy the input and output loop con-
ditions.

C. The KLMST decomposition

We provide an informal presentation of the algorithm
deciding the emptiness of L(s,V, s′). This algorithm is
based on a partial order v over the MRGSs that does not
admit infinite decreasing sequence. During its execution,
a finite set F of MRGSs is computed. This set satisfies
the invariant L(s,V, s′) =

⋃
U∈F L(U). Initially, the

algorithm consider the set F reduced to a single MRGS
syntactically obtained from (s,V, s′). Recursively, while
there exist MRGSs in F that do not satisfy the perfect
condition, such a MRGS U is picked up from F . Since U
is not perfect, Proposition III.6 shows that either it does
not satisfy the large solution condition or one of its marked
reachability graphs does not satisfies the input or the output
loop condition. Considering separately these cases, the
algorithm computes a finite set F ′ of MRGSs satisfying
U ′ < U for any U ′ ∈ F ′ and L(U) =

⋃
U ′∈F ′ L(U ′).

Then, the algorithm replaces F by F\{U} ∪ F ′ and it
restarts the while loop. Since there does not exist infinite
decreasing sequence of MRGSs for v, the loop termination
is guaranteed. When the loop terminates, the set F only
contains perfect MRGSs. If F is non empty the algorithm
decides that L(s,V, s′) is non empty, otherwise it decides
that L(s,V, s′) is empty. The correctness of the algorithm
is obtained by observing that the language accepted by
a perfect MRGS is always non empty. This algorithm
provides the following Theorem [6], [7].

Theorem III.7 (Fundamental Decomposition [6], [7])
For any tuple (s,V, s′), we can effectively compute a
finite set F of perfect MRGSs for (s,V, s′) such that:

L(s,V, s′) =
⋃
U∈F

L(U)

IV. Semi-Pseudo-Linear Sets

We introduce the class of semi-pseudo-linear sets.

A monoïd of Zn is a set M ⊆ Zn such that 0 ∈ M
and M +M ⊆M . Observe that for any X ⊆ Zn, the set
M = {0} ∪ {

∑k
i=1 xi | k ≥ 1 xi ∈ X} is the minimal

for the inclusion monoïd that contains X . This monoïd
is called the monoïd generated by X and denoted X∗. A
monoïd is said to be finitely generated if it can be generated
by a finite set.

Let M be a monoïd. A vector a ∈ M is said to be
interior to M if for any x ∈ M there exists an integer
N ≥ 1 satisfying Na ∈ x +M . The interior of a monoïd
M is the set of interior vectors to M . It is denoted by
I(M).

Figure 4. On the left a monoïd M . On the right
its interior I(M).

Example IV.1 Let P = {(1, 1), (−1, 1)}. The monoïd
M = P ∗ and its interior are depicted in Figure 4.

The following Lemma IV.2 characterizes the set I(P ∗)
where P is a finite set.

Lemma IV.2 Let P = {p1, . . . ,pk} ⊆ Zn with k ∈ N.
We have I(P ∗) = {0} if k = 0 and I(P ∗) = P ∗ ∩
((Q+\{0})p1 + · · ·+ (Q+\{0})pk) if k ≥ 1.

A set L ⊆ Zn is said to be linear [3] if there exists a
vector b ∈ Zn and a finitely generated monoïd M ⊆ Zn

such that L = b+M . A semi-linear set S ⊆ Zn is a finite
union of linear sets Li ⊆ Zn. Recall [3] that sets definable
in FO (N,+,≤) also called Presburger sets are exactly the
non-negative semi-linear sets. By observing that integers
are differences of two non-negative integers, from [3] we
deduce that sets definable in FO (Z,+,≤) are the semi-
linear sets.

x[1] = 2x[2]

x[1] = x[2]

Figure 5. A pseudo-linear set.

Let us now introduce the class of pseudo-linear sets
and semi-pseudo-linear sets. Intuitively, the pseudo-linear



sets extend the linear sets, and the semi-pseudo-linear sets
extend the semi-linear sets. More formally, a set X ⊆ Zn
is said to be pseudo-linear if there exists b ∈ Zn and a
finitely generated monoïd M ⊆ Zn such that X ⊆ b+M
and such that for any finite set R of interior vectors to M ,
there exists x ∈ X such that x+R∗ ⊆ X . In this case, M
is called a linearizator for X and the linear set L = b+M
is called a linearization of X . A semi-pseudo-linear set is
a finite union of pseudo-linear sets.

Example IV.3 The set X = {x ∈ Z2 | 0 ≤ x[2] ≤
x[1] ≤ 2x[2]} is depicted in Figure 5. Observe that X
is pseudo-linear and L = {x ∈ Z2 | 0 ≤ x[2] ≤ x[1]} is a
linearization of X . The set Y = {(2k, 0) | k ∈ N} is not
semi-pseudo-linear. However Z = X ∪Y is pseudo-linear
since L is still a linearization of Z.

Remark IV.4 Any linear set L = b+M is pseudo-linear
: M is a linearizator for L and L is a linearization of L.
We deduce that any semi-linear set is semi-pseudo-linear.

Remark IV.5 Semi-pseudo-linear sets can be empty
whereas pseudo-linear sets cannot be empty.

As expected, the class of pseudo-linear sets is stable by
linear function images. A function f : Zn → Zn

′
is said

linear if there exists a matrix A ∈ Zn×n
′

and a vector
v ∈ Zn′

such that f(x) = Ax + v for any x ∈ Zn.

Proposition IV.6 Images X ′ = f(X) of pseudo-linear
sets X by a linear function f are pseudo-linear. Moreover
the linear set L′ = f(L) is a linearization of X ′ for any
linearization L of X .

V. The Parikh Images of Perfect MRGSs

The Parikh images of languages accepted by perfect
MRGSs are proved pseudo-linear in this section. From
the KLMST decomposition, we deduce the semi-pseudo-
linearity of the Parikh image of L(s,V, s′).

Let us consider a perfect MRGS U for (s,V, s′). We
denote by H the solutions with components in N of
the characteristic system of U . We consider the set H ′

corresponding to sequences ξ ∈ H associated to accepted
sequences. Since the Parikh image of L(U) is the image
by a linear function of H ′, from Proposition IV.6 it
is sufficient to prove that H ′ is pseudo-linear. Let us
introduce the set H0 of solutions with components in N of
the homogeneous characteristic system. We prove in the
sequel that H0 is a linearizator for H ′. First of all observe
that H0 is a monoïd finitely generated since H0 = P ∗0
where P0 = min(H0\{0}).

Since H ′ ⊆ H , the following Lemma V.1 shows that
H ′ is included in the linear set (ξ − ξ0) +H0.

Lemma V.1 There exists ξ ∈ H and ξ0 ∈ H0 such that
H ⊆ (ξ − ξ0) +H0.

Proof: As U satisfies the large solution condition
there exists ξ ∈ H . Moreover, Lemma III.5 shows that
there exists a solution ξ0 with components in Q of the
homogeneous characteristic system satisfying the addi-
tional conditions s0,j[i] > 0 if mj[i] = >, s′0,j[i] > 0
if m′j[i] = >, and µ0,j(t) > 0 for any t ∈ Tj . By
multiplying ξ0 by a positive integer, we can assume that
the components of ξ0 are in Z. Note that for any ξ′ ∈ H ,
there exists c ∈ N such that ξ′ + cξ0 ≥ ξ. As min(H)
is finite, by multiplying ξ0 by a positive integer we can
assume that ξ′ + ξ0 ≥ ξ for any ξ′ ∈ H . That means
H ⊆ (ξ − ξ0) +H0. �

Now, let us consider a finite set R0 = {ξ1, . . . , ξd}
included in the interior of H0. We are going to prove that
there exists ξ ∈ H such that ξ +R∗0 ⊆ H ′. We first prove
the following lemma.

Lemma V.2 For any ξl = (sl,j, µl,j , s′l,j)j interior vector
of H0, the function µl,j is the Parikh image of a cycle
πl,j = (xj

σl,j−−→Gj xj).

Proof: Since U satisfies the large solution condition,
Lemma III.5 shows for any t ∈ Tj , there exists a solution
ξ0 = (s0,j, µ0,j , s′0,j)j in H0 such that µ0,j(t) > 0. As
H0 = P ∗0 , for any t ∈ Tj there exists ξ0 ∈ P0 satisfying
the same property. Lemma IV.2 shows that ξl is a sum
over all solutions ξ0 ∈ P0 of terms of the form λξ0 where
λ > 0 is a value in Q that naturally depends on ξ0 and ξl.
In particular we deduce that µl,j(t) > 0 for any t ∈ Tj
and for any 0 ≤ j ≤ k. Euler lemma shows that µl,j is
the Parikh image of a cycle πl,j = (xj

σl,j−−→Gj xj).
Since xj

σl,j−−→V , there exists an integer c ≥ 0 such that
for any 0 ≤ j ≤ k and for any configuration rj satisfying
rj[i] ≥ c if xj[i] = > and rj[i] = xj[i] otherwise, we have
rj

σl,j−−→V .

As U is perfect, there exists an accepted tuple
(sj, πj , s′j)0≤j≤k such that for any j, πj can be decom-
posed into:

πj = (xj
wj−−→Gj

xj
σj−→Gj

x′j
w′

j−−→Gj
x′j)

and such that the pair of configurations (rj, r′j) satisfying
the following relations:

sj
wj−−→V rj

σj−→V r′j
w′

j−−→V s′j

also satisfy:



• rj[i] ≥ c if xj[i] = > and rj[i] = xj[i] otherwise,
• r′j[i] ≥ c if x′j[i] = > and r′j[i] = x′j[i] otherwise.

In particular we have rj
σl,j−−→V for any 0 ≤ j ≤ k and for

any 1 ≤ l ≤ d.
As sl,j ≥ 0 and rj

σl,j−−→V we deduce that rj+sl,j
σl,j−−→V .

Moreover, from sl,j + δ(σl,j) = s′l,j we get:

rj + sl,j
σl,j−−→V rj + s′l,j

As sl,j, s′l,j ≥ 0, an immediate induction shows that for any
sequence n1, . . . , nd ∈ N we have the following relation:

rj +
d∑
l=1

nlsl,j
σ

n1
1,j ...σ

nd
d,j−−−−−−→V rj +

d∑
l=1

nls′l,j

Let ξ = (sj, ||πj || , s′j)0≤j≤k. We have proved that ξ +∑d
l=1 nlξl is associated to an accepted sequence. Thus

ξ + R∗0 ⊆ H ′. Therefore H ′ is pseudo-linear and H0

is a linearizator for H ′. We have proved the following
Theorem V.3.

Theorem V.3 The Parikh image of L(U) is pseudo-linear
for any perfect MRGS U .

From Theorem III.7 and Theorem V.3 we deduce the
following Corollary V.4.

Corollary V.4 The Parikh image of L(s,V, s′) is semi-
pseudo-linear.

VI. Locally Semi-Pseudo-Linear Sets

A set X ⊆ Zn is said to be locally semi-pseudo-linear
if X ∩ S is semi-pseudo-linear for any semi-linear set
S ⊆ Zn. Since Zn is a linear set, any locally semi-pseudo-
linear set is semi-pseudo-linear. However the converse is
not true in general (see Example VI.1). In this section,
post∗V(S) and pre∗V(S′) are proved locally semi-pseudo-
linear for any semi-linear sets S, S′ ⊆ Nn. This result is
used in Section VIII to get a local analysis of post∗V(S)
and pre∗V(S′) with respect to some semi-linear sets.

Example VI.1 Let us consider the pseudo-linear set Z =
X ∪ Y introduced in Example IV.3 and observe that Z is
not locally semi-pseudo-linear since Y = Z ∩ S is not
semi-pseudo-linear with S = (1, 0) + {(1, 0)}∗.

Let us prove that post∗V(S) ∩ S′ and S ∩ pre∗V(S′) are
semi-pseudo-linear for any semi-linear sets S, S′ ⊆ Nn.
Since semi-linear sets are finite unions of linear sets we
only prove this result for the special case of two linear sets
S = s + P ∗ and S′ = s′ + (P ′)∗ where s, s′ ∈ Nn and
P, P ′ ⊆ Nn are two finite sets. We consider two alphabets

ΣP ,ΣP ′ disjoint of Σ and a displacement function δ̄
defined over Σ̄ = ΣP ∪Σ ∪ΣP ′ that extends δ such that:

P = {δ̄(a) | a ∈ ΣP } P ′ = {−δ̄(a) | a ∈ ΣP ′}

We consider the VAS V̄ = (Σ̄, n, δ̄). Intuitively, since
δ̄(ΣP ) ⊆ Nn and δ̄(ΣP ′) ⊆ −Nn, words in L(s, V̄, s′)
can be reordered into words in (Σ∗PΣ∗Σ∗P ′) ∩ L(s, V̄, s′).

Let us consider the displacement functions f and f ′

defined over Σ̄ by:

f(a) =

{
δ̄(a) if a ∈ ΣP
0 otherwise

f ′(a) =

{
−δ̄(a) if a ∈ ΣP ′

0 otherwise

Lemma VI.2 We have post∗V(S) ∩ S′ = s′ +
f ′(L(s, V̄, s′)) and S ∩ pre∗V(S′) = s + f(L(s, V̄, s′)).

Observe that sets s′ + f ′(L(s, V̄, s′)) and s +
f(L(s, V̄, s′)) are images by linear functions of the Parikh
image of L(s, V̄, s′). Corollary V.4 shows that the Parikh
image of L(s, V̄, s′) is semi-pseudo-linear. From Proposi-
tion IV.6 we deduce the following Theorem VI.3.

Theorem VI.3 post∗V(S) and pre∗V(S′) are locally semi-
pseudo-linear for any semi-linear sets S, S′ ⊆ Nn.

VII. Pseudo-Linear Sets Intersections

Let X1, X2 be two pseudo-linear sets with an empty
intersection X1 ∩ X2 and let L1, L2 be linearizations
of X1, X2. Since L1, L2 over-approximate X1, X2, the
intersection L1 ∩ L2 is not empty in general. In this
section we introduce a dimension function that satisfies
dim(L1∩L2) < dim(X1∪X2). This dimension function is
defined in Section VII-A and the strict inequality is proved
in Section VII-B.

A. Dimension

The classical (mass) dimension function is introduced in
this section. We associate to any set X ⊆ Zn the sequence
(rk)k∈N defined by the following equality (by definition
ln(0) = −∞ and |.| denotes the cardinal function):

rk =
ln(|X ∩ {−k, . . . , k}n|)

ln(2k + 1)

Observe that rk is either −∞ or a real value such that
0 ≤ rk ≤ n. We denote by dimL(X) and dimU (X) re-
spectively the limit-inf and the limit-sup of (rk)r∈N. In this
paper we consider the dimension function dim = dimL.



dim(X0) = 0 dim(X1) = 1 dim(X2) = 2

Figure 6. Dimension of some sets.

The other choice is also possible since the sets considered
in this paper satisfy dimL(X) = dimU (X).

Example VII.1 Let X0 = {(0, 0)}, X1 = {x ∈ N2 |
x[1] = x[2]} and X2 = {x ∈ N2 | x[2] ≤ x[1]} be the
sets depicted in Figure 6. As |X0 ∩ {−k, . . . , k}2| = 1,
|X1 ∩{−k, . . . , k}2| = k+ 1, and |X2 ∩{−k, . . . , k}2| =
1
2 (k + 1)(k + 2) we get dim(X0) = 0, dim(X1) = 1 and
dim(X2) = 2.

Let us show some immediate properties satisfied by the
dimension function. Observe that dim(X) = −∞ if and
only if X is empty. The dimension function is monotonic
dim(X1) ≤ dim(X2) for any X1 ⊆ X2. Moreover it
satisfies dim(X1 ∪X2) = max{dim(X1),dim(X2)} and
dim(X1 + X2) ≤ dim(X1) + dim(X2). In particular
dim(v +X) = dim(X) for any v ∈ Zn.

Remark VII.2 The dimension of any non-empty semi-
linear set is integral.

As expected, the dimension of a pseudo-linear set is
equal to the dimension of any linearization.

Lemma VII.3 We have dim(X) = dim(L) for any lin-
earization L of a pseudo-linear set X ⊆ Zn.

B. Pseudo-linear sets with empty intersections

In this section we prove that linearizations L1, L2 of
two pseudo-linear sets X1, X2 with an empty intersection
X1 ∩X2 = ∅ satisfy the strict inequality dim(L1 ∩L2) <
dim(X1 ∪ X2). Note that even if X1 ∩ X2 = ∅, the
intersection L1 ∩ L2 may be non empty since L1, L2 are
over-approximations of X1, X2.

Example VII.4 Let us consider the pseudo-linear set X
described in Example IV.3 and a linearization L = {x ∈
Z2 | 0 ≤ x[2] ≤ x[1]} of X . We also consider the linear
set X ′ = (8, 2) + {(1, 0), (3,−1)}∗. Sets X and X ′ are
depicted together in Figure 7. Note that L′ = X ′ is a
linearization of the linear set X ′. Notice that X ∩X ′ = ∅.
The set L∩L′ is depicted in gray in Figure 7. Observe that
L ∩ L′ = {(8, 2), (11, 1), (14, 0)} + {(1, 0)}∗. Therefore

x[1] = 2x[2]

x[1] = x[2]

Figure 7. Two pseudo-linear sets with an
empty intersection.

dim(L∩L′) = 1. Since dim(X) = dim(X ′) = 2 we have
dim(L ∩ L′) < dim(X ∪X ′).

We say that two linear sets L1, L2 have a non-
degenerate intersection if dim(L1) = dim(L1 ∩ L2) =
dim(L2).

Lemma VII.5 Let L1 = b1 +M1 and L2 = b2 +M2 be
two linear sets with a non-degenerate intersection. There
exist finite sets R1 ⊆ I(M1) and R2 ⊆ I(M2) such that
(x1 +R∗1) ∩ (x2 +R∗2) 6= ∅ for any (x1,x2) ∈ (L1, L2).

Proposition VII.6 Let L1, L2 be linearizations of pseudo-
linear sets X1, X2 ⊆ Zn with an empty intersection X1 ∩
X2 = ∅. We have:

dim(L1 ∩ L2) < dim(X1 ∪X2)

Proof: Let us consider linearizations L1, L2 of two
pseudo-linear sets X1, X2 such that dim(L1 ∩ L2) ≥
dim(X1∪X2) and let us prove that X1∩X2 6= ∅. Lemma
VII.3 shows that dim(X1) = dim(L1) and dim(X2) =
dim(L2). By monotonicity of the dimension function,
we deduce that dim(L1) = dim(L1 ∩ L2) = dim(L2).
Thus L1 and L2 have a non-degenerate intersection. As
L1, L2 are two linear sets, there exists b1,b2 ∈ Zn and
two finitely generated monoïds M1,M2 such that L1 =
b1+M1 and L2 = b2+M2. Lemma VII.5 shows that there
exist finite sets R1 ⊆ I(M1) and R2 ⊆ I(M2) such that
(x1+R∗1)∩(x2+R∗2) 6= ∅ for any (x1,x2) ∈ (L1, L2). As
L1, L2 are linearizations of the pseudo-linear sets X1, X2

there exists (x1,x2) ∈ (X1, X2) such that x1 +R∗1 ⊆ X1

and x2 + R∗2 ⊆ X2. As (x1,x2) ∈ (L1, L2) we deduce
that (x1 + R∗1) ∩ (x2 + R∗2) 6= ∅. We have proved that
X1 ∩X2 6= ∅.

VIII. Presburger Closed Separators

The VAS reachability problem can be reformulated by
introducing the definition of separators. A pair (S, S′) of
configuration sets is called a separator for a VAS V if



S × S′ has an empty intersection with the reachability
binary relation ∗−→V . The set D = Nn\(S ∪ S′) is called
the (free) domain of (S, S′).

Let us consider the following sets for any pair (S, S′)
of configurations sets and for any a ∈ Σ:

postaV(S) = {s′ ∈ Nn | ∃s ∈ S s a−→V s′}
preaV(S′) = {s ∈ Nn | ∃s′ ∈ S′ s a−→V s′}

A set S ⊆ Nn is called a forward invariant if postaV(S) ⊆
S for any a ∈ Σ. A set S′ ⊆ Nn is called a backward
invariant if preaV(S′) ⊆ S′ for any a ∈ Σ. Let (S, S′) be
a pair of configurations such that S is a forward invariant
and S′ is a backward invariant and observe that (S, S′) is
a separator if and only if S ∩ S′ = ∅. In fact in this case
the condition (S × S′)∩ ∗−→V= ∅ reduces to S ∩ S′ = ∅.

A separator (S, S′) is said to be closed (with respect to
the reachability relation) if S is a forward invariant and
if S′ is a backward invariant. As (post∗V(S),pre∗V(S′))
is a closed separator for any separator (S, S′), we de-
duce that separators are included into closed separators.
We are interested in closed separators definable in the
Presburger arithmetic FO (N,+,≤). Let us consider a
pair (ψ(x), ψ′(x)) of Presburger formulas denoting a pair
(S, S′) of configurations sets. Note that (S, S′) is a closed
separator if and only if ψ(x) ∧ ψ′(x) and the following
formulas are unsatisfiable for any a ∈ Σ.

ψ(x) ∧ x′ = x + δ(a) ∧ ¬ψ(x′)
ψ′(x′) ∧ x′ = x + δ(a) ∧ ¬ψ′(x)

In particular we can effectively decide if (ψ(x), ψ′(x))
denotes a closed separator. That means pairs (ψ(x), ψ′(x))
of Presburger formulas denoting closed separators provide
checkable certificates of non-reachability.

In this section we prove that Presburger separators
are included in Presburger closed separators. In gen-
eral (post∗V(S),pre∗V(S′)) is not Presburger (see Exam-
ple II.3). That means, this closed separator must be over-
approximated by another closed separator.

A Presburger closed separator that over-approximates
a Presburger separator (S0, S

′
0) is obtained inductively.

We build a non-decreasing finite sequence (Sj , S′j)j of
Presburger separators starting from the initial Presburger
separator (S0, S

′
0) such that the dimension of the domain

Dj = Nn\(Sj ∪ S′j) is strictly decreasing toward −∞.
In order to obtain this sequence, observe that it is suffi-
cient to show that for any Presburger separator (S0, S

′
0)

with a non-empty domain D0, there exists a Presburger
separator (S, S′) ⊇ (S0, S

′
0) with a domain D such that

dim(D) < dim(D0).

Remark VIII.1 In the sequel, we often use the fact that
(S, S′) ⊆ (Nn,Nn) is a separator if and only if post∗V(S)∩

pre∗V(S′) = ∅ if and only if post∗V(S)∩S′ = ∅ if and only
if S ∩ pre∗V(S′) = ∅.

We first define a set S′ that over-approximates S′0
and such that (S0, S

′) is a separator. As S0 is semi-
linear, Theorem VI.3 shows that post∗V(S0) is locally
semi-pseudo-linear. As D0 is semi-linear, we deduce that
post∗V(S0) ∩ D0 is equal to a finite union of pseudo-
linear sets X1, . . . , Xk. Let us consider some linearizations
L1, . . . , Lk of these pseudo-linear sets and let us define the
following Presburger set S′.

S′ = S′0 ∪ (D0\(
k⋃
j=1

Lj))

We observe that post∗V(S0) ∩ S′ = ∅ since post∗V(S0) ∩
S′0 = ∅ and post∗V(S0)∩D0 ⊆

⋃k
j=1 Lj . We have proved

that S′ contains S′0 and (S0, S
′) is a separator.

Now we define symmetrically a set S that over-
approximates S0 and such that (S, S′) is a separator.
As S′ is semi-linear, Theorem VI.3 shows that pre∗V(S′)
is locally semi-pseudo-linear. As D0 is semi-linear we
deduce that D0 ∩ pre∗V(S′) is equal to a finite union
of pseudo-linear sets X ′1, . . . , X

′
k′ . Let us consider some

linearizations L′1, . . . , L
′
k′ of these pseudo-linear sets and

let us define the following Presburger set S.

S = S0 ∪ (D0\(
k′⋃
j′=1

L′j′))

Once again, note that S ∩ pre∗V(S′) = ∅. Thus S contains
S0 and (S, S′) is a separator.

Let D be the domain of the separator (S, S′). From
D0 = Nn\(S0 ∪ S′0), we get the following equality:

D = D0 ∩

 ⋃
1≤j≤k

1≤j′≤k′

(Lj ∩ L′j′)


From Xj , X

′
j′ ⊆ D0 we get dim(Xj ∪X ′j′) ≤ dim(D0).

As Xj ⊆ post∗V(S0) ⊆ post∗V(S) and X ′j′ ⊆ pre∗V(S′)
and (S, S′) is a separator, we deduce that Xj and X ′j′ are
two pseudo-linear sets with an empty intersection. Propo-
sition VII.6 provides dim(Lj∩L′j′) < dim(Xj∪X ′j′). We
deduce dim(D) < dim(D0).

Since the dimensions of non-empty Presburger sets are
non-negative integers (see Remark VII.2), we have proved
the following theorem.

Theorem VIII.2 Presburger separators are included in
Presburger closed separators.



As ({s}, {s′}) is a Presburger separator for any pair
(s, s′) of configurations in the complement of the reach-
ability binary relation, the previous theorem shows that
there exists a Presburger closed separator (S, S′) such that
(s, s′) ∈ (S, S′). By observing that S is a forward invariant
we have proved the following corollary.

Corollary VIII.3 Let (s, s′) be a pair of configurations of
a VAS V . We have (s, s′) 6∈ ∗−→V if and only if there exists
a Presburger formula denoting a forward invariant I such
that s ∈ I and s′ 6∈ I .

IX. Conclusion

Thanks to the classical KLMST decomposition we have
proved that the Parikh Images of languages accepted by
VASs are semi-pseudo-linear. As an application, we have
proved that for any pair (s, s′) of configurations in the
complement of the reachability relation there exists a
Presburger formula ψ(x) denoting a forward invariant I
such that s ∈ I and s′ 6∈ I . We deduce that the following
algorithm Reachability(s,V ,s′) decides the reachability
problem.

1 Reachability( s , V , s′ )
2 k ← 0
3 repeat forever
4 for each word σ ∈ Σk

5 if s σ−→V s′

6 return ‘‘reachable’’
7 for each Presburger formula ψ(x) of length k
8 if ψ(s) and ¬ψ(s′) are true and
9 ψ(x) ∧ y = x + δ(a) ∧ ¬ψ(y) unsat ∀a ∈ Σ

10 return ‘‘unreachable’’
11 k ← k + 1

The correctness is immediate and the termination is guar-
anteed by Corollary VIII.3. This algorithm is the very
first one that does not require the KLMST decomposition
for its implementation. Even though the proof of termi-
nation is based on the classical KLMST decomposition,
the complexity of the algorithm does not depend on this
decomposition. In fact, the complexity depends on the
minimal size of a word σ ∈ Σ∗ such that s σ−→V s′ if
s ∗−→V s′, and the minimal size of a Presburger formula
ψ(x) denoting a forward invariant I such that s ∈ I and
s′ ∈ I otherwise. We left as an open question the problem
of computing lower and upper bounds for these sizes.
Note that the VAS exhibiting a large (Ackermann size) but
finite reachability set given in [4] does not directly provide
an Ackerman lower-bound for these sizes since inductive
separators can over-approximate reachability sets.

We also left as an open question the problem of adapting
the Counter Example Guided Abstract Refinement ap-

proach [1] to obtain an algorithm for the VAS reachability
problem with termination guarantee. In practice, such an
algorithm should be more efficient than the previously
given enumeration-based algorithm.
Acknowledgment: I thank Jean Luc Lambert for a fruitful
discussion during a Post-doc in 2005 at IRISA (INRIA
Rennes, France) and for his work on semi-linear VASs.
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Appendix

Lemma III.3 The input loop condition is satisfied byM iff
there exist a cycle x w−→G x and an extended configuration
y satisfying m w−→V y and satisfying y[i] > m[i] for any
i such that m[i] < x[i].

Proof: Assume first that U satisfies the input loop con-
dition. There exist a sequence (x wc−−→G x)c of cycles and a
non-decreasing sequence (mc)c of extended configurations
such that m wc−−→V mc for any c and limc→+∞mc = x.
Let us consider the set I of integers i such that m[i] < x[i].
Let i ∈ I . Since m[i] �x[i] we deduce that m[i] ∈ N and
x[i] = >. From limc→+∞mc[i] = x[i] we deduce that
there exists an integer ci ≥ 0 such that mc[i] > m[i]
for any c ≥ ci. Now let c = maxi∈I ci and observe that
mc[i] > m[i] for any i ∈ I . We have proved that there
exist a cycle x w−→G x with w = wc and an extended
configuration y = mc satisfying m w−→V y and satisfying
y[i] > m[i] for any i such that m[i] < x[i].

Next, assume that there exist a cycle x w−→G x and
an extended configuration y satisfying m w−→V y and
satisfying y[i] > m[i] for any i such that m[i] < x[i].

Let us consider i such that m[i] ≥ x[i] and let us prove
that m[i] = x[i] = y[i]. The relation m[i] � x[i] implies
m[i] ≤ x[i]. Thus m[i] = x[i]. The paths m w−→V y and
x w−→V x with m[i] = x[i] provides y[i] = x[i]. We have
proved that m[i] = x[i] = y[i].

Therefore y ≥ m and an immediate induction shows
that there exists a non-decreasing sequence (mc)c of ex-
tended configurations such that m wc

−−→V mc. Just observe
that (x wc

−−→G x) is a cycle and limc→+∞mc = x.
The proof is symmetrical to the one of Lemma III.3.

Lemma III.5 The large solution condition is satisfied by
U iff the following conditions (i) and (ii) hold:

(i) Its characteristic system has a solution ξ with com-
ponents in Z,

(ii) Its homogeneous characteristic system has a solution
ξ0 = (s0,j, µ0,j , s0,j′)j with components in Q satisfy-
ing for any j:
? s0,j[i] > 0 for any i such that mj[i] = >,
? µ0,j(t) > 0 for any t ∈ Tj , and
? s′0,j[i] > 0 for any i such that m′j[i] = >.

Proof: Let us consider ξ and ξ0 satisfying condi-
tion (i) and (ii). By multiplying ξ0 by a positive integer,
its components can be assumed in Z. Note that in this
case the components are in fact in N. Since there exists an
integer c ≥ 0 such that ξ+cξ0 has its components in N, by
replacing ξ by ξ+cξ0 we can assume that the components
of ξ are in N. Now, just observe that ξc = ξ+cξ0 provides
a sequence (ξc)c that proves that U satisfies the large
solution condition.

Next assume that U satisfies the large solution con-
dition. There exists a sequence (ξc)c proving the large
solution condition of U . Let us denote by ξ = (sj, µj , s′j)j
the first solution of this sequence. This solution naturally
satisfies (i). Observe that there exists an integer c ≥ 0 such
that for any j:
• sj,c[i] > sj[i] for any i such that mj[i] = >,
• µj,c(t) > µj(t) for any t ∈ Tj , and
• s′j,c[i] > s′j[i] for any i such that m′j[i] = >.

Notice that ξ0 = ξc − ξ provides a solution of the ho-
mogeneous characteristic system satisfying condition (ii).

A MRGS is said to be original-perfect if it satisfies the
large solution condition and its marked reachability graphs
satisfy the input and output loop conditions.

Even if the proof of the following lemma is immediate
by induction over the length of σ, it is central in the
KLMST decomposition.

Lemma D.1 (Continuity)

• For any x w−→V there exists an integer c ≥ 0 such that
y w−→V for any extended configuration y satisfying
y[i] ≥ c if x[i] = > and y[i] = x[i] otherwise for
any i.

• For any w′

−→V x′ there exists an integer c′ ≥ 0
such that w′

−→V y′ for any extended configuration y′

satisfying y′[i] ≥ c′ if x′[i] = > and y′[i] = x′[i]
otherwise for any i.

Lemma D.2 Perfect MRGSs are original-perfect.

Proof: Let us consider a perfect MRGS U . Notice
that U satisfies the large solution condition since from
any accepted sequence (sj, πj , sj)j we deduce a solution
(sj, ||πj || , s′j)c. Since the input loop condition and the
output loop condition are symmetrical, we just prove
that the marked reachability graph Mj satisfies the input
loop condition. We consider an integer c ∈ N satisfying
c > mj[i] for any i such that mj[i] < xj[i]. Since U is per-
fect, there exists an accepted sequence (sj, πj , s′j)0≤j≤k, a
prefix xj

wj−−→V xj of πj , an extended configuration rj
such that sj

wj−−→V rj and such that rj[i] ≥ c for any i such
that xj[i] = >. Since sj � mj we deduce that sj ≤ mj.
As sj

wj−−→V rj and sj ≤ mj there exists an extended
configuration yj such that mj

wj−−→V yj. Let us consider
an integer i such that mj[i] < xj[i]. Since mj � xj we
deduce that mj[i] ∈ N and xj[i] = >. From xj[i] = >
we deduce that rj[i] ≥ c. From mj[i] ∈ N we deduce that
sj[i] = mj[i]. Thus yj[i] = rj[i] ≥ c > sj[i]. Lemma III.3
shows that Mj satisfies the input loop condition.



Now, let us consider an original-perfect MRGS U and
let us prove that U is perfect. SinceMj satisfies the input
and output loop conditions, Lemma III.3 and Lemma III.4
show that:
• there exist a cycle θj = (xj

wj−−→Gj
xj) and an

extended configuration yj satisfying mj
wj−−→V yj

and satisfying yj[i] > mj[i] for any i such that
mj[i] < xj[i],

• there exist a cycle θ′j = (x′j
w′

j−−→Gj
x′j) and an

extended configuration y′j satisfying y′j
w′

j−−→V m′j
and satisfying y′j[i] > m′j[i] for any i such that
m′j[i] < x′j[i].

The proof that U is perfect is obtained by first exhibiting
a solution ξ with components in N of the characteristic
system and a solution ξ0 with components in N of the ho-
mogeneous characteristic system satisfying some particular
properties. These two solutions ξ and ξ0 are respectively
defined in Lemma D.3 and Lemma D.4.

Lemma D.3 There exists a solution ξ = (sj, µj , s′j)j of
the characteristic system such that for any j:
• sj is a configuration satisfying sj

wj−−→V ,
• µj is the Parikh image of a path πj = (xj

σj−→Gj
x′j),

• s′j is a configuration satisfying
w′

j−−→V s′j.

Proof: As mj
wj−−→V , Lemma D.1 shows that there

exists an integer c ≥ 0 such that sj
wj−−→V for any

configuration sj satisfying sj[i] ≥ c if mj[i] = > and
sj[i] = mj[i] otherwise for any i. Symmetrically, as
w′

j−−→V m′j, Lemma D.1 shows that there exists an integer

c′ ≥ 0 such that
w′

j−−→V s′j for any configuration s′j satisfying
s′j[i] ≥ c′ if m′j[i] = > and s′j[i] = m′j[i] otherwise for
any i. Since U satisfies the large solution condition there
exists a solution ξ = (sj, µj , s′j)j with components in N
of the characteristic system such that sj and s′j satisfies
the previous conditions and such that µj(t) ≥ 1 for any
t ∈ Tj . As Gj is strongly connected, Euler lemma shows
that µj is the Parikh image of a path πj = (xj

σj−→Gj
x′j).

Lemma D.4 There exists a solution ξ0 = (s0,j, µ0,j , s′0,j)
of the homogeneous characteristic system such that for
any j:
• the value s0,j[i] is strictly positive if mj[i] = > and

it is equal to 0 otherwise for any i,
• the value (s0,j+δ(wj))[i] is strictly positive if xj[i] =
> and it is equal to 0 otherwise for any i,

• µ0,j − (||θj ||+
∣∣∣∣θ′j∣∣∣∣) is the Parikh image of a cycle

π0,j = (xj
σ0,j−−→Gj

xj) and |π0,j |t > 0 for any t ∈
Tj ,

• the value (s0,j′−δ(w′j))[i] is strictly positive if x′j[i] =
> and it is equal to 0 otherwise for any i, and

• the value s′0,j[i] is strictly positive if m′j[i] = > and
it is equal to 0 otherwise for any i.

Proof: As U satisfies the large solution condition,
Lemma III.5 shows that there exists a solution ξ0 =
(s0,j, µ0,j , s′0,j)j with components in Q of the homoge-
neous characteristic system satisfying the additional con-
straints s0,j[i] > 0 if mj[i] = >, s′0,j[i] > 0 if m′j[i] = >,
and µ0,j(t) > 0 for any t ∈ Tj . By multiplying ξ0 by a
positive integer, we can assume that ξ0 is a solution with
components in Z satisfying the additional constraints. We
are going to prove that there exists a positive integer c ≥ 1
such that cξ0 satisfies the lemma.

First of all, observe that for any c ≥ 1 and for any j:
• the value cs0,j[i] is strictly positive if mj[i] = > and

it is equal to 0 otherwise for any i,
• the value cs′0,j[i] is strictly positive if m′j[i] = > and

it is equal to 0 otherwise for any i.

Let us consider 1 ≤ i ≤ n.
Let us prove that there exists a positive integer ci ≥ 1

such that for any c ≥ ci the value (cs0,j + δ(wj))[i] is
strictly positive if xj[i] = > and it is equal to 0 otherwise.
Note that mj[i] � xj[i] thus either mj[i] = xj[i] ∈ N,
or (mj[i],xj[i]) ∈ N × {>}, or mj[i] = xj[i] = >. We
separate the proof following these three cases. Let us first
consider the case mj[i] = xj[i] ∈ N. As mj[i] ∈ N and ξ0
is a solution of the homogeneous characteristic system, we
get s0,j[i] = 0. The cycle θj shows that xj + δ(wj) = xj.
From xj[i] ∈ N we deduce that δ(wj)[i] = 0. In particular
(cs0,j + δ(wj))[i] = 0 and we have proved the case
mj[i] = xj[i] ∈ N by considering ci = 1. Let us consider
the second case (mj[i],xj[i]) ∈ N×{>}. As mj[i] ∈ N we
deduce that s0,j[i] = 0. Since mj[i] < xj[i] the condition
satisfied by the loop θj shows that yj[i] > mj[i]. As
yj[i] = mj[i] + δ(wj)[i], we deduce that δ(wj)[i] > 0.
In particular for any c ≥ 1 we have (cs0,j + δ(wj))[i] > 0
and we have proved the case (mj[i],xj[i]) ∈ N × {>}
by considering ci = 1. Finally, let us consider the case
mj[i] = xj[i] = >. As mj[i] = > we deduce that
s0,j[i] > 0 in particular there exists an integer ci ≥ 1 large
enough such that (cs0,j + δ(wj))[i] > 0 for any c ≥ ci.
We have proved the three cases.

Symmetrically, for any 1 ≤ i ≤ n, there exists an
integer c′i ≥ 0 such that for any c ≥ c′i the value
(cs′0,j − δ(w′j))[i] is strictly positive if x′j[i] = > and it
is equal to 0 otherwise.

Finally, as µ0,j(t) > 0 for any t ∈ Tj and for any
0 ≤ j ≤ k, we deduce that there exists an integer c ≥ 1
large enough such that cµ0,j(t) > |θj |t + |θj′ |t for any



t ∈ Tj and for any 0 ≤ j ≤ k. Naturally, we can also
assume that c ≥ 1, c ≥ ci and c ≥ c′i for any 1 ≤ i ≤ n.
Let us replace ξ0 by cξ0. As µ0,j(t)−|θj |t+ |θj′ |t > 0 for
any t ∈ Tj , Euler lemma shows that µ0,j− (||θj ||+

∣∣∣∣θ′j∣∣∣∣)
is the Parikh image of a cycle π0,j = (xj

σ0,j−−→Gj xj).

Let us fix notations satisfying both Lemma D.3 and
Lemma D.4. We now provide technical lemmas that prove
together that U is perfect.

Lemma D.5 For any c ≥ 0 we have:

sj + cs0,j
wc

j−−→V sj + c(s0,j + δ(wj))

s′j + c(s′0,j − δ(w′j))
(w′

j)c

−−−→V s′j + cs′0,j

Proof: Since the two relations are symmetrical, we
just prove the first one. The choice of ξ satisfying Lemma
D.3 shows that sj

wj−−→V . Let us consider c ∈ N and let
us prove by induction over c′ that for any 0 ≤ c′ ≤ c we
have:

sj + cs0,j
wc′

j−−→V sj + (c− c′)s0,j + c′(s0,j + δ(wj))

Naturally, the case c′ = 0 is immediate. The induction is
obtained just by observing that s0,j ≥ 0, s0,j + δ(wj) ≥ 0
and sj

wj−−→V .

Lemma D.6 There exists c0 ≥ 0 such that for any c ≥ c0:

sj + c(s0,j + δ(wj))
σc
0,j−−→V sj + c(s′0,j − δ(w′j))

Proof: Since there exists a path in Gj from xj to x′j
we deduce that xj[i] = > if and only if x′j[i] = >. We
denote by uj the vector in {0, 1}n satisfying uj[i] = 1
if xi[i] = > = x′i[i] and satisfying uj[i] = 0 otherwise.
From the choice of ξ0 satisfying Lemma D.4, we observe
that s0,j + δ(wj) ≥ uj and s′0,j − δ(w′j) ≥ uj. Note that
limc→+∞(sj + cuj) = xj. As xj

σ0,j−−→Gj xj, Lemma D.1
proves that there exists an integer c0 ≥ 0 such that sj +
c0uj

σ0,j−−→V . Now, let us consider an integer c ≥ c0. Let
us prove by induction over c′ that for any 0 ≤ c′ ≤ c, we
have:

sj + c(s0,j + δ(wj))

σc′
0,j−−→V

sj + (c− c′)(s0,j + δ(wj)) + c′(s′0,j − δ(w′j))

Naturally, the case c′ = 0 is immediate. Assume the
previous relation holds for an integer c′ such that 0 ≤
c′ < c and let us consider c′′ = c′ + 1. From s0,j +
δ(wj) ≥ uj and s′0,j − δ(w′j) ≥ uj we deduce that
(c − c′)(s0,j + δ(wj)) + c′(s′0,j − δ(w′j)) ≥ cuj ≥ c0uj.

Thus, the induction directly comes from sj + c0uj
σ0,j−−→V

and s0,j + δ(wj) + δ(σ0,j) + δ(w′j) = s′0,j.

Lemma D.7 There exists c′ ≥ 0 such that for any c ≥ c′:

sj + c(s′0,j − δ(w′j))
σj−→V s′j + c(s′0,j − δ(w′j))

Proof: As limc→+∞(s′j + c(s′0,j − δ(w′j))) = x′j and
xj

σj−→Gj x′j, Lemma D.1 proves that there exists c′ ≥ 0
such that

σj−→V (s′j +c(s′0,j−δ(w′j))) for any c ≥ c′. Since
sj + δ(σj) = s′j we are done.

Now, let us consider an integer c ≥ 0 satisfying c ≥ c0
and c ≥ c′ where c0 and c′ are respectively defined by
Lemma D.6 and Lemma D.7. For each 0 ≤ j ≤ k, we
consider the following path:

πj,c = (xj

wc
j−−→Gj

xj

σc
0,jσj−−−−→Gj

x′j
(w′

j)c

−−−→Gj
x′j)

We have proved that (sj + cs0,j, πj,c, s′j + cs′0,j)j is an
accepted sequence for U . Thus U is perfect.
Lemma IV.2 Let P = {p1, . . . ,pk} ⊆ Zn with k ∈ N.
We have I(P ∗) = {0} if k = 0 and I(P ∗) = P ∗ ∩
((Q+\{0})p1 + · · ·+ (Q+\{0})pk) if k ≥ 1.

Proof: Since the case k = 0 is immediate, we
assume that k ≥ 1. Let us first consider an interior vector
a ∈ I(P ∗). As

∑k
j=1 pj ∈ P ∗ and a ∈ I(P ∗), there

exists N ≥ 1 such that Na ∈ (
∑k
j=1 pj) + P ∗. Let

p ∈ P ∗ such that Na =
∑k
j=1 pj + p. As p ∈ P ∗,

there exists a sequence (Nj)1≤j≤k of elements in N such
that p =

∑k
j=1Njpj. Combining this equality with the

previous one provides a =
∑k
j=1

1+Nj

N pj. Thus a ∈
(Q+\{0})p1 + · · ·+ (Q+\{0})pk. Conversely, let us con-
sider a ∈ P ∗∩((Q+\{0})p1+· · ·+(Q+\{0})pk). Observe
that there exists an integer d ≥ 1 large enough such that
da ∈ (N\{0})p1 + · · ·+ (N\{0})pk. In particular for any
x ∈ P ∗ there exists N ≥ 1 such that Nda ∈ x + P ∗.
Proposition IV.6 Images X ′ = f(X) of pseudo-linear
sets X by a linear function f are pseudo-linear. Moreover
the linear set L′ = f(L) is a linearization of X ′ for any
linearization L of X .

Proof: Let us consider a linear function f : Zn → Zn
′

defined by a matrix A ∈ Zn×n
′

and a vector v ∈ Zn
′
.

Let us consider a pseudo-linear set X ⊆ Zn. As X is
pseudo-linear, there exists a linearizator M of X and a
vector b ∈ Zn such that X ⊆ b + M . As M is finitely
generated there exists a finite set P such that M = P ∗.
We are going to prove that L′ = f(L) is a linearization
of X ′ = f(X). Let us consider b′ = f(b) and P ′ =
{Ap | p ∈ P} and observe that L′ = b′ + (P ′)∗. In
particular L′ is a linear set. Since X ⊆ L we deduce
that X ′ ⊆ L′. Let us consider a set R′ = {r′1, . . . , rd′}
included in the interior of (P ′)∗. As r′i ∈ (P ′)∗ there exists



pi ∈ P ∗ such that r′i = Api. Lemma IV.2 shows that r′i is
a sum of vectors of the form λi,pAp over all p ∈ P where
λi,p > 0 is a value in Q. There exists an integer ni ≥ 1
large enough such that niλi,p ∈ N\{0} for any p ∈ P .
We deduce that ri =

∑
p∈P niλi,pp is a vector in P ∗.

Moreover, form Lemma IV.2 we deduce that ri is in the
interior of P ∗. Let us consider the set R of vectors ri+kipi

where ki is an integer such that 0 ≤ ki < ni. As ri ∈
I(P ∗) and pi ∈ P ∗ we deduce that ri + kipi ∈ I(P ∗).
We have proved that R ⊆ I(P ∗). As L is a linearization
of X , there exists x ∈ X such that x + R∗ ⊆ X . We
deduce that f(x) + AR∗ ⊆ X ′. Let us consider x′ =
f(x)+A(

∑d
i=1 ri) and let us prove that x′+(R′)∗ ⊆ X ′.

Consider r′ ∈ (R′)∗. There exists a sequence (µ′i)1≤i≤d
of integers in N such that r′ =

∑d
i=1 µ

′
ir
′
i. The Euclid

division of µ′i by ni shows that µ′i = ki + niµi where
µi ∈ N and 0 ≤ ki < ni. From nir′i = Ari we deduce
that x′ + r′ = f(x) + A(

∑d
i=1(ri + kipi) +

∑d
i=1 µiri).

Observe that ri + kipi and ri are both in R. We have
proved that x′+ r′ ∈ f(x) +AR∗. Thus x′+ (R′)∗ ⊆ X ′.
We have proved that L′ is a linearization of X ′.

The following lemma formally explains why words in
L(s, V̄, s′) can be reordered into words in (Σ∗PΣ∗Σ∗P ′) ∩
L(s, V̄, s′).

Lemma G.8 Assume that s σaσ′

−−−→V s′ holds with σ, σ′ ∈
Σ∗, and a ∈ Σ. We have:

• s aσσ′

−−−→V s′ if δ(a) ≥ 0.

• s σσ′a−−−→V s′ if δ(a) ≤ 0.

Proof: We only consider the case δ(a) ≥ 0 since
the other case is symmetrical by replacing (s,V, s′) by
(s′,−V, s) where −V = (Σ, n,−δ). Let us consider the
pair of configurations (r, r′) such that s σ−→V r a−→V
r′ σ′

−→V s′. Since δ(a) ≥ 0 we have s a−→V s + δ(a).
As s + δ(a) ≥ s and s σ−→V we deduce that s + δ(a) σ−→V
s + δ(a) + δ(σ). From r′ = s + δ(σ) + δ(a) we deduce
the lemma.

Lemma VI.2 We have post∗V(S)∩S′ = s′+f ′(L(s, V̄, s′))
and S ∩ pre∗V(S′) = s + f(L(s, V̄, s′)).

Proof: Let us consider c′ ∈ post∗V(S)∩S′ and let us
prove that c′ ∈ s′+f ′(L(s, V̄, s′)). There exists c ∈ S and
a word v ∈ Σ∗ such that c v−→V c′. In particular c v−→V̄ c′.
Since S = s+P ∗ we observe that there exists a word u ∈
Σ∗P such that s u−→V̄ c. Symmetrically since S′ = s′+(P ′)∗

there exists u′ ∈ Σ∗P ′ such that c′ u
′

−→V̄ s′. We have proved
that uvu′ ∈ L(s, V̄, s′). Note that f ′(uvu′) = −δ̄(v). From
s′ = c′+δ̄(v) we have proved that c′ ∈ s′+f ′(L(s, V̄, s′)).

Conversely, let us consider a vector c′ ∈ s′ +
f ′(L(s, V̄, s′)) and let us prove that c′ ∈ post∗V(S) ∩ S′.
There exists a word σ ∈ L(s, V̄, s′) such that c′ =
s′ + f ′(σ). Since δ(ΣP ) ⊆ Nn and δ(ΣP ′) ⊆ −Nn,

Lemma G.8 shows that σ can be reordered into a word
σ0 ∈ L(s, V̄, s′)∩(Σ∗PΣ∗Σ∗P ′). As σ0 and σ have the same
Parikh image we deduce that f ′(σ) = f ′(σ0). In particular,
we can assume without loss of generality that σ = uvu′

with u ∈ Σ∗P , v ∈ Σ∗ and u′ ∈ Σ∗P ′ . Let us consider the

two configurations c, c′ such that s u−→V̄ c v−→V̄ c′ u
′

−→V̄ s′.
Since u ∈ Σ∗P we deduce that c ∈ S and since u′ ∈ Σ∗P ′

we get c′ ∈ S′. Moreover from v ∈ Σ∗ we deduce
c v−→V c′. We have proved that c′ ∈ post∗V(S) ∩ S′.

Thus post∗V(S) ∩ S′ = s′ + f ′(L(s, V̄, s′)). Symmetri-
cally we get S ∩ pre∗V(S′) = s + f(L(s, V̄, s′)).

A vector space V of Qn is a set V ⊆ Qn such that
0 ∈ V , V + V ⊆ V and QV ⊆ V . Observe that for
any set X ⊆ Qn the set V = {0} ∪ {

∑k
i=1 λixi | k ≥

1 λi ∈ Q xi ∈ X} is the unique minimal for the inclusion
vector space that contains X . This vector space is called
the vector space generated by X . Recall that for any vector
space V there exists a finite set B ⊆ V that generates V .
The minimal integer d ∈ N such that there exists a finite
set B ⊆ V with d elements that generates V is called
the rank of V and denoted rank(V ). Note that for any
set X ⊆ Qn there exists a finite set B ⊆ X such that the
vector space V generated by B is equal to the vector space
generated by X and such that |B| = rank(V ).

Proposition H.9 We have dim(M) = rank(V ) where V
is the vector space generated by a monoïd M .

Proof: Since M ⊆ Zn∩V it is sufficient to prove that
dim(M) ≥ rank(V ) and dim(Zn ∩ V ) ≤ rank(V ). Let
us denote by ||x||∞ = max{|x[1]|, . . . , |x[k]|} the usual
∞-norm of a vector x ∈ Qn. As M generates the vector
space V , there exists a sequence m1, . . . ,md ∈ M with
d = rank(V ) that generates V . Since the case d = 0 is
immediate we assume that d ≥ 1. We denote by f : Qd →
V the function f(x) =

∑d
i=1 x[i]mi.

Let us first prove that dim(M) ≥ d. By minimality of
d = rank(V ) note that f is injective. In particular the car-
dinal of f({0, . . . , k}d) is equal to (1 + k)d. Observe that
a vector m in this set satisfies ||m||∞ ≤ k

∑d
i=1 ||mi||∞

and m ∈M . We deduce that dim(M) ≥ d.

Now, let us prove that dim(Zn ∩ V ) ≤ d. Since for
any matrix, the rank of the vector space generated by the
column vectors is equal to the rank of the vector space
generated by the line vectors, there exists a sequence 1 ≤
j1 < · · · < jd ≤ n such that the function g : Qn → Qd

defined by g(x) = (x[j1], . . . ,x[jd]) satisfies h = g ◦ f
is a bijective function. In particular we deduce that for
any v ∈ Zn ∩ V ∩ {−k, . . . , k}n there exists a vector
x = g(v) ∈ {−k, . . . , k}d such that v = f ◦ h−1(x).
Therefore |Zn ∩ V ∩ {−k, . . . , k}n| ≤ (1 + 2k)d for any
k ∈ N. We deduce that dim(Zn ∩ V ) ≤ d.



Since semi-linear sets X are finite unions of linear sets,
i.e. sets of the form b+M where M is a finitely generated
monoïd, we deduce that dim(X) is integral.

This proof is based on results given in section A.
Lemma VII.3 We have dim(X) = dim(L) for any
linearization L of a pseudo-linear set X ⊆ Zn.

Proof: There exists b ∈ Zn and a linearizator M
for X such that L = b + M . From X ⊆ L we deduce
that dim(X) ≤ dim(L). Let us prove the converse. Let us
consider an interior vector a ∈ I(M). Since M is finitely
generated, there exists a finite set P such that M = P ∗.
Observe that R = {a} ∪ (a + P ) is a finite subset of
I(M). As X is pseudo-linear, there exists x ∈ X such
that x+R∗ ⊆ X . Note that the vector space generated by
R is equal to the vector space generated by P . Thus, from
Proposition H.9 we deduce that dim(R∗) = dim(P ∗). As
dim(x+R∗) = dim(R∗) and dim(b+P ∗) = dim(P ∗) we
deduce that dim(x + R∗) = dim(L). Since x + R∗ ⊆ X
we deduce that dim(L) ≤ dim(X).

This proof is based on results given in section A.
A group of Zn is a set Z ⊆ Zn such that 0 ∈ Z,

Z + Z ⊆ Z and −Z ⊆ Z. Observe that for any X ⊆ Zn,
the set G = X∗ − X∗ is the minimal for the inclusion
group that contains X . This group is said to be generated
by X . Let us consider the group G = M −M generated
by a monoïd M and a ∈ Zn. Observe that a ∈ I(M) if
and only if for any g ∈ G there exists an integer N ≥ 1
such that g +Na ∈M .

Lemma J.10 For any vector v ∈ V where V is the vector
space generated by a group G, there exists an integer d ≥
1 such that dv ∈ G.

Proof: A vector v ∈ V can be decomposed into a
sum v =

∑k
i=1 λigi with k ∈ N, λi ∈ Q and gi ∈ G.

Let us consider an integer d ≥ 1 such that dλi ∈ Z and
observe that dv ∈ G.

Lemma J.11 ( [3]) For any finite sets P1, P2 ⊆ Zn there
exists a finite set P ⊆ Zn such that P ∗1 ∩ P ∗2 = P ∗.
Moreover, for any b1,b2 ∈ Zn, there exists a finite set
B ⊆ Zn such that (b1+P ∗1 )∩(b2+P ∗2 ) = B+(P ∗1 ∩P ∗2 ).

Proof: Let us consider an enumeration pi,1, . . . ,pi,ki

of the ki ≥ 0 vectors in Pi where i ∈ {1, 2}. If k1 = 0 or
if k2 = 0 then P ∗1 = {0} or P ∗2 = {0} and the lemma is
immediate. Thus, we can assume that k1, k2 ≥ 1.

Let us consider the set X of vectors (λ1, λ2) ∈
Nk1 × Nk2 such that b1 +

∑k1
j=1 λ1[j]p1,j = b2 +∑k2

j=1 λ2[j]p2,j. Let us also consider the set X0 of vectors
(λ1, λ2) ∈ Nk1 × Nk2 such that

∑k1
j=1 λ1[j]p1,j =∑k2

j=1 λ2[j]p2,j. Observe that X = Z + X0 where Z is

the finite set Z = min(X) and X0 = Z∗0 where Z0 is the
finite set Z0 = min(X0\{0}).

Let us denote by B the finite set of vectors b ∈ Zn
such that there exists (λ1, λ2) ∈ Z satisfying b1 +∑k1
j=1 λ1[j]p1,j = b = b2 +

∑k2
j=1 λ2[j]p2,j. Let us also

denote by P the finite set of vectors p ∈ Zn such that there
exists (λ1, λ2) ∈ Z0 satisfying

∑k1
j=1 λ1[j]p1,j = p =∑k2

j=1 λ2[j]p2,j. Remark that (b1 + P ∗1 ) ∩ (b2 + P ∗2 ) =
B + P ∗ and P ∗1 ∩ P ∗2 = P ∗.
Lemma VII.5 Let L1 = b1 +M1 and L2 = b2 +M2 be
two linear sets with a non-degenerate intersection. There
exist finite sets R1 ⊆ I(M1) and R2 ⊆ I(M2) such that
(x1 +R∗1)∩ (x2 +R∗2) 6= ∅ for any (x1,x2) ∈ (L1, L2).

Proof: As M1,M2 are finitely generated, there exists
some finite sets P1, P2 ⊆ Zn such that M1 = P ∗1 and
M2 = P ∗2 . From Lemma J.11 there exists a finite set P ⊆
Zn and a finite set B ⊆ Zn such that P ∗1 ∩ P ∗2 = P ∗

and L1 ∩ L2 = B + P ∗. Note that B = ∅ is not possible
since in this case dim(L1 ∩L2) = −∞. Thus there exists
a vector b ∈ B.

Let us denote by V1, V, V2 the vector spaces generated
respectively by P1, P, P2 and let us prove that V1 =
V = V2. Proposition H.9 shows that dim(L1) = V1,
dim(L1∩L2) = rank(V ) and dim(L2) = rank(V2). From
dim(L1 ∩ L2) = dim(L1) we deduce that rank(V ) =
rank(V1). Moreover as P ∗ ⊆ P ∗1 we deduce that V ⊆ V1.
The inclusion V ⊆ V1 and the relation rank(V ) =
rank(V1) prove together that V = V1. Symmetrically we
deduce that V = V2.

We denote by G1, G,G2 the groups generated respec-
tively by P1, P, P2. Note that the vector spaces generated
by G1, G,G2 are equal to V1, V, V2.

Let a be an interior vector of P ∗ and let us prove that
a ∈ I(P ∗1 ) ∩ I(P ∗2 ). Let j ∈ {1, 2}. Note that a ∈ P ∗ ⊆
P ∗j . Let p ∈ I(P ∗j ). Since −p ∈ V and V is the vector
space generated by G, Lemma J.10 shows that there exists
an integer d ≥ 1 such that −dp ∈ G. From a ∈ I(P ∗) we
deduce that there exists N ≥ 1 such that −dp+Na ∈ P ∗.
From P ∗ ⊆ P ∗j we deduce that a ∈ 1

N (dp + P ∗j ). From
p ∈ I(P ∗j ) and Lemma IV.2 we get a ∈ I(P ∗j ).

We define R1 and R2 by Rj = {a} ∪ (a + Pj) for
j ∈ {1, 2}. From a ∈ I(P ∗j ), Lemma IV.2 shows that
Rj ⊆ I(P ∗j ). Let us consider x1 ∈ L1 and x2 ∈ L2 and
let us prove that (x1 +R∗1) ∩ (x2 +R∗2) 6= ∅.

From b,xj ∈ bj + P ∗j we deduce that xj − b ∈ Gj .
As the group generated by Rj is equal to Gj , there exists
rj, r′j ∈ R∗j such that xj + rj = b + r′j.

As V is the vector space generated by G1 and r′2 ∈
R∗2 ⊆ V2 = V , Lemma J.10 shows that there exists an
integer d1 ≥ 1 such that d1r′2 ∈ G1. As a ∈ I(P ∗1 ),



there exists an integer N1 ≥ 1 such that d1r′2 + N1a ∈
P ∗1 . As P ∗1 ⊆ R∗1 − Na, we deduce that there exists an
integer N ′1 ≥ 0 such that d1r′2 + (N1 + N ′1)a ∈ R∗1. We
denote by r′′1 this vector. Symmetrically, there exist some
integers d2 ≥ 1, N2 ≥ 1 and N ′2 ≥ 0 such that the vector
d2r′1 + (N2 +N ′2)a denoted by r′′2 is in R∗2. We get:

x1 + r1 + (d2 − 1)r′1 + r′′1 + (N2 +N ′2)a
= b + d2r′1 + d1r′2 + (N1 +N ′1 +N2 +N ′2)a
x2 + r2 + (d1 − 1)r′2 + r′′2 + (N1 +N ′1)a
= b + d1r′2 + d2r′1 + (N2 +N ′2 +N1 +N ′1)a

We have proved that these vectors are equal. Therefore
(x1 +R∗1) ∩ (x2 +R∗2) 6= ∅.


