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Scaling properties of step bunches induced by sublimation and related mechanisms
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This work provides a ground for a quantitative interpretation of experiments on step bunching during
sublimation of crystals with a pronounced Ehrlich-Schwodb&) barrier in the regime of weak desorption. A
strong step bunching instability takes place when the kinetic ledg#D4/K, is larger than the average
distancd between the steps on the vicinal surface; Hyés the surface diffusion coefficient atd is the step
kinetic coefficient. In the opposite limit, <| the instability is weak and step bunching can occur only when
the magnitude of step-step repulsion is small. The central result are power law relations of tHe~fotfh
Imin~H"" between the width_, the heightH, and the minimum interstep distantg, of a bunch. These
relations are obtained from a continuum evolution equation for the surface profile, which is derived from the
discrete step dynamical equations for the cdse-1. The analysis of the continuum equation reveals the
existence of two types of stationary bunch profiles with different scaling properties. Through comparison with
numerical simulations of the discrete step equations, we establish thexaién+ 1) for the scaling expo-
nent ofl,,, in terms of the exponent of the repulsive step-step interaction, and provide an exact expression
for the prefactor in terms of the energetic and kinetic parameters of the system. For the bunch wiglth
observe significant deviations from the expected scaling with expopeht1/«, which are attributed to the
pronounced asymmetry between the leading and the trailing edges of the bunch, and the fact that bunches
move. Through a mathematical equivalence on the level of the discrete step equations as well as on the
continuum level, our results carry over to the problems of step bunching induced by growth with a strong
inverse ES effect, and by electromigration in the attachment/detachment limited regime. Thus our work pro-
vides support for the existence of universality classes of step bunching instabiitiBgmpinelli et al, Phys.

Rev. Lett. 88, 206103(2002], but some aspects of the universality scenario need to be revised.

DOI: 10.1103/PhysRevB.71.045412 PACS nuni®er68.35—p, 81.10-h, 05.70.Np, 89.75.Da

. INTRODUCTION f(p) = f(0) + kp + gp° (1)

The formation of step bunches at a vicinal surface is a ) )
problem of great current interest, both from a fundamentafor the surface free energfper unit projected argaof a
viewpoint and with regard to the possible uses of stepricinal crystal surface with a density of steps

bunches as nanotemplates or nanostrucfufedlechanisms To infer information about the step-step interactions from
causing step bunching instabilities include strain effééts® experimental observations of bunch morphology, one makes

sublimation under conditions of asymmetric detachment ki-/>€ of scaling relations between the length and time scales
netics known as the Ehrlich-SchwoebéES) effectd-1t characterlzmg the b_unches. The relevant length scale_s are the
growth with an inverse ES effedt?1* and surface width L and the heighti of the bunch, and the spacing
electromigratiori>-23 ' betwegn subsequent bunché&sg. 1). The Ieng.thg is also
X _ . .. _sometimes referred to as the terrace width; this nomenclature

Quite recently it was realized that step bunching is g5 g5 mewhat ambiguous, however, because the region be-
promising _way to study the interactions between they een two bunches may contain several monoatomic steps,
steps™® 3 The physical ground is simple: The steps in theang hence, several wide terraces. The bunch height is related
bunch keep a certain distance from each other because th§ the number of stepN in the bunch byH=Nh,, whereh,
step-step repulsion balances the tendency to further compregg- the height of an atomic step. A quantity that is directly
sion of the bunch. The free energy related to the step-stefccessible to experimental observatidris the minimal ter-
interaction is of the formA/I", wherel is the interstep dis- race sizd,,;, inside the bunch, which is related to the maxi-
tance. Whem=2, the amplitudé\(T) accounts for both elas- mal slopem,,,, through!,i,=ho/ M. Following the nota-
tic and entropic repulsion between the st&pgnder crystal-  tion of Ref. 36, we introduce scaling exponentsand y
vapor equilibrium one has the relatioh(T) ~g(T) where characterizing the shape of individual bunches through the
g(T) is the step repulsion coefficient in the expression relations
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tions with different scaling properties in the sensg2f In

Sec. VI the mathematical equivalence of the sublimation
problem to appropriate limiting cases of step bunching in-
duced by electromigration and growth with inverse ES bar-
riers is pointed out and exploited. Section VII presents re-

H sults obtained from numerical simulations of the discrete
3 step dynamics and compares them to the predictions of the

continuum theory. In Sec. VIII we critically examitfea re-
<T> cently proposed classification scheme for step bunching

instabilities® in the light of our results, and some general
FIG. 1. Schematic of a bunched vicinal surface, illustrating theconclusions are drawn in Sec. IX.
definition of the bunch widtl., the bunch heighit, and the bunch

spacingé.
Il. DISCRETE MODEL AND BASIC CONCEPTS OF

SUBLIMATION BY STEP FLOW
H~L% Iy~ N7 2)
. . . ) We consider a vicinal surface going uphill in the di-
Assuming that the minimal terrace sigg, is of the same  ection. The processes of atom migratiamthe presence of
order as the mean size=L/N of the terraces inside the desorption and depositiprare described by the stationary

bunch, one expects the exponent identity diffusion equation
vy=1-1l. (3) &n. n
. _ D—— - —+R=0, (5)
Furthermore the coarsening of the bunch morphology with a7

time is described by a dynamic exponerdefined throug#f
o2 where Dq is the coefficient of surface diffusioms is the

E~N~17% (4) concentration of mobile atoms, adsorbed on the surfade,
the deposition rate of atoms to the crystal surfacas the
lifetime of an atom in a state of mobile adsorption, ard a
coordinate perpendicular to the step edges consider a
system of parallel steps with straight edgeBhe exchange
of atoms between the crystal phase and the dilute layer of
adatoms takes place at the steps and determines the boundary
conditions for Eq.(5). It is essential to note that the ES
barrier considerably decreases the permeability of the steps.

stages. First, the value of the scaling exponenot vy is used Really, an atom must break many chemical bonds when it

to determine the kinetic regime and the value of the steé:gssgj ZV('EI'rhtreef%tﬁep go(\:/\;]n;rc]): Z?If'ﬁgn gnasdsgrrptr'gpeft Elt]r?e
interaction exponem, and subsequently an estimate for the P itg " mo from :[h u it r\1/ f dppr i x 3{ th yi
strength of the step-step interaction relation to the driving Opposite jump 1ro € position ot adsorption at the step

force for step bunchings extracted from the prefactor of the edge to a position of adsorption on the upper terrame

scaling relation. For example, for nontransparent steps onl%”eﬂy’. from the lower to the_ upper terra)c_elso happens .
finds thate=(n+1)/(n-1), which yieldsa=3 in the stan- rarely in accordance to the principle of detailed balance. This

_ _ . circumstance justifies the reduction of the diffusion problem
dard case=2, whereas fon=1 the width of the bunch. n the crystal surface to a diffusion problem at a single ter-
would in fact be independent of the bunch size. Provided thal Y P g

n=2 ande=3, the bunch width depends on the step interac. €€ The boundary conditions relate the surface fluxes of

X - 13 ) . . adatoms with the power of the step as a gener@ioa sink
tion coefficient asl.~[A(T)I"™. This relation provides a of adatoms. For the terrace between itieandi+1th step
ground to study the temperature dependenc&(®j by mea- one can write
suring the width of the bunch as a function of temperatére.

The main purpose of this paper is to derive scaling rela-
tions of the form(2) for step bunches induced by the ES -Dy —
effect during sublimation, and to put the results into perspec- d x=;
tive with regard to previous work on other step bunching

Because the rati@/N must be equal to the mean terrace
width I, which is fixed by the overall vicinality of the sur-
face, the bunch spacing and the bunch siz&l grow with
time in the same manner.

For step bunching induced by surface electromigration
scaling relations of the forn2) have been derived both for
nontransparent and transparent stg8:3%34Their applica-
tion to the analysis of experimefts? proceeds in two

=— K_[ns(xi) - ng(xi)]y

instabilities. In the next section we introduce the basic con- d
cepts and quantities of the Burton, Cabrera, and F(BQUE) - D, an = K, [ng(Xi+1) = n&(Xi+1)], (6)
modef” in the presence of ES barrietsee Ref. 38 for a X | yax.,,,

recent review. In Sec. Ill the equations of step motion are

displayed and various limiting cases are discussed. In SecathereK, andK_ are the kinetic coefficients for the ascend-
IV and V a continuum evolution equation for the surface ising (K,) and the descending<_) steps, respectivef The
derived, and the structure of stationary bunch solutions istep kinetic coefficients are defined by the expression for the
analyzed. A key result is the existence of two types of soluvelocity of the step motion
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dx
v= Ao a; a{Ki[ng;—1(x) = ng(x) ]+ K_[ng;(x) = ng(x) 1},

dt
)
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tal and the adlayer at the lower terrace, il€,>K_, al-
though the opposite inequality has also been discutsist
suming that the step kinetic coefficients can be written in the
form K.=Kyexp-E./kgT) one can write K_/K,

wherea, anda, are the interatomic distances perpendicular=€XP(—AE/kgT) whereAE=E_—E, characterizes the asym-
and parallel to the steps,;_(x) is the adatom concentration metry in the atom attachment-detachment kinetics at the

on the terrace between the 1th and theth step, andhg(x;)

steps. The ratig3=K_/K, is an essential parameter in the

is the equilibrium value of the adatom concentration in theconsiderations presented below.

vicinity of the step, situated at. The value ofng in the
vicinity of the ith step depends on the distances to the neigh-

boring steps+1 andi-1, sinceng(x;) =ng ex A u(x;)/ksT],
where?-30

Ap(x) _ o \® ( lo )3
keT <Xi+1_xi> v X = Xi-1 ®

. (ZQA(T) )1’3
07\ kT

and

9)

is a length scale characterizing the strength of the step—stevﬁ
interaction. In(9) we have introduced the atomic ar€h

=a, a.

The Ehrlich-Schwoebel barri&r provides the physical

IIl. EQUATIONS OF STEP MOTION

Since the normal ES barrifAE=E_-E,>0) causes a
step bunching instability only in the case of sublimatidghe
equations of step motion will be derived under the condition
R=0 (i.e., in the absence of depositioifhe steps then move
to the right. Solving the diffusion problefitq. (5) with the
boundary conditiong6)] one obtains an expression for the
adatom concentration at the crystal surface. Substituting
Ns;-1(X;) andng;(x;) into Eq.(7) one can write an expression
for the velocity dx/dt of the ith step as a function of the
idths of the lower(left) and upper(right) terraces,

dx

E=v_+v+. (10

ground for the inequalit)k_# K, since the exchange of at- In the physically interesting limit of small desorption rate, in
oms between the crystal phase and the adlayer on the uppéire sense that the diffusion lengiiy= VD> X, - X;, the
terrace has a lower rate than the exchange between the crytsvo contributions to the step velocitit0) read

Ap(x)  Ap(Xi+)

DsOng [ kg T kgT

Bd+(xi+1—xi) (Xi+l_xi>2
}Us ) AT

" As %(1+ )+{ + $>2J(Xi+l_)(i> 1D
e Ak e e
and
e13|: Ap(x)  Ap(Xi-y) + %(Xi - Xi—l) + B( X~ Xi—1>2
DN kT ke T Ao\ Ag A
v+ = )\S d+ d+ 2 Xi — Xi—1 (12)
Lo o (2)]52)

Here we have introduced the kinetic length® d,=DJ/K,
andd_=D¢/K_=D¢/K,8=d,/B. The equation$1l) and(12)
have two limiting cases,

2 —y
(@ i—;(l+ﬁ)< {B+<i—£) }(—X Aj“l), (19

2 L — Y.
(b) %(HB»[W(%”(%). (14)

The limit (a) (realized whenx,—x,_;>d, and d,/\s<1)
reduces the denominators of Eq$ll) and (12) to

(BINY(X;—Xi_1). If in addition 8> (d,/\y)?, the parametes
is eliminated from the terrace-length dependent destabilizing
terms in(11) and (12), and appears only in a constant con-
tribution to the step velocity, where it does not provide any
ground for a step bunching instability. It is, however, quite
possible that an instability is induced by higher order terms
[(%=%i—1)/N\g]” with »>2. We shall address this possibility
in Sec. VII, devoted to numerical analysis of the discrete
model.

The limit (b) is more interesting. It takes place under the
assumptionx;—x;_;<<d, and d,/A\s<1. Then only the con-
stant terms in the denominator of Eq4.l) and (12) are
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retained and the terms quadratic in the terrace lengths can be hy [ oh -1 5
neglected relative to the linear ones. Thus Eg$) and(12) ﬁ(&) a_X(AM(Xi—l)) - (20
reduce to B
This is the contribution to the rate of motion of thé step,
DN | B due to the difference between the chemical potentials of the
v-= d.(1L+) @-[Af“(xi) —Apxi)] ith and thei —1th step. In the same way the contribution of
the difference between the chemical potentials ofitheand
+ ﬁ)\_d;(xm_xi) , (15) i+1th step to the motion olf thigh step is
s hg (oh\™ @
kBT(é'x) [aX(AM(XJ)] (21)
pne | 5 . - |
vy = m{k—.r[AM(Xi) —Ap(xi-1)] Thus the total contribution of the variation of the chemical
* B potential to the rate of step motion is obtained by substituting
d, Egs.(20) and(21) into Egs.(15), (16), and(10),
+ (%= Xi-1) (- (16)
As dx __ DhonZB(% — %-1)
The two terms in the curly brackets have a clear physical dt di(1+B)kgT
meaning. The first terrtthe difference between the chemical al/an\Y o
potentials of neighboring stepss the driving force for the X (5) ﬁ_X(AM(Xi)) : (22)

relaxation of the fluctuations in the step density. The second
term in Eqs.(15) and(16) reflects the asymmetry in the step It can be seen from Eq22) that the rate of relaxation of a
kinetics and provides a ground for step bunching instabilitynonequilibrium configuration of steps towards an ideal equi-
These two terms describe a model previously analyzed idlistant configuratiorthaving a zero contribution of the step-
Ref. 42, where it was shown how continuum equations forstep repulsion to the chemical potentiéd low when the
the one-dimensional crystal profiféx,t) can be derived ex- parametejs is small, i.e., when the ES barrier is high. This is
actly, provided the step dynamics is linear in the terraceeasy to understand since the relaxation of the step configu-
lengths. Indeed, neglecting the chemical potential differenceation takes place by detachment of atoms from those steps
in the square brackets, we can write with high chemical potential, and their subsequent attach-
ment to other steps with low chemical potential. These atoms

dx; must overcome the ES barrier either in the detachment, or in

— =v_+tuv,

dt the attachment process.

Substituting the expressidi22) into the equation

(% =%-1 |, (17) dh dx/dt

-h 23
P (23

e
:&2ns i(Xi+1‘Xi)"‘_
Ne L1+p 1+8

where used by Fran in developing the kinematic theory of crystal

DOne _ ong growth, one obtains

—=OR=R, (19
A2 Ts dh_ i{g[a_im’“(x))] } (24)

gt oX
is the equilibrium value of the desorption rate per adsorption

site. We will return to the continuum equation derived from Where
(17) below in Sec. V. ) Dsﬂhgnseﬁ (a_h)'l

0’_
d.(1 + B)kgT \ ox
IV. CONTINUUM LIMIT OF THE RELAXATIONAL ) N ) )
DYNAMICS is a surface mobility relating the mass current in the curly

brackets on the right-hand side @4) to the gradient of the
In this section we develop a continuum description for thechemical potentialhx. The proportionality of the mobility
relaxational part of the step dynamics. The chemical poten(25) to the inverse of the surface slope is intimately
tial differences in Eqs(15) and(16) can be written approxi- related**°to our assumption of a large kinetic lenggiow

(25)

mately in the form detachment/attachment.e., casdb) [Eg. (14)]. Indeed, car-
rying out the same manipulations for the opposite dase
1 1109 Eq. (13)], one arrives instead at the expression
L n00) - A ] = kB—T[a—Xmm](xi -xp.  [(EG (3 oneamves (he express
__ Dohn3B 26
(19 77 K TLB+ ([ /NY7]

Making use of the relatioiix,—x_1) =ho(dh/dx)1, one can  which is independent of the surface slope.
bring the last expression into the form Since the continuum limit of the expressi() is*®

045412-4
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6QA(T) sh°h
he  axax?’

Ap=- (27)

Eg. (24) can be presented as

oh a{ (ah)‘l{ a(ahazh”}
D2 2) 122D =0, (28
ot ox| \ax) | ox\ oxax

where

PHYSICAL REVIEW B 71, 045412(2005

Eq. (30) is valid only to leading order it/

B. Linear stability analysis

It is straightforward to derive froni30) and (31) the in-
stability condition for a vicinal surface of slopa,=hy/I. We

seth(x, t) =mex—Rhot + €4(X,1), whereey(x,t) ~ ¥+t js g

perturbation of wave numbey, and expand30) and(31) to
linear order ine. This yields the expression

_RNE1-P) ,_ ., RS
A= 2 T o

_BAMDONEB  3130DNA
~ d.(1+PkeT  di(14P)

A similar equation for the relaxation of the step bunches has
been pgblished previous‘fyr?.lt.describes the relaxation of thg for the growth rate of the perturbation. The perturbation
fluctua_1t|ons |n'the step dens!ty due to thg step-step re_pulsm@mwS when R@0)>0, i.e., for wave NUMbErs|<
Equation (28) is highly nonlinear and differs qualitatively . 5 ] )

from the linear evolution equation originally introduced by :\/Reho(l—/i’)/[Z(l’i-ﬁ)rnOC], and perturbations with wave
Mullins*” to describe the relaxation of a crystal surfacenNUmberg*=qma/ V2 are maximally amplified. The corre-
above the roughening temperature. sponding wavelength is

(29
iq3 (32

277 [y
N = — =4m\3S], (33

V. CONTINUUM THEORY OF BUNCH SHAPES
where we have introduced the dimensionless quantity

B NIy KK 7<|_0)3

A. The continuum evolution equation

It was shown in Ref. 42 how the continuum limit for a set :
of step equations of the linear forth7) can be carried out in T1-8d04 T K -K_I\
an essentially rigorous manner. The main idea is to perform
the coarse graining operation on the level of the linear stepVe will see below that the physical parameters of the prob-
dynamics, where it can be done exactly, and subsequentlgm enter the properties of the bunch shape only in the com-
derive the evolution equation for the height profiéx,t)  bination(34). It is interesting to note tha§ does not depend
through a nonlinear variable transformation. Combining theon the surface diffusion constabt. The wavelengtiA* de-
result of this procedure with the continuum lini@8) for the ~ termines the linear size of bunches in the beginning of the
relaxational dynamics, we obtain the full evolution equationPunching instability. Correspondingly the number of steps in
for our problem. It takes the form of a continuity equation, &n incipient bunch is given by

(34)

h,a_ 3 0 N* = \*/I = 473~ 21.8% \/S. (35)
— + —_—— - ,
ot X ° The imaginary part of the growth ra{@2), which derives

from the symmetry-breaking term {81), does not affect the

where the expression for the current is - 0 ; .
P stability of the surface, but it induces a drift of fluctuations.

__RN1-p1 RM1m C1 7
T 21+B) m 6 mPax 2maxt

(3D
C. The mechanical analog

Herem=dh/dx is the surface Slope, which will be taken to be Our main goa| in this section is to Compute the Shape of

positive. The first term on the right-hand side(8f) is the  |arge, almost stationary bunches from E2{l). For a station-
destabilizing, downhill current which is responsible for the ary profile, the current31) is set to a constard. We neglect
Step bUnChing |n5tab|||ty, while the last term describes thqhe Symmetry_breaking term for now, and return to its rel-
smoothing effect of the step-step repulsion, as describegyance at the end of the section. Introducing the quantity
above. The second term is the only one to break the reflee=n2, which is positive by construction, the stationarity con-
tion symmetry(x— —-x andm— —m) of the evolution equa-  djtion J=J, can then be written in the familiar form
tion. As will be shown later, this term leads to different be-
havior at the upper and the lower edges of the bunch. Ed_ZU_B+J A\

2d2 = T gy (36)

Following earlier worki?#® we will refer to it as the
symmetry-breaking term. ) ) . . )

It is noteworthy that the continuum equatié80) con- of a classical particle coordinatéXx) moving in a potential
serves the volume of the film, apart from the constant subliV(u)=-Bu-(2/3)Jou®? where B=Rh3(1-p8)/[2(1+8)]
mation rate on the right-hand side, which does not couple to-0 andJ, must be chosen negative. The bunch is a particle
the surface morphology. A dependence of the sublimationrajectory which starts at=0 at “time” x=0, reaches a turn-
rate on the surface slope will be felt when the step spacingng pointu=uy,,, at timex=L/2, and returns te=0 at time
becomes comparable to the diffusion lendfthn this sense x=L. HereL can be identified with the bunch width, and the

045412-5



KRUG et al.

V(u)

FIG. 2. Sketch of the potentiai(u) appearing in the mechanical
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For type Il trajectories witt€>0, it is possible to make
the period arbitrarily large while keepirdy fixed, simply by
increasing the energy. For large bunches we then bigye
>u*, and the decreasing part of the potential becomes irrel-
evant. The equation for the profile reduces to the form

d{ dm
C—|\m— :_|J0|m,

dx\ dx (39)

which was first studied by Noziérééand leads to the scal-
ing law?42%44| .. ~N2/3 (see Sec. V E for a detailed deri-

analog. The dashed arrows illustrate trajectories of type | and typgatior). Anticipating the results of the numerical solution of

the discrete step equations in Sec. VII, it turns out that this
scaling law is in agreement with the numerical datalfgs,

minimal terrace length in the bunch introduced previously iswhile the prediction(38) for type | trajectories is not. We

given byl in=ho/ VUmax
As can be seen in Fig. 2, the potentilu) admits two

conclude, therefore, that the type Il trajectoried26), with
singular behavior ati=0, are the relevant solutions for the

types of periodic trajectories. When the total particle “en-description of step bunches. This immediately raises the
ergy” £=(C/4)(du/dx)?>+V(u) is negativeu performs an es- question of how the currerdk, which then no longer can be
sentially harmonic motion around the minimum of the poten-treated as an integration constant, should be determined. The
tial. This will be referred to as a type | solution. The particle answer will be given in the next section.

velocity du/dx vanishes at both turning points, which trans- We add a final remark comparing the two types of solu-
lates into the vanishing of the curvatwte/dx of the surface tions. On purely mathematical grounds, at first sight the type
profile. The height profile represented by such a trajectory i$ solutions may seem to be preferable, because they avoid the
a periodic array of step bunches which is everywheresingularities at the bunch edges and allow to describe a pe-
smooth. In contrast, particle trajectories with positive totalriodic array of many bunches. This is in fact not the case. For
energy(type Il solution$ reach the reflecting “hard wall” at a periodic type | profile, the end of one bunge point

u=0 at a finite speed. This implies that the surface curvatura&vhere m=u=0) defines the beginning of the next. As, ac-
dm/dx=(du/dx)/2m diverges asn— 0, such that the surface cording to(38), the bunches steepen with increasing size, the

profile develops singularities of the type

h(x) = h(xp) ~ (x = x0)¥* (37)

near the bunch edges at=xy. This is the well-known

Pokrovsky-Talapov law which describes how the rounde

parts of an equilibrium crystal shape join a flat fateand is

reflected in the scaling of the terrace sizes at the edges of t
bunch (see Sec. V E Because of the singularities at the

mean slope of the surface also increases without bound. This
is in contradiction to the time evolution of a real surface, for

which the mean slope is fixed and the steepening of the
bunches is compensated by the growth of large flat regions

c]between the bunchgsee Fig. 1 For type | solutions, the

region between bunches shrinks to a point. Therefore they

fRannot be taken at face value as a global description of a

surface with many bunches. Just like for the type Il solu-

bunch edges, type I height profiles have finite support andions, which terminate in singularities, also type | solutions

cannot be continued to describe a periodic array of bunche
We now show that the two types of trajectories imply

Qust be complemented by a separate description for the flat
regions between bunches.

different scaling properties for the step bunches. For a trajec-

tory of type | to satisfy the boundary condition§0) =u(L)
=0 for L—o0, it is necessary to set the particle ene&yy0.
The right turning point is then located at the valu&
=(3B/2Jy)? at whichV(u*)=0, and the period of the trajec-
tory is readily seen to be of the order &f~BC/|Jy.
Bunches of arbitrarylarge lateral sizeL can therefore be
accommodated only by treatinly as a free integration con-
stant, and to ledy~ 1/L — 0 for L— <. This is the procedure

D. The mean surface current

Our strategy will be to determing, by analogy with two
related problems, which are mathematically equivalent to the
present ongsee Sec. VI for further discussipnThe two
problems are the linear step growth model considered in Ref.
42, and the model of surface electromigration in the
attachment/detachment-limited regime considered in Ref. 24.

adopted in Ref. 34 for a slightly different case. In the presentndeed, the step equations derived by Liu and W&

context it implies the scaling relatiofy,,~ 1/vu* ~ |Jq|

surface electromigration in the presence of desorption but

~1/L, and since the number of steps in the bunch is of thevithout Ehrlich-Schwoebel barriers atapart from the dif-

order N~ L/l i, we find thatl,;,~ N2 For future refer-
ence we record the full expressions foandl,;,, which read

2L (1288)1’4 |

L = (2169)Y4N*2, |mm_§ﬁ_ 3 N2 (38)

ferent physical meaning of the coefficientdentical to our
equations(17). By appealing to the analogy with surface
electromigration, we can associate a microscopic curyent
with the terrace between the stapsndi+1, which is given
by the expression
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A 1- -
Ji = = hoD[Am(Xi+1) = Ape(X))] = MhoRe(Xm = X). jo=lt=

(1-p) hF L+L;
2(1+p)

T 21+B) ¢ N

(40) which coincides with(42). Thus the overall current remains

. constant, at its value for a regular step train, throughout the
Here the abbreviatiod =D QnB/[d.kgT(1+8)] has been bunching process, and the appropriate expression to use for
introduced. The physical meaning of this current is clear inJ, in (36) or (39) is Jyu.
the context of surface electromigration—it is simply the cur- It is possible to argue for this choice d§ also without
rent of adatoms driven across the terrace by the combinegference to the discrete step dynamics. Indeed, seftjng
action of the electromigration force and the chemical poten=J;,, ensures that the minimum of the potenti4l) is lo-
tial gradient. The notion of a surface current induced by atcated at the value=(hy/1)? corresponding to the mean sur-
tachment asymmetry is also well established in the context oface slope. In this way the initial regular step train, which is
epitaxial growth!?4249-511t is less evident that the concept clearly an(unstabl¢ stationary solution of the discrete step
can be extended to sublimation, where the atoms detachefnamics, is retained as a solution also in the stationary con-
from the steps do not necessarily remain on the terracqinuum equation.
However, as was noted above in Sec. V A, we are working
here in a limit where the diffusion lengiy is very large, and
hence the mass transport is essentially confined to the sur- E. Derivation of the scaling laws
face. Mathematically, the derivation in Ref. 42 shows that for 1o sojution of the mechanical proble(@6) allows to

a general set of step equations which are linear in the terrat?éeXpress the bunch width and the bunch heigh in terms

: (45)

widths, of the maximal slopam, .= U USing energy conserva-
d tion and neglecting the linear ternBd in the potentiaM(u),
d_)i = Y (Xieg = X)) + v (X = Xi—1), (41) we obtain the expressions
[ 3C [ tmax du
the leading ordel(stabilizing or destabilizing part of the L= 203 J [32 _ a2
surface current is proportional to the asymmetric combina- off0 NVlma ™ U
tion y_— v, of the contributions from the two terraces, while C .
the symmetric combination_+ 1y, gives rise to the overall ~211 mmmax (46)
growth (or sublimation rate of the surface, and to the
symmetry-breaking part of the surface current. and
For a perfect step train with constant step spadinipe " -
current(40) is equal to e 3C f max  udu
Vo) 2 -2

1-8 -

It =~ e thoR, 42 e
e o1 ) oRe (42) _ \/g Emﬁgx )
3 V|3l

which is just the first term in(31) evaluated at slopen
=hy/I. Following Liu and Week$? we now argue that the
expressior{42) remains valid also for a periodic array of step
bunches. Each bunch contaiNssteps, and hence consists of
N-1 short terraces. The width of each bunch.jsand the
bunches are separated by terraces of lehgtkVe denote by
Ap_ and Au, the values of the chemical potential at the
lower and upper edges of the bunch. Summing the expres, . [ B B[\ 13/ \\ 2R3
sion (40) across the bunch, we find that the current in thel—:2 (r) (d_> (T) (
bunch is equal to B *
q

The dimensionless coefficient i@#6) was obtained by nu-
merically evaluating the corresponding integral. Inserting the
expression$29) and(42) for C andJ,, respectively, we can
write the minimal terrace length,;, and the bunch width

in terms of the number of steps and dimensionless ratios of
length scales, as

I_O) N2/3 = 94/3g1/3\-2/3
[

(48)
- ho | A (1-p) -
=- DA, —Au)+—RL|, 43 and
b="N_1 (Apy—Ap-) 2(1+ﬁ)Re (43)
L _ B 1/3 I 1/3 )\s 2/3 |0 s a1/
while the current on the terrace is 7= 3.2 m a N n NS =3.255"5NYs,
; 2 1-p, - (49
=~ RoD (A= Ape) = 2(1+p) RoRel+ 44 Equationg48) and(49) are the central results of this section,

and will be compared to numerical simulations of the dis-
Stationarity requires that,=j;, which yields an expression crete step model in Sec. VII. Togethet8) and (49 imply
for the chemical potential differencAu,—Au_. Inserting the universal relationL/l;,~1.29N, independent of all
this back into(43) or (44), we find the simple result physical parameters. This shows that the minimal terrace
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length is only a factor 0.78 smaller than the mean terrace | il = (165, YMON-2D) = (165 /N2) VD),
length L/N within the bunch, hence most terraces in the
bunch have a size of ordéy,,. li/1 = (4SyN)V™Y, (59
A separate scaling law holds for the size of the fiestd  \where the dimensionless parameSeiis defined by
lasY terrace at the edges of the bunch. To derive it, we need
to determine the precise bunch profile nea0, which is of _ B Mg KWK 71\
the general form(37). Since the mechanical potentisl(u) S$= 1-p dIn? K, -K_I\
vanishes atu=0, energy conservation implies th&t/4)
X (du/dx)?=E=V(Up,y for u— 0. Integrating this from the
bunch edge atx=0 yields the slope profilem(x)
=(4£/C)Y*2, and correspondingly the height profitex)
=(2/3)(4€/C_:)1’4X3’2. There is an ambiguity in how to esti- . " only provideds, < 1.
mate the sizd, O.f the first terrace—a quantity manlfestly For type | solutions the scaling relations corresponding to
related to the discreteness of the surface in the vertic 54) read
direction—from these continuous profiles. Natural choices
would be to require thati) h(x=I,)=hg, (i) m(x=1;)=hy/I, L~ §/MINYD, )~ §MANT(57)
or (iii) m(h=hg)=hy/l;. It is easy to check that all three
choices imply a scaling relation of the forip~ SY3N™1/3,
but with different numerical coefficients. Because the con-
tinuum equation is derivédfrom a set of discrete equations  The scaling laws derived in the preceding section are
for the terrace sizefthe inverse slopesas a function of the valid asymptotically for large bunches, when the two ap-
layer height, we claintand confirm numerically in Sec. jil proximations made in their derivation are well justified:
that choice(iii ) is the appropriate one. This results in First, neglecting the symmetry-breaking contribution to the
13 23 13 current(31), and second, neglecting the constant term in the
'_1:41/3<i> <)‘_s> ('_) <|—0>N‘1’3:41’3S”3N‘1’3. particle equation(36). The second approximation is valid
I 1-8 I d, I provideduy,,,> u*, whereu* = (3B/2J,)? is the value ol at
(50) which V(u*)=0. Inserting the expressidn2) for Jo, we see
that the corresponding slope* = \u* is simply of the order

The same kind of analysis can be carried out for the type bf the mean sloply/| of the surface. Thus the linear term in
solutions discussed in Sec. V C. One finds that~ SY* V(u) can be ignored throughout the bunch.

(56)

Comparing the two expressions {B5) it is seen thatl,
becomes smaller thdp only for N>4; this can be viewed as

a necessary condition for the onset of scaling. If we require
in addition thatl,/1 <1, it follows that such small bunches

G. Corrections to the asymptotic behavior

independent of the bunch size Including the symmetry-breaking term, the stationarity
conditionJ=J, can be brought into the form
F. General step interaction dv 1 - 1+8 1 dv
o . . . =1+ (58)
The above considerations are easily generalized to differ- dy> 3 18(1 - B)v>'“dy

ent values for the exponemt describing the decay of the
step-step interaction as [/ The expression8) for the
chemical potential at steijpthen becomes

wherev=(l/hg)?u is a dimensionless version of normal-
ized such that the mean slope correspondsd, andy
=x/1 is the dimensionless spatial coordinate. In the mechani-
Ap(x) o ™! o \™* cal analog of Sec. V C, the symmetry-breaking term corre-
kT = + (51) sponds to a friction force which, because of its sign, acts
“backward” in time. The friction force is proportional to
with 1o=(nQA/kgT)¥™D, and going through the manipula- »=3/2 Hence it is negligible deep inside the bunch, where
tions of Sec. IV one obtains the generalized relaxation equa> 1, but becomes important near the edges of the bunch.
tion It is instructive to follow the solution of Eq58) starting

PR a1 5 on\mtah from the center of the bunch, whew¢y) takes its maximum
2. <lefe 2(22)
a X X OX\ X oX

Xi+1 = X Xi = Xi-1

=0 (52) value v, and dv/dy=0. Integrating forward in “time"y,
towards the upper edge of the bunch, the friction force adds
to the acceleration of the particle towards0, which is

ith
W therefore reached earlier than in the absence of the
(n+ 1)|8+1QDSn§,8h§‘” symmetry-breaking term. Moreover the singular behavior at
n= d,(1 +B) ' (53 =0 is altered: Balancing the symmetry-breaking term

against the inertial term on the left-hand side(68), it is
The analysis of the resulting full continuum equation leads tastraightforward to show that the standard behav®# of

the scaling relatiort§ the height profile is modified into

limin ~ N2~ N(WDAD) ) N (5 h(xo) = h(X) ~ (xo = X)*2. (59)
for type Il solutions. Specifically, the relatiori48) and(50)  Conversely, when moving backward in tinfeowards the
generalize to lower edge of the bunghhe particle is delayed by the fric-
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o[ ' ' ' " max. slope = 8§ —m appropriate limiting cases of those obtained for step bunch-
max. ﬁggz e ing instabilities induced by electromigration and growth in
8| 1 the presence of inverse Ehrlich-Schwoebel barriers. Here we

elaborate on that observation and translate the results derived
from the continuum theory to the different physical contexts.

A. Electromigration

Discrete and continuum equations for electromigration-
induced step bunching in the attachment/detachment limited
. regime have been derived by Liu and Weéksand their
equations are readily seen to be of the same form as ours. In
our setting, an electromigration forde acting on the ada-
toms can simply be added to the chemical potential gradient
on the right-hand side dR4). This gives rise to an additional
contributionJg=oF to the surface currerkin (30), which is
also inversely proportional to the slopg[see the expression
(25) for o in the attachment/detachment limited chsand

FIG. 3. Stationary bunch shapes computed by numerical intewhich is destabilizing foFF <0 (force in the downhill direc-
gration of Eq.(58) with S=0.14 and3=0.01. The figure shows the tion). In the absence of an Ehrlich-Schwoebel effggt 1),
dimensionless slopd/ho)m(x) as a function of the rescaled coor- the electromigration current is the only destabilizing contri-
dinatex/| for different values of the maximum slope. The horizon- K tion. The results of Sec. V carry directly over to this case,
tal dotted line shows the value=hy/I corresponding to the mean gnce the dimensionless parame3éras been identified along
slope of the unperturbed surface. the lines of Sec. V B. One finds the simple result

tion force. Since the friction coefficient diverges as-0, S= QA (60)

the point v=0 is never reached. Instead, the trajectory Fl4

bounces back and approaches the stable potential minimum

at v=1 in an overdamped or damped oscillatory mannerand hence front48)—(50) we obtain the predictions

Since the parametes plays the role of the particle mass in 13

(58), the effects of friction increase with decreasi®gvhile | i = (@) N2/3

they decrease when increasing the initial particle enérgy Fl

the value ofv,,, and, hence, the size of the bunch QA3
Thus the symmetry-breaking term modifies the nature of L= 3.25<—) N3,

the solutions of(58) in a qualitative way: Whereas the rel- Fi

evant solutions of the frictionless particle problég6) have A40A\ 13 13

finite support inx (the trajectory returns ta=0 in a finite Iy = <?> N~ (61)

time), the solutions of(58) extend all the way toy=-ox,

wherev attains the limiting value =1. In physical terms this  Similar formulas have been reported previously in the litera-

implies that the bunch width. can no longer be sharply ture. Sato and Uwaha derived the res§lts

defined within the continuum theory. Nevertheless, the nu-

. . . . ia. . QA 1/3
merical solutions of(58) depicted in Fig. 3 show that this LN ~ 2.59<_> N2

effect is completely negligible already for moderately large Fd

bunches and physically relevant valuesSoDeviations from 13

the solution of the frictionless equati¢86) occur only in the | = (%) N~2/3

rangev <1, which is irrelevant for the description of actual ™\ Fd ’
bunchegrecall thatv=1 corresponds to the mean sldpg| 20\ 13

of the unperturbed surfageThis conclusion is supported by I = (F_d> N3, (62)

a scaling analysis in the spirit of Ref. 36ee Sec. VII|.

We will see in Sec. VIl that the left-right symmetry of the . . .
bunches is indeed broken in a way that is qualitatively remi-WhICh are of the same form as the expressionéSi, with

niscent of the solutions dB8) with very smallS. However, the kinetic lengthd=d_=d. replacing the mean step spacing

. S -~ 1. This reflects the fact that Sato and Uwaha work in the
the sign of the observed symmetry-breaking is opposite t%iffusion-limited regimed<|

:ggtt ngrzjécltteigl)?)g?f?;’r:r?td we will argue that its origin is in Stoyanov and Tonché¥have developed a continuum de-

' scription for electromigration-induced step bunching in the
diffusion-limited regime. Assuming the relatia¥ &, for the
kinetic length, which holds for nonpermeable steps in the

We noted already in Sec. V D that the equations of ste@bsence of an additional barrier against attachment, they ob-
motion (10), (15), and(16) are mathematically equivalent to tained the evolution equation

VI. EQUIVALENT PROBLEMS
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e fective valenceZ* of the silicon adatoms, defined through
h d|l~ C&# , : o
—+_—|Bm+_-—m[=0, (63 the relationF=Z* eE between the electromigration force and
20X the electric fieldE, will be smaller by the same factor.

wherem=¢h/dx is the surface slope, and the coefficieBts

andC are given by B. Growth with inverse Ehrlich-Schwoebel barriers

e €2 Growth in the presence of an inverse Ehrlich-Schwoebel
m, C= M‘ (64) effect is described by the stationary diffusion equat{n
kT hokgT with R>0 and 1/,=0, and the boundary conditio®) with

The surface is unstable when the force is in the downhiIIK—>|_<+’di-et;'€>b|1- Wht”r? the pOSSib",itVIOf irI‘V?rrse, ES bar-ES
direction, F<0 andB>0. The relaxation term i63) is > = debatable on e microscopic 1evel, e nverse

simply the product of the chemical potential variatiéay) effect may serve as a useful effective description of more
and the expressiof26) for the mobility in the diffusion- complex step bunching mechanisfdhe equations of step

- . ” motion can be found, e.g., in Ref. 12. We consider the lim-
limited case, V\{here It hgs been useq hiak A and 5=1. iting case of fast attachment to the descending step and slow
The analysis of stationary solutions ¢63) proceeds

. . i i = Xi_ >0,
along the lines of Sec. V C. In fact, the mechanical analo attachment to the ascending step, i -X;>d.. In

. . Yhis limit only the upper terrace contributes to the growth of
resulting from sgttlng the square bracket{@8) equal to a the step, and the destabilizing part of the dynamics reduces

constant currengo is~formally identical to(36), with the  tg the linear form(41) with y,=0 andy_=-RQ (note that in
potential V(u)=-Jyu+Bu®2. Despite the formal similarity, our setup the steps recede during growth and the upper ter-
however, the problem differs from that considered in Secrace trails the stgp The continuum equation is thus of the
V C in one important respect: Since the overall surface cursame form as in sublimation and electromigration, and the
rent is downhill, we must choosd,<0, and hence both results of Sec. V carry over with the identification
terms in the potential are positive; the potential has no mini- D.nfl3

; ; ; s'’'s'0
mum, and type | trajectories d0~n0t exist. For the type Il = Rl
trajectories the term proportional i3 becomes irrelevant at d
large slopes, and hence one may as wellJet0, as was Of the dimensionless parameter. The application of the con-
done in Ref. 29. The bunch shape is then given by the soldinuum theory to this problem will be the subject of a sepa-
tion of (39), and the results of Sec. V E can be taken overrate publicatiort*
This yields the scaling relations

aA 1/3 VII. NUMERICAL ANALYSIS OF THE DISCRETE STEP
L/IN = 2.58(—) N23,

B--

(66)

DYNAMICS

Extensive numerical simulations of the discrete step dy-

_[aA\ . namics have been carried out to test the predictions of the

linin = 2 = N™ (65) continuum theory. In this section we report on simulations

for the sublimation problem; a comprehensive numerical

Apart from a small difference in the dimensionless prefactorstudy of growth in the presence of an inverse Ehrlich-
the eXpreSSion fol /N is identical to the one reported in Ref. Schwoebel effect will be presented elsewh¥raVe work
29. with cyclic boundary conditions¢,.;=x;+ MI wherel is the
Relations of the forn{65) have been used in the interpre- average interstep distance of the vicinal surface Mnid the

tation of several experiments on silicon surfaces, where gtal number of steps, and prepare the system in one of two
scaling of the minimal terrace siZeand the mean terrace kinds of initial conditions. Undenatural bunching condi-

size”? asN™?"* was observed. The similarity between the ex-tions the integration is started from a vicinal surface with
pressiong61), (62), and(65) implies that it is not possible to  steps which slightly deviate from their regular positions. This
distinguish between attachment/detachment limited kinetineadS to a surface Consisting of many bunches of steps sepa-
and diffusion-limited kinetics on the basis of the observedrated by large terraces, which slowly coarséfig. 4). On
Scaling; see Sec. VIl for further elucidation of this pOint. the other hand, aing|e bunchcan be prepared by Chosing an
However, the resulting estimate for the rafiddF depends initial step configuration, corresponding to a bunch, which
crucially on which kinetic regime is assumed. Consider, forcontains almost all of the steps in the system. The integration
example, the results obtained by Fuijita, Ichikawa, andhen provides results for the steady state shape of the bunch
Stoyanov' for the maximum bunch slopeho/ln, at  and the average value of the numbérof steps in it(the
1250 °C. Using the relatiori65) for the diffusion-limited  remainingM —N steps are single—they are crossing the large
regime yields the estimat&/A~3x107°nm™? this is  terrace between the front edge of the bunch and its tail in our
somewhat Iarger than the value reported in Ref. 31, becaU%g|e bunch Setup with Cyc"c boundary Conditib”ﬂ both

in that work the authors used an expression for the meagases we assume that a given step belongs to the bunch when
terrace widthl=L/N. Because of the additional factor bf the distance to at least one of the neighboring steps is smaller
application of (61) yields instead F/A=6Xx108nm™2,  than 0.75. This definition is, in fact, arbitrary and it intro-
which is smaller by a factor of 50. Correspondingly the ef-duces some ambiguity in the results. The dependence of the
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3009 Ev+nSE, Natural Bunching Geometry, 500 steps
1 n=2 l/l =0.24; £=0.01; d/l =10; /1/1 =100
400
Eo 300 FIG. 4. Profile of a crystal sur-
é face after some time of sublima-
o tion, with dimensionless param-
& 2004 eters 1o/1=0.24, p=0.01, d,/I
= =10, and A\¢/I=100. The inset
“ 100 shows the enlargement of an indi-
1 vidual bunch.
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minimum distancé,, between the steps in the bunch on theterrace length at the lowétrailing) edge of the bunch, at the
numberN of steps is less affected by this ambiguity than thatupper (leading edge the terrace lengths increase gradually.
of the total bunch width_, as in the former case onlM is ~ The asymmetry can be quantified by looking at the scaling of
influenced by the definition, wheregs,, is precisely deter- the size of the firstl;) and last(ly) terrace in the bunch with

mined. the bunch sizeN (Fig. 7). While the data fol, are in good
We first present results from the numerical integration ofagreement with the theoretical predicti@®), the size of the
the sublimation problem in cagb) of Sec. Ill, i.e.,(10) was last terrace is found to be essentially independem.dfci-

used withv_ andv, given by (15) and(16), with the desta-  dentally, the latter behavior is also characteristic of the type |
bilizing terms depending linearly on the terrace widths. Thestationary profilegsee Sec. V E More significantly, a con-
equations of step motion contain four dimensionless paramstant last terrace sidg~| results trivially from our way of
eters, \¢/I, d./1, lo/l, and B=K_/K,. It is reasonable to numerically locating the bunch edge, if the terrace size in-
briefly discuss the values of these parameters. For instanageases continuously across the mean terrace size as one
the valuehs/1=100 means thats=1 um atl=10 nm. As far moves out of the bunch in the forward direction, i.e., if a
as the values of the parametdy/I are concerned, it is sharply defined bunch edge in fact does not exist.

difficult*! to evaluate the kinetic lengtt,. We should have

in mind, however, that Eq$15) and(16) are valid under the T y " n=2,p=0018@ 3
assumption(x; —x;_1) <d, and, therefore, we must takg/I 1k n=2,p=0.1 & 1
>1. The value of the parametés/| was assumed to be  min T n=3, p=0.01 ¢

n=2,single bunches *

lo/1=0.24 in order to keep the interstep distance in the bunch
to be in a convenient interval. Finally, the values@tised
were 8=0.01 andB=0.1 corresponding to a rather high
Ehrlich-Schwoebel barrier. Figure 5 shows four sets of data
for I hin as a function ofN obtained for two different step
interaction lawsh=2 andn=3, using the natural bunching
as well as the single bunch initial conditions. In all cases
excellent agreement with the theoretical predicti®) is
found. The same quality of agreement has been obtained for
the problem of growth with inverse Ehrlich-Schwoebel o . o
barrierst 10 100
In Fig. 6 we show data for the dependence of the total
bunch widthL on the r_]umber_of steps. Al_th_OUQh the overall FIG. 5. Numerical data for the minimum interstep distance,
magn.|tude oL |s.conS|stent with the predictio@9) for type measured in units df, as a function of bunch size. Open symbols
Il stationary profilegand rules out type | behavipra power  gpq results obtained in the natural bunching geometry with 500
law fit to the data yields an estimate~0.44 which is inter-  gteps, while asterisks show data obtained from computations with a
mediate between the type (k=1/3) and type 1(a=1/2)  single bunch. The interaction strength wighl=0.24 in all cases.
predictions. To gain some insight into this discrepancy, weOpen squares and diamonds show datadfdt=10 and\¢/I =100,
take a closer look at the shapes of the bunches in the numeftiiangles show data fat, /| =150 and\¢/| =200, and asterisks show
cal simulation(Fig. 4). It is clear that the bunches are dis- data ford,/I=\/I=100; other parameters are given in the figure.
tinctly asymmetric While there is an abrupt change in the Bold lines show the theoretical predicti¢B5) for I
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100 f———— y TSR the continuum theory, it will therefore be necessary to go
Ll F p=0.01 + ] beyond the stationary solutions considered in Sec. V, which
pel7°°" . by construction are symmetric, and to investigate solutions

describing moving and interacting bunches. It is worth point-
ing out that the existence of crossing steps partly invalidates
the argument used in Sec. V D to fix the mean surface cur-
rent, because the argument assumes that all steps reside in
buncheg#
We close this section with some remarks concerning the
limiting case(a) of Sec. Ill. We have shown that no bunching
® ] occurs in this case, i.e., when the assumpkorx,_, >d, is
) ) L fulfilled, if only the linear and quadratic term$(x
10 N 100 =xi_1)/\s and (x;—x;_1)2/A\2] in the expressions for the step
velocity are taken into account. To clarify the problem of
FIG. 6. Numerical results for the bunch widthas a function of ~ step bunching instability in the limiting case) we did a lot
bunch size. Data are shown for two of the parameter sets displayeaf numerical work making use of the full expressions for the
in Fig. 5: 8=0.1, A¢/I=200, d,/I=150 (diamondg, and 8=0.01,  step velocity. Integration of the equations of step motion
As/1=100,d,/1=10 (crossek In both case$y/|=0.24 and the sys- proved the existence of step bunching at parameter values
tem contained 500 steps. Dashed and full lines show the predictioq@:o_ol' l,/1=0.003 andd,/I=1/3, d,/1=1/30, andd,/I
for type | and type Il solutions, respectively. A power law fit to the =1/300. It is essential to note, however, that the magnitude
data yieldsL ~ N of the step-step repulsion energy used in these integration
runs was much smaller than in the integration of the equa-
What is the origin of the asymmetry in the bunch shapeZ?ions obtained in the cas# > 1, where we usedi/1=0.24.
We have shown in Sec. VG that the symmetry-breakingOn the other hand, the density of steps in the bunch is higher
term causes the bunch edge to fray out at one side, in i the cased,>| compared with the opposite limiting case
qualitatively similar manner to the behavior seen in Fig. 4.d, <I. These findings indicate a strong impact of the param-
However, the blurring of the bunch edge is predicted to occugterd, on the bunching process. When the paramdieis
at the lowen(trailing) edge, rather than at the upper edge, andarger than the interstep distangdunching occurs even at a
in addition the effect becomes negligibly small already forvery strong repulsion between the steps and the step density
moderately sized bunchésee Fig. 3. We believe, instead, in the bunch is rather high. On the contrary, when the param-
that the bunch asymmetry is intimately related to the exeterd, is smaller than the interstep distarigéounching oc-
change ofcrossing stepsbetween bunches. These stepscurs only at a very weak repulsion between the steps and the
gradually accelerate out of the bunch at the leading edgeastep density in the bunch is relatively small. This is not sur-
which translates into a gradual increase of the mean terragsrising because in the case under consideration neither the
size. Conversely, when approaching the next bunch from beinear nor the quadratic term induces instability of the vicinal
hind, the crossing step decelerates quite abruptly, becausesitrface. Destablizing terms are of higher order, i[€x;
is primarily fed from behindthis is particularly true in the —x._,)/\.]* with »>2 and their effect is relatively weak so
almost one-sided regime mainly considered in our simulathat it cannot dominate a strong repulsion between the steps.
tions). The exchange of steps between bunches also impligg js interesting to note, however, that in this case of weak
that the bunches move Iaterally at a Speed which is d|ﬁ:erer]hstab|||ty (d+<|) the minimum interstep distance in the
from the mean sublimation rate. To capture the asymmetry ify,nch scales with the number of steps in exactly the same
way (Imin~N2%) as in the case of strong instabilityl,

10:-

L1 first terrace, f=0.1 & >1). Further discussion of this regime will be presented
1’°N first terrace, B=0.01 +
last terrace, B=0.1 & elsewhere.

last terrace, p=0.01 X

VIII. UNIVERSALITY CLASSES OF STEP BUNCHING

Before drawing some general conclusions in the next sec-
tion, here we wish to put our work into the context of a
classification scheme for step bunching instabilities proposed
by Pimpinelli, Tonchev, Videcoq, and Vladimirova
(PTVV).38 It is based on a generic continuum equation of the
form

01 2 L L P | M L " L
1 10 100 oh 9 K, &2
N —+ —[Klme + —i—zm"} = const. (67)
. ) o . gt X m" ox
FIG. 7. Scaling of the first and last terrace size in the bunch with
bunch size for the same parameter sets as in Fig. 6. The full lineslere K; and K, are material constants witk,>0 and

show the theoretical prediction for type 1l solutions. Ki0>0, the slopem=¢h/ox is assumed positive every-
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where, andp, k, andn are exponents characterizing a classN

of step bunching instabilities. The exponenis simply the

exponent of the repulsive step interaction, and the expdaent

reflects the slope dependence of the surface mobkiityt

andk=0 correspond to slow and fast detachment/attachmer

kinetics, respectivelysee Sec. Y. Equation(67) is a slight

generalizatiof? of the equation proposed in Ref. 36, where

only the casé&=0 was considered.

PTVV argued that the characteristic scaling exponents

and z introduced in Sec. | can be extracted frgBi/) by

requiring that the equation should be invariant under the

scale transformation,
h(x,t) O b™*h(bx,b%), (68)

for an arbitrary scale factds. This yields the expressions

.2 2
“ n-k-o' 7_2+n—k—g'
2(l+n-k-2p)
s Ll ik 2 69
z n—k-o (69)

where the scaling relatio(8) has been used.

Apart from the symmetry-breaking term {81), the con-
tinuum equation(30) for the sublimation problem is of the
generic form(67) with p=-1 andk=1. It is straightforward
to check that, under the rescaling8), the symmetry-
breaking term is smaller by a factor bf* compared to the

PHYSICAL REVIEW B 71, 045412(2005

100 |

10F

100000 t

FIG. 8. Time dependence of the mean bunch size for the param-
eter sets in Figs. 6 and 7, and an additional set \gitD.1, N¢/|
=100, d,/1=100, I5/I=0.24, and step interaction exponamt3.

The bold lines illustrate the predictions of the scaling theory for
0=-1(alz=1/2) and forp=0, n=2 (a/z=3/4).

analysis of stationary bunch shapes clearly cannot address.
Settingo=-1, the expression&9) yield «/z=1/2 for the
exponent in the coarsening la@), which is independent of
both n andk; on the other hand, witlp=0 one obtainsy/z
=(n+1)/2n for k=1. In Fig. 8 we compare numerical data
for the temporal evolution of the mean bunch size to these
two coarsening laws. The simulations seem consistent with

leading term~1/m, and hence it becomes negligible at large the “superuniversal” value/z=1/2, butalso a/z=3/4 (for
scales; this is consistent with the detailed analysis in Seq=2) or 2/3 (for n=3) cannot be ruled out. More extensive

V G. For p=-1 andk=1 the exponents i69) reduce toa

simulations are needed to firmly pin down the coarsening

=(n+2)/n and y=2/(2+n), which we readily recognize as pehavior; this is particularly true here because, in contrast to

the scaling exponents characteristic of type | solutimusn-

the static scaling properties discussed earlier in Sec. VII, we

pare to(57)]. To obtain the exponents for type Il solutions do not have any analytic information about the coefficient of
(which, as was shown in Sec. VII, correctly describe thethe coarsening law. In a recent study of a simple toy model

bunch shape we must sep=0 instead ofp=-1 in (69).
The reason for the shift in the value of is evident in

of step bunching, which ignores the repulsive step-step inter-
actions and allows steps to coalesce, it was necessary to go to

view of the considerations of Sec. V C. The scaling argumengxiremely long times, equivalent to the growth of more than

of PTVV assumes that all terms {67) are of a similar order

10° monolayers, to ascertain the true asymptotic coarsening

of magnitude; in particular, the stabilizing term is balancedpehavio®3

against the destabilizing curreBm?. However, for type I
solutions the total current is fixed at a valdg which is

IX. CONCLUSIONS

independent of the slope, and which dominates over the term

Bm? for large slopes whep < 0. Thus the stabilizing term is

In this paper we have presented a detailed analysis of the

balanced against a slope-independent current, which effestep bunching instability caused by an Ehrlich-Schwoebel

tively implies thatp=0.

The argument clearly extends to any negative valug,of
and suggests that generallg should be replaced by
max0,0). For the continuum evolution equatid3) de-

effect during sublimation in the limit of a small desorption
rate. When the kinetic lengtth =D/K, is large compared to

the average distance between the steps, the instability is
strong and bunches of steps appear even at strong repulsion

scribing electromigration-induced step bunching in thebetween the steps. In the opposite célseetic lengthd,

diffusion-limited regime, which corresponds to=1 andk

smaller than the interstep distandie instability is weak

=0, the ambiguity regarding type | and type Il solutions doesand bunches occur only when the step-step repulsion is sev-

not arise(see Sec. VI A Since the static exponentsand y
in (69) only depend on the sum+k, it is evident that they
take the same values for=0, k=1 as foro=1, k=0; for this

eral orders of magnitude weaker than in the previous case.
A central part of the work is the derivation of the con-
tinuum evolution equation in Sec. V, and the careful analysis

reason the static scaling exponents for electromigrationef its stationary bunch solutions. We have shown that two
induced step bunching take the same values in the diffusiordifferent types of stationary solutions with different scaling

limited and the attachment/detachment-limited regimes.

properties can be found, depending on whether the mean

The scaling theory of PTVV also makes predictions aboutsurface currend, is kept fixed or not. Following Ref. 24, we
the coarsening behavior of the bunched surface, which ounave argued thal, is independent of bunch size, and that the
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correct bunch shape is given by the type Il solution, whichployed in Ref. 36 to extract the scaling exponents from the

describes a bunch of finite extent with Pokrovsky-Talapov-continuum evolution equation captures only one type of so-

type singularities at the edges. This is confirmed by the extution (the type | solutions of Sec. V)Cwhich is not the

cellent agreement with numerical simulation results for therelevant one at least as far as the time-independent scaling

minimal interstep spacinfy,, and the first interstep spacing properties are concerned.

in the bunchl; presented in Sec. VII. o A crucial question that should be addressed in future work
On the other hand, we find noticeable deviations of theoncerns the coarsening behavior of the bunched surface,

behavior of the total bunch width from the type Il predic- 4,4 the relationship between coarsening dynamics and bunch
tion. We suggest that the discrepancy may be related 10 e tion As was discussed in Sec. VIII, the present work

distinct asymmetry between the leading and the .trai"ngremains inconclusive on this point. It is remarkable, how-
edges of the bunch: The terraces between the crossing ste er, that a very robust scaling of the mean bunch size and
escaping from the leading edge of the bunch appear to COIL inch spacing abl~ &~t2 has been observed in a number

tribute strongly to the total bunch width, to the extent thatof numerical simulations, both for electromigrafié&*2and
mptoticallyL m nsiderably larger th&t, ;.. Fur- o P . .
asymptoticalid- may be considerably larger thafy Fu rowth with inverse ES barriefd;'4as well as in an experi-

ther clarification of the issue requires a better understandin R .
of the motion of bunches and the interactions betweefneéntal study of electromigration-induced step bunching on

bunches, which is beyond the scope of the present paper. Si(1_11).19 Liu and W_eekgél ha\je proposed an elegant expla-
Our work has important consequences for the recentijtation for the ubiquity of the'’? scaling within a continuum

proposed scenario of universality classes for step bunching€tting; their argument presupposes, however, as does the

instabilities® First, we have pointed out the mathematical Scaling approach of PTV¥, that the bunch spacingis the

equivalence between appropriate limits of the step bunchingnly lateral length scale in the problem, although the bunch

instabilities caused by sublimation, growth and electromigraWidth L clearly comes into play as weft. This remains true

tion on the levels oboth discrete step dynamics and con- €Ven if the internal bunch structur_e is eliminated by allowing

tinuum evolution equations. This equivalence gives a veryhe steps to coales€&Thus the origin of the observed tem-

clear meaning to the notion of a universality class, and wePoral scaling remains to be understood.
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