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This work provides a ground for a quantitative interpretation of experiments on step bunching during
sublimation of crystals with a pronounced Ehrlich-SchwoebelsESd barrier in the regime of weak desorption. A
strong step bunching instability takes place when the kinetic lengthd+=Ds/K+ is larger than the average
distancel between the steps on the vicinal surface; hereDs is the surface diffusion coefficient andK+ is the step
kinetic coefficient. In the opposite limitd+! l the instability is weak and step bunching can occur only when
the magnitude of step-step repulsion is small. The central result are power law relations of the formL,Ha,
lmin,H−g between the widthL, the heightH, and the minimum interstep distancelmin of a bunch. These
relations are obtained from a continuum evolution equation for the surface profile, which is derived from the
discrete step dynamical equations for the cased+@ l. The analysis of the continuum equation reveals the
existence of two types of stationary bunch profiles with different scaling properties. Through comparison with
numerical simulations of the discrete step equations, we establish the valueg=2/sn+1d for the scaling expo-
nent of lmin in terms of the exponentn of the repulsive step-step interaction, and provide an exact expression
for the prefactor in terms of the energetic and kinetic parameters of the system. For the bunch widthL we
observe significant deviations from the expected scaling with exponentg=1−1/a, which are attributed to the
pronounced asymmetry between the leading and the trailing edges of the bunch, and the fact that bunches
move. Through a mathematical equivalence on the level of the discrete step equations as well as on the
continuum level, our results carry over to the problems of step bunching induced by growth with a strong
inverse ES effect, and by electromigration in the attachment/detachment limited regime. Thus our work pro-
vides support for the existence of universality classes of step bunching instabilitiesfA. Pimpinelli et al., Phys.
Rev. Lett. 88, 206103s2002dg, but some aspects of the universality scenario need to be revised.

DOI: 10.1103/PhysRevB.71.045412 PACS numberssd: 68.35.2p, 81.10.2h, 05.70.Np, 89.75.Da

I. INTRODUCTION

The formation of step bunches at a vicinal surface is a
problem of great current interest, both from a fundamental
viewpoint and with regard to the possible uses of step
bunches as nanotemplates or nanostructures.1–6 Mechanisms
causing step bunching instabilities include strain effects,1,2,7,8

sublimation under conditions of asymmetric detachment ki-
netics known as the Ehrlich-SchwoebelsESd effect,9–11

growth with an inverse ES effect,9,12–14 and surface
electromigration.15–28

Quite recently it was realized that step bunching is a
promising way to study the interactions between the
steps.29–34 The physical ground is simple: The steps in the
bunch keep a certain distance from each other because the
step-step repulsion balances the tendency to further compres-
sion of the bunch. The free energy related to the step-step
interaction is of the formA/ ln, wherel is the interstep dis-
tance. Whenn=2, the amplitudeAsTd accounts for both elas-
tic and entropic repulsion between the steps.35 Under crystal-
vapor equilibrium one has the relationAsTd,gsTd where
gsTd is the step repulsion coefficient in the expression

fsrd = fs0d + kr + gr3 s1d

for the surface free energysper unit projected aread of a
vicinal crystal surface with a density of stepsr.

To infer information about the step-step interactions from
experimental observations of bunch morphology, one makes
use of scaling relations between the length and time scales
characterizing the bunches. The relevant length scales are the
width L and the heightH of the bunch, and the spacingj
between subsequent bunchessFig. 1d. The lengthj is also
sometimes referred to as the terrace width; this nomenclature
is somewhat ambiguous, however, because the region be-
tween two bunches may contain several monoatomic steps,
and, hence, several wide terraces. The bunch height is related
to the number of stepsN in the bunch byH=Nh0, whereh0
is the height of an atomic step. A quantity that is directly
accessible to experimental observations31 is the minimal ter-
race sizelmin inside the bunch, which is related to the maxi-
mal slopemmax through lmin=h0/mmax. Following the nota-
tion of Ref. 36, we introduce scaling exponentsa and g
characterizing the shape of individual bunches through the
relations
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H , La, lmin , N−g. s2d

Assuming that the minimal terrace sizelmin is of the same

order as the mean sizel̄ =L /N of the terraces inside the
bunch, one expects the exponent identity

g = 1 − 1/a. s3d

Furthermore the coarsening of the bunch morphology with
time is described by a dynamic exponentz defined through36

j , N , ta/z. s4d

Because the ratioj /N must be equal to the mean terrace
width l, which is fixed by the overall vicinality of the sur-
face, the bunch spacingj and the bunch sizeN grow with
time in the same manner.

For step bunching induced by surface electromigration,
scaling relations of the forms2d have been derived both for
nontransparent and transparent steps.26,29,30,34Their applica-
tion to the analysis of experiments31,32 proceeds in two
stages. First, the value of the scaling exponenta or g is used
to determine the kinetic regime and the value of the step
interaction exponentn, and subsequently an estimate for the
strength of the step-step interactionsin relation to the driving
force for step bunchingd is extracted from the prefactor of the
scaling relation. For example, for nontransparent steps one
finds thata=sn+1d / sn−1d, which yieldsa=3 in the stan-
dard casen=2, whereas forn=1 the width of the bunchL
would in fact be independent of the bunch size. Provided that
n=2 anda=3, the bunch width depends on the step interac-
tion coefficient asL,fAsTdg1/3. This relation provides a
ground to study the temperature dependence ofAsTd by mea-
suring the width of the bunch as a function of temperature.33

The main purpose of this paper is to derive scaling rela-
tions of the forms2d for step bunches induced by the ES
effect during sublimation, and to put the results into perspec-
tive with regard to previous work on other step bunching
instabilities. In the next section we introduce the basic con-
cepts and quantities of the Burton, Cabrera, and FranksBCFd
model37 in the presence of ES barriersssee Ref. 38 for a
recent reviewd. In Sec. III the equations of step motion are
displayed and various limiting cases are discussed. In Secs.
IV and V a continuum evolution equation for the surface is
derived, and the structure of stationary bunch solutions is
analyzed. A key result is the existence of two types of solu-

tions with different scaling properties in the sense ofs2d. In
Sec. VI the mathematical equivalence of the sublimation
problem to appropriate limiting cases of step bunching in-
duced by electromigration and growth with inverse ES bar-
riers is pointed out and exploited. Section VII presents re-
sults obtained from numerical simulations of the discrete
step dynamics and compares them to the predictions of the
continuum theory. In Sec. VIII we critically examine39 a re-
cently proposed classification scheme for step bunching
instabilities36 in the light of our results, and some general
conclusions are drawn in Sec. IX.

II. DISCRETE MODEL AND BASIC CONCEPTS OF
SUBLIMATION BY STEP FLOW

We consider a vicinal surface going uphill in the +x di-
rection. The processes of atom migrationsin the presence of
desorption and depositiond are described by the stationary
diffusion equation

Ds
d2ns

dx2 −
ns

ts
+ R= 0, s5d

where Ds is the coefficient of surface diffusion,ns is the
concentration of mobile atoms, adsorbed on the surface,R is
the deposition rate of atoms to the crystal surface,ts is the
lifetime of an atom in a state of mobile adsorption, andx is a
coordinate perpendicular to the step edgesswe consider a
system of parallel steps with straight edgesd. The exchange
of atoms between the crystal phase and the dilute layer of
adatoms takes place at the steps and determines the boundary
conditions for Eq.s5d. It is essential to note that the ES
barrier considerably decreases the permeability of the steps.
Really, an atom must break many chemical bonds when it
crosses over the step down to a position of adsorption at the
step edge. Therefore, such an event happens very rarely. The
opposite jump from the position of adsorption at the step
edge to a position of adsorption on the upper terracesor,
briefly, from the lower to the upper terraced also happens
rarely in accordance to the principle of detailed balance. This
circumstance justifies the reduction of the diffusion problem
on the crystal surface to a diffusion problem at a single ter-
race. The boundary conditions relate the surface fluxes of
adatoms with the power of the step as a generatorsor a sinkd
of adatoms. For the terrace between theith and i +1th step
one can write

− DsUdns

dx
U

x=xi

= − K−fnssxid − ns
esxidg,

− DsUdns

dx
U

x=xi+1

= K+fnssxi+1d − ns
esxi+1dg, s6d

whereK+ andK− are the kinetic coefficients for the ascend-
ing sK+d and the descendingsK−d steps, respectively.38 The
step kinetic coefficients are defined by the expression for the
velocity of the step motion

FIG. 1. Schematic of a bunched vicinal surface, illustrating the
definition of the bunch widthL, the bunch heightH, and the bunch
spacingj.
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v =
dxi

dt
= − a'aihK+fns,i−1sxid − ns

esxidg + K−fns,isxid − ns
esxidgj,

s7d

wherea' andai are the interatomic distances perpendicular
and parallel to the steps,ns,i−1sxd is the adatom concentration
on the terrace between thei −1th and theith step, andns

esxid
is the equilibrium value of the adatom concentration in the
vicinity of the step, situated atxi. The value ofns

e in the
vicinity of the ith step depends on the distances to the neigh-
boring stepsi +1 andi −1, sincens

esxid=ns
e expfDmsxid /kBTg,

where29,30

Dmsxid
kBT

= − S l0
xi+1 − xi

D3

+ S l0
xi − xi−1

D3

s8d

and

l0 = S2VAsTd
kBT

D1/3

s9d

is a length scale characterizing the strength of the step-step
interaction. In s9d we have introduced the atomic areaV
=a'ai.

The Ehrlich-Schwoebel barrier40 provides the physical
ground for the inequalityK−ÞK+, since the exchange of at-
oms between the crystal phase and the adlayer on the upper
terrace has a lower rate than the exchange between the crys-

tal and the adlayer at the lower terrace, i.e.,K+.K−, al-
though the opposite inequality has also been discussed.41 As-
suming that the step kinetic coefficients can be written in the
form K±=K0 exps−E± /kBTd one can write K−/K+

=exps−DE/kBTd whereDE=E−−E+ characterizes the asym-
metry in the atom attachment-detachment kinetics at the
steps. The ratiob=K−/K+ is an essential parameter in the
considerations presented below.

III. EQUATIONS OF STEP MOTION

Since the normal ES barriersDE=E−−E+.0d causes a
step bunching instability only in the case of sublimation,9 the
equations of step motion will be derived under the condition
R=0 si.e., in the absence of depositiond. The steps then move
to the right. Solving the diffusion problemfEq. s5d with the
boundary conditionss6dg one obtains an expression for the
adatom concentration at the crystal surface. Substituting
ns,i−1sxid andns,isxid into Eq. s7d one can write an expression
for the velocity dxi /dt of the ith step as a function of the
widths of the lowersleftd and uppersrightd terraces,

dxi

dt
= v− + v+. s10d

In the physically interesting limit of small desorption rate, in
the sense that the diffusion lengthls=ÎDsts@xi+1−xi, the
two contributions to the step velocitys10d read

v− =
DsVns

e

ls

bFDmsxid
kBT

−
Dmsxi+1d

kBT
G +

bd+

ls
Sxi+1 − xi

ls
D + bSxi+1 − xi

ls
D2

d+

ls
s1 + bd + Fb + Sd+

ls
D2GSxi+1 − xi

ls
D s11d

and

v+ =
DsVns

e

ls

bFDmsxid
kBT

−
Dmsxi−1d

kBT
G +

d+

ls
Sxi − xi−1

ls
D + bSxi − xi−1

ls
D2

d+

ls
s1 + bd + Fb + Sd+

ls
D2GSxi − xi−1

ls
D . s12d

Here we have introduced the kinetic lengths10,38 d+=Ds/K+
andd−=Ds/K−=Ds/K+b=d+/b. The equationss11d ands12d
have two limiting cases,

sad
d+

ls
s1 + bd ! Fb + Sd+

ls
D2GSxi − xi−1

ls
D , s13d

sbd
d+

ls
s1 + bd @ Fb + Sd+

ls
D2GSxi − xi−1

ls
D . s14d

The limit sad srealized whenxi −xi−1@d+ and d+/ls!1d
reduces the denominators of Eqs.s11d and s12d to

sb /lsdsxi −xi−1d. If in addition b@ sd+/lsd2, the parameterb
is eliminated from the terrace-length dependent destabilizing
terms ins11d and s12d, and appears only in a constant con-
tribution to the step velocity, where it does not provide any
ground for a step bunching instability. It is, however, quite
possible that an instability is induced by higher order terms
fsxi −xi−1d /lsgn with n.2. We shall address this possibility
in Sec. VII, devoted to numerical analysis of the discrete
model.

The limit sbd is more interesting. It takes place under the
assumptionxi −xi−1!d+ and d+/ls,1. Then only the con-
stant terms in the denominator of Eqs.s11d and s12d are
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retained and the terms quadratic in the terrace lengths can be
neglected relative to the linear ones. Thus Eqs.s11d ands12d
reduce to

v− =
DsVns

e

d+s1 + bdH b

kBT
fDmsxid − Dmsxi+1dg

+
bd+

ls
2 sxi+1 − xidJ , s15d

v+ =
DsVns

e

d+s1 + bdH b

kBT
fDmsxid − Dmsxi−1dg

+
d+

ls
2sxi − xi−1dJ . s16d

The two terms in the curly brackets have a clear physical
meaning. The first termsthe difference between the chemical
potentials of neighboring stepsd is the driving force for the
relaxation of the fluctuations in the step density. The second
term in Eqs.s15d ands16d reflects the asymmetry in the step
kinetics and provides a ground for step bunching instability.
These two terms describe a model previously analyzed in
Ref. 42, where it was shown how continuum equations for
the one-dimensional crystal profilehsx,td can be derived ex-
actly, provided the step dynamics is linear in the terrace
lengths. Indeed, neglecting the chemical potential difference
in the square brackets, we can write

dxi

dt
= v− + v+

=
DsVns

e

ls
2 F b

1 + b
sxi+1 − xid +

1

1 + b
sxi − xi−1dG , s17d

where

DsVns
e

ls
2 =

Vns
e

ts
= VRe ; R̂e s18d

is the equilibrium value of the desorption rate per adsorption
site. We will return to the continuum equation derived from
s17d below in Sec. V.

IV. CONTINUUM LIMIT OF THE RELAXATIONAL
DYNAMICS

In this section we develop a continuum description for the
relaxational part of the step dynamics. The chemical poten-
tial differences in Eqs.s15d ands16d can be written approxi-
mately in the form

1

kBT
fDmsxid − Dmsxi−1dg <

1

kBT
F ]

]x
sDmdGsxi − xi−1d.

s19d

Making use of the relationsxi −xi−1d<h0s]h/]xd−1, one can
bring the last expression into the form

h0

kBT
S ]h

]x
D−1F ]

]x
sDmsxi−1ddG . s20d

This is the contribution to the rate of motion of theith step,
due to the difference between the chemical potentials of the
ith and thei −1th step. In the same way the contribution of
the difference between the chemical potentials of theith and
i +1th step to the motion of theith step is

−
h0

kBT
S ]h

]x
D−1F ]

]x
sDmsxiddG . s21d

Thus the total contribution of the variation of the chemical
potential to the rate of step motion is obtained by substituting
Eqs.s20d and s21d into Eqs.s15d, s16d, ands10d,

dxi

dt
= −

DsVh0ns
ebsxi − xi−1d

d+s1 + bdkBT

3
]

]x
HS ]h

]x
D−1F ]

]x
sDmsxiddGJ . s22d

It can be seen from Eq.s22d that the rate of relaxation of a
nonequilibrium configuration of steps towards an ideal equi-
distant configurationshaving a zero contribution of the step-
step repulsion to the chemical potentiald is low when the
parameterb is small, i.e., when the ES barrier is high. This is
easy to understand since the relaxation of the step configu-
ration takes place by detachment of atoms from those steps
with high chemical potential, and their subsequent attach-
ment to other steps with low chemical potential. These atoms
must overcome the ES barrier either in the detachment, or in
the attachment process.

Substituting the expressions22d into the equation

]h

]t
= − h0

dxi/dt

xi − xi−1
s23d

used by Frank43 in developing the kinematic theory of crystal
growth, one obtains

]h

]t
=

]

]x
HsF ]

]x
sDmsxddGJ , s24d

where

s =
DsVh0

2ns
eb

d+s1 + bdkBT
S ]h

]x
D−1

s25d

is a surface mobility relating the mass current in the curly
brackets on the right-hand side ofs24d to the gradient of the
chemical potentialDm. The proportionality of the mobility
s25d to the inverse of the surface slope is intimately
related44,45 to our assumption of a large kinetic lengthsslow
detachment/attachmentd, i.e., casesbd fEq. s14dg. Indeed, car-
rying out the same manipulations for the opposite casesad
fEq. s13dg, one arrives instead at the expression

s =
DsVh0ns

eb

kBTfb + sd+/lsd2g
s26d

which is independent of the surface slope.
Since the continuum limit of the expressions8d is46
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Dm = −
6VAsTd

h0
2

]h

]x

]2h

]x2 , s27d

Eq. s24d can be presented as

]h

]t
+

]

]x
HCS ]h

]x
D−1F ]

]x
S ]h

]x

]2h

]x2DGJ = 0, s28d

where

C =
6AsTdDsV

2ns
eb

d+s1 + bdkBT
=

3l0
3VDsns

eb

d+s1 + bd
. s29d

A similar equation for the relaxation of the step bunches has
been published previously.45 It describes the relaxation of the
fluctuations in the step density due to the step-step repulsion.
Equation s28d is highly nonlinear and differs qualitatively
from the linear evolution equation originally introduced by
Mullins47 to describe the relaxation of a crystal surface
above the roughening temperature.

V. CONTINUUM THEORY OF BUNCH SHAPES

A. The continuum evolution equation

It was shown in Ref. 42 how the continuum limit for a set
of step equations of the linear forms17d can be carried out in
an essentially rigorous manner. The main idea is to perform
the coarse graining operation on the level of the linear step
dynamics, where it can be done exactly, and subsequently
derive the evolution equation for the height profilehsx,td
through a nonlinear variable transformation. Combining the
result of this procedure with the continuum limits28d for the
relaxational dynamics, we obtain the full evolution equation
for our problem. It takes the form of a continuity equation,

]h

]t
+

]J

]x
= − h0R̂e, s30d

where the expression for the current is

J = −
R̂eh0

2s1 − bd
2s1 + bd

1

m
−

R̂eh0
3

6

1

m3

]m

]x
+

C

2

1

m

]2

]x2m2. s31d

Herem=]h/]x is the surface slope, which will be taken to be
positive. The first term on the right-hand side ofs31d is the
destabilizing, downhill current which is responsible for the
step bunching instability, while the last term describes the
smoothing effect of the step-step repulsion, as described
above. The second term is the only one to break the reflec-
tion symmetrysx→−x andm→−md of the evolution equa-
tion. As will be shown later, this term leads to different be-
havior at the upper and the lower edges of the bunch.
Following earlier work,42,48 we will refer to it as the
symmetry-breaking term.

It is noteworthy that the continuum equations30d con-
serves the volume of the film, apart from the constant subli-
mation rate on the right-hand side, which does not couple to
the surface morphology. A dependence of the sublimation
rate on the surface slope will be felt when the step spacing
becomes comparable to the diffusion length.37 In this sense

Eq. s30d is valid only to leading order inl /ls.

B. Linear stability analysis

It is straightforward to derive froms30d and s31d the in-
stability condition for a vicinal surface of slopem0=h0/ l. We

sethsx,td=m0x−R̂eh0t+eqsx,td, whereeqsx,td,eiqx+vsqdt is a
perturbation of wave numberq, and expands30d ands31d to
linear order ine. This yields the expression

vsqd =
R̂eh0

2s1 − bd
2s1 + bdm0

2 q2 − Cq4 −
R̂eh0

3

6m0
3 iq3 s32d

for the growth rate of the perturbation. The perturbation
grows when Resvd.0, i.e., for wave numbersq,qmax

=ÎR̂eh0
2s1−bd / f2s1+bdm0

2Cg, and perturbations with wave
numberq* = qmax/Î2 are maximally amplified. The corre-
sponding wavelength is

l* =
2p

q*
= 4pÎ3Sl, s33d

where we have introduced the dimensionless quantity

S=
b

1 − b

ls
2l0

3

d+l4
=

K+K−

K+ − K−

t

l
S l0

l
D3

. s34d

We will see below that the physical parameters of the prob-
lem enter the properties of the bunch shape only in the com-
binations34d. It is interesting to note thatS does not depend
on the surface diffusion constantDs. The wavelengthl* de-
termines the linear size of bunches in the beginning of the
bunching instability. Correspondingly the number of steps in
an incipient bunch is given by

N * = l* / l = 4pÎ3S< 21.83 ÎS. s35d

The imaginary part of the growth rates32d, which derives
from the symmetry-breaking term ins31d, does not affect the
stability of the surface, but it induces a drift of fluctuations.

C. The mechanical analog

Our main goal in this section is to compute the shape of
large, almost stationary bunches from Eq.s31d. For a station-
ary profile, the currents31d is set to a constantJ0. We neglect
the symmetry-breaking term for now, and return to its rel-
evance at the end of the section. Introducing the quantityu
=m2, which is positive by construction, the stationarity con-
dition J;J0 can then be written in the familiar form

C

2

d2u

dx2 = B + J0u
1/2 = −

dV

du
s36d

of a classical particle coordinateusxd moving in a potential

Vsud=−Bu−s2/3dJ0u
3/2, where B=R̂eh0

2s1−bd / f2s1+bdg
.0 andJ0 must be chosen negative. The bunch is a particle
trajectory which starts atu=0 at “time” x=0, reaches a turn-
ing point u=umax at timex=L /2, and returns tou=0 at time
x=L. HereL can be identified with the bunch width, and the
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minimal terrace length in the bunch introduced previously is
given by lmin=h0/Îumax.

As can be seen in Fig. 2, the potentialVsud admits two
types of periodic trajectories. When the total particle “en-
ergy” E=sC/4dsdu/dxd2+Vsud is negative,u performs an es-
sentially harmonic motion around the minimum of the poten-
tial. This will be referred to as a type I solution. The particle
velocity du/dx vanishes at both turning points, which trans-
lates into the vanishing of the curvaturedm/dx of the surface
profile. The height profile represented by such a trajectory is
a periodic array of step bunches which is everywhere
smooth. In contrast, particle trajectories with positive total
energystype II solutionsd reach the reflecting “hard wall” at
u=0 at a finite speed. This implies that the surface curvature
dm/dx=sdu/dxd /2m diverges asm→0, such that the surface
profile develops singularities of the type

hsxd − hsx0d , sx − x0d3/2 s37d

near the bunch edges atx=x0. This is the well-known
Pokrovsky-Talapov law which describes how the rounded
parts of an equilibrium crystal shape join a flat facet,35 and is
reflected in the scaling of the terrace sizes at the edges of the
bunch ssee Sec. V Ed. Because of the singularities at the
bunch edges, type II height profiles have finite support and
cannot be continued to describe a periodic array of bunches.

We now show that the two types of trajectories imply
different scaling properties for the step bunches. For a trajec-
tory of type I to satisfy the boundary conditionsus0d=usLd
=0 for L→`, it is necessary to set the particle energyE=0.
The right turning point is then located at the valueu*
=s3B/2J0d2 at whichVsu* d=0, and the period of the trajec-
tory is readily seen to be of the order ofL,ÎBC/ uJ0u.
Bunches of arbitraryslarged lateral sizeL can therefore be
accommodated only by treatingJ0 as a free integration con-
stant, and to letJ0,1/L→0 for L→`. This is the procedure
adopted in Ref. 34 for a slightly different case. In the present
context it implies the scaling relationlmin,1/Îu* ,uJ0u
,1/L, and since the number of steps in the bunch is of the
order N,L / lmin, we find thatlmin,N−1/2. For future refer-
ence we record the full expressions forL andlmin, which read

L = s216Sd1/4N1/2l, lmin =
2

3

L

N
= S128S

3
D1/4 l

N1/2. s38d

For type II trajectories withE.0, it is possible to make
the period arbitrarily large while keepingJ0 fixed, simply by
increasing the energy. For large bunches we then haveumax
@u*, and the decreasing part of the potential becomes irrel-
evant. The equation for the profile reduces to the form

C
d

dx
Sm

dm

dx
D = − uJ0um, s39d

which was first studied by Noziéres,44 and leads to the scal-
ing law24,29,44 lmin,N−2/3 ssee Sec. V E for a detailed deri-
vationd. Anticipating the results of the numerical solution of
the discrete step equations in Sec. VII, it turns out that this
scaling law is in agreement with the numerical data forlmin,
while the predictions38d for type I trajectories is not. We
conclude, therefore, that the type II trajectories ofs36d, with
singular behavior atu=0, are the relevant solutions for the
description of step bunches. This immediately raises the
question of how the currentJ0, which then no longer can be
treated as an integration constant, should be determined. The
answer will be given in the next section.

We add a final remark comparing the two types of solu-
tions. On purely mathematical grounds, at first sight the type
I solutions may seem to be preferable, because they avoid the
singularities at the bunch edges and allow to describe a pe-
riodic array of many bunches. This is in fact not the case. For
a periodic type I profile, the end of one bunchsthe point
where m=u=0d defines the beginning of the next. As, ac-
cording tos38d, the bunches steepen with increasing size, the
mean slope of the surface also increases without bound. This
is in contradiction to the time evolution of a real surface, for
which the mean slope is fixed and the steepening of the
bunches is compensated by the growth of large flat regions
between the bunchesssee Fig. 1d. For type I solutions, the
region between bunches shrinks to a point. Therefore they
cannot be taken at face value as a global description of a
surface with many bunches. Just like for the type II solu-
tions, which terminate in singularities, also type I solutions
must be complemented by a separate description for the flat
regions between bunches.

D. The mean surface current

Our strategy will be to determineJ0 by analogy with two
related problems, which are mathematically equivalent to the
present onessee Sec. VI for further discussiond. The two
problems are the linear step growth model considered in Ref.
42, and the model of surface electromigration in the
attachment/detachment-limited regime considered in Ref. 24.
Indeed, the step equations derived by Liu and Weeks24 for
surface electromigration in the presence of desorption but
without Ehrlich-Schwoebel barriers aresapart from the dif-
ferent physical meaning of the coefficientsd identical to our
equationss17d. By appealing to the analogy with surface
electromigration, we can associate a microscopic currentj i
with the terrace between the stepsi and i +1, which is given
by the expression

FIG. 2. Sketch of the potentialVsud appearing in the mechanical
analog. The dashed arrows illustrate trajectories of type I and type
II.
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j i = − h0D̂fDmsxi+1d − Dmsxidg −
s1 − bd
2s1 + bd

h0R̂esxi+1 − xid.

s40d

Here the abbreviationD̂=DsVns
eb / fd+kBTs1+bdg has been

introduced. The physical meaning of this current is clear in
the context of surface electromigration—it is simply the cur-
rent of adatoms driven across the terrace by the combined
action of the electromigration force and the chemical poten-
tial gradient. The notion of a surface current induced by at-
tachment asymmetry is also well established in the context of
epitaxial growth.40,42,49–51It is less evident that the concept
can be extended to sublimation, where the atoms detached
from the steps do not necessarily remain on the terrace.
However, as was noted above in Sec. V A, we are working
here in a limit where the diffusion lengthls is very large, and
hence the mass transport is essentially confined to the sur-
face. Mathematically, the derivation in Ref. 42 shows that for
a general set of step equations which are linear in the terrace
widths,

dxi

dt
= g−sxi+1 − xid + g+sxi − xi−1d, s41d

the leading ordersstabilizing or destabilizingd part of the
surface current is proportional to the asymmetric combina-
tion g−−g+ of the contributions from the two terraces, while
the symmetric combinationg−+g+ gives rise to the overall
growth sor sublimationd rate of the surface, and to the
symmetry-breaking part of the surface current.

For a perfect step train with constant step spacingl, the
currents40d is equal to

Jflat = −
1 − b

2s1 + bd
h0R̂el , s42d

which is just the first term ins31d evaluated at slopem
=h0/ l. Following Liu and Weeks,24 we now argue that the
expressions42d remains valid also for a periodic array of step
bunches. Each bunch containsN steps, and hence consists of
N−1 short terraces. The width of each bunch isL, and the
bunches are separated by terraces of lengthLt. We denote by
Dm− and Dm+ the values of the chemical potential at the
lower and upper edges of the bunch. Summing the expres-
sion s40d across the bunch, we find that the current in the
bunch is equal to

jb = −
h0

N − 1
FD̂sDm+ − Dm−d +

s1 − bd
2s1 + bd

R̂eLG , s43d

while the current on the terrace is

j t = − h0D̂sDm− − Dm+d −
s1 − bd
2s1 + bd

h0R̂eLt. s44d

Stationarity requires thatjb= j t, which yields an expression
for the chemical potential differenceDm+−Dm−. Inserting
this back intos43d or s44d, we find the simple result

jb = j t = −
s1 − bd
2s1 + bd

h0R̂e
L + Lt

N
, s45d

which coincides withs42d. Thus the overall current remains
constant, at its value for a regular step train, throughout the
bunching process, and the appropriate expression to use for
J0 in s36d or s39d is Jflat.

It is possible to argue for this choice ofJ0 also without
reference to the discrete step dynamics. Indeed, settingJ0
=Jflat ensures that the minimum of the potentialVsud is lo-
cated at the valueu=sh0/ ld2 corresponding to the mean sur-
face slope. In this way the initial regular step train, which is
clearly ansunstabled stationary solution of the discrete step
dynamics, is retained as a solution also in the stationary con-
tinuum equation.

E. Derivation of the scaling laws

The solution of the mechanical problems36d allows to
express the bunch widthL and the bunch heightH in terms
of the maximal slopemmax=Îumax. Using energy conserva-
tion and neglecting the linear term −Bu in the potentialVsud,
we obtain the expressions

L =Î 3C

2uJ0uE0

umax du

Îumax
3/2 − u3/2

< 2.11Î C

uJ0u
mmax

1/2 s46d

and

H =Î 3C

2uJ0uE0

umax Îudu

Îumax
3/2 − u3/2

=Î8

3
Î C

uJ0u
mmax

3/2 . s47d

The dimensionless coefficient ins46d was obtained by nu-
merically evaluating the corresponding integral. Inserting the
expressionss29d ands42d for C andJ0, respectively, we can
write the minimal terrace lengthlmin and the bunch widthL
in terms of the number of steps and dimensionless ratios of
length scales, as

lmin

l
= 24/3S b

1 − b
D1/3S l

d+
D1/3Sls

l
D2/3S l0

l
DN−2/3 = 24/3S1/3N−2/3

s48d

and

L

l
< 3.25S b

1 − b
D1/3S l

d+
D1/3Sls

l
D2/3S l0

l
DN1/3 = 3.25S1/3N1/3.

s49d

Equationss48d ands49d are the central results of this section,
and will be compared to numerical simulations of the dis-
crete step model in Sec. VII. Togethers48d and s49d imply
the universal relationL / lmin<1.29N, independent of all
physical parameters. This shows that the minimal terrace
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length is only a factor 0.78 smaller than the mean terrace
length L /N within the bunch, hence most terraces in the
bunch have a size of orderlmin.

A separate scaling law holds for the size of the firstsand
lastd terrace at the edges of the bunch. To derive it, we need
to determine the precise bunch profile nearu=0, which is of
the general forms37d. Since the mechanical potentialVsud
vanishes atu=0, energy conservation implies thatsC/4d
3sdu/dxd2=E=Vsumaxd for u→0. Integrating this from the
bunch edge at x=0 yields the slope profilemsxd
=s4E /Cd1/4x1/2, and correspondingly the height profilehsxd
=s2/3ds4E /Cd1/4x3/2. There is an ambiguity in how to esti-
mate the sizel1 of the first terrace—a quantity manifestly
related to the discreteness of the surface in the vertical
direction—from these continuous profiles. Natural choices
would be to require thatsid hsx= l1d=h0, sii d msx= l1d=h0/ l1
or siii d msh=h0d=h0/ l1. It is easy to check that all three
choices imply a scaling relation of the forml1,S1/3N−1/3,
but with different numerical coefficients. Because the con-
tinuum equation is derived42 from a set of discrete equations
for the terrace sizessthe inverse slopesd as a function of the
layer height, we claimsand confirm numerically in Sec. VIId
that choicesiii d is the appropriate one. This results in

l1
l

= 41/3S b

1 − b
D1/3Sls

l
D2/3S l

d+
D1/3S l0

l
DN−1/3 = 41/3S1/3N−1/3.

s50d

The same kind of analysis can be carried out for the type I
solutions discussed in Sec. V C. One finds thatl1/ l ,S1/4

independent of the bunch sizeN.

F. General step interaction

The above considerations are easily generalized to differ-
ent values for the exponentn describing the decay of the
step-step interaction as 1/ln. The expressions8d for the
chemical potential at stepi then becomes

Dmsxid
kBT

= − S l0
xi+1 − xi

Dn+1

+ S l0
xi − xi−1

Dn+1

s51d

with l0=snVA/kBTd1/sn+1d, and going through the manipula-
tions of Sec. IV one obtains the generalized relaxation equa-
tion

]h

]t
+

]

]x
HCnS ]h

]x
D−1F ]

]x
S ]h

]x
Dn−1]2h

]x2GJ = 0 s52d

with

Cn =
sn + 1dl0

n+1VDsns
ebh0

2−n

d+s1 + bd
. s53d

The analysis of the resulting full continuum equation leads to
the scaling relations26

lmin , N−2/sn+1d, L , Nsn−1d/sn+1d, l1 , N−1/sn+1d s54d

for type II solutions. Specifically, the relationss48d ands50d
generalize to

lmin/l = s16Snd1/sn+1dN−2/sn+1d = s16Sn/N
2d1/sn+1d,

l1/l = s4Sn/Nd1/sn+1d, s55d

where the dimensionless parameterSn is defined by

Sn =
b

1 − b

ls
2l0

n+1

dln+2 =
K+K−

K+ − K−

t

l
S l0

l
Dn+1

. s56d

Comparing the two expressions ins55d it is seen thatlmin
becomes smaller thanl1 only for N.4; this can be viewed as
a necessary condition for the onset of scaling. If we require
in addition thatl1/ l ,1, it follows that such small bunches
can form only providedSn,1.

For type I solutions the scaling relations corresponding to
s54d read

L , Sn
1/sn+2dNn/sn+2d, lmin , Sn

1/sn+2dN−2/sn+2d. s57d

G. Corrections to the asymptotic behavior

The scaling laws derived in the preceding section are
valid asymptotically for large bunches, when the two ap-
proximations made in their derivation are well justified:
First, neglecting the symmetry-breaking contribution to the
currents31d, and second, neglecting the constant term in the
particle equations36d. The second approximation is valid
providedumax@u*, whereu* = s3B/2J0d2 is the value ofu at
which Vsu* d=0. Inserting the expressions42d for J0, we see
that the corresponding slopem* = Îu* is simply of the order
of the mean slopeh0/ l of the surface. Thus the linear term in
Vsud can be ignored throughout the bunch.

Including the symmetry-breaking term, the stationarity
conditionJ=J0 can be brought into the form

S
d2v
dy2 =

1

3
s1 −Îvd +

1 + b

18s1 − bd
1

v3/2

dv
dy

, s58d

wherev=sl /h0d2u is a dimensionless version ofu, normal-
ized such that the mean slope corresponds tov=1, andy
=x/ l is the dimensionless spatial coordinate. In the mechani-
cal analog of Sec. V C, the symmetry-breaking term corre-
sponds to a friction force which, because of its sign, acts
“backward” in time. The friction force is proportional to
v−3/2. Hence it is negligible deep inside the bunch, wherev
@1, but becomes important near the edges of the bunch.

It is instructive to follow the solution of Eq.s58d starting
from the center of the bunch, wherevsyd takes its maximum
value vmax and dv /dy=0. Integrating forward in “time”y,
towards the upper edge of the bunch, the friction force adds
to the acceleration of the particle towardsv=0, which is
therefore reached earlier than in the absence of the
symmetry-breaking term. Moreover the singular behavior at
v=0 is altered: Balancing the symmetry-breaking term
against the inertial term on the left-hand side ofs58d, it is
straightforward to show that the standard behaviors37d of
the height profile is modified into

hsx0d − hsxd , sx0 − xd4/3. s59d

Conversely, when moving backward in timestowards the
lower edge of the bunchd the particle is delayed by the fric-
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tion force. Since the friction coefficient diverges asv→0,
the point v=0 is never reached. Instead, the trajectory
bounces back and approaches the stable potential minimum
at v=1 in an overdamped or damped oscillatory manner.
Since the parameterS plays the role of the particle mass in
s58d, the effects of friction increase with decreasingS, while
they decrease when increasing the initial particle energysi.e.,
the value ofvmax, and, hence, the size of the bunchd.

Thus the symmetry-breaking term modifies the nature of
the solutions ofs58d in a qualitative way: Whereas the rel-
evant solutions of the frictionless particle problems36d have
finite support inx sthe trajectory returns tou=0 in a finite
timed, the solutions ofs58d extend all the way toy=−`,
wherev attains the limiting valuev=1. In physical terms this
implies that the bunch widthL can no longer be sharply
defined within the continuum theory. Nevertheless, the nu-
merical solutions ofs58d depicted in Fig. 3 show that this
effect is completely negligible already for moderately large
bunches and physically relevant values ofS. Deviations from
the solution of the frictionless equations36d occur only in the
rangev!1, which is irrelevant for the description of actual
bunchessrecall thatv=1 corresponds to the mean slopeh0/ l
of the unperturbed surfaced. This conclusion is supported by
a scaling analysis in the spirit of Ref. 36ssee Sec. VIIId.

We will see in Sec. VII that the left-right symmetry of the
bunches is indeed broken in a way that is qualitatively remi-
niscent of the solutions ofs58d with very smallS. However,
the sign of the observed symmetry-breaking is opposite to
that predicted bys58d, and we will argue that its origin is in
fact completely different.

VI. EQUIVALENT PROBLEMS

We noted already in Sec. V D that the equations of step
motion s10d, s15d, ands16d are mathematically equivalent to

appropriate limiting cases of those obtained for step bunch-
ing instabilities induced by electromigration and growth in
the presence of inverse Ehrlich-Schwoebel barriers. Here we
elaborate on that observation and translate the results derived
from the continuum theory to the different physical contexts.

A. Electromigration

Discrete and continuum equations for electromigration-
induced step bunching in the attachment/detachment limited
regime have been derived by Liu and Weeks,24 and their
equations are readily seen to be of the same form as ours. In
our setting, an electromigration forceF acting on the ada-
toms can simply be added to the chemical potential gradient
on the right-hand side ofs24d. This gives rise to an additional
contributionJF=sF to the surface currentJ in s30d, which is
also inversely proportional to the slopem fsee the expression
s25d for s in the attachment/detachment limited caseg, and
which is destabilizing forF,0 sforce in the downhill direc-
tiond. In the absence of an Ehrlich-Schwoebel effectsb=1d,
the electromigration current is the only destabilizing contri-
bution. The results of Sec. V carry directly over to this case,
once the dimensionless parameterShas been identified along
the lines of Sec. V B. One finds the simple result

S=
VA

Fl4
s60d

and hence froms48d–s50d we obtain the predictions

lmin = S16VA

Fl
D1/3

N−2/3,

L < 3.25SVA

Fl
D1/3

N1/3,

l1 = S4VA

Fl
D1/3

N−1/3. s61d

Similar formulas have been reported previously in the litera-
ture. Sato and Uwaha derived the results26

L/N < 2.59SVA

Fd
D1/3

N−2/3,

lmin = S8VA

Fd
D1/3

N−2/3,

l1 = S2VA

Fd
D1/3

N−1/3, s62d

which are of the same form as the expressions ins61d, with
the kinetic lengthd=d−=d+ replacing the mean step spacing
l. This reflects the fact that Sato and Uwaha work in the
diffusion-limited regimed, l.

Stoyanov and Tonchev29 have developed a continuum de-
scription for electromigration-induced step bunching in the
diffusion-limited regime. Assuming the relationd=ai for the
kinetic length, which holds for nonpermeable steps in the
absence of an additional barrier against attachment, they ob-
tained the evolution equation

FIG. 3. Stationary bunch shapes computed by numerical inte-
gration of Eq.s58d with S=0.14 andb=0.01. The figure shows the
dimensionless slopesl /h0dmsxd as a function of the rescaled coor-
dinatex/ l for different values of the maximum slope. The horizon-
tal dotted line shows the valuem=h0/ l corresponding to the mean
slope of the unperturbed surface.
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]h

]t
+

]

]x
FB̃m+

C̃

2

]2

]x2m2G = 0, s63d

wherem=]h/]x is the surface slope, and the coefficientsB̃

and C̃ are given by

B̃ = −
2Dsns

eFVa'

kBT
, C̃ =

6Dsns
eV2A

h0kBT
. s64d

The surface is unstable when the force is in the downhill

direction, F,0 and B̃.0. The relaxation term ins63d is
simply the product of the chemical potential variations27d
and the expressions26d for the mobility in the diffusion-
limited case, where it has been used thatd+!ls andb=1.

The analysis of stationary solutions ofs63d proceeds
along the lines of Sec. V C. In fact, the mechanical analog
resulting from setting the square brackets ins63d equal to a

constant currentJ̃0 is formally identical tos36d, with the

potential Vsud=−J̃0u+B̃u3/2. Despite the formal similarity,
however, the problem differs from that considered in Sec.
V C in one important respect: Since the overall surface cur-

rent is downhill, we must chooseJ̃0,0, and hence both
terms in the potential are positive; the potential has no mini-
mum, and type I trajectories do not exist. For the type II

trajectories the term proportional toJ̃0 becomes irrelevant at

large slopes, and hence one may as well setJ̃0=0, as was
done in Ref. 29. The bunch shape is then given by the solu-
tion of s39d, and the results of Sec. V E can be taken over.
This yields the scaling relations

L/N < 2.58SaiA

F
D1/3

N−2/3,

lmin = 2SaiA

F
D1/3

N−2/3. s65d

Apart from a small difference in the dimensionless prefactor,
the expression forL /N is identical to the one reported in Ref.
29.

Relations of the forms65d have been used in the interpre-
tation of several experiments on silicon surfaces, where a
scaling of the minimal terrace size31 and the mean terrace
size32 asN−2/3 was observed. The similarity between the ex-
pressionss61d, s62d, ands65d implies that it is not possible to
distinguish between attachment/detachment limited kinetics
and diffusion-limited kinetics on the basis of the observed
scaling; see Sec. VIII for further elucidation of this point.
However, the resulting estimate for the ratioA/F depends
crucially on which kinetic regime is assumed. Consider, for
example, the results obtained by Fujita, Ichikawa, and
Stoyanov31 for the maximum bunch slopeh0/ lmin at
1250 °C. Using the relations65d for the diffusion-limited
regime yields the estimateF /A<3310−6 nm−2; this is
somewhat larger than the value reported in Ref. 31, because
in that work the authors used an expression for the mean

terrace widthl̄ =L /N. Because of the additional factor ofl,
application of s61d yields instead F /A<6310−8 nm−2,
which is smaller by a factor of 50. Correspondingly the ef-

fective valenceZ* of the silicon adatoms, defined through
the relationF=Z* eEbetween the electromigration force and
the electric fieldE, will be smaller by the same factor.

B. Growth with inverse Ehrlich-Schwoebel barriers

Growth in the presence of an inverse Ehrlich-Schwoebel
effect is described by the stationary diffusion equations5d
with R.0 and 1/ts=0, and the boundary conditionss6d with
K−.K+, i.e., b.1. While the possibility of inverse ES bar-
riers is debatable on the microscopic level, the inverse ES
effect may serve as a useful effective description of more
complex step bunching mechanisms.52 The equations of step
motion can be found, e.g., in Ref. 12. We consider the lim-
iting case of fast attachment to the descending step and slow
attachment to the ascending step, i.e.,d+@xi −xi−1@d−. In
this limit only the upper terrace contributes to the growth of
the step, and the destabilizing part of the dynamics reduces
to the linear forms41d with g+=0 andg−=−RV snote that in
our setup the steps recede during growth and the upper ter-
race trails the stepd. The continuum equation is thus of the
same form as in sublimation and electromigration, and the
results of Sec. V carry over with the identification

S=
Dsns

el0
3

Rd+l4
s66d

of the dimensionless parameter. The application of the con-
tinuum theory to this problem will be the subject of a sepa-
rate publication.14

VII. NUMERICAL ANALYSIS OF THE DISCRETE STEP
DYNAMICS

Extensive numerical simulations of the discrete step dy-
namics have been carried out to test the predictions of the
continuum theory. In this section we report on simulations
for the sublimation problem; a comprehensive numerical
study of growth in the presence of an inverse Ehrlich-
Schwoebel effect will be presented elsewhere.14 We work
with cyclic boundary conditions,xM+1=x1+Ml wherel is the
average interstep distance of the vicinal surface andM is the
total number of steps, and prepare the system in one of two
kinds of initial conditions. Undernatural bunching condi-
tions, the integration is started from a vicinal surface with
steps which slightly deviate from their regular positions. This
leads to a surface consisting of many bunches of steps sepa-
rated by large terraces, which slowly coarsenssFig. 4d. On
the other hand, asingle bunchcan be prepared by chosing an
initial step configuration, corresponding to a bunch, which
contains almost all of the steps in the system. The integration
then provides results for the steady state shape of the bunch
and the average value of the numberN of steps in itsthe
remainingM −N steps are single—they are crossing the large
terrace between the front edge of the bunch and its tail in our
single bunch setup with cyclic boundary conditionsd. In both
cases we assume that a given step belongs to the bunch when
the distance to at least one of the neighboring steps is smaller
than 0.75l. This definition is, in fact, arbitrary and it intro-
duces some ambiguity in the results. The dependence of the
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minimum distancelmin between the steps in the bunch on the
numberN of steps is less affected by this ambiguity than that
of the total bunch widthL, as in the former case onlyN is
influenced by the definition, whereaslmin is precisely deter-
mined.

We first present results from the numerical integration of
the sublimation problem in casesbd of Sec. III, i.e.,s10d was
used withv− andv+ given by s15d and s16d, with the desta-
bilizing terms depending linearly on the terrace widths. The
equations of step motion contain four dimensionless param-
eters, ls/ l, d+/ l, l0/ l, and b=K−/K+. It is reasonable to
briefly discuss the values of these parameters. For instance
the valuels/ l =100 means thatls=1 mm at l =10 nm. As far
as the values of the parameterd+/ l are concerned, it is
difficult41 to evaluate the kinetic lengthd+. We should have
in mind, however, that Eqs.s15d ands16d are valid under the
assumptionsxi −xi−1d!d+ and, therefore, we must taked+/ l
@1. The value of the parameterl0/ l was assumed to be
l0/ l =0.24 in order to keep the interstep distance in the bunch
to be in a convenient interval. Finally, the values ofb used
were b=0.01 andb=0.1 corresponding to a rather high
Ehrlich-Schwoebel barrier. Figure 5 shows four sets of data
for lmin as a function ofN obtained for two different step
interaction laws,n=2 andn=3, using the natural bunching
as well as the single bunch initial conditions. In all cases
excellent agreement with the theoretical predictions55d is
found. The same quality of agreement has been obtained for
the problem of growth with inverse Ehrlich-Schwoebel
barriers.14

In Fig. 6 we show data for the dependence of the total
bunch widthL on the number of steps. Although the overall
magnitude ofL is consistent with the predictions49d for type
II stationary profilessand rules out type I behaviord, a power
law fit to the data yields an estimatea<0.44 which is inter-
mediate between the type IIsa=1/3d and type Isa=1/2d
predictions. To gain some insight into this discrepancy, we
take a closer look at the shapes of the bunches in the numeri-
cal simulationsFig. 4d. It is clear that the bunches are dis-
tinctly asymmetric: While there is an abrupt change in the

terrace length at the lowerstrailingd edge of the bunch, at the
upper sleadingd edge the terrace lengths increase gradually.
The asymmetry can be quantified by looking at the scaling of
the size of the firstsl1d and lastslNd terrace in the bunch with
the bunch sizeN sFig. 7d. While the data forl1 are in good
agreement with the theoretical predictions55d, the size of the
last terrace is found to be essentially independent ofN. Inci-
dentally, the latter behavior is also characteristic of the type I
stationary profilesssee Sec. V Ed. More significantly, a con-
stant last terrace sizelN, l results trivially from our way of
numerically locating the bunch edge, if the terrace size in-
creases continuously across the mean terrace size as one
moves out of the bunch in the forward direction, i.e., if a
sharply defined bunch edge in fact does not exist.

FIG. 4. Profile of a crystal sur-
face after some time of sublima-
tion, with dimensionless param-
eters l0/ l =0.24, b=0.01, d+/ l
=10, and ls/ l =100. The inset
shows the enlargement of an indi-
vidual bunch.

FIG. 5. Numerical data for the minimum interstep distance,
measured in units ofl, as a function of bunch size. Open symbols
show results obtained in the natural bunching geometry with 500
steps, while asterisks show data obtained from computations with a
single bunch. The interaction strength wasl0/ l =0.24 in all cases.
Open squares and diamonds show data ford+/ l =10 andls/ l =100,
triangles show data ford+/ l =150 andls/ l =200, and asterisks show
data ford+/ l =ls/ l =100; other parameters are given in the figure.
Bold lines show the theoretical predictions55d for lmin.
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What is the origin of the asymmetry in the bunch shape?
We have shown in Sec. V G that the symmetry-breaking
term causes the bunch edge to fray out at one side, in a
qualitatively similar manner to the behavior seen in Fig. 4.
However, the blurring of the bunch edge is predicted to occur
at the lowerstrailingd edge, rather than at the upper edge, and
in addition the effect becomes negligibly small already for
moderately sized bunchesssee Fig. 3d. We believe, instead,
that the bunch asymmetry is intimately related to the ex-
change of crossing stepsbetween bunches. These steps
gradually accelerate out of the bunch at the leading edge,
which translates into a gradual increase of the mean terrace
size. Conversely, when approaching the next bunch from be-
hind, the crossing step decelerates quite abruptly, because it
is primarily fed from behindsthis is particularly true in the
almost one-sided regime mainly considered in our simula-
tionsd. The exchange of steps between bunches also implies
that the bunches move laterally at a speed which is different
from the mean sublimation rate. To capture the asymmetry in

the continuum theory, it will therefore be necessary to go
beyond the stationary solutions considered in Sec. V, which
by construction are symmetric, and to investigate solutions
describing moving and interacting bunches. It is worth point-
ing out that the existence of crossing steps partly invalidates
the argument used in Sec. V D to fix the mean surface cur-
rent, because the argument assumes that all steps reside in
bunches.24

We close this section with some remarks concerning the
limiting casesad of Sec. III. We have shown that no bunching
occurs in this case, i.e., when the assumptionxi −xi−1.d+ is
fulfilled, if only the linear and quadratic termsfsxi

−xi−1d /ls and sxi −xi−1d2/ls
2g in the expressions for the step

velocity are taken into account. To clarify the problem of
step bunching instability in the limiting casesad we did a lot
of numerical work making use of the full expressions for the
step velocity. Integration of the equations of step motion
proved the existence of step bunching at parameter values
b=0.01, l0/ l =0.003 andd+/ l =1/3, d+/ l =1/30, andd+/ l
=1/300. It is essential to note, however, that the magnitude
of the step-step repulsion energy used in these integration
runs was much smaller than in the integration of the equa-
tions obtained in the cased+@ l, where we usedl0/ l =0.24.
On the other hand, the density of steps in the bunch is higher
in the cased+@ l compared with the opposite limiting case
d+! l. These findings indicate a strong impact of the param-
eter d+ on the bunching process. When the parameterd+ is
larger than the interstep distancel, bunching occurs even at a
very strong repulsion between the steps and the step density
in the bunch is rather high. On the contrary, when the param-
eterd+ is smaller than the interstep distancel, bunching oc-
curs only at a very weak repulsion between the steps and the
step density in the bunch is relatively small. This is not sur-
prising because in the case under consideration neither the
linear nor the quadratic term induces instability of the vicinal
surface. Destablizing terms are of higher order, i.e.,fsxi

−xi−1d /lsgn with n.2 and their effect is relatively weak so
that it cannot dominate a strong repulsion between the steps.
It is interesting to note, however, that in this case of weak
instability sd+! ld the minimum interstep distance in the
bunch scales with the number of steps in exactly the same
way slmin,N−2/3d as in the case of strong instabilitysd+

@ ld. Further discussion of this regime will be presented
elsewhere.

VIII. UNIVERSALITY CLASSES OF STEP BUNCHING

Before drawing some general conclusions in the next sec-
tion, here we wish to put our work into the context of a
classification scheme for step bunching instabilities proposed
by Pimpinelli, Tonchev, Videcoq, and Vladimirova
sPTVVd.36 It is based on a generic continuum equation of the
form

]h

]t
+

]

]x
FK1m

% +
K2

mk

]2

]x2mnG = const. s67d

Here K1 and K2 are material constants withK2.0 and
K1%.0, the slopem=]h/]x is assumed positive every-

FIG. 6. Numerical results for the bunch widthL as a function of
bunch size. Data are shown for two of the parameter sets displayed
in Fig. 5: b=0.1, ls/ l =200, d+/ l =150 sdiamondsd, and b=0.01,
ls/ l =100,d+/ l =10 scrossesd. In both casesl0/ l =0.24 and the sys-
tem contained 500 steps. Dashed and full lines show the predictions
for type I and type II solutions, respectively. A power law fit to the
data yieldsL,N0.44.

FIG. 7. Scaling of the first and last terrace size in the bunch with
bunch size for the same parameter sets as in Fig. 6. The full lines
show the theoretical prediction for type II solutions.
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where, and%, k, andn are exponents characterizing a class
of step bunching instabilities. The exponentn is simply the
exponent of the repulsive step interaction, and the exponentk
reflects the slope dependence of the surface mobility;k=1
andk=0 correspond to slow and fast detachment/attachment
kinetics, respectivelyssee Sec. IVd. Equations67d is a slight
generalization39 of the equation proposed in Ref. 36, where
only the casek=0 was considered.

PTVV argued that the characteristic scaling exponentsa
and z introduced in Sec. I can be extracted froms67d by
requiring that the equation should be invariant under the
scale transformation,

hsx,td ⇒ b−ahsbx,bztd, s68d

for an arbitrary scale factorb. This yields the expressions

a = 1 +
2

n − k − %
, g =

2

2 + n − k − %
,

z=
2s1 + n − k − 2rd

n − k − %
, s69d

where the scaling relations3d has been used.
Apart from the symmetry-breaking term ins31d, the con-

tinuum equations30d for the sublimation problem is of the
generic forms67d with %=−1 andk=1. It is straightforward
to check that, under the rescalings68d, the symmetry-
breaking term is smaller by a factor ofb−a compared to the
leading term,1/m, and hence it becomes negligible at large
scales; this is consistent with the detailed analysis in Sec.
V G. For %=−1 andk=1 the exponents ins69d reduce toa
=sn+2d /n and g=2/s2+nd, which we readily recognize as
the scaling exponents characteristic of type I solutionsfcom-
pare tos57dg. To obtain the exponents for type II solutions
swhich, as was shown in Sec. VII, correctly describe the
bunch shaped, we must set%=0 instead of%=−1 in s69d.

The reason for the shift in the value of% is evident in
view of the considerations of Sec. V C. The scaling argument
of PTVV assumes that all terms ins67d are of a similar order
of magnitude; in particular, the stabilizing term is balanced
against the destabilizing currentBm%. However, for type II
solutions the total current is fixed at a valueJ0 which is
independent of the slope, and which dominates over the term
Bm% for large slopes when%,0. Thus the stabilizing term is
balanced against a slope-independent current, which effec-
tively implies that%=0.

The argument clearly extends to any negative value of%,
and suggests that generally% should be replaced by
maxs0,%d. For the continuum evolution equations63d de-
scribing electromigration-induced step bunching in the
diffusion-limited regime, which corresponds to%=1 andk
=0, the ambiguity regarding type I and type II solutions does
not arisessee Sec. VI Ad. Since the static exponentsa andg
in s69d only depend on the sum%+k, it is evident that they
take the same values for%=0, k=1 as for%=1, k=0; for this
reason the static scaling exponents for electromigration-
induced step bunching take the same values in the diffusion-
limited and the attachment/detachment-limited regimes.

The scaling theory of PTVV also makes predictions about
the coarsening behavior of the bunched surface, which our

analysis of stationary bunch shapes clearly cannot address.
Setting%=−1, the expressionss69d yield a /z=1/2 for the
exponent in the coarsening laws4d, which is independent of
both n andk; on the other hand, with%=0 one obtainsa /z
=sn+1d /2n for k=1. In Fig. 8 we compare numerical data
for the temporal evolution of the mean bunch size to these
two coarsening laws. The simulations seem consistent with
the “superuniversal” valuea /z=1/2, butalsoa /z=3/4 sfor
n=2d or 2/3 sfor n=3d cannot be ruled out. More extensive
simulations are needed to firmly pin down the coarsening
behavior; this is particularly true here because, in contrast to
the static scaling properties discussed earlier in Sec. VII, we
do not have any analytic information about the coefficient of
the coarsening law. In a recent study of a simple toy model
of step bunching, which ignores the repulsive step-step inter-
actions and allows steps to coalesce, it was necessary to go to
extremely long times, equivalent to the growth of more than
105 monolayers, to ascertain the true asymptotic coarsening
behavior.53

IX. CONCLUSIONS

In this paper we have presented a detailed analysis of the
step bunching instability caused by an Ehrlich-Schwoebel
effect during sublimation in the limit of a small desorption
rate. When the kinetic lengthd+=Ds/K+ is large compared to
the average distance between the steps, the instability is
strong and bunches of steps appear even at strong repulsion
between the steps. In the opposite caseskinetic lengthd+
smaller than the interstep distanced the instability is weak
and bunches occur only when the step-step repulsion is sev-
eral orders of magnitude weaker than in the previous case.

A central part of the work is the derivation of the con-
tinuum evolution equation in Sec. V, and the careful analysis
of its stationary bunch solutions. We have shown that two
different types of stationary solutions with different scaling
properties can be found, depending on whether the mean
surface currentJ0 is kept fixed or not. Following Ref. 24, we
have argued thatJ0 is independent of bunch size, and that the

FIG. 8. Time dependence of the mean bunch size for the param-
eter sets in Figs. 6 and 7, and an additional set withb=0.1, ls/ l
=100, d+/ l =100, l0/ l =0.24, and step interaction exponentn=3.
The bold lines illustrate the predictions of the scaling theory for
%=−1 sa /z=1/2d and for%=0, n=2 sa /z=3/4d.

SCALING PROPERTIES OF STEP BUNCHES INDUCED… PHYSICAL REVIEW B 71, 045412s2005d

045412-13



correct bunch shape is given by the type II solution, which
describes a bunch of finite extent with Pokrovsky-Talapov-
type singularities at the edges. This is confirmed by the ex-
cellent agreement with numerical simulation results for the
minimal interstep spacinglmin and the first interstep spacing
in the bunchl1 presented in Sec. VII.

On the other hand, we find noticeable deviations of the
behavior of the total bunch widthL from the type II predic-
tion. We suggest that the discrepancy may be related to the
distinct asymmetry between the leading and the trailing
edges of the bunch: The terraces between the crossing steps
escaping from the leading edge of the bunch appear to con-
tribute strongly to the total bunch width, to the extent that
asymptoticallyL may be considerably larger thanNlmin. Fur-
ther clarification of the issue requires a better understanding
of the motion of bunches and the interactions between
bunches, which is beyond the scope of the present paper.

Our work has important consequences for the recently
proposed scenario of universality classes for step bunching
instabilities.36 First, we have pointed out the mathematical
equivalence between appropriate limits of the step bunching
instabilities caused by sublimation, growth and electromigra-
tion on the levels ofboth discrete step dynamics and con-
tinuum evolution equations. This equivalence gives a very
clear meaning to the notion of a universality class, and we
believe that the particular class considered in this paper
scharacterized, in essence, by the linearity of the destabiliz-
ing terms in the step equationsd is in fact relevant to a wide
range of experimentally realized systems. As a practical mat-
ter, the unified view provided by the continuum approach
allows us to derive explicit formulas for the bunch shape
which, through the identification of the scaling parameterS,
are directly applicable to these diverse realizations of step
bunching. Second, we have shown that the procedure em-

ployed in Ref. 36 to extract the scaling exponents from the
continuum evolution equation captures only one type of so-
lution sthe type I solutions of Sec. V Cd, which is not the
relevant one at least as far as the time-independent scaling
properties are concerned.

A crucial question that should be addressed in future work
concerns the coarsening behavior of the bunched surface,
and the relationship between coarsening dynamics and bunch
motion. As was discussed in Sec. VIII, the present work
remains inconclusive on this point. It is remarkable, how-
ever, that a very robust scaling of the mean bunch size and
bunch spacing asN,j, t1/2 has been observed in a number
of numerical simulations, both for electromigration20,24,26and
growth with inverse ES barriers,12,14 as well as in an experi-
mental study of electromigration-induced step bunching on
Sis111d.19 Liu and Weeks24 have proposed an elegant expla-
nation for the ubiquity of thet1/2 scaling within a continuum
setting; their argument presupposes, however, as does the
scaling approach of PTVV,36 that the bunch spacingj is the
only lateral length scale in the problem, although the bunch
width L clearly comes into play as well.39 This remains true
even if the internal bunch structure is eliminated by allowing
the steps to coalesce.53 Thus the origin of the observed tem-
poral scaling remains to be understood.
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