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Dimer diffusion as a driving mechanism of the step bunching instability
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The impact of ad-dimer diffusion on the morphology of an epitaxially growing stepped surface is studied
analytically and by kinetic Monte Carlo simulations. It is shown that if diffusing adatoms are hindered by an
Ehrlich-Schwoebel barrier at step edges, ad-dimer diffusion gives rise to a step bunching instability, provided
that the corresponding Ehrlich-Schwoebel barrier for ad-dimers is small or vanishing.
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I. INTRODUCTION structed steps observed on semiconductor surfaces. To make
things more complicated, the occurrence of step meandering
When growing a crystal, it is important for most applica- and step bunching in the same system, has been regofted.
tions to control the shape of the growing surface. In particuln such cases, one would be forced to assume that an ES
lar, a central problem is to understand the microscopic origifParrier can coexist with an inverse Schwoebel effect, i.e.,

of morphological instabilities. For instance, recent experi-tNat @ system may switch from ES to ISE behavior when
changing the growth reginte.

ments on semiconductfe.g., Si(Ref. 1), GaAs(Ref. 2, InP Another kinetic mechanism, alternative to ISE, has re-

(Ref. 3, SIiC (Ref. 4] as well as on metal vicinal surfaces . . ! .
. cently been predicted to give rise to step bunching, namely,
[such as CuRef. 5] show that, depending on the growth %1 enhanced adatom diffusion along step edges, with respect

surface diffusiort! This mechanism depends on the crys-

andering or Bales-Zangwill ins.t'abillﬁyand the step bunch- insiance, it should be operative fft10] steps, but not for

ing. The fpr.mer type of instability is usuglly thought to ap- [010] ones!” Finally, in multicomponent systems, such as
pear on vicinal surfaces due to the Ehrlich-SchwodB&) ~ compound semiconductors, or semiconductors grown by
barrier;® i.e., an additional energy required for a diffusing chemical epitaxy invoking precursor molecules, the coupling
atom to step down a monatomic step. Several theoretical argetween the surface densities of the diffusing species has
experimental works have been produced with the aim of debeen shown to cause step bunching, as well as step meander-
termining the ES barriet;*® yielding qualitatively the same ing, depending on the growth conditiols:® The goal of the
result: the rate of adatom incorporation into the step is highepresent paper is to propose a microscopic, purely kinetic
from the lower terrace then from the upper one. On the othemechanism explaining the coexistence of step bunching and
hand, Schwoebel has shown that the distribution of terracetep meandering in simple systems. We stress that we ad-
widths on a vicinal surface is stabilized during growth in thedress situations in which step bunching is due to deposition
presence of an ES barrferThis barrier thus hinders the and growth, that is, to the surface being out of equilibrium,
bunching of steps. In the same work, Schwoebel has show@nd does not persist if the surface is annealed. This contrasts
that bunching may be caused by preferential incorporation ofVith the step bunching obtained during annealing, whose
particles into steps from the upper terrace, i.e., when adatonf¥1ving f°gg§ is in general the minimization of local bonding
incorporating into the step from the lower terrace encountefNergies’* Thus, we show here that the coupling between
an additional energy barrier. We will call this phenomenon@datom and ad-dimefor clustey densities, which exists in
inverse Schwoebel effect (ISE). Since step bunching during s'n?lecomponlerlg sy.stemsésuchfas ﬁu on Cu, or Si fonh)Sl
growth is frequently observed, the ISE has often been inY'® ds a novel kinetic pathway for the appearance of the step

voked as its microscopic cause. In one case, kinetic Montgrgxmng instability during - single  component  epitaxial

Carlo.(KMC) S|mulat|onsi5based on t_he ISE seem 1o f'F the The paper is organized as follows. We first introduce the
experimental data welf:*> However, justifying the ISE it- step-flow growth model, which accounts for ad-dimers for-

self appears to be a hard task. Indeed, the ISE implies thakation and diffusion. The model is described by a couple of
adatoms do not easily incorporate at kinks, unless they havigon|inear differential equations. In the second part we linear-
to step down a monatomic step to do it. This scenario seemge these equations and study the stability of the step-flow
to contradict the customary assumptions of crystal growthgrowth with respect to the step bunching in the framework of
which might however be too simplistic to describe recon-the linearized model.The results are compared with the re-
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sults of the multicomponent model of Refs. 18 and 19 andcesses of deposition, adatom diffusion, and dimer formation
discussed in terms of the surface current. In the third part, wand diffusion are described by the following two coupled
perform one-dimensional KMC simulations of the growth nonlinear equations:

process, taking into account dimer formation and diffusion.

The results are then compared with the results obtained on D,V?c; —2D,c5+®=0,
the basis of the linearized model. Finally, the limits of the 5 5
present step-flow growth model applied to systems with ad- D,Vec,+D,c1=0, (©)

particles diffusion are discussed. with appropriate boundary conditions at steps. In the extreme

case of a vanishing ES barrier for dimers, we have
Il. STEP-FLOW MODEL
FOR ADATOMS AND AD-DIMERS Cl|x:—|/2: 0,

Let us consider deposition of atoms at a rdteon a Coly=—1p=0 (4)
vicinal surface of average terrace widthWwhenl| is small
enough, or the ratiab/D, is small enough, all atoms are
captured by steps. Here

at the ascending step and

D1VCily=12=— vCilx=112:
D]_: DgteXF[ - Ezt/kBT]y (1) CZ|X:|/2: O (5)

is the adatom diffusion constarE2' the surface diffusion at the descending step edge. These boundary conditions ac-
activation energy for an isolated adatolb’(ff,‘t the attempt fre-  count for a nonvanishing ES barrier for adatois through
quency,T the temperature, ankl; the Boltzmann constant. the kinetic parametew in Eq. (5), » being defined as
This is the classical step-flow growth model as described by= Do exd —(Es+Egg)/kgT]. Contrary to the classical BCF
Burton, Cabrera, and Fraftk(BCF). This model disregards model, Eqs(3) with the boundary conditions given by Egs.
adatom-adatom interactions; in particular, it neglects the pog4) and(5), are nonlinear, and an analytic solution cannot be
sibility of two adatoms meeting and forming a dimer. Whenfound. We have then to resort to a numerical treatment. How-
the temperature is reduced at fix@d the density of adatoms ever, we can get a feeling of the exact behavior if we first
on the terraces increases, and dimers must eventually fornlinearize Eqs(3) and solve the linearized equations analyti-
If dimers are immobile, dimer formation is the starting cally. We will see shortly that the linearized model is equiva-
point of island nucleatio”® However, dimers may lent to the two-particle model of Ref. 18, so that the conclu-
move?*~2° Indeed, in special cases the dimers may eversions of that work qualitatively apply to the present case.
have a smaller diffusion energy barrier than free adatSims.
We shall now assume that the dimers also diffuse, with a I11. LINEARIZED MODEL

diffusion constant _
To linearize Eqgs(3) we write the squaref(x) asc,c,(x)

D,=D3Mexg — EIM/kgT], (2)  and look for the solutiort;(x) of the linear system
EY™ and DI™ being the activation energy and the attempt D,V?c;—2D;c ¢+ P =0,
frequency for dimer diffusion, respectively. When attempting o
to cross step edges, both adparticles experience, in general, D,V2c,+D;c,¢,=0, (6)
an additional diffusion barrier, the ES barrier discussed _
above. where the “average adatom density’ is defined self-

It is clear that if both adatoms and dimers experience &onsistently as

strong ES barrier, no step bunching is expected, since steps
. . 1[I _

receive matter mostly from the terrace in front, and therefore _= f ci(x:cp)dx. @
the bunching is suppressé®n the other hand, by analogy o Bt
with the two-species model discussed in Ref. 18, we expect _
that step bunching can be seen in the presence of a vanisht Egs.(6), 2D;c; has the meaning of the inverse lifetime of
ingly small ES barrier for dimers, and of a significant ES an adatom before dimer formation, or equivalentlit/(2c;)
barrier for adatoms. Thus, we assume that the ES barrier fgslays the role of a diffusion lengtk for the adatoms. On the
the diffusing dimers is significantly smaller than that for the other hand, when adatoms disappear dimers are produced at
adatoms. This assumption is discussed in more detail belowy rateDlacl.
Let us first investigate the implications of this assumption.  of course, this linearization scheme is rather arbitrary. Its
The classical BCF picture can be easily modified to accountyain usefulness consists of showing that step bunching is in
for dimers. Indeeg, dimer formation takes place at a ratgyinciple possible through the “dimer diffusion” mechanism.
proportional toDc1, wherec,(x) is the adatom density and Qyr choice is motivated by the formal analogy with Ref.
X is the coordinate orthogonal to the step direction. Callingig—the roles of “precursors” and “growth units” of Ref. 18
Co(x) the dimer density, and performing as usual the soqeing played here by adatoms and dimers, respectively. In-
called quasistatic approximatian=c,=0, the various pro- deed, the analogy requires that the dimer production rate and
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10" g ————T————7— To get a qualitative argument explaining the dimer in-
3 unstable ] duced instability, one should bear in mind that the stability
R versus 1 criterion given by Eq(8) is obtained by looking at the sign
107°F step bunching 3 of the derivative of the net average diffusion current of ad-
a particles on the surface, as a function of the average terrace
3 10°F width.>® The average current is defined as the difference be-

tween the number of particles that are incorporated into the
- stable descending step, and those that are incorporated into the as-
10" 3 versus 3 ;:len(_jing_ onﬁ. Lhen,hz_a”p(;)_sitiv_e valure]z is_assigned to the_ current
r . ] owing in the downhill direction—that is, more atoms incor-
[ St?p blunclhlng‘ \ ) L ] porating into the descending step than into the ascending
10 20 30 40 50 one. The net surface current vanishes in the absence of bar-
Terrace width, | riers since in this case as many particles are incorporated into
the ascending step as into the descending one. Let us deter-
linearization procedurésolid and dashed lines for 1D and 2D sur- ,[mrrr]e thVthbehav\\llliz;hoif thne] ﬁu:rﬁlntnqtza“t?r:lvle'}/'tCrgr:jsi;_?eri ?]
faces, respectivelyand from 1D KMC simulationgopen squares errace whose S smaller than the singie-ato usio

Solid circles indicate the growth parameters corresponding to thé€NgthA. Only few dimers form, and most diffusing particles
simulated surface profiles shown in Fig. 2. are adatoms that experience an ES barrier at the descending
step and incorporate at the ascending step. This yields a non-
the adatom vanishing rate concide. This is true if in E§s. vanishing negative(uphill) current, which decreasebe-
the second equation is multiplied throughout by 2. Then, asomes more negatiy@s the terrace width initially increases.
anticipated, Eq(6) formally coincides with the differential If a terrace is much wider tham, the situation is more com-
equations describing a two-component system in Ref. 18licated. The adatoms on the terrace may have three different
provided the diffusion constant of the growth uniBs,, is  fates:
set equal to twice the diffusion constant of the dimédg, (i) Adatoms falling within a distanck from an ascending
=2D,. Since the result of the linear stability analysis per-step are incorporated there. The adatom density in this region
formed in Ref. 18 is independent & ,, it applies com-  may be estimated as~®\?/D,, which yields a currend
pletely to the present situation. We conclude that a vicinake —p,c,/\~ — ®\.

surface growing by step flow is unstable with respect to step (i) Adatoms falling near the center of the terrace trans-

10°

FIG. 1. Kinetic stability diagram at 723 K obtained from the

bunching if the adatom diffusion length satisfies form into dimers and diffuse half to the ascending and half to
A>1.51, ®) :t;itdescendmg step. They do not contribute to the net cur-

provided that the ES barrier is infinite for the adatoms and (iii) Adatoms falling within a distanca from the de-
vanishing for the dimers. A schematic kinetic phase diagran¥cending step try to step down, but are repelled by the ES
in the dimensionless parameter spadg®,,1) is shown in  barrier. However, sincé>\, they are more likely to try to
Fig. 1. The boundary resulting from the conditinr=1.51  step down again instead of diffusing to the ascending step.
iS dI’aWh as a dashed Iine. It Separates the I’egion Of ”nearlmdeed, the likelihood of a random walker to hop over a
stable step-flowlower region) from the region of linearly  gjstancd in a given direction being proportional tol 16nly
unstable step-flowupper regiol, with respect to the step 5 fraction 1/ of such adatoms is expected to reach the as-
bunching instability. To obtain this result we set the temperagqing step. The rest eventually transform into dimers and
ture 0T=723 K andgthﬁelhopplngt rates and diffusion barri- g1, gown, so that they approximately cancel the current of
ers 1o Dy=Dy =10"s and Eg=Eg"=1 eV, respec- o adatoms from the lower terrace, leaving only a contribu-
tively. We then vary the incident flusp for each value of tion —® )/l to the net current.

average terrace width Summarizing, the adparticle current on a terrace is always

It is essential to note that relevant parameters controllin%egaﬁve for any terrace width, but it vanishes -ag/l at
the surface stability versus step bunching are the rhfiD large|, which implies an instability versus step bunchifig

andl. This is due to the fact that only the adatgnot ad- ) . )
dimen diffusion constant matters in determining stability/ Moreovejr., n agreement with th? analytic resultg of Ref. 23,
. . . — the stability boundary is determined by the relation between
Tzﬁ‘g}“&y of Sttﬁpt ftlﬁw' :ngﬁfd’b't |sdeasy to ihow ttt[qt N andl only. As such, it is independent of the value of the
;\;I %(S 7&2)31,2 oer stability boundary can be WIHen as it sion constant of the dimers, provided the latter does not
c 1 ' vanish altogether, again in agreement with the analytic result
®ID,~I4, 9) [cf. Eq.(9)]. To complete the discussion, we tested by KMC
¢ simulations that the instability, if it appears whBp=D 4, is
Owing to this scaling form, the location of the boundary in not suppressed by increasing or decreagindy a factor of
the (®/D4,l) parameter space does not depend on the tenit0. The same variation dd, does not make the instability
perature and can be computed numerically using a fixed temappear, if it is absent fob,=D,. However, the dimer dif-
perature. fusion constant does matter when island formation on the
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terraces is concerned. Step flow is then favored by fast dimer 50
diffusion, and step flow is an obvious prerequisite for step 40 a) 1=20

bunching. $/D,=4.7x10°

30 4

IV. KMC SIMULATIONS
20
We turn now to the kinetic Monte Carlo simulations of the

growth process. We use the standard KMC algorithm as de-
scribed by Kellogg' Atoms are deposited on a one- 0
dimensional(1D) lattice with different deposition rate®.
This lattice represents a vicinal surface with average terrace
width 1.3 Adatoms then perform a random walk with hop-
ping rateD,. They are either incorporated at steps or meet
pairwise to form dimers. Once formed, the dimers also dif-
fuse at a ratd, until they are incorporated at a step edge.
The values of diffusion parameters and the temperature are
chosen as reported in Sec. lll. The incorporation at steps of
both adparticles is assumed to be irreversible. The dissocia-
tion of dimers on the terrace is forbidden as well as the 0
formation of clusters larger than dimers. Thus, the validity of

0 200 400 600 800 1000

a0l P 1=20
$/D,=9.4x10°

Relative height

100
0 200 400 600 800 1000

the model is restricted to the step-flow growth regime. The %

presence of the ES barrier at upper step edges is accounted 40/ © =50

for by lowering the probability of hopping down a step by a &D =4.7x10°
factor expEgs/kgT), and we start with the most favorable 30+ !

case: an infinite ES barrier for adatonsgk=1 eV) and a 02

vanishing barrier for dimersE(‘é'gEO). In order to locate the
boundary between stable step flow and step bunching, we 10
proceed in the following way: for each vicinal surface with a
given average terrace widthwe start with a high deposition
rate, where step bunching is seen after depositing 5000
monolayers(ML). We then progressively lower the deposi-
tion rate in steps of one unit in a logarithmic scéle., from FIG. 2. Surface profiles resulting from KMC simulations after
400 to 300 ML/s, or from 20 to 10 ML/s, and so)onntil  deposition of 5000 ML at 723 K,EZs=1 eV, DJ=DJ"
step bunching is lost. In the phase diagram of Fig. 1 we=10"s™*, EE=ES™=1 eV. The average terrace width=20
report the smallest tested value of the deposition rate wher@b and1=50 (c), the ratio between the deposition and adatom
bunching is observetbpen squargs diffusion rates isb/D;=4x10* (a,0 and®/D,;=8%10"* (b).
Figure 2 illustrates the surface profiles, resulting fromT_he insets show the TWD on _the s_urfgce_together with its fit py a
stable(a) and unstabléb,c) growth regimes. In the param- sm_gle(a) or double(b,c) Gaussian distribution. The correspon_dlng
eter spacel(®/D,) (Fig. 1) these regimes are represented,po'n,ts of the (,®/D,) parameter space are marked by solid circles
by filled circles. When the average step distande-i20 and nFig. 1.
®/D;=4X%10" [Fig. 2a)], which falls in the stable step- . . . . -
flow lregion, the ste% train remains rather uniform even gftep:'g' 2c)] Agal_n,_ the TWD[F'g' 2c), insef eXh'b'.ts tWO_
deposition of 5000 ML. The correspondent terrace width dis_components. Fitting with the sum of two Gaussians gives

o ; o - luelg=32 (72), standard deviatior=13 (35),
tribution (TWD) that gives the probability of finding a ter- mean va -0 L
race of a given width on the surfafgig. 2a), insed can be and areaa=0.56 (0.44) for shorilarge terrace distribu-

fitted with a Gaussian centered lgt=20 with standard de- tlor;inall we compare the simulations with the analvtic re-
viation o=5. Keepingl =20 but increasing the deposition Y P y

rate so thatb/D,=8x 104 puts the system in the unstable sults. A word of caution is needed at this point. The instabil-

. . . . ity boundary (9) (dashed line in Fig. JLis obtained for a
region. The resulting surface morphology is characterized b¥wo-dimensiona(2D) surface, while the simulations are per-
the coexistence of high and low step density regions. Th '

. : . formed on a 1D lattice. On the other hand, it is known that
b|mo.dal character of the correspond_mg TV[/IDg._Z(b), """ the adatom pairing rate depends on the surface dimefion.
sefl, is a signature of the step bunching instabifityndeed, o

i i . X One can show that the diffusion length of adatoms before
this TWD can be fitted with the weighted sum of two Gaus- o — ; ) .
sians. These curves are shown in the inset of Fig) by ~ dimer formation isk=1/cy in two dimensions, whilex
solid lines. The fitting parameter values are as follows: mearF 1/c; in the 1D case. Thus, from the criterié8) we obtain
valuel,=12 (26), standard deviatiom=16 (8) and area the scaling relation for the instability boundary in the 1D
a=0.4 (0.6) for Gaussians describing shderge terrace case:
width distribution. Finally, step bunching also appears when 3
the ratio®/D, is set to 410 * as in Fig. 2a), andl to 50 P/Dy~I " (10

20
= 01
a

/|
0.0f

0 r . ' .
0 500 1000 1500 2000 2500
Step position

‘ Iy
....||II||||||Hﬁﬁh|..;, "
100

200

245420-4



DIMER DIFFUSION AS A DRIVING MECHANISM OF . .. PHYSICAL REVIEW B 64 245420

This relation is shown in Fig. 1 as a solid line and describesomes operative. Using KMC simulations we check this con-
rather well the instability boundary obtained from 1D KMC dition in the particular case of the growth regime illustrated

simulations. in Fig. 2(b) (I=20, T=723 K). The step bunching appears
if E, is set to 0.2 eV, while the surface remains stable if

Ep,=0.1 eV, in agreement with our estimation.
V. DISCUSSION AND SUMMARY Finally we discuss the choice @&gs for the adparticles

: : ; ; iv). In Ref. 18 the linear stability analysis is performed also

The results described in the previous sections show thé}g the case of more general boundary conditions for the two

the proposed adatom-dimer mechanism is indeed able '{ypes of particles{a) finite Schwoebel effect for the adatoms

make a V‘C.‘”‘T’" surfape qnstable with respect to step bunChé\nd vanishing one for the dimerd) infinite Schwoebel ef-
Ing, yvhen I IS growing in a step-ﬂpw mode. However, to fect for the adatoms and finite one for the dimers. In both
obtain a realistic model, four main elements should D€ gses it is shown that the bunching instability persists for
added:(i) the 2D character of a real surfadé) the possi-  pnysically relevant values of the barriers. In particular, it is
bility of island nucleation on the terraces between stéps, always found in caséa), while it is found in caséb) only for
dimer dissociation on the open terraces, &nd physically  not-too-high ES barriers for the dimers. In fact, it is clear that
relevant ES barriers for adparticles. in the presence of high barriers for both adatoms and dimers,
The first point is not expected to introduce any qualitativethe present model would be the analog of a one-particle
change. The characteristics of step bunching in the presentodel with ES barriers, which does not exhibit step bunch-
model are essentially the same as in the fully 2D modelng. A useful criterion for deciding whether a given ES bar-
studied in Ref. 19. In particular, a clear “phase separation™ier is high or not(equivalently, whether a given ES effect is
between a step-rich and a step-poor region is seen in 1D asrong or nokt is to compute the lengthes=expEgs/KgT),
well as 2D space. and to compare it with the terrace widthA strong ES effect
Accounting for island nucleatiofii) is a more delicate (a high barriey is implied by |gs>1, and vice versa. For
point. It is clear that island nucleation is favored when theexample, using our criterion fdr=50 andT=723 K, we
ratio ®/D, is large, and/or the terraces are wide—which isfind that a barrier is high if it is bigger than 0.25 eV, and
just what bunching requires to be seen. Therefore, at verjow otherwise. We have checked this criterion numerically.
high deposition rates, or very high temperatures, growth bydnce the parameter set is chosen in the unstable region of
island formation ultimately takes over the step-flow regime,Fig. 1, steps eventually bunch for any finite ES barrier for the
the BCF approach loses its validity, and E(®. no longer  adatoms and a vanishing barrier for dimers. Choosipg
describe the growing surface. =0.5 eV for the adatom& high but not unphysical valie
However, the threshold for island nucleation is a materialbunching appears when the dimers’ ES barrier is 0.1 eV and
dependent property. It will depend on the surface symmetryoes not appear when the barrier is 0.3 eV, in agreement with
and, especially for semiconductors, on the presence dfur estimation.
reconstruction-driven anisotropies of sticking, diffusion, etc.  In conclusion, we have proposed a mechanism that may
It will also depend, of course, on the presence of stronglybe responsible for the step bunching instability observed dur-
diffusing dimers, or larger clustef§.As we said in the In-  ing elemental homoepitaxial growth on vicinal surfaces. The
troduction, too little is known about dimer and cluster diffu- main role is played by diffusing dimers, which are assumed
sion to be of help. To understand the difficulty, consider thato experience a small ES barrier when crossing steps,
in order to make an estimate one should be able to compakghereas diffusing adatoms experience a strong ES barrier at
the scaling relation for the instability boundaty~F "% step edges. This assumption is, e.g., justified for t{@0S)
with the scaling relation linking the average distance besurface, where the absence of the ES barrier for dimers is
tween islands|s, with the deposition rate. The latter is predicted In the framework of the present model we can
known in a few cases: it is of the forlg~F ~2°when dimer  distinguish three growth regimes. The step-flow growih
diffusion is isotropic* and of the form ¢~F ~Y#when clus-  takes place when the adatoms are incorporated at step edges
ters of all sizes diffusé’ In both cases, whether islands before forming dimers or nucleating islands. If this is the
nucleate before the steps bunch or not depends on the prease, our model is just a one-particle model in the presence
factors, and those in turn depend on the specific material angf an ES barrier at the step edge. As shown by Schwdebel,
are in general not known. this implies that a vicinal surface is stable against step
Another effect of increasing the temperature is the dissobunching and unstable against step meandering. Step bunch-
ciation of dimerd(iii ). Therefore, it is necessary to verify that ing appears in the intermediate regirtiee when the step
the step bunching instability persists in case when dimer foradvancement is mainly due to the incorporation of diffusing
mation is reversible, that is, when dimers break up into adadimers. At higher deposition ratédepending on the terrace
toms after a certain time, on average. We can roughly estiwidth) growth by island formation eventually takes oviir),
mate that the instability induced by the diffusion of stableand the model behaves again as a standard one-particle sys-
dimers is not destroyed by the dissociation if the dimer dif-tem with a step-edge barrier. Thus, combining analytic cal-
fusion length exceeds the average terrace width. Thus, denatulations in the framework of the BCF model with KMC
ing the dimer binding energy &, so that the dimer diffu- simulations, we have shown that the diffusion of dimers on
sion length is\%M~ exp(E,/ksT) we obtain the condition the vicinal surface may lead to step bunching, when the av-
E,>kgT In(l) on the dimer binding energy. If this condition erage terrace width is larger than a critical value that depends
is satisfied, the mechanism proposed in the present work ben the deposition rate and the growth temperature.
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