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3D Eddy-Current Imaging of Metal Tubes by
Gradient-Based, Controlled Evolution of Level Sets

Juan Felipe P J Abascal, Marc Lambert, Dominique Lessé&amipr Member, IEEE, and Oliver Dorn

Abstract—Eddy-current non-destructive testing is widely used In the present paper, starting from this know-how on eddy-
to detect defects within a metal structure. It is also useful current models, one is investigating the mapping of a 3-
to characterize their location and shape provided that pro@r p pounded (volumetric) void defect affecting the tube wall,

maps of variations of impedance which the defects induce are dtob ised in full withi tain Reqi
available. Imaging of void defects in the wall of a hollow, na- aSSUumed 1o De comprised In full within a certain ~egion

magnetic metal tube, is performed herein by controlled evaltion ~ Of Interest (Rol). This is carried out for a non-magnetic
of level sets. Such data are variations of impedance colleet metal tube, the assumption of a magnetic behavior adding
by a circular probe array close to the inner surface of the to the complexity of the numerical analysis without much
tube when a coil source operated at one single frequency istse benefit in the present study aiming first at "proof of concept”
along its axis at some distance from the array, both receiver . . .

and coil source being moved simultaneously. The defect zoneThe splutlon methodology lies W'.th'n th? r_ealm of gontrdlle
is represented in implicit fashion as a zero level set, amebte €volution of levels sets or topological optimization asieexed
to topological changes via a nonlinear iterative method tha in detail in [2], well-known text books [3], [4] and an abunmda
minimizes a least-square cost functional made of the diff@nce |iterature (out of our scope here) showing the versatilitg a
between the measured (computer simulated) and model data. efficiency of such approaches.

The procedure involves the rigorous calculation of the gragent .
of the variations of impedance, in the case of a multi-static Level sets have been proposed as a model of the interface of

configuration (driver and receiver coils are different), a vector an obstacle easily handling topological changes [5]. Dedini

domain integral field formulation being used to that effect. a level-set function positive inside the domain enclosed by

Numerical examples, via a dedicated extension of the gendra the obstacle and negative outside (or vice versa), the dbsta

purpose CIVA platform, exhibit pros and cons of the approach jyiarface is but the zero level set. A usual representatidhen

for inner, outer, and through-wall void defects, with further . . . . . .
level set is a signed distance function defined as the Ewalide

comparisons to results provided by an independently-deveped . s —
binary-specialized method. distance from every point in a search space containing the

. Lo obstacle to the interface, a positive sign being imposeidéns
Index Terms—eddy-current non-destructive testing, impedance . . . .
variations, level-sets, optimization of topology, imagig _(neg_afuve outS|d9). Evolution of the level-set f_unctlomda
implicitly of the interface, can be shown as being governed
via a Hamilton-Jacobi equation, which relates the (pseéudo-
time evolution of the level set to its velocity, formally dexd,
DDY current testing of metal tubes is of interest foe.g., via shape optimal design [6], as in particular shown in
quality examination of highly conductive material in[7]. As an alternative to this Hamiltonian approach, a geath
production lines or for in-service inspection of indudtriabased level set method can be developed, e.g., [8]. A number
parts. The interaction between a low-frequency time-haimo of references deal with like reconstructions [9], [10]. The
electromagnetic field produced by a source probe and onea@proach below follows that line of thought.
more defects induces a perturbation of eddy currents wisich i One has to retrieve the shape and location of the defect(s)
seen, most often, from the variation of impedance of a receivthe surface boundary of which is implicitly defined by a level
probe nearby. In a recent investigation, it has been shown hget function, which is associated to a contrast-of-coriditict
one can express this variation of impedance via the redigrocfunction valued to—1 inside them and) outside. The level
theorem from a vector domain integral formulation involyinset is initialized in the Rol as a signed distance function,
a set of Green’s dyads, and calculate it by a carefully tadorand is henceforth evolved by a nonlinear iterative gradient
method of moments [1]. The resulting computer code has begased method, which minimizes a least-squares functional
implemented into the CIVA platform (http://www-civa.céd. of the data-model misfit. The gradient of the variation of
and can be used to address conductive and/or permeahipedance with respect to the level set is derived, which is
metal tubes in the time-harmonic eddy current regime fordone in a manner similar to the earlier contribution of [11]
wide range of multistatic configurations (separated saacel (with no mention of level sets at this time). This implies
receivers). the solution of one forward problem and one adjoint problem
. . _ _with similar mathematical and numerical structure. As foe t
Juan Felipe P-J Abascal, Marc Lambert, and Dominique Liessale with . . . s .
Département de Recherche en Electromagnétisme, Laberates Signaux update, the search direction is of the Polak-Ribiere agatier
et Systtmes UMR8506 (CNRS-Supélec-Univ Paris Sud 11092Gif-sur-  gradient type, the step size being restricted so as theasintr

Yvette cedex, France o , 5 _ is updated in no more than three of the voxels describing
Oliver Dorn is with Grupo de Modelizacion y Simulacion, Mersidad

Carlos Ill de Madrid, Avda de la Universidad, 30, 28911 LeggnMadrid, .the defect (to aV(.)id large _quates); further regulariz_ai's)
Spain imposed by applying a spatial filter onto the gradient dicect
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The corresponding numerical machinery is expected to woelectric field response to a unit point current source oftatec

whether the defect opens in air (inside or outside the tubmgture (with orientations along the three axes of coords)at

or not, or even traverses it, though, in theoretical terms, tlt satisfies the dyadic Helmholtz equation

assumption that the zero level set is allowed to touch the —(ee)

boundary of the Rol remains delicate matter. VxVxG
The paper is organized as follows. In section Il the ingredi- . . ) ) .

ents of the forward problem are proposed, heavily borrowidg2S the unit dyad, and the reciprocity relationship

from [1], with specialization to the specific configuratioh o —(ee) —(ee) T

our interest. In section Ill the level-set method is disedlss G ()= [G (F’,F)] , (4)

in detail, with most emphasis placed on the calculation ef th

gradient of the variation of impedance. Since, for compexjs where superscrigi’ stands for transposition. As is usual, one

one has also developed a binary-specialized method in hiatroduces fictitious current sources, null outsidg such as

mony with the imaging of defects in a planar non-magnetic > =

metal plate [12], with some know-how from [13], this method J () = oox (F) B (), ®)

is summarized as well. Then, the practical implementation e electric field beingE = Ei"c + E*, E the total field,

the level-set evolution is discussed. In section IV, a set @fs the anomalous oneZ™ the primary one (existing in a

numerical results is proposed for various defect topolgigjawless tube wall), calculated for axisymmetric sourcdscoi
This is carried out from data simulated using the full veqpne will limit ourselves to one of those) according to the
tor formulation, the azimuthal component of the secondafy,qd and Deeds approach [17]).

sources being the one used in the imaging procedure in Mosf,side the defect volum&; equation (2) becomes
cases, taking advantage of the fact that the primary etectri

=(ee)

7)) — kG (7)) =15(F—7"), (3)

field, in applications of our main concern, is null along both Jme (@) = J (F) —

radial and axial directions. Such results are concludea upo . o [=lee) -

section V. w JWhoooX (T)/G (77" - T () dV, (6)
Vi

Il. THE FORWARD PROBLEM letting Ji" be the fictitious current (5) associated to the
A. The modeling primary field.

Let us consider a hollow circular cylindrical tube (one Various set-ups can be chosen for the evaluation of a
introduces circular cylindrical coordinates, the vetticaaxis damaged tube wall. Here, the tube is tested from the inside,
coinciding with the tube axis). Assuming only non-magneti@n axisymmetric horizontal coil being moved along the
media (W|th vacuum permeab”itwo)' one denotes b)ﬁo axis (the Velocity is low enough to ignore motion-related
the constant conductivity of the tube wall, air being offduction). The driving coil (Tx) is fed by an electric cunte
both sides. With implied time-dependence“t, the complex with given amplitude/;. Primary eddy currents induced in the
permittivity in the eddy-current regime of our interest dea tube wall are modified by the defect. A receiving coil (Rx)see
as —-Z. Accordingly, the wave numbek in metal (with it as a variation of voltage, or equivalently of mutual Tx-Rx
strictli/ positive imaginary part) is such that = jwosug. A impedance, which follows from the reciprocity theorem [13]
3-D bounded (volumetric) defect with finite support domaift8l: 1
V; and conductivityo () is assumed in the tube wall (its Z= _ﬁ/Eg;c (7Y - J(F')dV’, @)
parameters are allowed to vary as a function of location 1 2vf
though only homogeneous voids are dealt with in practite). |
is characterized at any by the contrast function where E{{f (7) denotes the primary electric field induced

within the flawless tube wall by the receiving coil (Rx)
(1) fictitiously operated in the transmission mode (with cutren
set to I1). Let us notice that the latter requires the careful
The latter is valued to zero outsidig. From eddy-current spe- cajculation of a Green’s dyad having source point inside the
cialization of the Maxwell equations, by applying the Greentype and observation point inside the wall.
theorem and accounting for the usual boundary conditions aExpression (7) corresponds to a single impedance mea-

material discontinuities and radiation condition at |n§'n0ne surement. |mag|ng is expected to require several positions
shows that the electric field satisfies the vector domairgiale of receiver and/or transmitter. Lef;; be the impedance

X (7) = m,
)

formulation [14]-{16]: corresponding to receiver Ryand transmitter Tx with j =
E(F) _ fine (7) + 1,...,Landi = 1,...,I (a total of I x L. measurements),
then
. —(ee) oL . I . _
quo/G (7, 7") - oox (7') E () dV". ) Zy = —%/E,%{;]‘? (7Y - J; (F') dV, )
Vi 1 2Vf

. . =(ee) . _ _— .
The dyadic Green's functiogx in the aboves” and 7’ where J; is the fictitious current corresponding to thith-
being the observation and defect points, resp., is madeeof #pplied current/™<.
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i . TABLE |
B. The discrete solution FUNCTION SPACES REFERRED TO IN THE TEXT

Integral equations (6) and (7) are solved by a Method
of Moments using pulse basis functions and discretizing the
defect with a regular cylindrical grid ofV elements [1].
Current (6) satisfies a linear system of equations

SJ = Jo, 9)

Space of contrast functiong
Space of fictitious currents’
Space of current sourceknc
Space of measuremenfs

Space of level-set functions

n N<CO

whereJ andJ, are3N x I matrices, for] applied currents,
the elements of which are the basis function coefficientd, apf the 'measured’ and the model data. An efficient approach
S is a3N x 3N matrix. enabling topological changes is to implicitly describg in

The linear system (9) can be solved by a direct methogrms of a level-set function. Adopting the notation used in
which is faster than an iterative method for small domaing], [19], the latter reads as

a single inversion of the system matrix being needed for all 6(7)>0 foral 7eV;

transmitter positions. This is the case for the inverse lerab {¢ () <0 forall 7e Qj\ % } 5 (13)
at hand since the defect domain is necessarily smaller tiean t ) f _

Rol, and since th((a r)‘natrices in (9) can be constrained to th4ch that the shape boundary is the zero level set:
defect domainyG ~ and.J being zero outside it. oVy ={r" € Q,¢(7) = 0}. (14)

A. The operators

_ ~ The main operators used are defined below (let us refer to
Measured data are simulated by the full-vector formulatiqRe function spaces in Table I).

(6),(8), but, for carrying out the inversion, dimensiotals  Fictitious currents.J; (7) in V; due to current sources
reduced, the azimuthal-azimuthal block of the dyad beirg thyinc () (6), wherei = 1,...,T correspond to the applied
only one accounted for, as follows. Indeed, for the axisymyyrce currents, involve the (,)peratzbfx) . U — Y, which,

metric source coil envisaged, the primary electric fielddsoz afior discretization, corresponds to the linear system
along both radial and axial directiongy, (') = Jo. (7)) = 0).

C. Reduction to the azimuthal component

Thus, the linear system (9) simplifies into Ax) i = Ji". (15)
J T T. T 0 T Measurement operatosst;; : U — Z, where Z= C, map the
Jp _ TPPTWTPZ Joo| = |T Joo, (10) currentJ; for the transmitter Txonto a measuremett;; for
Jf TfﬁTfﬁ Ti ow Tf:: . the receiver Rx (8),

whereT = S~—'. Now, since the Green dyad is diagonally Zij = Mz Ji. (16)

dominant, the system matrand its inversd are diagonally Accordingly, the measured 'experimental’ dajg € Z are
dominant as well. But the two dominant terfis, andT.. do associated to the currefU® corresponding to the 'true’ defect
not play any role, ado, = Jo. = 0, while T, is dominant e (),

overT,, andT.,, thenJ, > J,,J.. Accordingly, one is Cij = MjJme, (17)
able to approximate the current by its azimuthal componept .

with expepcl?ed fair accuracy. So, (}E/S) is reduced to its psingefehe forward operatog;; : C — Z maps contrast functiong
azimuthal component version: onto the data space,

. () = M A(x) L Time, 18
J:anc (7?) ~ Jga (7;») _ A J(X) M J (X) 2 ( )
—(ee) ) N The residual operatoR;; : C— Z is
jwioooX (7 G ) J, (F) dV'. 11
Jwpooox ( )V/ P ( ) tp( ) (11) Rij(X) _ -Aij(X) — Gy (19)
f

Defining a nonlinear operatdt : S+— C that maps the level-
set function onto the contrast function

1 i —/ —/ / — — - I
7 ~ —E/E;;CRI (") Jp (F')av'. (12) x (F) =1I(¢) (F) = {071’ o(r) 2 0}, (20)
Vi

The variation of the mutual impedance (7) then becomes:

¢ () <0

) . ~ the residual operator (19) is written as
The error on the impedance due to this approximation is

considered in section IV. Tij(¢) = Ri; (1L(9)) - (21)
The shape reconstruction problem is then formulated as the
[1l. SHAPE RECONSTRUCTION PROBLEM retrieval of the level-set functiop which minimizes a least-

Let  be the prescribed Rol in the tube wall, alig, such Square functiona¥(¢)
asVy C Q, be the damaged domain sought within it. One aims I L
at the recovery of the shape boundary of the def@ty,. To Fo)=>> Fij(¢) =
achieve this task by a gradient-based approach, an iritégdes i=1j=1 @
is evolved into a direction that minimizes a functional nisfiwvhere overbar means complex conjugate.

STIOT(0),  (22)

M~
M=

I

—
<

Il

Jj=1
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B. Differential operators one gets

Solution of (22) via a gradient-based approach requires t oy 7 ) 7=

calculation of the gradient of the cost function with reggec ??112)%)(2” o) = /dVEij (F) - dsx (720 +

the level-set function. An analytical derivation of the djent

with respect to the contrast function has been proposediij [1‘/ dV Ege, (7) jwiiooox (F)/dV'E(ee) (7,7 dsy T (7 X)

using function space methods. One then defines the gradient/i !

harmony with this result and deals with the level-set fumtti Vs

only at the last stage. - dVEij (7) - E; (F) 006x (7), (29)
For the calculation of the gradient, the concept of Gateaux

derivative as a generalization of the discrete directicieaiva-

tive is employed. The derivative af;; along the direction

given by an incremental¢ is expressed as the dot product ds Aij(x) = 90 /Eij () B, (7Y dV'sy,  (30)
Vi

Vi

Vi

i.e.,

between the gradielgtad¢Fij(¢) : S+— R and the increment: B _11[2

d . .
dssFij(¢) = @}‘U(¢+55¢)‘ﬁ_0 = grad, Fi;(¢)-0¢, (23) and the gradiengrad, .A;;(x) is
a0 = A
It can be shown that (23) transforms into grad, A (x) = A /Eij (7)) - Ei () V', (31)
_ Vy

dspFij(d) =R (ij)gradd)Aij(H(qS))M), (24) The level-set function is now introduced from the rela-

h | tionship between the contrast (20) and a one-dimensional
% as the real part. Heaviside functiony = II(¢) = —H(¢), such that the Dirac-

The calculation ofgrad,A;;(II(¢)) follows from the one pajia function is8(6) = OH(6)/06, then
of the gradient of the forward operator with respect to the

contrast functiongrad, .4;; (x), which is proposed in general dx = —0($)dg, (32)

form in [11]. o ~ where an infinitesimal variation of the contrast function is
Similarly to (23), grad,.A;;(x) is introduced as a linear yngerstood from a variation of the level-set functiaiy, =
operator that maps a change of contrast function onto a dwaqg(¢+5¢) — H(¢). Making explicit the dependenay = ()

of impedancegrad, A;;(x) : C+ Z, in (30) and using (32),
d o _ =L
dsyAij(x) = %Aij(x + 30x) o= grad, Ay (x) - 0X. dspAij (@) = r;z /Eij (') - E; (7') dV'6(¢)d¢.  (33)
- (25) Vs
Proceeding as in [11], for the multi-static configuration ofhe gradient of the cost function then reads as
our interest (driving and receiver coils are different),eon o0
differentiates the variation of impedangg; in (8) as gradFi;(¢) = L,
_ 1 inc (= 7= ’ . .
(00 =~ [ RS () doy 5 )av. 9 R T500) [ Ene, () B av'so) | (39
Vy
Vy

Since E}g;j is the primary field associated to the receiver The Dirac deltai(¢) in (33) means integration on the defect

Ee , one introduces an adjoint fieldfz,, as the electric boundarydvy. Thus, the gradientgrad,A;;(¢), resulting
field obtained by interchanging indicesand 7’ and solving from (33) is not valued on the whole domain, which is an

(2) for EZL;., ie., obvious compli_cation for a gradient-ba_sed method_ [8l, [19]
! An alternative involves the approximation of the Diractdel
e (i) :ER% (') — in (32) by a function=, set to1l in a small finite-width
! —(ee) B neighborhood 0V and to0 elsewhere, up to some constants.
o / V(@ ) T, (7). (27) Then,

v gradgAi; (o) o /Eij (7') - E; (F')dV'E(8V}).  (35)
Vs

Diﬁerentiatingfas a function of the contrast yields

e S . In the numerical implementation herein, even tho&{h'V7)
oy J(, x) = o B (7) Ox () + in (35) is zero far from the defect boundary, th(ﬁ\unﬁerical
jwhoT0X (F)/dvlﬁ(ee) (7, 7') - dsy J(7',x). (28) computation ofgrad,A;;(¢) is extended into the whole do-

main, i.e.,= = 1 everywhere, avoiding the determination
of a specific neighborhood a#V;. (Let us notice here that
Then, substituting (27) into (26), reordering terms, uding this amounts to the extension of the velocity onto the whole
dyadic relationship (12), and identifying the differeh{{a8), domain in a Hamiltonian approach of a level-set evolutidn) [7

Vi
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C. Implementation of the algorithm 2-D scattering case, and [12] for its development for a 3-D

The most important features of the implementation of th(—‘éddy-current case). The contrast functip(r) reads as

proposed solution method are described below. o* — oy . 1
A (1) = U(r(r), ¥(r()=——7"z;
One starts from a level-set function as a piecewise consta o0 1+re
function the value of which at cefl is ¢,,, withn =1,..., N.
The directional derivative is accordingly given by

(41)

wherec* is known (in the present case, this is air with =
0). The function¥ (7 (7)) varies from 0 to 1 whenm (7) varies

N from —oo to +oco (hered is kept constant and equated to one).
dssFij(¢) = > grady Fij(¢)d¢n, (36) Then, one aims at the minimization of a cost functiitr)
n=1 with respect tor (variation with# is implied) stated as
such thatgrad,, Fij(¢) = 0F;;(¢)/0b,. Now, let us con- } I ) r Ly
sider this discrete level-set representation at sometiberé, F(r) = ZZ]-}J- (r) = Z ER” (T)Ri;(1).  (42)

(b(f'n)[k], the initial guess ¥ = 0) being chosen as a signed i=1 j=1 i=1 j=1
distance function from each poifi, to the surface of a sphere . - - .
with center at initial locatior, and radiusRy, The gradient of7:; in (42), like in (24), is valued to

6 ()" = B — |7 — 7. (37) grad, Fig(r) = % (X' (1) R Tlgrad, Aii(0) - (43)

where x’ () is the derivative ofy with respect tor and
grad, A;;(x) is given by (31). Update of the contrast func-
¢£{<+1] - ¢,gc] + a[k“]pﬁfL (38) tion is made according to a Polak-Ribiere conjugate-gradie
scheme, as in (39) upon substitutionBfto F, the step size
wherea is a chosen step size apg is the search direction being computed analytically as suggested in [11].
set as the Polak-Ribiere conjugate gradient direction

(k+1] _ _v]_.ycﬂ] +5[k+1]p£f], IV. NUMERICAL RESULTS

39
(39) The algorithm has been thoroughly tested from synthetic
where data, a small set of illustrative results being analyzectiner
The configuration itself is taken from [13]. The tube wall
is a highly conductive, non-magnetic material (Inconel :600
conductivityoy = 0.98 x 106 Sm!), and it is of internal and
o _ o] (40) external radii 00.83 and11.1 mm, resp. The region of interest
andp,” = —VFn". inside has dimension&px Apx Az = 1.27mmx 8° x 1.6mm
The step sizen should be such that the defect domaidnd is divided intol0 x 16 x 16 = 2560 cells, each of size
(the contrast) is changed by between one and three voxals x Ay x Az = 0.127mm x 0.5° x 0.1mm. The source
at each update. This certainly slows down the reconstmictiz a 30-turn circular coil of internal and external radii of
yet yields a stable evolution of the level-set function [20] 9.25 and 9.55 mm, 2 mm thick, centered along the tube
— if the constraint cannot be satisfied, the upper bound dxis. The variation of impedance between the source coil
relaxed, enabling more than three voxels to change. and a small coil receiver (assumed as a vertical dipole) is
In addition, the inverse solution is regularized by smawghi measured fot 6 heights of the source coil and, for each source
the search directiop via an uniform spatial filter, previously position, 16 positions of the receiver coil along a small portion
to its update (38). In practice, its output is the averageof iof a circular arc at9.73 mm from the center of the tube,
26 neighbors{ sharing a facel2 an edge, and a node, this scanning a total surface aky x Az = 8° x 1.6mm with
procedure being applied recursively three times —smogthistepsy x 52 = 0.5° x 0.1mm. Two frequencies are employed,
yields as a general observation a more compactly retrieveghkHz (skin depths = 1.6mm) and500kHz (§ = 0.72mm).

The update of the level set-function at step- 1 is given by

V]_—[kﬁ—l] v]_-7[1}%] v]_-7[lk+1]
( ) ’ 0}’

ﬁ[k-ﬁ-l] — max { Zn 1 7 0
anl VF.'VFn

defect, and all results thereafter incorporate it. The case of a void defect opening in the interior of the tube
The above procedure is pursued until the cost function@hner defect) is illustrated in figure 1.
(22) cannot be reduced any further, as is done in [2]. It can be a shallow defect (dimensions&p x Ap x Az =

0.51mmx3.5°x0.6mm, its depth as 40% thickness of the wall,
Fig. 1(a)) or a deep defect (dimensions&p x Ap x Az =
Immx 0.65mmx 0.65mm, its depth as 83% thickness of the
wall, Fig. 1(e)), several reconstructions being propogather
Results obtained by the proposed level-set retrieval aesults (the decrease of the cost function and its gradiemy
compared in section IV with those provided by a binaryfound in Figs. 3(a)-3(b)). Discretization ini® x 16 x 16 cells
specialized, non-linear conjugate-gradient method (tkshas and 10 x 6 x 6 cells is respectively performed.
BNLCG). Since the derivative of the cost function with respe  Letting the initial estimate be made of a few voxels in the
to a binary contrast function is not defined, a relaxed versicenter of the tube wall, and using data calculated with the
of the contrast function which goes continuously from O teame discretization as the one used along the inversion, the
1 can be put together (refer to [21] for its initial settingan inner void defect appears well retrieved according bothtdep

D. Comparison with a binary-specialized, non-linear
conjugate-gradient method
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Fig. 1. Single inner void retrieved by the level-set methb8)(at 100 kHz, with comparison to a binary-specialized soh¢BNLCG). Slices of contrast
x along z are displayed in the Rol (spanning the whole thickness ofathl®, blank cells being ag = 1 (defect) and black ones as= 0. Shallow defect:
exact one (a), LS retrieved (b-d) from initial estimate ie tenter of the wall, with exact data (b), with noisy data arichathal approximation (c), and with
noisy data without azimuthal approximation (d). Deep defexact one (e), LS retrieved (f-g) from initial estimatetire center of the wall and exact data,
with azimuthal approximation (f) or without azimuthal appimation (g), and BNLCG retrieved (h).
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Fig. 2. Single outer or through-wall void defect retrieveyl the level-set method (LS) (same display as in Fig. 1): exater defect (a), retrieved from
initial estimate in the center of the wall (b) or at its exterinterface (c); exact through-wall defect (d), retrievieom initial estimate in the center of the
wall (e), as a long inner defect (f), and at 500 kHz in the cenfethe wall (g), 100 kHz being assumed otherwise.
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and height, its azimuthal extent however being slightlyrovefeasible, without prior information on the location of the
estimated. As for the cost function, it is decreased by thréefect (results not shown). This can be a mixed effect betwee
orders of magnitude after it reaches a plateau, as well asatdow sensitivity to changes near the exterior interface of
gradient (Figs. 3(a)-3(b)). the tube and the propagative nature of the level-set method

Then, if Gaussian noise is added to both real and imagindrgm the initial estimate. Further insight into the semndii
parts of the variations of impedance (11 dB SNR), the reédevof the variation of impedance with respect to the level-set
defect becomes rather blurred (Fig. 1(c)), in agreemertt wifunction, i.e., the Jacobian matrix, confirms the large dase
the fact that the cost function is only reduced by a factor @f sensitivity faced with depth as shown in Fig. 5(a) for a
10 from its initial value (its gradient is decreased down to thigpical measurement set-up (one of those used to get thiksresu
same level as without noise, no further improvement appeaisFig. 1).
possible).

Let us notice in addition that the over-estimation of the V. DISCUSSION
azimuthal extent mentioned in the above appears at leastpe feasibility of the retrieval of 3-D void defects is
partially caused by the azimuthal approximation made,esinfyestigated by means of a gradient-based, level-set retho
a slight improvement is gained when using the full fielgoh jnner and outer defects, as well as a through-hole ame ar
(6),(7); in particular one can compare Fig. 1(d) where thigjry mapped. Yet two defects opening in air, one inner one
approximation is not made to Fig. 1(c) where itis.  anq one outer one; are retrieved only when two defects ave als

Retrieval of a bigger defect is shown in figure 1(f)) with anssymed as the initial estimate. As a general rule, a decoéas
error of about 0.25mmy(/6). Let us notice that the error on thesensitivity with depth, and so a better mapping of inner disfe

variation of impedance due to the azimuthal approximatiop, gpserved. Reduction of dimensionality of the inversign b

dZ—dZ(J .
taken as100. ||dZ|(|—¢)H|’ is of the order of3%. Here, approximating the fictitious current to its azimuthal coment

carrying out the reconstruction with the full fields insteafd |eads to a few-percent error on the variation of impedarne, a
the approximated ones again slightly reduces over-shabein js syccessfully for most retrievals —the error is the latdes
azimuthal direction. long defects, yielding slightly over-extended ones along t
The level-set method is also compared with the BNLCGyzimuthal direction.
method as summarized in the above. The fully binary rep- Reconstruction with the BNLCG method, a detailed inves-
resentation of the defect by the level-set method can indegghtion of which is out of the scope of this contribution,
be put in contrast with the continuous representation of theyds to rather similar results, yet (in general) the mimimu
contrast by the BNLCG-method, see Fig. 1(h). Both in effeg the cost function reached is much smaller. This may be
yield similar retrievals, save the fact that the minimumtué t qye to the fact that the BNLCG method updates the contrast
cost function reached by the latter method is two orders pf the whole region of interest at every iteration whereas th

magnitude lower than with the former (results not shown). proposed level-set method evolves the shape from an initial

but now opening in the exterior of the tube (outer defect) {§ contrast changes.

illustrated in figure 2 as well as the case of a through-wall pimensionality and computation time are major issues due
defect (dimension&px Apx Az = 1.27Tmmx3.2°x0.65mm,  to the size of the Green dyads involved; for a discretizatibn
discretized intol6 x 7 x 7, Fig. 2(d)). the search domain intt) x 16 x 16 cells, these dyads requite
Retrievals of the outer defect, refer to Fig.2(b) from agp of memory. Yet, since the contrast function is zero owtsid
initial estimate in the center of the tube, and to Fig. 2(Cthe defect, inversion of the linear system and matrix-vecto
from an initial estimate at the exterior boundary, appeatequ mytiplication involving the contrast can be speeded up by
similar. As for the through-wall defect, full depth recoyes (estriction to the defect domain.
achieved as illustrated in Fig. 2(e). This is improved byrtigk  Fyrther improvement of the algorithm could result from a
a long defect as the initial estimate, the location of whiebld  to-step approach for which an estimate of the defect lonati
be assumed as a-priori information from the previous nedtie s optained by means of a fast volume reconstruction method,

refer to Fig. 2(f). Here, let us emphasize that increasirey tyhiist normalizing the gradients should improve sendiivi
frequency to 500 kHzX = 0.72) instead of 100 kHz in all with depth, e.g., [19].

above cases worsens the depth estimate as exemplified in Fig.

2(9). e o . . ACKNOWLEDGMENT
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sensitivity of the variation of impedance with respect te th [l A Skarlatos, G. Pichenot, D. Lesselier, M. Lambert, @hdDuctene,
d ith depth Modeling of eddy-current interactions with flaws in ferragnetic tubes
contrast decreases wi eptn. via an integral equation formalism/EEE Trans. Magn., vol. to appear,

With the BNLCG method, the retrieval of two defects is  200s.
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