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3D Eddy-Current Imaging of Metal Tubes by
Gradient-Based, Controlled Evolution of Level Sets

Juan Felipe P J Abascal, Marc Lambert, Dominique Lesselier,Senior Member, IEEE, and Oliver Dorn

Abstract—Eddy-current non-destructive testing is widely used
to detect defects within a metal structure. It is also useful
to characterize their location and shape provided that proper
maps of variations of impedance which the defects induce are
available. Imaging of void defects in the wall of a hollow, non-
magnetic metal tube, is performed herein by controlled evolution
of level sets. Such data are variations of impedance collected
by a circular probe array close to the inner surface of the
tube when a coil source operated at one single frequency is set
along its axis at some distance from the array, both receiver
and coil source being moved simultaneously. The defect zone
is represented in implicit fashion as a zero level set, amenable
to topological changes via a nonlinear iterative method that
minimizes a least-square cost functional made of the difference
between the measured (computer simulated) and model data.
The procedure involves the rigorous calculation of the gradient
of the variations of impedance, in the case of a multi-static
configuration (driver and receiver coils are different), a vector
domain integral field formulation being used to that effect.
Numerical examples, via a dedicated extension of the general-
purpose CIVA platform, exhibit pros and cons of the approach
for inner, outer, and through-wall void defects, with furth er
comparisons to results provided by an independently-developed
binary-specialized method.

Index Terms—eddy-current non-destructive testing, impedance
variations, level-sets, optimization of topology, imaging

I. I NTRODUCTION

EDDY current testing of metal tubes is of interest for
quality examination of highly conductive material in

production lines or for in-service inspection of industrial
parts. The interaction between a low-frequency time-harmonic
electromagnetic field produced by a source probe and one or
more defects induces a perturbation of eddy currents which is
seen, most often, from the variation of impedance of a receiver
probe nearby. In a recent investigation, it has been shown how
one can express this variation of impedance via the reciprocity
theorem from a vector domain integral formulation involving
a set of Green’s dyads, and calculate it by a carefully tailored
method of moments [1]. The resulting computer code has been
implemented into the CIVA platform (http://www-civa.cea.fr)
and can be used to address conductive and/or permeable
metal tubes in the time-harmonic eddy current regime for a
wide range of multistatic configurations (separated sources and
receivers).
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et Systèmes UMR8506 (CNRS-Supélec-Univ Paris Sud 11), 91192 Gif-sur-
Yvette cedex, France

Oliver Dorn is with Grupo de Modelización y Simulación, Universidad
Carlos III de Madrid, Avda de la Universidad, 30, 28911 Leganés, Madrid,
Spain

In the present paper, starting from this know-how on eddy-
current models, one is investigating the mapping of a 3-
D bounded (volumetric) void defect affecting the tube wall,
assumed to be comprised in full within a certain Region
of Interest (RoI). This is carried out for a non-magnetic
metal tube, the assumption of a magnetic behavior adding
to the complexity of the numerical analysis without much
benefit in the present study aiming first at ”proof of concept”.
The solution methodology lies within the realm of controlled
evolution of levels sets or topological optimization as reviewed
in detail in [2], well-known text books [3], [4] and an abundant
literature (out of our scope here) showing the versatility and
efficiency of such approaches.

Level sets have been proposed as a model of the interface of
an obstacle easily handling topological changes [5]. Defining
a level-set function positive inside the domain enclosed by
the obstacle and negative outside (or vice versa), the obstacle
interface is but the zero level set. A usual representation of the
level set is a signed distance function defined as the Euclidean
distance from every point in a search space containing the
obstacle to the interface, a positive sign being imposed inside
(negative outside). Evolution of the level-set function, and
implicitly of the interface, can be shown as being governed
via a Hamilton-Jacobi equation, which relates the (pseudo-)
time evolution of the level set to its velocity, formally derived,
e.g., via shape optimal design [6], as in particular shown in
[7]. As an alternative to this Hamiltonian approach, a gradient-
based level set method can be developed, e.g., [8]. A number
of references deal with like reconstructions [9], [10]. The
approach below follows that line of thought.

One has to retrieve the shape and location of the defect(s)
the surface boundary of which is implicitly defined by a level
set function, which is associated to a contrast-of-conductivity
function valued to−1 inside them and0 outside. The level
set is initialized in the RoI as a signed distance function,
and is henceforth evolved by a nonlinear iterative gradient-
based method, which minimizes a least-squares functional
of the data-model misfit. The gradient of the variation of
impedance with respect to the level set is derived, which is
done in a manner similar to the earlier contribution of [11]
(with no mention of level sets at this time). This implies
the solution of one forward problem and one adjoint problem
with similar mathematical and numerical structure. As for the
update, the search direction is of the Polak-Ribière conjugate-
gradient type, the step size being restricted so as the contrast
is updated in no more than three of the voxels describing
the defect (to avoid large updates); further regularization is
imposed by applying a spatial filter onto the gradient direction.
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The corresponding numerical machinery is expected to work
whether the defect opens in air (inside or outside the tube)
or not, or even traverses it, though, in theoretical terms, the
assumption that the zero level set is allowed to touch the
boundary of the RoI remains delicate matter.

The paper is organized as follows. In section II the ingredi-
ents of the forward problem are proposed, heavily borrowing
from [1], with specialization to the specific configuration of
our interest. In section III the level-set method is discussed
in detail, with most emphasis placed on the calculation of the
gradient of the variation of impedance. Since, for comparison,
one has also developed a binary-specialized method in har-
mony with the imaging of defects in a planar non-magnetic
metal plate [12], with some know-how from [13], this method
is summarized as well. Then, the practical implementation of
the level-set evolution is discussed. In section IV, a set of
numerical results is proposed for various defect topologies.
This is carried out from data simulated using the full vec-
tor formulation, the azimuthal component of the secondary
sources being the one used in the imaging procedure in most
cases, taking advantage of the fact that the primary electric
field, in applications of our main concern, is null along both
radial and axial directions. Such results are concluded upon in
section V.

II. T HE FORWARD PROBLEM

A. The modeling

Let us consider a hollow circular cylindrical tube (one
introduces circular cylindrical coordinates, the vertical z axis
coinciding with the tube axis). Assuming only non-magnetic
media (with vacuum permeabilityµ0), one denotes byσ0

the constant conductivity of the tube wall, air being on
both sides. With implied time-dependencee−jωt, the complex
permittivity in the eddy-current regime of our interest reads
as − σ

jω
. Accordingly, the wave numberk in metal (with

strictly positive imaginary part) is such thatk2 = jωσµ0. A
3-D bounded (volumetric) defect with finite support domain
Vf and conductivityσ (~r ) is assumed in the tube wall (its
parameters are allowed to vary as a function of location~r
though only homogeneous voids are dealt with in practice). It
is characterized at any~r by the contrast function

χ (~r ) =
σ (~r ) − σ0

σ0
. (1)

The latter is valued to zero outsideVf . From eddy-current spe-
cialization of the Maxwell equations, by applying the Green’s
theorem and accounting for the usual boundary conditions at
material discontinuities and radiation condition at infinity, one
shows that the electric field satisfies the vector domain integral
formulation [14]–[16]:

~E (~r ) = ~Einc (~r ) +

jωµ0

∫

Vf

G
(ee)

(~r, ~r ′) · σ0χ (~r ′) ~E (~r ′) dV ′. (2)

The dyadic Green’s functionG
(ee)

in the above,~r and ~r ′

being the observation and defect points, resp., is made of the

electric field response to a unit point current source of electric
nature (with orientations along the three axes of coordinates).
It satisfies the dyadic Helmholtz equation

∇×∇× G
(ee)

(~r, ~r ′) − k2
G

(ee)
(~r, ~r ′) = Iδ (~r − ~r ′) , (3)

I as the unit dyad, and the reciprocity relationship

G
(ee)

(~r, ~r ′) =

[

G
(ee)

(~r ′, ~r )

]T

, (4)

where superscriptT stands for transposition. As is usual, one
introduces fictitious current sources, null outsideVf , such as

~J (~r ) = σ0χ (~r ) ~E (~r ) , (5)

the electric field being~E = ~Einc + ~Es, ~E the total field,
~Es the anomalous one,~Einc the primary one (existing in a
flawless tube wall), calculated for axisymmetric source coils
(one will limit ourselves to one of those) according to the
Dodd and Deeds approach [17]).

Inside the defect volumeVf equation (2) becomes

~J inc (~r ) = ~J (~r ) −

jωµ0σ0χ (~r )

∫

Vf

G
(ee)

(~r, ~r ′) · ~J (~r ′) dV ′, (6)

letting ~J inc be the fictitious current (5) associated to the
primary field.

Various set-ups can be chosen for the evaluation of a
damaged tube wall. Here, the tube is tested from the inside,
an axisymmetric horizontal coil being moved along thez-
axis (the velocity is low enough to ignore motion-related
induction). The driving coil (Tx) is fed by an electric current
with given amplitudeI1. Primary eddy currents induced in the
tube wall are modified by the defect. A receiving coil (Rx) sees
it as a variation of voltage, or equivalently of mutual Tx-Rx
impedance, which follows from the reciprocity theorem [13],
[18]:

Z = −
1

I1I2

∫

Vf

~Einc
Rx (~r ′) · ~J (~r ′) dV ′, (7)

where ~Einc
Rx (~r ) denotes the primary electric field induced

within the flawless tube wall by the receiving coil (Rx)
fictitiously operated in the transmission mode (with current
set to I2). Let us notice that the latter requires the careful
calculation of a Green’s dyad having source point inside the
tube and observation point inside the wall.

Expression (7) corresponds to a single impedance mea-
surement. Imaging is expected to require several positions
of receiver and/or transmitter. LetZij be the impedance
corresponding to receiver Rxj and transmitter Txi, with j =
1, . . . , L and i = 1, . . . , I (a total of I × L measurements),
then

Zij = −
1

I1I2

∫

Vf

~Einc
Rxj

(~r ′) · ~Ji (~r ′) dV ′, (8)

where ~Ji is the fictitious current corresponding to theith-
applied current~J inc

i .
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B. The discrete solution

Integral equations (6) and (7) are solved by a Method
of Moments using pulse basis functions and discretizing the
defect with a regular cylindrical grid ofN elements [1].
Current (6) satisfies a linear system of equations

SJ = J0, (9)

whereJ andJ0 are3N × I matrices, forI applied currents,
the elements of which are the basis function coefficients, and
S is a 3N × 3N matrix.

The linear system (9) can be solved by a direct method,
which is faster than an iterative method for small domains,
a single inversion of the system matrix being needed for all
transmitter positions. This is the case for the inverse problem
at hand since the defect domain is necessarily smaller than the
RoI, and since the matrices in (9) can be constrained to the

defect domain,χG
(ee)

and ~J being zero outside it.

C. Reduction to the azimuthal component

Measured data are simulated by the full-vector formulation
(6),(8), but, for carrying out the inversion, dimensionality is
reduced, the azimuthal-azimuthal block of the dyad being the
only one accounted for, as follows. Indeed, for the axisym-
metric source coil envisaged, the primary electric field is zero
along both radial and axial directions (J0ρ (~r ) = J0z (~r ) = 0).
Thus, the linear system (9) simplifies into





Jρ

Jϕ

Jz



 =





Tρρ Tρϕ Tρz

TϕρTϕϕTϕz

Tzρ Tzϕ Tzz









0
J0ϕ

0



 =





Tρϕ

Tϕϕ

Tzϕ



J0ϕ, (10)

whereT = S
−1. Now, since the Green dyad is diagonally

dominant, the system matrixS and its inverseT are diagonally
dominant as well. But the two dominant termsTρρ andTzz do
not play any role, asJ0ρ = J0z = 0, while Tϕϕ is dominant
over Tρϕ and Tzϕ, thenJϕ ≫ Jρ,Jz . Accordingly, one is
able to approximate the current by its azimuthal component
with expected fair accuracy. So, (6) is reduced to its single
azimuthal component version:

J inc
ϕ (~r ) ≃ Jϕ (~r ) −

jωµ0σ0χ (~r )

∫

Vf

G
(ee)

ϕϕ (~r, ~r ′)Jϕ (~r ′) dV ′. (11)

The variation of the mutual impedance (7) then becomes:

Z ≃ −
1

I1I2

∫

Vf

Einc
ϕ,Rx (~r ′)Jϕ (~r ′) dV ′. (12)

The error on the impedance due to this approximation is
considered in section IV.

III. SHAPE RECONSTRUCTION PROBLEM

Let Ω be the prescribed RoI in the tube wall, andVf , such
asVf ⊂ Ω, be the damaged domain sought within it. One aims
at the recovery of the shape boundary of the defect,∂Vf . To
achieve this task by a gradient-based approach, an initial shape
is evolved into a direction that minimizes a functional misfit

TABLE I
FUNCTION SPACES REFERRED TO IN THE TEXT.

C Space of contrast functionsχ

U Space of fictitious currents~J

Y Space of current sources~Jinc

Z Space of measurementsζ

S Space of level-set functionsφ

of the ’measured’ and the model data. An efficient approach
enabling topological changes is to implicitly describeVf in
terms of a level-set function. Adopting the notation used in
[2], [19], the latter reads as

{

φ (~r ) ≥ 0 for all ~r ∈ Vf

φ (~r ) < 0 for all ~r ∈ Ω \ Vf

}

, (13)

such that the shape boundary is the zero level set:

∂Vf = {~r ∈ Ω, φ (~r ) = 0}. (14)

A. The operators

The main operators used are defined below (let us refer to
the function spaces in Table I).

Fictitious currents ~Ji (~r ) in Vf due to current sources
~J inc
i (~r ) (6), wherei = 1, . . . , I correspond to the applied

source currents, involve the operatorΛ(χ) : U 7→ Y, which,
after discretization, corresponds to the linear system

Λ(χ) ~Ji = ~J inc
i . (15)

Measurement operatorsMij : U 7→ Z, where Z= C, map the
current ~Ji for the transmitter Txi onto a measurementZij for
the receiver Rxj (8),

Zij = Mij
~Ji. (16)

Accordingly, the measured ’experimental’ dataζij ∈ Z are
associated to the current~J true

i corresponding to the ’true’ defect
χtrue(~r ),

ζij = Mij
~J true
i . (17)

The forward operatorAij : C 7→ Z maps contrast functionsχ
onto the data space,

Aij(χ) = MijΛ(χ)−1 ~J inc
i . (18)

The residual operatorRij : C 7→ Z is

Rij(χ) = Aij(χ) − ζij . (19)

Defining a nonlinear operatorΠ : S 7→ C that maps the level-
set function onto the contrast function

χ (~r ) = Π(φ) (~r ) =

{

−1, φ (~r ) ≥ 0
0, φ (~r ) < 0

}

, (20)

the residual operator (19) is written as

Tij(φ) = Rij (Π(φ)) . (21)

The shape reconstruction problem is then formulated as the
retrieval of the level-set functionφ which minimizes a least-
square functionalF(φ)

F(φ) =

I
∑

i=1

L
∑

j=1

Fij(φ) =

I
∑

i=1

L
∑

j=1

1

2
Tij(φ)Tij(φ), (22)

where overbar means complex conjugate.
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B. Differential operators

Solution of (22) via a gradient-based approach requires the
calculation of the gradient of the cost function with respect to
the level-set function. An analytical derivation of the gradient
with respect to the contrast function has been proposed in [11]
using function space methods. One then defines the gradient in
harmony with this result and deals with the level-set function
only at the last stage.

For the calculation of the gradient, the concept of Gateaux
derivative as a generalization of the discrete directionalderiva-
tive is employed. The derivative ofFij along the direction
given by an incrementalδφ is expressed as the dot product
between the gradientgradφFij(φ) : S 7→ R and the increment:

dδφFij(φ) =
d

dβ
Fij(φ+βδφ)

∣

∣

∣

β=0
= gradφFij(φ)·δφ, (23)

It can be shown that (23) transforms into

dδφFij(φ) = ℜ
(

Tij(φ)gradφAij(Π(φ))δφ
)

, (24)

ℜ as the real part.
The calculation ofgradφAij(Π(φ)) follows from the one

of the gradient of the forward operator with respect to the
contrast function,gradχAij(χ), which is proposed in general
form in [11].

Similarly to (23), gradχAij(χ) is introduced as a linear
operator that maps a change of contrast function onto a change
of impedance,gradχAij(χ) : C 7→ Z,

dδχAij(χ) =
d

dβ
Aij(χ + βδχ)

∣

∣

∣

β=0
= gradχAij(χ) · δχ.

(25)
Proceeding as in [11], for the multi-static configuration of
our interest (driving and receiver coils are different), one
differentiates the variation of impedanceZij in (8) as

dδχZij(χ) = −
1

I1I2

∫

Vf

~Einc
Rxj

(~r ′) · dδχ
~Ji(~r

′, χ)dV ′. (26)

Since ~Einc
Rxj

is the primary field associated to the receiver
~Einc

Rxj
, one introduces an adjoint field~ERxj

as the electric
field obtained by interchanging indices~r and~r ′ and solving
(2) for ~Einc

Rxj
, i.e.,

~Einc
Rxj

(~r ′) = ~ERxj
(~r ′) −

jωµ0

∫

Vf

dV [G
(ee)

(~r, ~r ′)]T · ~JRxj
(~r) . (27)

Differentiating ~J as a function of the contrast yields

dδχ
~J inc(~r ′, χ) = σ ~E (~r ) δχ (~r ) +

jωµ0σ0χ (~r )

∫

Vf

dV ′
G

(ee)
(~r, ~r ′) · dδχ

~J(~r ′, χ). (28)

Then, substituting (27) into (26), reordering terms, usingthe
dyadic relationship (12), and identifying the differential (28),

one gets

(I1I2)dδχZij(χ) = −

∫

Vf

dV ~ERxj
(~r) · dδχ

~Ji(~r, χ) +

∫

Vf

dV ~ERxj
(~r) jωµ0σ0χ (~r)

∫

Vf

dV ′
G

(ee)
(~r, ~r ′) dδχ

~Ji(~r
′, χ)

= −

∫

Vf

dV ~ERxj
(~r) · ~Ei (~r)σ0δχ (~r) , (29)

i.e.,

dδχAij(χ) = −
σ0

I1I2

∫

Vf

~ERxj
(~r ′) · ~Ei (~r ′) dV ′δχ, (30)

and the gradientgradχAij(χ) is

gradχAij(χ) = −
σ0

I1I2

∫

Vf

~ERxj
(~r ′) · ~Ei (~r ′) dV ′. (31)

The level-set function is now introduced from the rela-
tionship between the contrast (20) and a one-dimensional
Heaviside function,χ = Π(φ) = −H(φ), such that the Dirac-
Delta function isδ(φ) = ∂H(φ)/∂φ, then

dχ = −δ(φ)δφ, (32)

where an infinitesimal variation of the contrast function is
understood from a variation of the level-set function,δχ =
H(φ+δφ)−H(φ). Making explicit the dependencyχ = χ(φ)
in (30) and using (32),

dδφAij(φ) =
σ0

I1I2

∫

Vf

~ERxj
(~r ′) · ~Ei (~r ′) dV ′δ(φ)δφ. (33)

The gradient of the cost function then reads as

gradFij(φ) =
σ0

I1I2

ℜ






Tij(φ)

∫

Vf

~ERxj
(~r ′) · ~Ei (~r ′) dV ′δ(φ)






. (34)

The Dirac deltaδ(φ) in (33) means integration on the defect
boundary∂Vf . Thus, the gradient,gradφAij(φ), resulting
from (33) is not valued on the whole domain, which is an
obvious complication for a gradient-based method [8], [19].
An alternative involves the approximation of the Dirac-delta
in (32) by a functionΞ, set to 1 in a small finite-width
neighborhood of∂Vf and to0 elsewhere, up to some constants.
Then,

gradφAij(φ) ∝

∫

Vf

~ERxj
(~r ′) · ~Ei (~r ′) dV ′Ξ(∂Vf ). (35)

In the numerical implementation herein, even thoughΞ(∂Vf )
in (35) is zero far from the defect boundary, the numerical
computation ofgradφAij(φ) is extended into the whole do-
main, i.e., Ξ = 1 everywhere, avoiding the determination
of a specific neighborhood of∂Vf . (Let us notice here that
this amounts to the extension of the velocity onto the whole
domain in a Hamiltonian approach of a level-set evolution [7].)
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C. Implementation of the algorithm

The most important features of the implementation of the
proposed solution method are described below.

One starts from a level-set function as a piecewise constant
function the value of which at celln is φn, with n = 1, . . . , N .
The directional derivative is accordingly given by

dδφFij(φ) =

N
∑

n=1

gradφn
Fij(φ)δφn, (36)

such thatgradφn
Fij(φ) = ∂Fij(φ)/∂φn. Now, let us con-

sider this discrete level-set representation at some iteration k,
φ (~r n)[k], the initial guess (k = 0) being chosen as a signed
distance function from each point~r n to the surface of a sphere
with center at initial location~r 0 and radiusR0,

φ (~r n)
[0]

= R2
0 − |~r n − ~r 0|

2
. (37)

The update of the level set-function at stepk + 1 is given by

φ[k+1]
n = φ[k]

n + α[k+1]p[k]
n , (38)

whereα is a chosen step size andpn is the search direction
set as the Polak-Ribiere conjugate gradient direction

p[k+1]
n = −∇F [k+1]

n + β[k+1]p[k]
n , (39)

where

β[k+1] = max
{

∑N
n=1(∇F

[k+1]
n −∇F

[k]
n )∇F

[k+1]
n

∑N
n=1 ∇F

[k]
n ∇F

[k]
n

, 0
}

,

(40)
andp

[0]
n = −∇F

[0]
n .

The step sizeα should be such that the defect domain
(the contrast) is changed by between one and three voxels
at each update. This certainly slows down the reconstruction
yet yields a stable evolution of the level-set function [2],[20]
— if the constraint cannot be satisfied, the upper bound is
relaxed, enabling more than three voxels to change.

In addition, the inverse solution is regularized by smoothing
the search directionp via an uniform spatial filter, previously
to its update (38). In practice, its output is the average of its
26 neighbors,6 sharing a face,12 an edge, and8 a node, this
procedure being applied recursively three times —smoothing
yields as a general observation a more compactly retrieved
defect, and all results thereafter incorporate it.

The above procedure is pursued until the cost functional
(22) cannot be reduced any further, as is done in [2].

D. Comparison with a binary-specialized, non-linear
conjugate-gradient method

Results obtained by the proposed level-set retrieval are
compared in section IV with those provided by a binary-
specialized, non-linear conjugate-gradient method (denoted as
BNLCG). Since the derivative of the cost function with respect
to a binary contrast function is not defined, a relaxed version
of the contrast function which goes continuously from 0 to
1 can be put together (refer to [21] for its initial setting ina

2-D scattering case, and [12] for its development for a 3-D
eddy-current case). The contrast functionχ (~r) reads as

χ (~r) =
σ∗ − σ0

σ0
Ψ (τ (~r)) , Ψ (τ (~r)) =

1

1 + e−
τ(~r)

θ

, (41)

whereσ∗ is known (in the present case, this is air withσ∗ =
0). The functionΨ (τ (~r)) varies from 0 to 1 whenτ (~r) varies
from −∞ to +∞ (hereθ is kept constant and equated to one).
Then, one aims at the minimization of a cost functionF̃(τ)
with respect toτ (variation with~r is implied) stated as

F̃ (τ) =

I
∑

i=1

L
∑

j=1

F̃ij (τ) =

I
∑

i=1

L
∑

j=1

1

2
Rij(τ)Rij(τ). (42)

The gradient ofF̃ij in (42), like in (24), is valued to

gradτ F̃ij(τ) = ℜ
(

χ′ (τ)Rij(τ)gradχAij(χ)
)

, (43)

where χ′ (τ) is the derivative ofχ with respect toτ and
gradχAij(χ) is given by (31). Update of the contrast func-
tion is made according to a Polak-Ribiere conjugate-gradient
scheme, as in (39) upon substitution ofF̃ to F , the step size
being computed analytically as suggested in [11].

IV. N UMERICAL RESULTS

The algorithm has been thoroughly tested from synthetic
data, a small set of illustrative results being analyzed herein.
The configuration itself is taken from [13]. The tube wall
is a highly conductive, non-magnetic material (Inconel 600:
conductivityσ0 = 0.98× 106 Sm−1), and it is of internal and
external radii of9.83 and11.1 mm, resp. The region of interest
inside has dimensions∆ρ×∆ϕ×∆z = 1.27mm×8◦×1.6mm
and is divided into10 × 16 × 16 = 2560 cells, each of size
∆ρ × ∆ϕ × ∆z = 0.127mm× 0.5◦ × 0.1mm. The source
is a 30-turn circular coil of internal and external radii of
9.25 and 9.55 mm, 2 mm thick, centered along the tube
axis. The variation of impedance between the source coil
and a small coil receiver (assumed as a vertical dipole) is
measured for16 heights of the source coil and, for each source
position,16 positions of the receiver coil along a small portion
of a circular arc at9.73 mm from the center of the tube,
scanning a total surface of∆ϕ × ∆z = 8◦ × 1.6mm with
stepδϕ×δz = 0.5◦×0.1mm. Two frequencies are employed,
100kHz (skin depthδ = 1.6mm) and500kHz (δ = 0.72mm).

The case of a void defect opening in the interior of the tube
(inner defect) is illustrated in figure 1.

It can be a shallow defect (dimensions of∆ρ×∆ϕ×∆z =
0.51mm×3.5◦×0.6mm, its depth as 40% thickness of the wall,
Fig. 1(a)) or a deep defect (dimensions of∆ρ× ∆ϕ× ∆z =
1mm× 0.65mm× 0.65mm, its depth as 83% thickness of the
wall, Fig. 1(e)), several reconstructions being proposed,further
results (the decrease of the cost function and its gradient)being
found in Figs. 3(a)-3(b)). Discretization into10×16×16 cells
and10 × 6 × 6 cells is respectively performed.

Letting the initial estimate be made of a few voxels in the
center of the tube wall, and using data calculated with the
same discretization as the one used along the inversion, the
inner void defect appears well retrieved according both depth
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(a) Shallow void (b) (c) (d) (e) Deep void (f) (g) (h)

Fig. 1. Single inner void retrieved by the level-set method (LS) at 100 kHz, with comparison to a binary-specialized scheme (BNLCG). Slices of contrast
χ alongz are displayed in the RoI (spanning the whole thickness of thewall), blank cells being asχ = 1 (defect) and black ones asχ = 0. Shallow defect:
exact one (a), LS retrieved (b-d) from initial estimate in the center of the wall, with exact data (b), with noisy data and azimuthal approximation (c), and with
noisy data without azimuthal approximation (d). Deep defect: exact one (e), LS retrieved (f-g) from initial estimate inthe center of the wall and exact data,
with azimuthal approximation (f) or without azimuthal approximation (g), and BNLCG retrieved (h).

(a) Outer void (b) (c) (d) Through-wall (e) (f) (g)

Fig. 2. Single outer or through-wall void defect retrieved by the level-set method (LS) (same display as in Fig. 1): exactouter defect (a), retrieved from
initial estimate in the center of the wall (b) or at its exterior interface (c); exact through-wall defect (d), retrievedfrom initial estimate in the center of the
wall (e), as a long inner defect (f), and at 500 kHz in the center of the wall (g), 100 kHz being assumed otherwise.
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and height, its azimuthal extent however being slightly over-
estimated. As for the cost function, it is decreased by three
orders of magnitude after it reaches a plateau, as well as its
gradient (Figs. 3(a)-3(b)).

Then, if Gaussian noise is added to both real and imaginary
parts of the variations of impedance (11 dB SNR), the retrieved
defect becomes rather blurred (Fig. 1(c)), in agreement with
the fact that the cost function is only reduced by a factor of
10 from its initial value (its gradient is decreased down to the
same level as without noise, no further improvement appears
possible).

Let us notice in addition that the over-estimation of the
azimuthal extent mentioned in the above appears at least
partially caused by the azimuthal approximation made, since
a slight improvement is gained when using the full field
(6),(7); in particular one can compare Fig. 1(d) where this
approximation is not made to Fig. 1(c) where it is.

Retrieval of a bigger defect is shown in figure 1(f)) with an
error of about 0.25mm (δ/6). Let us notice that the error on the
variation of impedance due to the azimuthal approximation,
taken as100

‖dZ−dZ(Jϕ)‖
‖dZ‖ |, is of the order of3%. Here,

carrying out the reconstruction with the full fields insteadof
the approximated ones again slightly reduces over-shoot inthe
azimuthal direction.

The level-set method is also compared with the BNLCG-
method as summarized in the above. The fully binary rep-
resentation of the defect by the level-set method can indeed
be put in contrast with the continuous representation of the
contrast by the BNLCG-method, see Fig. 1(h). Both in effect
yield similar retrievals, save the fact that the minimum of the
cost function reached by the latter method is two orders of
magnitude lower than with the former (results not shown).

The case of a void defect identical with the one in the above
but now opening in the exterior of the tube (outer defect) is
illustrated in figure 2 as well as the case of a through-wall
defect (dimensions∆ρ×∆ϕ×∆z = 1.27mm×3.2◦×0.65mm,
discretized into16 × 7 × 7, Fig. 2(d)).

Retrievals of the outer defect, refer to Fig.2(b) from an
initial estimate in the center of the tube, and to Fig. 2(c))
from an initial estimate at the exterior boundary, appear quite
similar. As for the through-wall defect, full depth recovery is
achieved as illustrated in Fig. 2(e). This is improved by taking
a long defect as the initial estimate, the location of which could
be assumed as a-priori information from the previous retrieval,
refer to Fig. 2(f). Here, let us emphasize that increasing the
frequency to 500 kHz (δ = 0.72) instead of 100 kHz in all
above cases worsens the depth estimate as exemplified in Fig.
2(g).

Considering now two defects, an inner one and an outer one,
each of same size∆ρ×∆ϕ×∆z = 0.39mm×3.2◦×0.65mm
and discretized into5× 7× 7 cells (Fig. 4(a)), only the inner
defect could be retrieved (Fig. 4(b)) unless an initial estimate
comprising two defect zones is chosen (Fig. 4(c)). In any case,
the size of the outer defect is over-estimated and the size of
the inner one is under-estimated in relation to the fact thatthe
sensitivity of the variation of impedance with respect to the
contrast decreases with depth.

With the BNLCG method, the retrieval of two defects is

feasible, without prior information on the location of the
defect (results not shown). This can be a mixed effect between
a low sensitivity to changes near the exterior interface of
the tube and the propagative nature of the level-set method
from the initial estimate. Further insight into the sensitivity
of the variation of impedance with respect to the level-set
function, i.e., the Jacobian matrix, confirms the large decrease
in sensitivity faced with depth as shown in Fig. 5(a) for a
typical measurement set-up (one of those used to get the results
of Fig. 1).

V. D ISCUSSION

The feasibility of the retrieval of 3-D void defects is
investigated by means of a gradient-based, level-set method.
Both inner and outer defects, as well as a through-hole one are
fairly mapped. Yet two defects opening in air, one inner one
and one outer one; are retrieved only when two defects are also
assumed as the initial estimate. As a general rule, a decrease of
sensitivity with depth, and so a better mapping of inner defects
is observed. Reduction of dimensionality of the inversion by
approximating the fictitious current to its azimuthal component
leads to a few-percent error on the variation of impedance, and
is successfully for most retrievals —the error is the largest for
long defects, yielding slightly over-extended ones along the
azimuthal direction.

Reconstruction with the BNLCG method, a detailed inves-
tigation of which is out of the scope of this contribution,
leads to rather similar results, yet (in general) the minimum
of the cost function reached is much smaller. This may be
due to the fact that the BNLCG method updates the contrast
in the whole region of interest at every iteration whereas the
proposed level-set method evolves the shape from an initial
guess and suffer from occurence of regions of less sensitivity
to contrast changes.

Dimensionality and computation time are major issues due
to the size of the Green dyads involved; for a discretizationof
the search domain into10×16×16 cells, these dyads require1
GB of memory. Yet, since the contrast function is zero outside
the defect, inversion of the linear system and matrix-vector
multiplication involving the contrast can be speeded up by
restriction to the defect domain.

Further improvement of the algorithm could result from a
two-step approach for which an estimate of the defect location
is obtained by means of a fast volume reconstruction method,
whilst normalizing the gradients should improve sensitivity
with depth, e.g., [19].
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