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, Nualart and Ortiz-Latorre (2007), Peccati (2007) and Nourdin and Peccati (2007b, 2008); in particular, they apply to approximations by means of Gaussian vectors with an arbitrary, positive definite covariance matrix. Among several examples, we provide an application to a functional version of the Breuer-Major CLT for fields subordinated to a fractional Brownian motion.

Introduction

Let Z ∼ N (0, 1) be a standard Gaussian random variable on some probability space (Ω, F, P ), and let F be a real-valued functional of an infinite-dimensional Gaussian field. In the papers [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF][START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF] it is shown that one can combine Stein's method (see e.g. [START_REF] Chen | Stein's method for normal approximation[END_REF], [START_REF] Ch | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF] or [START_REF] Ch | Approximate computation of expectations[END_REF]) with Malliavin calculus (see e.g. [START_REF] Nualart | The Malliavin calculus and related topics (2 nd Edition)[END_REF]), in order to deduce explicit (and, sometimes, optimal) bounds for quantities of the type d(F, Z), where d stands for some distance between the law of F and the law of Z (e.g., d can be the Kolmogorov or the Wasserstein distance). The aim of this paper is to extend the results of [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF][START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF] to the framework of the multidimensional Gaussian approximation in the Wasserstein distance. Once again, our techniques hinge upon the use of infinite-dimensional operators on Gaussian spaces (like the divergence operator or the Ornstein-Uhlenbeck generator) and upon an appropriate multidimensional version of Stein's method (in a form close to Chatterjee and Meckes [START_REF] Chatterjee | Multivariate normal approximation using exchangeable pairs[END_REF], but see also Reinert and Röllin [20]). As a result, we will obtain explicit bounds, both in terms of Malliavin derivatives and contraction operators, thus providing a substantial refinement of the main findings by Nualart and Ortiz-Latorre [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF] and Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. Note that an important part of our computations (see e.g. Lemma 3.7) are directly inspired by those contained in [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF]: we shall indeed stress that this last reference contains a fundamental methodological breakthrough, showing that one can deal with (possibly multidimensional) weak convergence on a Gaussian space, by means of Malliavin-type operators and "characterizing" differential equations. See [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF] for an application of these techniques to non-central limit theorems. Incidentally, observe that the paper [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF], which is mainly based on martingale-type techniques, also uses distances between probability measures (such as the Prokhorov distance) to deal with multidimensional Gaussian approximations on Wiener space, but without giving explicit bounds.

The rationale behind Stein's method is better understood in dimension one. In this framework, the starting point is the following crucial result, proved e.g. in [START_REF] Ch | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF].

Lemma 1.1 (Stein's Lemma).

A random variable Y is such that Y Law = Z ∼ N (0, 1) if and only if, for every continuous and piecewise continuously differentiable function f : R → R such that E f ′ (Z) < ∞, one has

E[f ′ (Y ) -Y f (Y )] = 0.
(1.1)

The fact that a random variable Y satisfying (1.1) is necessarily Gaussian can be proved by several routes: for instance, by taking f to be a complex exponential, one can show that the characteristic function of Y , say ψ(t), is necessarily a solution to the differential equation ψ ′ (t) + tψ(t) = 0, and therefore ψ(t) = exp(-t 2 /2); alternatively, one can set f (x) = x n , n = 1, 2, ..., and observe that (1.1) implies that, for every n, one must have E(Y n ) = E(Z n ), where Z ∼ N (0, 1) (note that the law of Z is determined by its moments).

Heuristically, Lemma 1.1 suggests that the distance d(Y, Z), between the law of a random variable Y and that of Z ∼ N (0, 1), must be "small" whenever

E[f ′ (Y ) -Y f (Y )] ≃ 0,
for a sufficiently large class of functions f . In the seminal works [START_REF] Ch | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF][START_REF] Ch | Approximate computation of expectations[END_REF], Stein proved that this somewhat imprecise argument can be made rigorous by means of the use of differential equations. To see this, for a given function g : R → R, define the Stein equation associated with g as

g(x) -E[g(Z)] = h ′ (x) -xh(x), ∀x ∈ R, (1.2) 
(we recall that Z ∼ N (0, 1)). A solution to (1.2) is a function h which is Lebesgue-almost everywhere differentiable, and such that there exists a version of h ′ satisfying (1.2) for every x ∈ R. If one assumes that g ∈ Lip(1) (that is, if g Lip ≤ 1, where • Lip stands for the usual Lipschitz seminorm), then a standard result (see e.g. [START_REF] Ch | Approximate computation of expectations[END_REF]) yields that (1.2) admits a solution h such that h ′ ∞ ≤ 1 and h ′′ ∞ ≤ 2. Now recall that the Wasserstein distance between the laws of two real-valued random variables Y and X is defined as

d W (Y, X) = sup g∈Lip(1) |E[g(Y )] -E[g(X)]| ,
and introduce the notation

F W = {f : f ′ ∞ ≤ 1, f ′′ ∞ ≤ 2}
. By taking expectations on the two sides of (1.2), one obtains finally that, for Z ∼ N (0, 1) and for a generic random variable Y ,

d W (Y, Z) ≤ sup f ∈F W E[f ′ (Y ) -Y f (Y )] , (1.3) 
thus giving a precise meaning to the heuristic argument sketched above (note that an analogous conclusion can be obtained for other distances, such as the total variation distance or the Kolmogorov distance -see e.g. [START_REF] Chen | Stein's method for normal approximation[END_REF] for a discussion of this point). We stress that the topology induced by d W , on probability measures on R, is stronger than the topology induced by weak convergence.

The starting point of [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF][START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF] is that a relation such as (1.3) can be very effectively combined with Malliavin calculus, whenever Y is a centered regular functional of some infinite dimensional Gaussian field. To see this, denote by DY the Malliavin derivative of Y (observe that DY is a random element with values in some adequate Hilbert space H), and write L to indicate the (infinite-dimensional) Ornstein-Uhlenbeck generator (see Section 2 below for precise definitions). One crucial relation proved in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], and then further exploited in [START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF], is the upper bound

d W (Y, Z) ≤ E|1 -DY, -DL -1 Y H |. (1.4) 
As shown in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], when specialized to the case of Y being equal to a multiple Wiener-Itô integral, relation (1.4) yields bounds that are intimately related with the CLTs proved in [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF] and [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. See [START_REF] Nourdin | Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields[END_REF] for a characterization of the optimality of these bounds; see again [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] for extensions to non-Gaussian approximations and for applications to the Breuer-Major CLT (stated and proved in [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]) for functionals of a fractional Brownian motion.

The principal contribution of the present paper (see e.g. the statement of Theorem 3.5 below) consists in showing that a relation similar to (1.4) continues to hold when Z is replaced by a d-dimensional (d ≥ 2) Gaussian vector F = (F 1 , ..., F d ) of smooth functionals of a Gaussian field, and d W is the Wasserstein distance between probability laws on R d (see Definition 3.1 below). Our results apply to Gaussian approximations by means of Gaussian vectors with arbitrary positive definite covariance matrices. The proofs rely on a multidimensional version of the Stein equation (1.2), that we combine with standard integration by parts formulae on an infinite-dimensional Gaussian space. Our approach bears some connections with the paper by Hsu [START_REF] Hsu | Characterization of Brownian motion on manifolds through integration by parts[END_REF], where the author proves an hybrid Stein/semimartingale characterization of Brownian motions on manifolds, via Malliavintype operators.

The paper is organized as follows. In Section 2 we provide some preliminaries on Malliavin calculus. Section 3 contains our main results, concerning Gaussian approximations by means of vectors of Gaussian random variables with positive definite covariance matrices. Finally, Section 4 deals with two applications: (i) to a functional version of the Breuer-Major CLT (see [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]), and (ii) to Gaussian approximations of functionals of finite normal vectors, providing a generalization of a technical result proved by Chatterjee in [START_REF] Chatterjee | Fluctuation of eigenvalues and second order Poincaré inequalities[END_REF].

Preliminaries and notation

In this section, we recall some basic elements of Malliavin calculus for Gaussian processes. The reader is referred to [START_REF] Nualart | The Malliavin calculus and related topics (2 nd Edition)[END_REF] for a complete discussion of this subject. Let X = {X(h), h ∈ H} be an isonormal Gaussian process on a probability space (Ω, F, P ). This means that X is a centered Gaussian family indexed by the elements of an Hilbert space H, such that, for every pair h, g ∈ H one has that E[X(h)X(g)] = h, g H .

We let L 2 (X) be shorthand for the space L 2 (Ω, σ(X), P ). It is well known that every random variable F ∈ L 2 (X) admits the chaotic expansion F = E(F ) + ∞ n=1 I n (f n ) where the deterministic kernels f n , n ≥ 1, belong to H ⊙n and the convergence of the series holds in L 2 (X). One sometimes uses the notation I 0 (f 0 ) = E[F ]. In the particular case where H := L 2 (T, A, µ), with (T, A) a measurable space and µ is a σ-finite measure without atoms, the random variable I n (f n ) coincides with the multiple Wiener-Itô integral (of order n) of f n with respect to X (see [START_REF] Nualart | The Malliavin calculus and related topics (2 nd Edition)[END_REF]Section 1.1.2.]).

Let f ∈ H ⊙p , g ∈ H ⊙q and 0 ≤ r ≤ p ∧ q. We define the rth contraction f ⊗ r g of f and g as the element of H ⊗(p+q-2r) given by

f ⊗ r g := ∞ i 1 ,...,ir=1
f, e i 1 ⊗ . . . ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ . . . ⊗ e ir H ⊗r , where {e k , k ≥ 1} is a complete orthonormal system in H. Note that f ⊗ 0 g = f ⊗ g; also, if p = q, then f ⊗ p g = f, g H ⊗p . Note that, in general, f ⊗ r g is not a symmetric element of H ⊗(p+q-2r) ; the canonical symmetrization of f ⊗ r g is denoted by f ⊗ r g. We recall the product formula for multiple stochastic integrals:

I p (f )I q (g) = p∧q r=0 r! p r p q I p+q-2r (f ⊗ r g).
Now, let S be the set of cylindrical functionals F of the form

F = ϕ(X(h 1 ), . . . , X(h n )), (2.1) 
where n ≥ 1, h i ∈ H and the function ϕ ∈ C ∞ (R n ) is such that its partial derivatives have polynomial growth. The Malliavin derivative DF of a functional F of the form (2.1) is the square integrable H-valued random variable defined as

DF = n i=1 ∂ i ϕ(X(h 1 ), . . . , X(h n ))h i , (2.2) 
where ∂ i ϕ denotes the ith partial derivative of ϕ. In particular, one has that DX(h) = h for every h in H. By iteration, one can define the mth derivative D m F of F ∈ S , which is an element of L 2 (Ω; H ⊙m ), for m ≥ 2. As usual D m,2 denotes the closure of S with respect to the norm • m,2 defined by the relation

F 2 m,2 = E[F 2 ] + m i=1 E[ D i F 2 H ⊗i ].
Note that every finite sum of Wiener-Itô integrals always belongs to D m,2 (∀m ≥ 1). The Malliavin derivative D satisfies the following chain rule formula:

if ϕ : R n → R is in C 1 b
(defined as the set of continuously differentiable functions with bounded partial derivatives) and if (F 1 , . . . , F n ) is a random vector such that each component belongs to D 1,2 , then ϕ(F 1 , . . . , F n ) is itself an element of D 1,2 , and moreover

Dϕ(F 1 , . . . , F n ) = n i=1 ∂ i ϕ(F 1 , . . . , F n )DF i .
(2.

3)

The divergence operator δ is defined as the dual operator of D. Precisely, a random element u of L 2 (Ω; H) belongs to the domain of δ (denoted by Domδ) if there exists a constant

c u satisfying |E[ DF, u H ]| ≤ c u F L 2 (Ω)
for every F ∈ S ; in this case, the divergence of u, written δ(u), is defined by the following duality property:

E[F δ(u)] = E[ DF, u H ], ∀F ∈ D 1,2 .
(2.4)

The crucial relation (2.4) is customarily called the (Malliavin) integration by parts formula.

In what follows, we shall denote by T = {T t : t ≥ 0} the Ornstein-Uhlenbeck semigroup. We recall that, for every t ≥ 0 and every F ∈ L 2 (X),

T t (F ) = ∞ n=0 e -nt J n (F ), (2.5) 
where, for every n ≥ 0 and for the rest of the paper, the symbol J n denotes the projection operator onto the nth Wiener chaos, that is onto the closed linear subspace of L 2 (X) generated by the random variables of the form H n (X(h)) with h ∈ H such that h H = 1, and H n the nth Hermite polynomial defined by (4.1). Note that T is indeed the semigroup associated with an infinite-dimensional stationary Gaussian process with values in R H , having the law of X as an invariant distribution (see e.g. [14, Section 1.4] for a more detailed discussion of the Ornstein-Uhlenbeck semigroup in the context of Malliavin calculus; see Barbour [START_REF] Barbour | Stein's method for diffusion approximations[END_REF] for a version of Stein's method involving Ornstein-Uhlenbeck semigroups on infinite-dimensional spaces; see Götze [START_REF] Götze | On the rate of convergence in the multivariate CLT[END_REF] for a version of Stein's method based on multi-dimensional Ornstein-Uhlenbeck semigroups). The infinitesimal generator of the Ornstein-Uhlenbeck semigroup is noted L. A square integrable random variable F is in the domain of L (noted DomL) if F belongs to the domain of δD (that is, if F is in D 1,2 and DF ∈ Domδ) and, in this case, LF = -δDF. One can prove that LF is such that LF = -∞ n=0 nJ n (F ). As an example, if F = I q (f q ), with f q ∈ H ⊙q , then LF = -qF . Note that, for every F ∈ DomL, one has E(LF ) = 0. The inverse L -1 of the operator L acts on zero-mean random variables

F ∈ L 2 (X) as L -1 F = -∞ n=1 1 n J n (F ).
In particular, for every q ≥ 1 and every F = I q (f q ) with f q ∈ H ⊙q , one has that L -1 F = -1 q F . We conclude this section by recalling two important characterizations of the Ornstein-Uhlenbeck semigroup and its generator. i) Mehler's formula. Let F be an element of L 2 (X), so that F can be represented as an application from R H into R. Then, an alternative representation (due to Mehler) of the action of the Ornstein-Uhlenbeck semigroup T (as defined in (2.5)) on F , is the following:

T t (F ) = E[F (e -t a + 1 -e -2t X)] | a=X , t ≥ 0, (2.6)
where a designs a generic element of R H . See Nualart [14, Section 1.4.1] for more details on this and other characterizations of T .

ii) Differential characterization of L. Let F ∈ L 2 (X) have the form F = f (X(h 1 ), ..., X(h d )), where f ∈ C 2 (R d ) has bounded first and second derivatives, and h i ∈ H, i = 1, ..., d. Then,

LF = d i,j=1 ∂ 2 f ∂x i ∂x j (X(h 1 ), ..., X(h d )) h i , h j H - d i=1 ∂f ∂x i (X(h 1 ), ..., X(h d ))X(h i ). (2.7)
See Propositions 1.4.4 and 1.4.5 in [START_REF] Nualart | The Malliavin calculus and related topics (2 nd Edition)[END_REF] for a proof and some generalizations of (2.7).

Stein's method and Gaussian vectors

We start by giving a definition of the Wasserstein distance, as well as by introducing some useful norms over classes of real-valued matrices.

Definition 3.1. (i) The Wasserstein distance between the laws of two R d -valued random vectors X and Y , noted d W (X, Y ), is given by

d W (X, Y ) := sup g∈H ; g Lip ≤1 E[g(X)] -E[g(Y )] ,
where H indicates the class of Lipschitz functions, that is, the collection of all func- 

tions g : R d → R such that g Lip := sup x =y |g(x) -g(y)| x -y R d < ∞ (with • R d the usual Euclidian norm on R d ).
A op := sup x R d =1 Ax R d . Remark 3.2.
1. For every d ≥ 1 the topology induced by d W , on the class of all probability measures on R d , is strictly stronger than the topology induced by weak convergence (see e.g. Dudley [START_REF] Dudley | Real Analysis and Probability (2 nd Edition)[END_REF]Chapter 11]).

2. The reason why we focus on the Wasserstein distance is nested in the statement of the forthcoming Lemma 3.3. Indeed, according to relation (3.4), in order to control the second derivatives of the solution of the Stein equation (3.3) associated with g, one must use the fact that g is Lipschitz.

3. According to the notation introduced in Definition 3.1(ii), relation (2.7) can be rewritten as

LF = C, Hessf (Z) H.S. -Z, ∇f (Z) R d , (3.1) 
where Z = (X(h 1 ), ..., X(h d )), and C = {C(i, j) : i, j = 1, ..., d} is the

d × d covariance matrix such that C(i, j) = E(X(h i )X(h j )) = h i , h j H .
Given a d × d positive definite symmetric matrix C, we use the notation N d (0, C) to indicate the law of a d-dimensional Gaussian vector with zero mean and covariance C. The following result, which is basically known (see e.g. [START_REF] Chatterjee | Multivariate normal approximation using exchangeable pairs[END_REF] or [START_REF] Reinert | Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition[END_REF]), is the d-dimensional counterpart of Stein's Lemma 1. 1. In what follows, we provide a new proof which is almost exclusively based on the use of Malliavin operators. for every twice differentiable function f :

R d → R such that E| C, Hessf (Y ) H.S. | + E| Y, ∇f (Y ) R d | < ∞, it holds that E[ Y, ∇f (Y ) R d -C, Hessf (Y ) H.S. ] = 0. (3.2) (ii) Consider a Gaussian random vector Z ∼ N d (0, C). Let g : R d → R belong to C 2 (R d )
with first and second bounded derivatives. Then, the function U 0 (g) defined by

U 0 g(x) := 1 0 1 2t E[g( √ tx + √ 1 -tZ) -g(Z)]dt
is a solution to the following differential equation (with unknown function f ):

g(x) -E[g(Z)] = x, ∇f (x) R d -C, Hessf (x) H.S. , x ∈ R d . (3.3) 
Moreover, one has that

sup x∈R d Hess U 0 g(x) H.S. ≤ C -1 op C 1/2 op g Lip . (3.4) 
Remark 3.4.

1. If C = σ 2 I d for some σ > 0 (that is, if Z is composed of i.i.d. centered Gaussian random variables with common variance equal to σ 2 ), then Proof of Lemma 3.3. We start by proving Point (ii). First observe that, without loss of generality, we can suppose that Z = (Z 1 , ..., Z d ) := (X(h 1 ), ...X(h d )), where X is an isonormal Gaussian process over H = R d , the kernels h i belong to H (i = 1, ..., d), and

C -1 op C 1/2 op = σ -2 I d op σ 2 I d 1/2 op = σ -1 .
h i , h j H = E(X(h i )X(h j )) = E(Z i Z j ) = C(i, j)
. By using the change of variable 2u = -log t, one can rewrite U 0 g(x) as follows

U 0 g(x) = ∞ 0 {E[g(e -u x + 1 -e -2u Z)] -E[g(Z)]}du. Now define g(Z) := g(Z) -E[g(Z)
], and observe that g(Z) is by assumption a centered element of L 2 (X). For q ≥ 0, denote by J q ( g(Z)) the projection of g(Z) on the qth Wiener chaos, so that J 0 ( g(Z)) = 0. According to Mehler's formula (2.6),

E[g(e -u x + 1 -e -2u Z)]| x=Z -E[g(Z)] = E[ g(e -u x + 1 -e -2u Z)]| x=Z = T u g(Z),
where x denotes a generic element of R d . In view of (2.5), it follows that

U 0 g(Z) = ∞ 0 T u g(Z)du = ∞ 0 q≥1 e -qu J q ( g(Z))du = q≥1 1 q J q ( g(Z)) = -L -1 g(Z).
Since g belongs to C 2 (R d ) with bounded first and second derivatives, it is easily seen that the same holds for U 0 g. By exploiting the differential representation (3.1), one deduces that

Z, ∇U 0 g(Z) R d -C, HessU 0 g(Z) H.S. = -LU 0 g(Z) = LL -1 g(Z) = g(Z) -E[g(Z)].
Since the matrix C is positive definite, we infer that the support of the law of Z coincides with R d , and therefore (e.g. by a continuity argument) we obtain that

x, ∇U 0 g(x) R d -C, Hess U 0 g(x) H.S. = g(x) -E[g(Z)],
for every x ∈ R d . This yields that the function U 0 g solves the Stein's equation (3.3).

To prove the estimate (3.4), we first recall that there exists a unique non-singular symmetric matrix A such that A 2 = C, and that one has that On the other hand, by noting h A -1 (x) = h(A -1 x), one obtains by standard computations (recall that A is symmetric) that Hess U

A -1 Z ∼ N d (0, I d ). Now write U 0 g(x) = h(A -1 x), where h(x) = 1 0 1 2t E[g A ( √ tx + √ 1 -tA -1 Z) -g A (A -1 Z)]dt,
0 g(x) = Hess h A -1 (x) = A -1 Hess h(A -1 x)A -1 , yielding sup x∈R d
Hess U 0 g(x) H.S. = sup

x∈R d A -1 Hess h(A -1 x)A -1 H.S.
= sup

x∈R d A -1 Hess h(x)A -1 H.S. ≤ A -1 2 op sup x∈R d Hess h(x) H.S. (3.6) ≤ A -1 2 op A op g Lip (3.7) ≤ C -1 op C 1/2 op g Lip . (3.8) 
The chain of inequalities appearing in formulae (3.6)-(3.8) are mainly a consequence of the usual properties of the Hilbert-Schmidt and operator norms. Indeed, to prove inequality (3.6) we used the relations

A -1 Hess h(x)A -1 H.S. ≤ A -1 op Hess h(x)A -1 H.S. ≤ A -1 op Hess h(x) H.S. A -1 op ; relation (3.7
) is a consequence of (3.5); finally, to show the inequality (3.8), one uses the fact that

A -1 op ≤ A -1 A -1 op = C -1 op and A op ≤ AA op = C op .
We are now left with the proof of Point (i) in the statement. The fact that a vector Y ∼ N d (0, C) necessarily verifies (3.2) can be proved by standard integration by parts.

On the other hand, suppose that Y verifies (3.2). Then, according to Point (ii), for every g ∈ C 2 (R d ) with bounded first and second derivatives,

E(g(Y )) -E(g(Z)) = E( Y, ∇U 0 g(Y ) R d -C, Hess U 0 g(Y ) H.S. ) = 0,
where Z ∼ N d (0, C). Since the collection of all such functions g generates the Borel σ-field on R d , this implies that Y Law = Z, thus yielding the desired conclusion.

The following statement is the main result of this paper. Its proof makes a crucial use of the integration by parts formula (2.4) discussed in Section 2. 

d W (F, Z) ≤ C -1 op C 1/2 op E C -Φ(DF ) 2 H.S (3.9) = C -1 op C 1/2 op d i,j=1 E[(C(i, j) -DF i , -DL -1 F j H ) 2 ], (3.10) 
where we write Φ(DF ) to indicate the matrix Φ(DF ) := { DF i , -DL -1 F j H : 1 ≤ i, j ≤ d}.

Proof. We start by proving that, for every g ∈ C 2 (R d ) with bounded first and second derivatives,

|E[g(F )] -E[g(Z)]| ≤ C -1 op C 1/2 op g Lip E C -Φ(DF ) 2 H.S .
To prove such a claim, observe that, according to Point (ii

) in Lemma 3.3, E[g(F )] - E[g(Z)] = E[ F, ∇U 0 g(F ) R d -C, HessU 0 g(F ) H.S. ]. Moreover, E[ C, HessU 0 g(F ) H.S. -F, ∇U 0 g(F ) R d ] = E   d i,j=1 C(i, j)∂ 2 ij U 0 g(F ) - d i=1 F i ∂ i U 0 g(F )   = d i,j=1 E C(i, j)∂ 2 ij U 0 g(F ) - d i=1 E LL -1 F i ∂ i U 0 g(F ) (since E(F i ) = 0) = d i,j=1 E C(i, j)∂ 2 ij U 0 g(F ) + d i=1 E δ(DL -1 F i )∂ i U 0 g(F ) (since δD = -L) = d i,j=1 E C(i, j)∂ 2 ij U 0 g(F ) - d i=1 E D(∂ i U 0 g(F )), -DL -1 F i H (by (2.4)) = d i,j=1 E C(i, j)∂ 2 ij U 0 g(F ) - d i,j=1 E ∂ 2 ji U 0 g(F ) DF j , -DL -1 F i H (by (2.3)) = d i,j=1 E ∂ 2 ij U 0 g(F ) C(i, j) -DF i , -DL -1 F j H = E Hess U 0 g(F ), C -Φ(DF ) H.S. ≤ E Hess U 0 g(F ) 2 H.S E C -Φ(DF ) 2
H.S (by the Cauchy-Schwarz inequality)

≤ C -1 op C 1/2 op g Lip E C -Φ(DF ) 2 H.S (by (3.4)).
To prove the Wasserstein estimate (3.9), it is sufficient to observe that, for every globally Lipschitz function g such that g Lip ≤ 1, there exists a family {g ε : ε > 0} such that:

(i) for each ε > 0, the first and second derivatives of g ε are bounded;

(ii) for each ε > 0, one has that g ε Lip ≤ g Lip ;

(iii) as ε → 0, g ε -g ∞ ↓ 0.

For instance, we can choose

g ε (x) = E g(x + √ εN ) with N ∼ N d (0, I d ).
Observe that Theorem 3.5 generalizes relation (1.4) (that was proved in [12, Theorem 3.1]). We now aim at applying Theorem 3.5 to vectors of multiple stochastic integrals. Corollary 3.6. Fix d ≥ 2 and 1 ≤ q 1 ≤ . . . ≤ q d . Consider a vector

F := (F 1 , . . . , F d ) = (I q 1 (f 1 ), . . . , I q d (f d )) with f i ∈ H ⊙q i for any i = 1 . . . , d. Let Z ∼ N d (0, C), with C positive definite. Then, d W (F, Z) ≤ C -1 op C 1/2 op 1≤i,j≤d E C(i, j)- 1 q j DF i , DF j H 2 . ( 3 

.11)

Proof. We have -L -1 F j = 1 q j F j so that the desired conclusion follows from (3.10).

When one applies Corollary 3.6 in concrete situations (see e.g. Section 4 below), one can use the following result in order to evaluate the right-hand side of (3.11). Lemma 3.7. Let F = I p (f ) and G = I q (g), with f ∈ H ⊙p and g ∈ H ⊙q (p, q ≥ 1). Let a be a real constant. If p = q, one has the estimate:

E a - 1 p DF, DG H 2 ≤ (a -p! f, g H ⊗p ) 2 + p 2 2 p-1 r=1 (r -1)! 2 p -1 r -1 4 (2p -2r)! f ⊗ p-r f 2 H ⊗2r + g ⊗ p-r g 2 H ⊗2r .
On the other hand, if p < q, one has that

E a - 1 q DF, DG H 2 ≤ a 2 + p! 2 q -1 p -1 2 (q -p)! f 2 H ⊗p g ⊗ q-p g H ⊗2p + p 2 2 p-1 r=1 (r -1)! 2 p -1 r -1 2 q -1 r -1 2 (p + q -2r)! f ⊗ p-r f 2 H ⊗2r + g ⊗ q-r g 2 H ⊗2r . Remark 3.8. 1. Recall that E I p (f )I q (g) = p! f, g H ⊗p if p = q, 0 otherwise.
2. In order to estimate the right-hand side of (3.11), we see that it is sufficient to asses the quantity f i ⊗ r f i H ⊗2(q i -r) for any i ∈ {1, . . . , d} and r ∈ {1, . . . , q i -1} on the one hand, and f i , f j H ⊗q i for any 1 ≤ i, j ≤ d such that q i = q j on the other hand.

Proof of Lemma 3.7 (see also [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF]Lemma 2]). Without loss of generality, we can assume that H = L 2 (A, A , µ), where (A, A ) is a measurable space, and µ is a σ-finite and non-atomic measure. Thus, we can write DF, DG H = p q I p-1 (f ), I q-1 (g) H = p q

A I p-1 f (•, t) I q-1 g(•, t) µ(dt) = p q A p∧q-1 r=0 r! p -1 r q -1 r I p+q-2-2r f (•, t) ⊗ r g(•, t) µ(dt) = p q p∧q-1 r=0 r! p -1 r q -1 r I p+q-2-2r (f ⊗ r+1 g) = p q p∧q r=1 (r -1)! p -1 r -1 q -1 r -1 I p+q-2r (f ⊗ r g).
It follows that

E a - 1 q DF, DG H 2 (3.12) =      a 2 + p 2 p r=1 (r -1)! 2 p-1 r-1 2 q-1 r-1 2 (p + q -2r)! f ⊗ r g 2 H ⊗(p+q-2r) if p < q, (a -p! f, g H ⊗p ) 2 + p 2 p-1 r=1 (r -1)! 2 p-1 r-1 4 (2p -2r)! f ⊗ r g 2 H ⊗(2p-2r) if p = q. If r < p ≤ q then f ⊗ r g 2 H ⊗(p+q-2r) ≤ f ⊗ r g 2 H ⊗(p+q-2r) = f ⊗ p-r f, g ⊗ q-r g H ⊗2r ≤ f ⊗ p-r f H ⊗2r g ⊗ q-r g H ⊗2r ≤ 1 2 f ⊗ p-r f 2 H ⊗2r + g ⊗ q-r g 2 H ⊗2r . If r = p < q, then f ⊗ p g 2 H ⊗(q-p) ≤ f ⊗ p g 2 H ⊗(q-p) ≤ f 2 H ⊗p g ⊗ q-p g H ⊗2p . If r = p = q, then f ⊗ p g = f, g H ⊗p .
By plugging these last expressions into (3.12), we deduce immediately the desired conclusion.

Let us now recall the following result, which is a collection of some of the findings contained in the papers by Peccati and Tudor [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF] and Nualart and Ortiz-Latorre [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF]. Theorem 3.9 (See [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF][START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]). Fix d ≥ 2 and let C = {C(i, j) : i, j = 1, ..., d} be a d × d positive definite matrix. Fix integers 1 ≤ q 1 ≤ . . . ≤ q d . For any n ≥ 1 and i = 1, . . . , d, let f

(n) i belong to H ⊙q i . Assume that F (n) = (F (n) 1 , . . . , F (n) d ) := (I q 1 (f (n) 1 ), . . . , I q d (f (n) d )) n ≥ 1, is such that lim n→∞ E[F (n) i F (n) j ] = C(i, j), 1 ≤ i, j ≤ d. (3.13) 
Then, as n → ∞, the following four assertions are equivalent:

(i) For every 1 ≤ i ≤ d, F (n) i 
converges in distribution to a centered Gaussian random variable with variance C(i, i).

(ii) For every

1 ≤ i ≤ d, E (F (n) i ) 4 → 3C(i, i) 2 .
(iii) For every 1 ≤ i ≤ d and every

1 ≤ r ≤ q i -1, f (n) i ⊗ r f (n) i H ⊗2(q i -r) → 0.
(iv) The vector F (n) converges in distribution to a d-dimensional Gaussian vector N d (0, C). Moreover, if C(i, j) = δ ij , where δ ij is the Kronecker symbol, then either one of conditions (i)-(iv) above is equivalent to the following:

(v) For every 1 ≤ i ≤ d, DF (n) i 2 H L 2 -→ q i .
We conclude this section by pointing out the remarkable fact that, for vectors of multiple Wiener-Itô integrals of arbitrary length, the Wasserstein distance metrizes the weak convergence towards a Gaussian vector with positive definite covariance. Note that the next statement also contains a generalization of the multidimensional results proved in [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF] to the case of an arbitrary covariance. Proposition 3.10. Fix d ≥ 2, let C be a positive definite d × d symmetric matrix, and let 1 ≤ q 1 ≤ . . . ≤ q d . Consider vectors

F (n) := (F (n) 1 , . . . , F (n) d ) = (I q 1 (f (n) 1 ), . . . , I q d (f (n) d )), n ≥ 1, with f (n) i
∈ H ⊙q i for every i = 1 . . . , d. Assume moreover that F (n) satisfies condition (3.13). Then, as n → ∞, the following three conditions are equivalent:

(a) d W (F (n) , Z) → 0. (b) For every 1 ≤ i ≤ d, q -1 i DF (n) i 2 H L 2
-→ C(i, i) and, for every

1 ≤ i = j ≤ d, DF (n) i , -DL -1 F (n) j H = q -1 j DF (n) i , DF (n) j H L 2 -→ C(i, j). (c) F (n) converges in distribution to Z ∼ N d (0, C).
Proof. Since convergence in the Wasserstein distance implies convergence in distribution, the implication (a) → (c) is trivial. The implication (b) → (a) is a consequence of relation (3.11). Now assume that (c) is verified, that is, F (n) converges in law to Z ∼ N d (0, C) as n goes to infinity. By Theorem 3.9 we have that, for any i ∈ {1, . . . , d} and r ∈ {1, . . . , q i -1},

f (n) i ⊗ r f (n) i H ⊗2(q i -r) -→ n→∞ 0.
By combining Corollary 3.6 with Lemma 3.7 (see also Remark 3.8(2)), one therefore easily deduces that, since (3.13) is in order, condition (b) must necessarily be satisfied.

Applications

Convergence of marginal distributions in the functional Breuer-Major CLT

In this section, we use our main results in order to derive an explicit bound for the celebrated Breuer-Major CLT for fractional Brownian motion (fBm). We recall that a fBm B = {B t : t ≥ 0}, with Hurst index H ∈ (0, 1), is a centered Gaussian process, started from zero and with covariance function E(B s B t ) = R(s, t), where

R(s, t) = 1 2 t 2H + s 2H -|t -s| 2H ; s, t ≥ 0.
For any choice of the Hurst parameter H ∈ (0, 1), the Gaussian space generated by B can be identified with an isonormal Gaussian process of the type X = {X(h) : h ∈ H}, where the real and separable Hilbert space H is defined as follows: (i) denote by E the set of all R-valued step functions on [0, ∞), (ii) define H as the Hilbert space obtained by closing E with respect to the scalar product 1 [0,t] , 1 [0,s] H = R(t, s). In particular, with such a notation, one has that B t = X(1 [0,t] ). The reader is referred e.g. to [START_REF] Nualart | The Malliavin calculus and related topics (2 nd Edition)[END_REF] for more details on fBm, including crucial connections with fractional operators. We also define ρ(•) to be the covariance function associated with the stationary process

x → B x+1 -B x (x ∈ R), that is ρ(x) := 1 2 |x + 1| 2H + |x -1| 2H -2|x| 2H ∼ |x|→∞ H|2H -1| |x| 2H-2 .
Now fix an integer q ≥ 2, assume that H < 1 -1 2q and set

S n (t) = 1 σ √ n ⌊nt⌋-1 k=0 H q (B k+1 -B k ), t ≥ 0,
where H q is the qth Hermite polynomial defined as H q (x) = (-1) q e x 2 /2 d q dx q e -x 2 /2 , x ∈ R,

and where σ = q! r∈Z ρ 2 (r). According e.g. to the main results in [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] or [START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF], one has the following CLT:

{S n (t), t ≥ 0} f.d.d.
- 

d W S n (t i ) -S n (t i-1 ) √ t i -t i-1 1≤i≤d ; N d (0, I d ) ≤ c ×              n -1 2 if H ∈ (0, 1 2 ] n H-1 if H ∈ ( 1 2 , 2q-3 2q-2 ] n qH-q+ 1 2 if H ∈ ( 2q-3 2q-2 , 2q-1 2q )
.

Proof. Fix d ≥ 1 and t 0 = 0 < t 1 < . . . < t d . In the sequel, c will denote a constant independent of n, which can differ from one line to another. First, observe that

S n (t i ) -S n (t i-1 ) √ t i -t i-1 = I q (f (n) i ) with f (n) i = 1 σ √ n √ t i -t i-1 ⌊nt i ⌋-1 k=⌊nt i-1 ⌋ 1 ⊗q [k,k+1] .
In [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], proof of Theorem 4.1, it is shown that, for any i ∈ {1, . . . , d} and r ∈ {1, . . . , q i -1}:

f (n) i ⊗ r f (n) i H ⊗2(q i -r) ≤ c ×              n -1 2 if H ∈ (0, 1 2 ] n H-1 if H ∈ ( 1 2 , 2q-3 2q-2 ] n qH-q+ 1 2 if H ∈ ( 2q-3 2q-2 , 2q-1 2q ) . ( 4.2) 
Moreover, when 1 ≤ i < j ≤ d, we have:

f (n) i , f (n) j H ⊗q = 1 σ 2 n √ t i -t i-1 √ t j -t j-1 ⌊nt i ⌋-1 k=⌊nt i-1 ⌋ ⌊nt j ⌋-1 l=⌊nt j-1 ⌋ ρ q (l -k) = c n ⌊nt j ⌋-⌊nt i-1 ⌋-1 |r|=⌊nt j-1 ⌋-⌊nt i ⌋+1 (⌊nt j ⌋ -1 -r) ∧ (⌊nt i ⌋ -1) -(⌊nt j-1 ⌋ -r) ∨ (⌊nt i-1 ⌋) ρ q (r) ≤ c ⌊nt i ⌋ -⌊nt i-1 ⌋ -1 n |r|≥⌊nt j-1 ⌋-⌊nt i ⌋+1 ρ(r) q = O n 2qH-2q+1 , as n → ∞, (4.3) 
the last equality coming from

|r|≥N ρ(r) q = O( |r|≥N |r| 2qH-2q ) = O(N 2qH-2q+1 ), as N → ∞.
Finally, by combining (4.2), (4.3), Corollary 3.6 and Lemma 3.7, we obtain the desired conclusion.

Vector-valued functionals of finite Gaussian sequences

Let Y = (Y 1 , ..., Y n ) ∼ N n (0, I n ), and let f : R n → R be an absolutely continuous function such that f and its partial derivatives have subexponential growth at infinity. The following result has been proved by Chatterjee in [START_REF] Chatterjee | Fluctuation of eigenvalues and second order Poincaré inequalities[END_REF], in the context of limit theorems for linear statistics of eigenvalues of random matrices. We use the notation d TV to indicate the total variation distance between laws of real valued random variables. In what follows, we shall use Theorem 3.5 in order to deduce a multidimensional generalization of Proposition 4.2 (with the Wasserstein distance replacing total variation). where the functions T ab (•) are defined as T ab (y) = Proof. Without loss of generality, we can assume that Y = (Y 1 , ..., Y n ) = (X(h 1 ), ..., X(h n )), where X is an isonormal Gaussian process over some Hilbert space H, and h i , h l H = E(X(h i )X(h l )) = K(i, l). According to Theorem 3. By specializing the previous statement to the case n = d and f j (y) = y j , j = 1, ..., d, one obtains the following simple bound on the Wasserstein distance between Gaussian vectors of the same dimension (the proof is straightforward and omitted). 

(

  ii) The Hilbert-Schmidt inner product and the Hilbert-Schmidt norm on the class of d × d real matrices, denoted respectively by •, • H.S. and • H.S. , are defined as follows: for every pair of matrices A and B, A, B H.S. := Tr(AB T ) and A H.S. := A, A H.S. . (iii) The operator norm of a d × d matrix A over R is given by

Lemma 3 . 3 .

 33 Fix an integer d ≥ 2 and let C = {C(i, j) : i, j = 1, ..., d} be a d × d positive definite symmetric real matrix. (i) Let Y be a random variable with values in R d . Then Y ∼ N d (0, C) if and only if,

2 .

 2 Unlike formulae (1.1) and (1.2) (associated with one-dimensional Gaussian approximations) the relation (3.2) and the Stein equation (3.3) involve second-order differential operators. A discussion of this fact is detailed e.g. in [4, Theorem 4].

  and g A (x) = g(Ax). Note that, sinceA -1 Z ∼ N d (0, I d ), the function h solves the Stein's equation x, ∇h(x) R d -∆h(x) = g A (x) -E[g A (Y )],where Y ∼ N d (0, I d ). We can now use the same arguments as in the proof of Lemma 3 in[START_REF] Chatterjee | Multivariate normal approximation using exchangeable pairs[END_REF] to deduce that sup x∈R d Hess h(x) H.S. ≤ g A Lip ≤ A op g Lip .(3.5)

Theorem 3 . 5 .

 35 Fix d ≥ 2 and let C = {C(i, j) : i, j = 1, ..., d} be a d × d positive definite matrix. Suppose that Z ∼ N d (0, C) and that F = (F 1 , . . . , F d ) is a R d -valued random vector such that E[F i ] = 0 and F i ∈ D 1,2 for every i = 1, . . . , d. Then,

Proposition 4 . 2 (√ 1 -

 421 Lemma 5.3 in [3]). Assume that the random variable W = f (Y ) has zero mean and unit variance, and denote by Z ∼ N (0, 1) a standard Gaussian random variable. Then d TV (W, Z) ≤ 2Var(T (Y )) 1/2 , where the function T (•) is defined asT (y) = t Y ) dt.

Proposition 4 . 3 . 1

 431 Let Y ∼ N n (0, K), where K = {K(i, l) : i, l = 1, ..., n} is a n × n positive definite matrix. Consider absolutely continuous functions f j : R n → R, j = 1, ..., d. Assume that each random variable f j (Y ) has zero mean, and also that each function f j and its partial derivatives have subexponential growth at infinity. Denote by Z ∼ N d (0, C) a Gaussian vector with values in R d and with positive definite covariance matrix C = {C(a, b) : a, b = 1, ..., d}. Finally, write W = (W 1 , ..., W d ) = (f 1 (Y ), ..., f d (Y )). Then, d W (W, Z) ≤ C -1 op C C(a, b) -T ab (Y )) 2 ]

5 ,√ 1 -

 51 it is therefore sufficient to show that, for every a, b = 1, ..., d, T ab (Y ) = DW a , -DL -1 W b H . To prove this last claim, introduce the two H-valued functions Θ a (y) and Θ b (y), defined for y ∈ R d as follows: t Y ) h j dt.By using (2.2), it is easily seen that Θ a (Y ) = DW a . Moreover, by using e.g. formula(3.46) in[START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], one deduces that Θ b (Y ) = -DL -1 W b . Since T ab (Y ) = Θ a (Y ), Θ b (Y ) H , the conclusion is immediately obtained.

Corollary 4 . 4 .

 44 Let Y ∼ N d (0, K) and Z ∼ N d (0, C), where K and C are two positive definite covariance matrices. Then dW (Y, Z) ≤ Q(C, K) × C -K H.S., whereQ(C, K) := min{ C -1 op C 1/2 op , K -1 op K 1/2 op }.
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