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Nicolas.Normand@polytech.univ-nantes.fr
Pierre.Evenou@polytech.univ-nantes.fr
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Abstract. Chamfer distances are discrete distances based on the prop-
agation of local distances, or weights defined in a mask. The medial axis,
i.e. the centers of the maximal disks (disks which are not contained in
any other disk), is a powerful tool for shape representation and analysis.
The extraction of maximal disks is performed in the general case with
comparison tests involving look-up tables representing the covering re-
lation of disks in a local neighborhood. Although look-up table values
can be computed efficiently [1], the computation of the look-up table
neighborhood tend to be very time-consuming. By using polytope [2] de-
scriptions of the chamfer disks, the necessary operations to extract the
look-up tables are greatly reduced.

1 Introduction

The distance transform DTX of a binary image X is a function that maps each
point x with its distance to the background i.e. with the radius of the largest
open disk centered in x included in the image. Such a disk is said to be maximal
if no other disk included in X contains it. The set of centers of maximal disks, the
medial axis, is a convenient description of binary images for many applications
ranging from image coding to shape recognition. Its attractive properties are
reversibility and (relative) compactness.

Algorithms for computing the distance transform are known for various dis-
crete distances [3–6]. In this paper, we will focus on chamfer (or weighted) dis-
tances. The classical medial axis extraction method is based on the removal of
non maximal disks in the distance transform. It is thus mandatory to describe
the covering relation of disks, or at least the transitive reduction of this relation.
For simple distances this knowledge is summarized in a local maximum criterion
[3]. The most general method for chamfer distances uses look-up tables for that
purpose [7].

In this paper we propose a method to both compute the look-up tables and
the look-up table mask based on geometric properties of the balls of chamfer
norms. Basic notions, definitions and known results about chamfer disks and



medial axis look-up tables are recalled in section 2. Then section 3 justifies
the use of polytope formalism in our context and presents the principles of the
method. In section 4, algorithms for the 2D case are given.

2 Chamfer Medial Axis

2.1 Chamfer Distances

Definition 1 (Discrete distance, metric and norm). Consider a function
d : Zn × Zn → N and the following properties ∀x, y, z ∈ Zn, ∀λ ∈ Z:

1. positive definiteness d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y ,
2. symmetry d(x, y) = d(y, x) ,
3. triangle inequality d(x, z) ≤ d(x, y) + d(y, z) ,
4. translation invariance d(x + z, y + z) = d(x, y) ,
5. positive homogeneity d(λx, λy) = |λ| · d(x, y) .

d is called a distance if it verifies conditions 1 and 2, a metric with conditions
1 to 3 and a norm if it also satisfies conditions 4 and 5.

Most discrete distances are built from a definition of neighborhood and con-
nected paths (path-generated distances), the distance from x to y being equal
to the length of the shortest path between the two points [8]. Distance functions
differ by the way path lengths are measured: as the number of displacements
in the path for simple distances like d4 and d8, as a weighted sum of displace-
ments for chamfer distances [4] or by the displacements allowed at each step for
neighborhood sequence distances [8, 4], or even by a mixed approach of weighted
neighborhood sequence paths [6].

For a given distance d, the closed ball Bc and open ball Bo of center c and
radius r are the sets of points of Zn:

Bo(c, r) = {p : d(c, p) < r}
Bc(c, r) = {p : d(c, p) ≤ r} . (1)

Since the codomain of d is N: ∀r ∈ N, d(c, p) ≤ r ⇔ d(c, p) < r + 1. So:

∀r ∈ N, Bc(c, r) = Bo(c, r + 1) . (2)

In the following, the notation B will be used to refer to closed balls.

Definition 2 (Chamfer mask [9]). A weighting M = (−→v ;w) is a vector −→v
of Zn associated with a weight w (or local distance). A chamfer mask M is
a central-symmetric set of weightings having positive weights and non-null dis-
placements, and containing at least one basis of Zn: M = {Mi ∈ Zn × N∗}1≤i≤m

The grid Zn is symmetric with respect to the hyperplanes normal to the
axes and to the bisectors (G-symmetry). This divides Zn in 2n.n! sub-spaces (8



octants for Z2). Chamfer masks are usually G-symmetric so that weightings may
only be given in the sub-space 0 ≤ xn ≤ . . . ≤ x1.

Paths between two points x and y can be produced by chaining displacements.
The length of a path is the sum of the weights associated with the displacements
and the distance between x and y is the length of the shortest path.

Definition 3 (Chamfer distance [9]). Let M = {(−→vi , wi) ∈ Zn × N∗}1≤i≤m
be a chamfer mask. The chamfer (or weighted) distance between two points x
and y is:

d(x, y) = min
{∑

λiwi : x +
∑

λi
−→vi = y,λi ∈ N, 1 ≤ i ≤ m

}
. (3)

Any chamfer masks define a metric [10]. However a chamfer mask only generates
a norm when some conditions on the mask neighbors and on the corresponding
weights permits a triangulation of the ball in influence cones [9, 11]. When a
mask defines a norm then all its balls are convex.

2.2 Geometry of the Chamfer Ball

We can deduce from (1) and (3) a recursive construction of chamfer balls:

B(O, r) = B(O, r − 1) ∪
⋃

0≤i≤m

B(O +−→vi , r − wi) . (4)

Definition 4 (Influence cone [12]). Let M = {(−→vi , wi) ∈ Zn × N∗}1≤i≤m
be a chamfer mask generating a norm. An influence cone is a cone from the
origin spanned by a subset of the mask vectors {−→vi ,−→vj ,−→vk, . . .} in which only the
weightings Mi, Mj , Mk, . . . of the mask are involved in the computation of the
distance from O to any point of the cone.

In each influence cone, the discrete gradient of the distance function is constant
and equal to [9]:

(wi, wj , wk, . . .) · (−→vi |−→vj |−→vk| . . .)−1 , (5)

where (−→vi |−→vj |−→vk| . . .) stands for the column matrix of the vectors spanning the
cone. The distance dC(O, p) from the origin to any point p of this cone C is then:

dC(O, p) = (wi, wj , wk, . . .) ·
(−→vi

−→vj
−→vk . . .

)−1 · p . (6)

For instance, with chamfer norm d5,7,11, the point (3, 1) is in the cone spanned
by the vectors a = (1, 0) and c = (2, 1) and the weights involved are 5 and 11.
The distance between the origin and the point (3, 1) is then:

dCa,c(O, (3, 1)) =
(
5 11

)
·
(

1 2
0 1

)−1

·
(

3
1

)
=

(
5 1

)
·
(

3
1

)
= 16 .



2.3 Chamfer Medial Axis

For simple distances d4 and d8, the medial axis extraction can be performed
by the detection of local maxima in the distance map [13]. Chamfer distances
raise a first complication even for small masks as soon as the weights are not
unitary. Since all possible values of distance are not achievable, two different
radii r and r′ may correspond to the same set of discrete points. The radii r and
r′ are said to be equivalent. Since the distance transform labels pixels with the
greatest equivalent radius, criterions based on radius difference fail to recognize
equivalent disks as being covered by other disks. In the case of 3× 3 2D masks
or 3 × 3 × 3 3D masks, a simple relabeling of distance map values with the
smallest equivalent radius is sufficient [14, 15]. However this method fails for
greater masks and the most general method for medial axis extraction from the
distance map involves look-up tables (LUT) that represent for each radius r and
displacement −→vi , the minimal open ball covering Bo(O, r1,) in direction −→vi [7]:

Lut−→vi
(r1) = min{r2 : Bo(O +−→vi , r1) ⊆ Bo(O, r2)} .

Equivalently using closed balls (considering (2)):

Lut−→vi
(r1) = 1 + min{r2 : B(O +−→vi , r1 − 1) ⊆ B(O, r2)} . (7)

Consider for instance the d5,7,11 distance [16, Fig. 14]. Lut(1,0)(10) = 12
means that Bo(O, 10) ⊆ Bo((2, 1), 12) but Bo(O, 10) +⊆ Bo((2, 1), 11). Or, in
terms of closed balls, B(O, 9) ⊆ B((2, 1), 11) but B(O, 9) +⊆ B((2, 1), 10).

Medial Axis LUT Coefficients. A general method for LUT coefficient com-
putation was given by Rémy and Thiel [12, 17, 9]. The idea is that the disk
covering relation can be extracted directly from values of distance to the origin.
If d(O, p) = r1 and d(O, p +−→vi ) = r2, we can deduce the following:

p ∈ B(O, r1) = Bo(O, r1 + 1) ,
p +−→vi /∈ B(O, r2 − 1) = Bo(O, r2) ,

hence Bo(O + −→vi , r1 + 1) +⊂ Bo(O, r2) and Lut−→vi
(r1 + 1) > r2. If ∀p, d(O, p) ≤

r1 ⇒ d(O, p +−→vi ) ≤ r2 then Lut−→vi
(r1 + 1) = r2 + 1.

Finally: Lut−→vi
(r) = 1 + max(d(O, p +−→vi ) : d(O, p) < r).

This method only requires one scan of the distance function for each dis-
placement −→vi . Moreover, the visited area may be restricted according to the
symmetries of the chamfer mask. The order of complexity is about O(mLn) if
we limit the computation of the distance function to a Ln image.

Medial Axis LUT Mask. Thiel observed that the chamfer mask is not ad-
equate to compute the LUT and introduced a LUT Mask MLut(R) for that
purpose [12, p. 81]. MLut(R) is the minimal test neighbourhood sufficient to
detect the medial axis for shapes whose inner radius (the radius of a greatest



ball) is less than or equal to R. For instance, with d14,20,31,44: Lut(2,1)(291) =
321 and Lut(2,1)(321) = 352 but the smallest open ball of center O covering
Bo((4, 2), 291) is Bo(O, 351). In this particular case, the point (4, 2) is not in the
chamfer mask but should be in MLut(R) for R greater than 350.

A mask incompleteness produces extra points in the medial axis (undetected
ball coverings). A general method for both detecting and validating MLut is
based on the computation of the medial axis of all disks. When MLut is complete,
the medial axis is restricted to the center of the disk, when extra points remains,
they are added toMLut. This neighborhood determination was proven to work in
any dimension n ≥ 2. However it is time consuming even when taking advantage
of the mask symmetries.

3 Method Basics

3.1 General H-Polytopes [2]

Definition 5 (Polyhedron). A convex polyhedron is the intersection of a finite
set of half-hyperplanes.

Definition 6 (Polytope). A polytope is the convex hull of a finite set of points.

Theorem 1 (Weyl-Minkowski). A subset of Euclidean space is a polytope if
and only if it is a bounded convex polyhedron.

As a result, a polytope in Rn can be represented either as the convex hull of
its k vertices (V-description): P = conv({pi}1≤i≤k) or by a set of l half-planes
(H-description):

P = {x : Ax ≤ y} , (8)

where A is a l× n matrix, y a vector of n values that we name H-coefficients of
P . Having two vectors −→u and −→v , we denote −→u ≤ −→v if and only if ∀i, −→u i ≤ −→v i.

Definition 7 (Discrete polytope). A discret polytope is the intersection of a
polytope with Zn.

Minimal Representation. Many operations on Rn polytopes in either V or H
representation often require a minimal representation. The redundancy removal
is the removing of unnecessary vertices or inequalities in polytopes. Since our
purpose is mainly to compare H-polytopes defined with the same matrix A, no
inequality removal is needed. However, for some operations, H-representations
of discrete polytopes must be minimal in terms of H-coefficients.

Definition 8 (Minimal parameter representation). We call minimal pa-
rameter H-representation of a discrete polytope P , denoted Ĥ-representation, a
H-representation P = {x : Ax ≤ y} such that y is minimal:

P = {x ∈ Zn : Ax ≤ y} and ∀i ∈ [1..l],∃x ∈ Zn : Aix = yi , (9)

where Ai means line i in matrix A.
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Fig. 1. H-representations of a discrete G-symmetrical polytope P (restricted to the

first octant). Dashed lines: H-representation of P . Thick lines: bH-representation of

P . In the bH case, the three equalities are verified for the same point (6, 3). Notice
that although coefficient values are minimal, this representation is still redundant: the
second inequality could be removed.

The Ĥ function which gives the minimal parameters for a given polytope P
is introduced for convenience: Ĥ(P ) = max{Ax : x ∈ P}. {x : Ax ≤ Ĥ(P )} is
the Ĥ-representation of P = {x : Ax ≤ y}. Figure 1 depicts two representations
of the same polytope P in Z2.

H-Polytope Translation. Let P = {x : Ax ≤ y} be a H-polytope. The
translated of P by −→v which is also the Minkowski sum of P and {−→v } is:

(P )−→v = P ⊕ {−→v } = {x +−→v : Ax ≤ y} = {x : Ax ≤ y + A−→v } . (10)

The translation of a minimal representation gives a minimal representation.

Covering Test. Let P = {x : Ax ≤ y} and Q = {x : Ax ≤ z} be two
polyhedrons represented by the same matrix A but different sets of H-coefficients
y and z. P is a subset of Q if (sufficient condition):

y ≤ z ⇒ P ⊆ Q . (11)

Furthermore, if the H-description of the enclosed polyhedron has minimal coef-
ficients, the condition is also necessary:

y = Ĥ(P ) ≤ z ⇔ P ⊆ Q . (12)

3.2 Chamfer H-Polytopes

Describing balls of chamfer norms as polygons in 2D and polyhedra in higher
dimensions is not new [10]. Thiel and others have extensively studied chamfer
ball geometry from this point of view [12, 11, 18]. Our purpose is to introduce
properties specific to the H-representation of these convex balls.
Proposition 1 (Direct distance formulation).

d(O, x) = max
1≤i≤l

(dCi(x)) (13)

where l is the number of cones, dCi is the distance function in the ith cone. Note
that this formula does not require to determine in which cone lies x.



Proof. Equation (6) states that for all the influence cones C that contain p,
dC(O, p) = d(O, p). For other cones, this relation does not hold, but it is still
possible to compute dC(O, p). The influence cone C corresponds to a facet of
the unitary real ball supported by the hyperplane {x ∈ Rn : dC(x) = 1}. Due
to convexity, the unitary ball is included in the halfspace {x ∈ Rn : dC(x) ≤ 1}.
This applies to the vertices of the unitary ball

−→vi
wi

: dC(
−→vi
wi

) ≤ 1. By linearity of
dC , dC(−→vi ) ≤ wi and dC(

∑
i λi
−→vi ) =

∑
i λidC(−→vi ) ≤

∑
i λiwi. dC(

∑
i λi
−→vi ) is

always less than or equal to the length of the path
∑

i λi
−→vi .

Chamfer Balls H-Representation. The H-representation of chamfer balls is
directly derived from (13):

x ∈ B(O, r)⇔ max
1≤i≤l

{dCi(x)} ≤ r ⇔ AM · x ≤ y (14)

where AM is a H-representation matrix depending only on the chamfer mask M.
The number of rows in AM is equal to the number l of influence cones, each line
of the matrix AM is computed with (5) and y is a column vector whose values

are r. For instance, the H-representation matrix for d5,7,11 is AM =
(

5 1
4 3

)

where (5 1) and (4 3) are the distance gradients in the two cones and B(O, r) ={
x ∈ Zn :

(
4 3
5 1

)
· x ≤

(
r
r

)}
.

Proposition 2 (Furthest point). Let AM be the matrix defined by the cham-
fer mask M generating a norm. The furthest point from the origin in the Ĥ-
polytope P = {x : AM · x ≤ y} is at a distance equal to the greatest component
of y.

Proof. By construction of AM, (13) is equivalent to d(O, x) = maxi{AMi · x}.

max
x∈P

{d(O, x)} = max
x∈P

{max
1≤i≤l

{AMi · x}} = max{Ĥi(P )}

Proposition 3 (Minimal covering ball). The radius of the minimal ball cen-
tered in O that contains all points of a discrete Ĥ-polytope P represented by the
matrix AM and the vector y is equal to the greatest component of y.

Proof. The smallest ball that covers the polytope P must cover its furthest point
from the origin.

min{r ∈ N : P ⊆ B(O, r)} = max
x∈P

{d(O, x)} (15)

Note that if P is not centered in O, the simplification due to symmetries do
not hold and the full set of H-coefficients is needed, unless we ensure that the
H-coefficents for the hyperplanes in the working sub-space are greater than H-
coefficients for the corresponding symmetric cones. This is the case when a G-
symmetric polytope is translated by a vector in the sub-space.



Definition 9 (Covering function). We call covering function of a set X of
points of Zn the function CX which assigns to each point p of Zn, the radius of
the minimal ball centered in p covering X:

CX : 2Zn × Zn → N
X , p → min{r : X ⊆ B(p, r)} .

The covering function of the chamfer ball B(O, r) at point p gives the radius of
the minimal ball centered in p that contains B(O, r). It is equal using central
symmetry to the minimal ball centered in O covering B(p, r) and therefore it is
the maximal component of the Ĥ-representation of B(p, r):

CB(O,r)(p) = max{Ĥ(B(p, r)} = max{Ĥ(B(O, r)) + AM · p} . (16)

One can notice that the covering function of the zero radius disk is equal to the
distance function, as is the distance transform of the complement of this disk:

CB(O,0)(p) = DTZn\{O}(p) = d(p, O) = d(O, p) .

Definition 10 (Covering cone). A covering cone Co,U in CX is a cone defined
by a vertex o and a subset U of the chamfer mask neighbor set with det(U) = ±1,
Co,U = {o +

∑
λi
−→ui , λi ∈ N,−→ui ∈ U}, such that:

∀p ∈ Co,U ,∀−→u ∈ U,B(p, CX(p)) ! B(p +−→u , CX(p +−→u )) .

Proposition 4. If Co,U is a covering cone in CB(O,r) then for any point q in
Co,U \ U \ {o} there exists p such that:

B(O, r) ! B(p, CB(O,r)(p)) ! B(q, CB(O,r)(q)) .

Proof. Since q += o, there always exists another point p in Co,U , distinct from q,
such that B(p, CB(O,r)(p)) ! B(q, CB(O,r)(q)). B(O, r) ⊆ B(p, CB(O,r)(p)) always
holds by definition of CB(O,r). A sufficient condition for B(O, r) += B(p, CB(O,r))
is that a point p distinct from O exists in Co,U which is always the case if q is
not equal to one of the generating vectors of Co,U .

Proposition 5. If there is a integer j ∈ [1 . . . l] and a point o such that AMj ·
−→ui ,∀−→ui ∈ U and Ĥj(B(o, r)) are maximal then Co,U is a covering cone in CB(O,r).

Proof. Let j be the row number of a maximal component of Ĥ(B(o, r)) and
AM ·−→ui ,∀−→ui ∈ U , then j is a maximal component of any positive linear combi-
nation of these vectors. Let p be any point in Co,U , p = o +

∑
i λi
−→u i, λi ∈ N

and Bp the minimal ball covering B(O, r). From (16) we deduce that CB(O,r) is
affine in Co,U :

CB(O,r)(p) = max
{
Ĥ (B(o, r)) +

∑
λiAM−→ui

}

= Ĥj(B(o, r)) +
∑

λiAMj
−→ui .



In the same way, the radius of the minimal ball centered in p + −→u ,−→u ∈ U
covering B(O, r) is:

CB(O,r)(p +−→u ) = Ĥj(B(o, r)) +
∑

λiAMj
−→ui + AMj

−→u
= CB(p,CB(O,r)(p))(O +−→u ) .

In other words, B(p, CB(O,r)(p)) is a subset of B(p +−→u , CB(O,r)(p +−→u )).

4 LUT and MLut Computation for 2D chamfer norms

LUT and MLut computation methods for 2D chamfer norms are presented here.
Both are based on the minimal Ĥ-representation of the chamfer balls, from which
we compute the covering function and deduce the LUT values. M vectors are
ordered by angle so that each influence cone is defined by two successive angles
(O, {−→vi ,−−→vi+1}).

4.1 Ĥ-Representation of Chamfer Balls

The computation of the LUT is based on a Ĥ-representation of the chamfer norm
balls. All share the same matrix AM which depends only on the chamfer mask
(14). Ĥ-coefficients of balls are computed iteratively from the ball of radius 0,
B(O, 0) = {x : AMx = 0} using (4) and (10).

Ĥ(B(O, r)) = max{ Ĥ(B(O, r − 1)),

Ĥ(B(O, r − w1)) + AM−→v1 , . . . , Ĥ(B(O, r − wm)) + AM−→vm} .

Each LUT value is obtained from the covering function (16):

Lut−→vi
[r] = 1 + CB(O,r−1)(O +−→vi ) = 1 + max(Ĥ(B(O, r − 1)) + AM ·−→vi ) .

4.2 LUT Mask

The algorithm starts with an empty mask and balls with increasing radii are
tested for direct covering relations as in [1]. However, in our case, the covering
relations are seen from the perspective of the covered balls (in the covering func-
tion) whereas in [1], they are considered from the point of view of the covering
balls (in the distance map). Another difference lies in the computation of cov-
ering radii which does not require the propagation of weights thanks to a direct
formula (16). In order to remove useless points, all known LUT neighborhoods
are checked for an indirect covering by the procedure visitPoint.

In each influence cone (O, {−→vi ,−−→vi+1}), a set of covering cones are detected to
limit the search space: a 2D covering cone ((a, a), {(1, 0), (0, 1)}) with a vertex
chosen on the cone bissector [O, (1, 1)), then 1D covering cones ((b, α), {(1, 0)}),
((α, b), {(0, 1)}) for α varying from 1 to a−1 (coordinates relative to (O, {−→vi ,−−→vi+1})).
Fig. 2 shows the working sub-space partitioning, covering cones and visit order
of points for the chamfer norm d14,20,31,44 and the inner radius 20.
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Fig. 2. 1D (dashed lines) and 2D (filled areas) covering cones and visit order of points.

Algorithm 1: Computation of the look-up table mask
Input: chamfer mask M = {(−→vi ; wi)}1≤i≤m, maximal radius R
MLut ← ∅;
for r ← 1 to R do // current inner radius, increasing order

for i ← 1 to m do // visit vector axes
visit1DCone(MLut, r, O, −→vi);

end
for i ← 1 to l do // visit the interior of influence cones

a ← findCoveringConeVertex(r, O + α−→vi + α−−→vi+1, −→vi +−−→vi+1);
for α ← 1 to a− 1 do // skip the covering cone

visitPoint(MLut, r, O + α−→vi + α−−→vi+1);
visit1DCone(MLut, r, O + α−→vi + α−−→vi+1, −→vi);
visit1DCone(MLut, r, O + α−→vi + α−−→vi+1, −−→vi+1);

end
visitPoint(MLut, r, a ·Mi + a ·Mi+1);

end

end

Procedure visit1DCone(MLut, r, p, −→u )
Input: MLut, inner radius r, vertex and direction of the tested cone p, −→u
for α ← 1 to findCoveringConeVertex(r, p, −→u ) do

visitPoint(MLut, r, β ·Mi + α ·Mi+1);
end

Procedure visitPoint(MLut, r, p)
Input: MLut, inner radius r, ball center p to test
if ∀−→v ∈MLut : B(O +−→v , CB(O,r)(O +−→v )) '⊂ B(p, CB(O,r)(p)) then

MLut ←MLut ∪M
end

Function findCoveringConeVertex(r, p, −→u )
Input: inner radius r, vertex and direction of the searched cone p, −→u
Output: Integer
y = bH(B(p, r)); z = AM ·−→u ;
i0 ← argmaxi {yi : zi = max {z}} // component i0 is maximal. . .

return a = max
nl

yi−yi0
zi0−zi

mo
// in vector p + α−→u , ∀α ≥ a



Table 1. Run times (in seconds)

L 5,7,11 14,20,31,44 62,88,139,196,224 68,96,152,215,245,
280,314,346,413

reference H reference H reference H reference H
200 0.468524 0.001109 1.388558 0.005708 6.366711 0.053448 8.867095 0.346118
500 8.315003 0.002784 25.262300 0.017302 125.293637 0.145683 177.506492 0.975298
1000 90.670806 0.007007 268.807796 0.036611 1267.910045 0.276737 1684.583989 1.778505

4.3 Results

An implementation of these algorithms was developed in C language. It produces
output in the same format as the reference algorithm [16] so that outputs can
be compared character-to-character. Tests were done on various chamfer masks
and different maximal radii. The results are almost always identical except for
insignificant cases close to the maximal radius for which covering radii exceed
the maximum. Other differences may occur in the order weightings are added to
MLut (sorted with respect to the covered radius or to the covering radius).

The run times of both reference and proposed algorithms are given in Table
1 for various sizes an distances.

5 Conclusion and Future Works

In this paper methods to compute both the chamfer LUT and chamfer LUT mask
were presented. Speed gains from the reference algorithm [1] are attributable to
the representation of chamfer balls as H-polytopes. This description allows to
avoid the use of weight propagation in the image domain and permits a constant
time covering test by the direct computation of covering radii. Although not
thoroughly tested, we think that LUT value computation is faster with our
method due to the smaller size of the test space (linear with the radius of the
maximal ball). For MLut determination, results show must faster computation
especially for large radii. This is due to the reduced search space eliminating
covering cones and the constant time covering test.

While applications always using the same mask can use precomputed MLut

and LUT, other applications that potentially use several masks, adaptive masks,
variable input image size can benefit from these algorithms. A faster computation
of MLut is also highly interesting to explore chamfer mask properties. Beyond
improved run times, the H-polytope representation helped to prove new prop-
erties of chamfer masks. And a new formula of distance which doesn’t need to
find in which cone lies a point was given.

Whereas the underlying theory (H-representation of balls, translation, cov-
ering test and covering cone) does not depend on the dimension, the algorithms
were given only for dimension 2. In the 2D case, vectors can be ordered by an-
gle so two consecutive vectors define a cone. Higher dimensions require a Farey
triangulation of chamfer balls.



A paper will greater details and results is being prepared for presentation in
a journal. The source code for algorithms presented here is available from the
IAPR technical committee on discrete geometry (TC18)1.
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