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ON MULTIFRACTALITY AND TIME SUBORDINATION
FOR CONTINUOUS FUNCTIONS

STEPHANE SEURET

ABSTRACT. LetZ : [0,1] — R be a continuous function. We show that4fis "ho-
mogeneously multifractal” (in a sense we precisely defiten Z is the composition of a
monofractal functiory with a time subordinatoy (i.e. f is the integral of a positive Borel
measure supported 9, 1]). When the initial functionZ is given, the monofractality ex-
ponent of the associated functigris uniquely determined. We study in details a classical
example of multifractal function&, for which we exhibit the associated functiopand f.
This provides new insights into the understanding of nmaltifal behaviors of functions.

1. INTRODUCTION AND MOTIVATIONS

Local regularity and multifractal analysis have becomevoidable issues in the past
years. Indeed, physical phenomena exhibiting wild locgltarity properties have been
discovered in many contexts (turbulence flows, intensitge$mic waves, traffic analy-
sis,..). From a mathematical viewpoint, the multifractgbeoach is also a fruitful source
of interesting problems. Consequently, there is a stroeg figr a better theoretical under-
standing of the so-called multifractal behaviors. In thiicée, we investigate the relations
between multifractal properties and time subordinatiagrctmtinuous functions.

The most common functions or processes used to model igegliénomena are mono-
fractal, in the sense that they exhibit the same local reijylat each point. Let us recall
how the local regularity of a function is measured.

Definition 1.1. Let Z € Ly .([0,1]). Fora > 0 andt, € [0,1], Z is said to belong to

Cy: if there are a polynomiaP of degree less thaja] and a constar®’ such that, locally
aroundtg,

1.1) |Z(t) — P(t —to)| < Clt —to|*.

The pointwise Holder exponent éf attg is hz(to) = sup{a > 0: f € Cf }.
The singularity spectrum of is then defined byi; (k) = dim{¢ : hz(¢t) = h} (dim
stands for the Hausdorff dimension, atith ) = —oco by convention).

Hence, a functior¥ : [0,1] — R is said to be monofractal with exponefit > 0 when
hz(t) = H for everyt € [0, 1]. For monofractal function&, dz(H) = 1, whiledz(h) =
—oo for h £ H. Sample paths of Brownian motions or fractional Browniartiones are
known to be almost surely monofractal with exponents leas th For reasons that appear
below,we focus on monofractal functions associated with an expone H € (0, 1.

More complex models had to be used and/or developed, forst leree reasons: the
occurrence of intermittence phenomena (mainly in fluid na@ats), the presence of os-
cillating patterns (for instance in image processing) herpresence of discontinuities (in
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2 STEPHANE SEURET

finance or telecommunications). Such models may have madtdl properties, in the
sense that the support of their singularity spectrum isexdiced to a single point. Among
these processes, whose local regularity varies badly fro@point to another, let us men-
tion Mandelbrot multiplicative cascades and their extensi[6, 14, 12, 1], (generalized)
multifractional Brownian motions [17, 3] and Lévy procesd4, 10] (for discontinuous
phenomena).

Starting from a monofractal process as above in dimensiansimple and efficient
way to get a more elaborate process is to compose it with a girherdinator, i.e. an
increasing function or process. Mandelbrot, for instast@wed the pertinency of time
subordination in the study of financial data [13]. From a tietioal viewpoint, it is also
challenging to understand how the multifractal propeniea function are modified after
a time change [19, 2].

A natural question is to understand the differences betwieemultifractal processes
above and compositions of monofractal functions with nfraltital subordinators.

Definition 1.2. A function Z : [0,1] — R is said to be the composition of a monofractal
function with a time subordinator (CMT) when can be written as

(1.2) Z=gof,

whereg : [0, 1] — R is monofractal with exponeit< H < 1 andf : [0,1] — [0, 1] is an
increasing homeomorphism ¥, 1].

In this article, we prove that if a continuous functign: [0,1] — R has a "homoge-

neous multifractal” behavior (in a sense we define just bglthvenZ is CMT. Hence Z

is the composition of a monofractal function with a time swddoator, and shall simply
be viewed as a complication of a monofractal model. Thigdgiel deeper insight into the
understanding of multifractal behaviors of continuousclions, and gives a more impor-
tant role to the multifractal analysis of positive Borel reeges (which are derivatives of
time subordinators). We explain in Section 6 and 7 how th¢od®osition can be used to
compute the singularity spectrum of the functién

Let us begin with two cases where a functigris obviously CMT:

1. If Z is the integral of any positive Borel measurethenZ = Id| ) o Z, where the
identity Idjo 1) is monofractal and’ is increasing. Remark that in this casemay even
have exponents greater than 1.

2. Any monofractal functiorZy can be writtenZy = Zy o Idjy ), whereZy is
monofractal anddyg ;) is undoubtably an homeomorphism[6f1].

These two simple cases will be met again below.

To bring general answers to our problem and thus to exhilbthen class of CMT

functions , we develop an approach based on the oscillatibagunctionZ : [0,1] — R.
For every subinterval C [0, 1], consider the oscillations of order 1 Bfon I defined by

wi(Z) = ts;lgl |Z(t)— Z(t)| = ilell?Z(t) - %161§Z(t)

In the sequel, we assume thaf is continuous and for every non-trivial subinterval I
of [0,1], w;(Z) > 0. This entails thatZ is nowhere locally constant, which is a natural
assumption for the results we are looking for.

It is very classical that the oscillations of order 1 chagsige precisely the pointwise
Holder exponents strictly less than 1 (see Section 2).

Let us introduce the quantity that will be the basis of ouratauction.
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Foreveryj > 1,k € {0, ...,27 —1}, we consider the dyadic intervals,, = [k277, (k+
1)277), sothat J,_ 54 Ijx = [0, 1], the union being disjoint. For every> 1 and
k €10, ...,27 — 1}, for simplicity we setv; x(2) = wr, , (2)(= wrH(Z) sinceZ is C°).

Definition 1.3. For everyj > 1, let H,;(Z) be the unique real number such that

271
(13) > (win(2) ) =1,
k=0
We then define the intrinsic monofractal exponenfokll (7) as
(1.4) H(Z) = lim inf H;(Z).
J—T00

This quantityH (Z) characterizes the asymptotic maximal values of the osioilla of
Z on the whole interval0, 1]. This exponent is the core of our theorem, because it gives
an upper limit to the maximal time distortions we are allowedpply.

It is satisfactory thaf{ (Z) has a functional interpretation. IndeedZfcan be decom-
posed as (1.2), then the exponent of the monofractal fumgtishall not depend on the
oscillation approach nor on the dyadic basis. In Section xpdain that

p,loc

(1.5) H(Z) = int {p >0:Z e BP0, 1))} — inf {p >0: 7€ 07((0, 1))} ,

Wherer’/f,loc((O, 1)) and(’)zl/p((o, 1)) are respectively the Besov space asdillation
spaceon the open intervgl, 1) (see Jaffard in [11] for instance).

For multifractal functions satisfying some multifractal formalism, the expon&ht?)
can also be read on the singularity spectrunZofindeed (see Section 4}/ (Z) corre-
sponds to the inverse of the largest possible slope of agbtrline going through 0 and
tangent to the singularity spectruip of Z.

These remarks are important to have an idgmiori of the monofractal exponent gf
in the decompositio = g o f. They also give an intrinsic formula fd¥ (2).

Let us come back to the two simple examples above: ,

1. For the integral of any positive measure, S win(2) = i k) =1,
henceH;(Z) = H(Z) = 1, which corresponds to the monofractal exponent of the itfent
Idy,1) from the oscillations viewpoint.

2. Thefirst difficulties arise for the monofractal functiofis. WhenZy is monofractal
of exponent{, then we don't have necessarif( Zy) = H. We always havé! (Zy) <1
(see Lemma 2.3 in Section 2), but it is always possible totcootswild counter-examples.
Nevertheless, we treat in details the examples of the Wedsssfunctions and the sample
paths of (fractional) Brownian motions in Section 5, for aihthe exponentl (Zy ) meets
our requirements.

Unfortunately, the knowledge off (Z) is not sufficient to get relevant results. For
instance, consider a functiof that has two different monofractal behaviors [6n1/2)
and[1/2,1]. Such arnZ can be obtained as the continuous juxtaposition of two \e&ss
function with distinct exponent&; < H,: We haveH(Z) = H;, andZ can not be
written as the composition of a monofractal function withirag subordinator. This is a
consequence of Lemma 2.4, which asserts that two monofffactetionsg; and g, of
disctinct exponent$/; and H, never verifyg; = g2 o f for any continuous increasing
function f : [0,1] — [0, 1] (indeed, such aif would "dilate” time everywhere, which is
impossible).
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We need to introduce a homogeneity conditioh to get rid of these annoying and
artificial cases. This condition heuristically imposed tha oscillations of any restriction
of Z to a subinterval of0, 1] have the same asymptotic properties as the oscillatioits of
on|[o, 1].

Definition 1.4. Condition C1:
LetJ > 0,andK € {0,...,27 — 1}. Let Z; k be the function

VA t
2wk g
waK(Z)
wherey;  is the canonical affine contraction which mdpsl] to I k.

ConditionC1 is satisfied forZ when there is a real numbéf > 0 such that for every
J>0andK €{0,..,2 -1}, H(Z;x) = H(= H(Z)).

ZJ,KZﬁE[O,l]

HenceZ; x is a renormalized version of the restrictionfto the intervall ; . Re-
mark thatH (Z; i) does not depend on the normalization factgw; x (Z). Although
self-similar functions are good candidates to sat{3ty a functionZ fulfilling this condi-
tion does not need at all to possess such a property. In ardgrarantee that is CMT,
we strengthen the convergence towaf(lZ ; x ).

Definition 1.5. Condition C2:
Assume that Conditiol©1 is fulfilled. There are two positive sequences)>o and
(n7)s>0 and two real numbet® < o < (3 with the following property:

(1) (es)o>0 and(n) >0 are positive non-increasing sequences that convergedo zer

ande; =o ( ) for somex > 0.

1
Tog J)2F~
(2) For everyJ > 0 andK € {0,...,27 — 1}, the sequencéH;(Z, k));>1 con-

verges toH = H(Z; k) (it is not only a liminf, it is a limit) with the following

convergence rate: For evefy> [Jn,],

(1.6) |H — Hj(Zsx)| < e,
(1.7) and for everyk € {0,...,27 — 1}, 2798 < w;(Zyx) < 279%

Assuming that (Z; k) is a limit is of course a constraint, but not limiting in priaet,
since this condition holds for most of the interesting fimes$ or (almost surely) for most
of the sample paths of processes. Similarly, the decredsthgvior (1.7) is not very
restrictive: such a behavior is somehow expected 10F dunction.

The convergence speed (1.6) is a more important consttaihthe convergence rate
we impose or(e ) >0 toward 0 is extremely slow, and is realized in the most common
cases, as shown below.

Theorem 1.6. Let Z : [0, 1] — R be a continuous function.
Assume that satisfiesC1 andC2.
ThenZ is CMT and the functiop in (1.2) is monofractal of exponefi(7).

Remarkl.7. Such a decomposition is of course not uniqueZ is CMT andw : [0,1] —
[0,1] is C*° and strictly increasing, the#d = (g o w) o (w™! o f), whereg o w is still a
monofractal function of exponetf (Z) < 1 andw™! o f is an increasing function.

Nevertheless, if two decompositions (1.2) exist respebtiwith functionsg, go, f1
andfs, theng; andg» are necessarily monofractal with the same expofg#). This is
again a consequence of Lemma 2.4.
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An important consequence of Theorem 1.6 is that the (pggsiblltifractal behavior
of Z is contained in the multifractal behavior $f More precisely, sincg is an increasing
continuous function fron0, 1] to [0, 1], f is the integral of a positive measure, sayon
[0, 1]. The local regularity of: is classically quantified through a local dimension exponen
defined for every € [0, 1] by

1 B 1 B(t,277

r—0+ r Jj—+00 J

)

whereB(t, ) stands for the ball (here an interval) with centtand radius:, and| 4| is the
diameter of the setl (| B(¢t, r)| = 2r). The singularity spectrum ¢f is then

(1.8) dy (@) = dim{t : o, () = .

It is very easy to see thatif, (o) = «, thenhy(to) = aH. Hence for every, > 0,
ds(h) = d,(h/H),i.e. there is a direct relationship between the singylapectrum o2
and the one ofi. As a conclusion, Theorem 1.6 increases the role of the fradtal anal-
ysis of measures, since for the functions satisfy@igandC2, their multifractal behavior
is ruled exclusively by the behavior pf

As an application of Theorem 1.6, we will prove the followifigeorem 1.9, which re-
lates the so-called self-similar functiodsintroduced in [9] with the self-similar measures
naturally associated with the similitudes definifig

Let us recall the definition of self-similar functions. Lgtbe a Lipschitz function on
[0, 1] (we suppose that the Lipschitz constéhtequals 1, without loss of generality), and
let Sy, S1, ...., Sq—1 bed contractive similitudes satisfying:

1) for everyz # 7,5:((0,1)) NS;((0,1)) = 0 (open set condition),
(2) U S;:([0,1]) = [0, 1] (the intervalsS; ([0, 1]) form a covering of0, 1]).

We denote by < rg,r1,...,7q—1 < 1 the ratios of the non trivial similitudeSy, ..., Sq—1.

d—1
By constructionz rr = 1. LetAg, A1, ..., Aq—1 bed non-zero real numbers, which satisfy
k=0
(1.9) 0< in |-E| < 1
. min = min — | < Xmax = max — .
X k=0,....d—1 | Ak Xmax =, _1a% A

Definition 1.8. A function Z : [0,1] — [0, 1] is called self-similar whelf satisfies the
following functional equation

(1.10) Viel[0,1], Z(t ZAk (Z o (Sk)™H(t) + ¢(t).

Relation (1.9) ensures thatexists and is unique [9].
Let us consider the unique expongéht- 1 such that

d—1
(1.11) > w)f =1
k=0

This 3 is indeed greater than 1, sm@ rk = 1 and|\x| > r for all k£ by (1.9). With
the probability vectorpg, p1, ..., pa—1) = (|)\0|ﬁ A1), ..., | Aa—1]?) and the similitudes
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(Sk)k=0,...,d—1 can be associated the unique self-similar probability megs satisfying

d—1
(1.12) p=> pr-(noSyh).
k=0

Theorem 1.9.Let Z be defined by (1.10). Then, eith@iis a x-Lipschitz function for some
constants > 0 (expliciteley found in Section 6), df is CMT and there is a monofractal
functiong of exponent /3 such that

(1.13) for everyt € [0,1], Z(¢) = g(u[0,]),

wherey is the self-similar measure (1.12) naturally associatethwhe parameters used
to defineZ.

The multifractal analysis of follows from the multifractal analysis qgf, which is a
very classical problem (see [6]).

The paper is organized as follows. In Section 3, Theoremslggaved, by explicitly
constructing the monofractal functignand the time subordinatgt. Section 4 contains
the possible extensions of Theorem 1.6, the explanatioheheuristics (1.5), and the
discussion for exponents greater than 1. In Section 5, 6 ame @etail several classes
of examples to which Theorem 1.6 applies. First we prove thatusual monofractal
functionsZ with exponentsd verify C1 andC2. We prove Theorem 1.9 in Section 6.
Finally we explicitly compute and plot the time subordinaaad the monofractal function
for a classical family of multifractal functionsZ,),<0,1) Which include Bourbaki's and
Perkin’s functions.

Let us finish by the direct by-products and the possible eibas of this work:
The reader can check that the proof below can be adapted ®geaeral contexts:

¢ the dyadic basis can be replaced by aradic basis.

¢ if (¢;) converges to zero (without any given convergence rate), (lneder slight
modifications of(r;)) the same result holds true. We focused on a simpler case,
but in practice, a convergence ratg = o (W) shall always be always
obtained.

e The fact the the quantitied (Z; k) are limits is only used at the beginning of the
proof. In fact, only the existence of the scéll) ;] such that (1.6) and (1.7) hold
true at scal@Jn ] is determinant. In particular, the conditions may be refaie
could treat the case where thE Z ; i) are only liminf (and not limits). Again, in
practice they are often limits, this is why we adopted théswpoint.

2. PRELIMINARY RESULTS

2.1. Oscillations and pointwise regularity. For everyt € [0,1], let I;(¢) be the unique
dyadic interval of generatiofthat containg, and];“(t) = L;(t) + 277, I; (t) = L;(t) —
277,

Let us recall the characterization of the pointwise Holelgponents smaller than 1 in
terms of oscillations of order 1 (see for instance Jaffafd i).

Lemma 2.1. LetZ : [0,1] — R a C” function, for somey > 0. Assume thatz(t) < 1.
Then

1 (7 1 H(Z
hr(t) = liming 1289BE B e o 11082 w2 (D))
r—0t | log T| j—+oo 9
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In Lemma 2.2, we impose some uniform behavior of the osiletof Z on a nested
sequence of coverings ¢, 1]. This is used later to prove the monofractality property
of the functiong in the decompositio¥ = g o f (Section 3), and also to decompose
self-similar functions (in Section 6).

Lemma 2.2. LetZ : [0,1] — R be a continuous function,c (0,1) andH € (0,1).
Suppose that there exists an infinite sequéfite of coverings of0, 1] such that

e eachT, is a finite sequence of disjoint non-trivial intervals [6f 1], such that
UTeTn T =[0,1],

o lim, o maxrer, |T| =0,

e each intervall’ in T, is contained in a unique intervdl’ of T,, 1,

o foreveryT € T, andT C T’ € T;,_1, we haveT’|'*%» < |T| < |T"|, for some
positive sequenceZ,,) that converges to zero when— +oc.

Then:

(1) If there exists a positive sequenes,)»>1 such that for every” € T,,, wr(Z) <
|T|H =% then for every € [0, 1], hz(t) >

(2) If there exists a positive sequenes,)n>1 such that for ever{" € T,,, wr(Z) >
|T|H+%n  then for every € [0,1], hz(t) <

Remark that in part (2) of this Lemma, the property needs tediisfied only for a
subsequencguy)>1 of integers.

Proof. Lett € (0, 1), andr > 0 small enough. For eveny > 1, ¢t belongs to one interval
T € T, that we denoté, (¢). Denote by, the smallest integer so thatl’, (t) C B(t, ).
By constructiont € T,,._1(t) and|T,,,_1(t)| > r (sinceT,._1(t) ¢ B(t,r)). By the
fourth property of the sequendd,), we have2r > [T, (t)| > [Tn, _1(t)|' T4 >
T1+Z"T .

Let us start by part (2), which is very easy to get. We hayg ,\(Z) > wr, +)(Z) >
|an(ﬁ)|H+'€nT > r(1+ZnT)(H+"inr)_

Applying Lemma 2.1, and using that, andx,,,. go to zero whem goes to zero, we
obtainhz(t) < H.

We now focus on part (1), which is slightly more delicateBIft, r) C T, —1(t), then
we havewp( 1 (Z) < wr,  (1)(Z) < [T, 1 (8)[HFnr=t < (2r)HRnr =)/ (At Znr o),

If B(t,r) ¢ T,.—1(t), then there is an integer (which depends om) such that
B(t,r)\T,,—1(t) is covered by one interval € T, and not covered by any interval of
T,+1. Using the same arguments as above, weBet | B(t, r)\T,, —1(t)|/ 1 +Zr+1) <
r1/0+2Zp11) (remark that B(t, )\ Ty, _1(t)| < 7).

Now we have

wpen(Z) < wr, . 0)(2) +wBEon\T., 1 ()(Z)
< (QT)(annr,l)/(1+an,1) + |T|H7'€p
< (QT)(H*’{nrfl)/(l‘Fanfl) 4 p(H=rp)/(14Zp11)
Sinceky,,., Z,,, kp andZ, convergeto 0 a8 — 0, Lemma 2.1 yieldsz(t) > H. O

2.2. Two easy properties for the study ofH (Z). Let us begin with an easy upper-bound
for H(Z).

Lemma 2.3. LetZ : [0, 1] — R be a non-constant continuous function. THé(Z) < 1
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Proof. We can assume without loss of generality thaf,;(Z) = 1. Letj > 1. By

constructiony2 ' w; x(Z) > 1. In order to have (1.3), we necessarily havg Z) < 1.
Hence the result. O

Lemma 2.4. Letg; and g, be two real monofractal functions df, 1] of disctinct expo-
nents0 < Hy < Hy < 1. There is no continuous strictly increasing functipn [0, 1] —
[0,1] such thaty; = go o f.

Proof. Suppose that such a functighexists. Lete > 0. This functionf is Lebesgue-
almost everywhere differentiable. There is aBeaif positive Lebesgue measure such that
for everyt € E, f'(t) > 0. Around such &, we havef(t + h) — f(t) = f/'(t)h + o(t).
Consequently, sinck, (f(t)) = Ho, for every|h| small enough we have

(g2 0 f)(t +h) = (g2 0 [YO] < |f(t+R) = f()]"27% < C|n 27"
)

This shows that,,.;(t) > H,. Using again thah,, (f(t)) = Haz, there is a sequence
(hl,)n>1 converging to zero such that for every> 1, |g2(f(t) + hl) — g2(f(¥))] >
|kl |72 €. Choosingh, so thatf (t + h,) = f(t) + hl,, we see that

(g2 0 F)(t+ha) = (g2 0 F)B) 2 [+ hn) = f()|25 = Clhn| 27

This holds for an infinite number of real numbéts,) converging to zero. Hendg,,. ;(t) =
Hj,, which contradicts,, (t) = H;. O

2.3. Afunctional interpretation of H(Z). Note first that the previous results hold in the
case where &-adic basisp > 2, is used instead of the dyadic basis. In fact, there is a
functional interpretation of the exponeHt 7 ), independent of any basis, provided by the
Oscillation spacesf Jaffard [11] and the Besov spaces. Let us recall their ifigfin that
we adapt to our context of nowhere differentiable functions

Let Z be aC” function on(0, 1), whereC" is the global homogeneous Holder space
andy > 0. Since [9] where the theoretical foundations of multifedetnalysis of functions
were given, a quantity classically considered when perfiogrthe multifractal analysis of

Z is the scaling functiomz (p) = sup {s >0:7¢ B;fl’;f"((o, 1))}.
Later, in [11], Jaffard also proved the pertinency in mudtital analysis of his oscilla-
tion spaces@f;/”((O, 1)), whose definitions are based on wavelet leaders (we do ndt nee

much more details here). He also considered the associe#didgs function(z(p) =
sup{s >0:7¢ O;/p(((), 1))}

Finally, still in [11], Jaffard studied the spacvs/p((o, 1)), which are closely related
to our exponentf (Z), defined as follows: Denote, fgr > 1 andk € {0,...,27 — 1},
Q1(Z) = wiz-i—32-3 k2-i+32-3)(Z), and consider the associated scaling function (we
assume hereafter thatis nowhere differentiable, as in Theorem 1.6)

¢ loms 10 (U (2))"

vz(p )71+131Ln-|{20 —

Forp > 0 fixed, it is obvious that there is a constar) > 1 such that

29 -1 29 -1 291

1/Cp > (winlZ))P < Y (k(2)) < G, Z wjk(Z

k=0 k=0
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sincew; 1 (Z) < Q;x(Z) < 216{737727"'1273} w;k+1(Z). Asaconsequenceg (p) = 1+

logy 35" (w6 (2))”

liminf; 4 r . Comparing the definition off (Z) with this formula,
we easily see thalf (Z) is the unique positive real number such tha{l/H(Z)) = 1.

The main point is that the three scaling functiops (7 andvz coincide as soon as
p > 1[11], andnz(1/H(Z)) = ¢z(1/H(Z)) = 1. Using the property of the Besov
domains, we have

H(Z)™' = inf {p >0:7 ¢ B, 1))} — inf {p >0: 7 € 07 ((0, 1))} .

2.4. Precisions for functions satisfying a multifractal formalism. Consider the scaling
function(z(p) above. Then for any functiofi having some global Holder regularity [11],
Z is said to obey the multifractal formalism for functions i isingularity spectrum is
obtained as the Legendre transform of its scaling functien,

inf (ph = C2(p) +1) (€ RY U{=oc})

In particular, since€z(1/H(Z)) = 1, we always havez(h) < h/H(Z) (by usingp =
1/H(Z) in the inequality above).

Moreover, assume that. = ¢, (1/H(Z)) exists and that satisfies the multifractal
formalism associated witl); at the exponent.. This means that the inequality above
holds true forh = h,, i.e.dz(h.) = h./H(Z).

From the two last properties we get thigtH (Z) is the slope of the tangent to the
(concave hull of the) singularity spectrum &f as claimed in the introduction.

foreveryh >0, dz(h) =

3. PROOF OF THE DECOMPOSITION OHHEOREM 1.6

The functionsg and F' are constructed iteratively. First remark that sirige) con-
verges to zero, one can also assume, by first replagibg max(n;, 1/ log j) and then by
imposing that(n,) is non-increasing, that the sequerige) satisfies:
o foreveryj > 1,7, > 1/logj,
e (jn;) is now a non-decreasing sequence gind— +oo whenj — +oo,
o (n;) still satisfies (1.6) and (1.7).

Assume that condition81 andC2 are fulfilled.

3.1. First step of the construction ofg and f. The exponent! (Zy o) = H(Z) = H is
the limit of the sequencé&;(Z), so there exists a generatidp > 1 such that for every
j Z Jo, |H — H](Z)| S €0-

We setH, = H;,(Z), and by construction we ha\Eifofl(w.]mk(Z))l/Ho =1

We then define the first step of the construction of the fumcfiowe set
k—1
fot) = (Wi wr (20 + (w1 (2)VHO (271 — k) i £ € g 1.
k'=0
This functionfj is strictly increasing, continuous and affine on each dyiatérval. More-
over, fo([0,1]) = [0, 1]. Let us denoté&/, ; the image of the intervdly, i by fo, for every
k € {0,...,270 — 1}. The set of interval§Uy, . : k € {0,...,270 — 1} clearly forms a
partition of [0, 1). One remarks that

(3.1) VE € {0,...,27 — 1}, |fo(Lsgi)l = U] = (wio 1(2))H Ho.
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The first step of the construction gfis then naturally achieved as follows: we set
g0(y) = Z((fo)"'(y)) fory € [0,1],
or equivalentlygo(fo(t)) = Z(t)fort € [0,1].
This functiongy maps any intervall 5, ;. to the intervalZ (I, ), and thus satisfies:
Wiy 4 (90) = Wi k(Z) = |Ugq 7.

As a last remark, there are two real numbersc o’ < ' such that for every
9=JoB'/Ho < |U; | < 27/oe'/Ho_ Without loss of generality, we can assume that
o = aandf’ = g (a« andp appear in conditiorC2) by changingx into min(o/, «)
andg = max(S3, '), so that
(3.2) for everyk, 27 /08/Ho < |7, | < 27 o/ Ho,

3.2. First iteration to get the second step of the construction ofy and f. We perform
the second step of the construction. Let us focus on onevadt&y, x, on which we refine
the behavior offy. By conditionC2 and especially (1.6), we have

(33) Z (w[-]()’l?.lo],/k’(ZJU,K))l/Hl = 1,
k’:O,...,Q[‘]O"JO]—l

whereH, = Hj,,,,.1(Z1,,x ) satisfies|H — Hi| < e,.
Let J; = Jo + [Jons,), henceli — Jo = [Jons,]. Remark that, by (1.7), we have for
everyk’ € {0, ..., 2l%om0l — 11

(3.4) 27 0m0)8 < ooy g v (Zgg )| < 27 om0l
Now, remembering the definition &, x, we obtain that for every’ € {0, ...,271=70 —

1},

Wy K2J1*J0+k’(Z)
3.5 _gok(Z = b
( ) Wy Jo,k( J07K) WJQ,K(Z)

Consequently, (3.3) is equivalent to
> (@ k(D) = (wgy, i (2),

and thus
> (@s k(2D (@ g 1 (Z)) OV — (05 1 (2)) 0,
k=0,....271 —1:1;, Cljy K

We now define the functioyf; as a refinement offyy on the dyadic interval 5, . We
set for everyk € {K27/1=70 .. (K +1)27r=70 — 1} and fort € I,

A = folk2)
k-1
Y 2D g (2))
k'=K271—7Jo
+ @n k(2D @, re (2) O 20— ).

This can be achieved simultaneously on every dyadic intdyac, K € {0, ..., 27 —
1}, by using the same generatidnfor the subdivision (indeed, conditidP2 ensures that
the convergence rate &f,(Z, ) does not depend ak). The obtained function is again
an increasing continuous function, affine on every dyaderiral of generatiot;.
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Let us denoté/;, , the image of the intervdl;, , by f1, for everyk € {0, ...,271 —1}.
The set of interval§U, 1 : k € {0,...,271 — 1} again forms a partition df), 1). We get

(3.6) vk € {0, ..., 27t — 1}, |UJ1J€| = (WJ1,k(Z))1/H1 (wJo,K(Z))l/HO_l/Hl-

but the main point is that we did not change the size of thdlatgons of f; on the dyadic
intervals of generatiody, i.e. f1 (1, k) = fo(Lsy,K)-

The second step of the constructioryd$ realized by refining the behavior gf: Set
aly) = Z((f1)"'(y)) fory e [0.1].
This functiong; maps any intervall;, . to the intervalZ(I;, 1), and thus satisfies:
wu,,  (91) = wi, k(Z) With [Uy, k| = (wi, £(2) 7 (w1 (2)) 1 Ho 1/

Finally, we want to compare the size of the interlg}, ;, with the size of its father
interval (in the preceding generatidi), . For this, let us choose«< {0, ...,271—1} and
K €0,...,270—1} aresuchthat,,  C I,, i (hencek can be writterk = K.271=70 £/
with k" € {0, ...,271=70 — 1}). Then, by (3.5),

Uikl = (@i (2N (W gy b (Zgy i)

U o1l (@1, — g (Z 0, 1)) 0

Using (3.4) we get
Ukl > U 27 7T = |Uy |27 o2/

On the other side, we know by (3.2) that;, | < 2~70%/Ho hence

Usoel = Uy i = |Ug 10 85
0 B 0,

where the left inequality simply comes from the fact that, C 1, x.

3.3. General iterating construction of g and f. This procedure can be iterated. Assume
that the sequencéd,),>1, (f»)p>1 and(g,),>1 are constructed for evegy< n, and that
they satisfy:
(1) foreveryl <p<n,J, =Jp_1+ [Jp_1ns,_, ] and|H — Hy| < e, .,
(2) foreveryl < p <mn, f,is acontinuous strictly increasing function, affine on each
dyadic intervall ;, ., and if we setf, (1, x) = Uy, .k, then

p—1
G.7)  folLy )l = U, il = (s, k(22 T (@i, 16,0 (1) (2)) 1 Hom =2 o

m=0
whereK,, (k) is the unique integer such that, . C I, k.. k), form < p,

(3) For everyl < p < n, the set of interval§U, ; : k € {0,...,27» — 1} forms a
partition of[0, 1).
(4) Foreveryl <p <n,if Uy, r CUyj,_, Kk, (k) then

BHp_1
|U']P71-,Kp71(k)|1+n‘]p71 e S |U‘]P7k| S |Upr1=Kpf1(k)|’
(5) foreveryl <p <n,fory € [0,1], gp(y) = Z((fp) " (v))

(6) foreveryl < p < n, foreveryk € {0, ...,2P—1}, we havef,,,(k27P) = f,(k27P)
for everyp < m <n.
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The last item ensures that once the valuefpfit k277 has been chosen, evefy,,
m > p, will take the same value &R —>.

To build f,,+; andg, 1, the procedure is the same as above. Weise = J, +
[JnnJ,], @and we focus on one interva} . We have by (1.6)

> (@hs1— ok (Z, )0t = (w1 (2)) M H,
k=0,...,27n+177n 1
whereH, 11 = Hj;,p, 1(Z;, k) satisfies |H — H, 1| < ¢;,. we have for every’ €
{0,..., 20l — 1}

(3.8) 2 nmond® <oy oy w0 (2, k)| < 27 mmle
and
Wy oy Kaner—tn g (Z)
3.9 _rw(Z = —ontb
(3.9) Wpir—dn k' (21, K) o7 <)
The same manipulations as above yield
(3.10 2 (@1es 2050 TT @, a9 (20) P =
k=0,...,27n+1—1:0; o\ kCly, K m=0
n—1
= (s k2N TT @o sy (2) 1 Hom =1 Hom,
m=0

Thenf,  is arefinementorf,,: Foreveryk € {K2/»+1=7n (K 41)27n+17/n 1}
andfort € I, x

fn+1(t) = fn(KQ_Jn)
k—1 n
+ Z (an+1,k/(Z))1/Hn+1 H (w.]m,Km(k/)(Z))l/Hm_l/HMJd
k' =K2/nt+t1—JIn m=0

+ @r k(D) T] @ (2D = s (270t — ),
m=0
Remark that for everyk, k') € {K2/»+1=/n (K +1)2/2+1=/» — 1}2 for everym €
{0,...,n}, K (k) = K (K).

This can be achieved simultaneously on every dyadic intévax, K € {0, ...,27» —
1}, by using the same generatidp; for the subdivision. The obtained function is again
an increasing continuous function which is affine on evergdiy interval of generation
Int1-

We then defing,, 1 by gn11(y) = Z((fnt1) " (y)) fory € [0,1]. LetU,, ,, i be the
image of the interval ;, ., , i by fn+1, foreveryk € {0, ..., 27»+1 —1}. This functiong,,;
maps any interval’;, , , » to the intervalZ(I;, ., «), and thus satisfies:

WU, 1.k (Gnt1) = Wi,k (2)

with

Uikl = @s k()00 T @iyt iy (2))1/ Hom =1 Homn,
m=0
At this point, all the items of the iteration are ensured eptche item (4). We prove it
now. As above, let us choogec {0, ...,27»+1 — 1} andK < {0, ...,272 — 1} are such that
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I,k C 1, Kk, andletk’ € {0,...,2/»+17/» — 1} be such that = K.2/»+1~/n 4 [/,
We have by (3.9)
Jnt1,k = Wi, K an,+1—Jn,k’ I, K
1% | ( (2)) Mo ( (Zg,,5)) !/ s
(3.11) = |Us bl (@1 (Z, 1))
Then, by (3.4),
Uikl > |U.]n_’k|2*(Jn+1f.7n)ﬁ/Hn — |U.]n_,k|27[']"’7"nm/H”+1.

As above, since by (3.2) thii 5, x| < 2~/»*/H» we have

1+ _BHp
|UJn7k’| Z |U.]n+1,k| Z |UJn,k| MIn aHpiq

3.4. Convergence of(gy)n>0 and (f,)n>0. The convergence of the sequerigg) to a
function f is almost immediate. Indeed, ea¢h is an increasing function fror®, 1] to
[0, 1], and by item (5) of the iteration procedure, for evgry 1, for everyk € {0, ..., 27 —
1}, fm(k277) is constant as soon a, > ;.

Recall that for everyn andk, | f.(1s,. k)| = |UJ,..x|- By (3.11), and using (3.4), we
obtain thalU;, ., x| < |Uy,, k|27 /m+1=7m)e and iteratively

(3.12) foreverym > 1, |U;, 1| < 0277,

for some constant’. Hence the sequen¢g/;, .. , x|)m>1 converge exponentially fast to
zero, with an upper bound independent.of
As a consequence,if. > n, then

— < a I; ) < a U
I frn = fmlle < ke{Of.I.l,Q?’(m—l} | fn( mek)| > kE{O,.I.I.l,2?7{7n—1}| Jm-,k|
< C27Ime,

This Cauchy criterion immediately gives the uniform comesrce of the function series
(f») to a continuous functioyi, whose value at each dyadic number is known as explained
just above. The limit functiorf is also strictly increasing, since it is strictly increasion
the dyadic numbers.

The convergence of the functions sequefgg),.>o is then straightforward. Indeed,
eachf, is an homeomorphism df), 1], and admits a continuous invergg!. We thus
have, for everyn > 1, g, = Z o f,;1. The seriegf, ') also converges uniformly on

[0, 1]. SinceZ is uniformly continuous off0, 1], (g.,) converges uniformly to a continuous
functiong : [0, 1] — [0, 1].

Remark thatf also admits an inverse functigit!, and thaty = Z o f~1.

3.5. Properties of g and f. Obviously, f is a strictly increasing function frorfd, 1] to
[0, 1], which is what we were looking for. All we have to prove the rofractality property
of g. This will follow from Lemma 2.2.

It has been noticed before that if we set, for every> 0, T,, = {Uj,x : k €
{0, ...,27» — 1}}, then everyT;, forms a covering of0, 1] constituted by pairwise dis-
tinct intervals. We obviously have:

e lim, . maxrer, |T| = 0 (using the remarks of Section 3.4 above),

e (T,,) is a nested sequence of intervals,

e by item (4) of the iteration procedure,Tf € T,, C T’ € T,_1, then we have
T'["H P < T < |T7), , with Z,, = n;,_, 222=1. This sequencéZ,,) converges
to zero, sincen,,) converges to zero and{,,) converges td7.
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In order to apply Lemma 2.2 and to get the monofractality progpof g, it is thus
enough to prove the last required properties, i.e. ther@ésiive sequencegs,,) converg-
ing to zero such that for evefl € T, ||+ < wr(g) < |T|H"n.

For this, letn > 1 andT' € T,,. This intervalTl’ can be writtenl/;, ;, for somek €
{0,...,27"—1}. We haveUy, &| = (w1, 1(Z2)V P TT0 (W x () (2)) 1/ Hom =1 Hinia
by construction , and(U,, x) = g.(UJ, k) = wi, x(Z). We just have to verify that
\Uy, |00 <wjy 1(2) < |Uy, k|75, for somes,, > 0 independent of.

We have

n—1 1 1

1
log |Uy, k| = 5~ logwy, k(Z>+Z(—H T
" m m+

Jogwy,, K,.(k)(Z)

m=0

Writing that‘Hlm — Hiﬂ < =(eg, + Egpiy t0(es,)) < =g, +o(ey,,)) and

- < (1 + 5 +o(e,,)), we obtain

(3.13 log |Uy,, x| 2 Yomlo(es, +0(es,)) logws, i, 0)(Z)
“logwy, x(2) H H2 H? logwy, x(Z2)
Letusdenotd,, » = —logwy,, k.. (Z), andy,, = ¢;,, for everym andk. Comparing
the last inequality with the desired result, all we have tovsfs that
n—1
mdm
(3.14) % — 0 whenn — +o0,
n,k
indepently ofk.

This is obtained as follows: Start froth, that we suppose (without loss of generality)
to be greater than 100. Recall that, by the remarks made aetfianing of Section 3, we
assumed that for every > 1, n;, > (log J,,)~!. Subsequently, every tert, is greater
thani,,, where(l,,) is the sequence defined recursivelylhy, = 1,(1 + 1/logl,,) and
l; = 100. Let us study the growth rate of such a sequence. Itis obW@tsm,, ., . [, =
+o0. We setv,, = logl,,. We havev,,;1 = v, + log(l + 1/v,) > v, + (1 — ) /v, for
everyn, with ¢ that can be taken less thapd sincev; is large enough. In particular, since
v > V2,03 > V24 (1 —¢)/v/2 > V3. Recursively, if we assume that > /n + 1,
thenv,+1 > v/n+ (1 —¢)/v/n > v/n+ 1. Hence the sequendg,) converges tetoo
faster tharexp v/, and thus faster than any polynomigl. ( We could be more precise,
and prove using the same arguments that the growth rdtg Jos exactlyexp /n.)

Let us now find an upper bound fgr,,. Using the item (1) of conditio€2, we have

thate; = o (W) Using the lower bound we found fak,, with ¢ chosen small
enough, we get that,, = o(n~1/22+1)) < o(n=1-%/2),
The crucial point is thaEm>1 P < +0o. Now, sincedm risa sequence increasing

toward-+oo, rewrite the left term of (3.13) a5, _ me dnk where) < m L <1.Bya
classical Caesaro method, we get that (3.14) is true, mtﬂﬂgeof k.

This directly implies, by (3.13), that independity bf % - % < Ky, for
some sequenoe, that converges to zero.
We now apply Lemma 2.2, which implies thats monofractal with exponerii .
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4. AROUND THEOREM 1.6

4.1. Possible extensions for exponents greater than Llet us finally say a few words
about functions having regularity exponents greater tharhk presence of a polynomial
in the definition (1.1) of the pointwise Holder exponent iscaurce of problems when an-
alyzing the local regularity after time subordination. éed, suppose that a continuous
functiong; behaves likét — ¢o|* (0 < a < 1) around a point,, and that another contin-
uous functiory, behaves likeu(t — to) + [t — to|*/? (a # 0) aroundty = g1 (to). Then
hg, (to) = o, hg,(to) = 3/2, buthg,oq, (to) = «, which is different than the expected
regularity3a,/2. Applying the construction above and getting a decompmwsitf a func-
tion Z asZ = g o f, because of such problems, we didn't find any way to guarahtee
monofractality ofg.

This is related to the fact that, still for the just above toym®ple,wp(t,,r(g2) ~
2ar whenr is small enough, while one would expegk;, . (g2) ~ r*/2. The use of
oscillations of order greater than 2 (so th%(to_rr)(gQ) ~ r3/2) was not sufficient for us
to prove Theorem 1.6 for exponents greater than 1.

An unsatisfactory result is the following: | has all its pointwise Holder exponents
less thanM > 1, thenW, 55, o Z has all its exponents smaller than Wy, is the
Weierstrass function (5.1) monofractal with expongf2M), and one shall try to apply
Theorem 1.6 to this function.

As a consequence, this problem is still open and of interest.

5. THE CASE OF CLASSICAL MONOFRACTAL FUNCTIONS AND PROCESSES

It is satisfactory to check that classical monofractal fioxes verify the conditions of
Theorem 1.6, and that the exponéht?) is actually equal to their monofractal exponent.
The proofs below are also representative examples of thieadetsed to get convergence
rates forH;(Z) to H(Z).

5.1. Weierstrass-type functions.Let0 < o < 1, 8 > acandb > 1 be three real numbers.
Letw be a bounded function that belongs to the global Holdesel&¥ (0, 1)). Consider
the Weierstrass-type function

(5.1) Z(t) = i b=k (brt).
k=0

By [5], either the functior? is C”, or it is monofractal with exponent Forw(t) = sin(t),

we obtain the classical Weierstrass functions monofrauithl exponenty. In fact, it is
proved in [5] that, ifZ ¢ C# (which is our assumption from now on), then there is a
constantC > 1 such that

(5.2) C71277% < w; (2) < 0279,

As a direct consequena€; /> < Zi:ol (w; x(Z2))Y/* < CY*, and obviouslyH (Z) =
.

Let us find the convergence ratefdf (Z) toward H (Z). We are looking for a value of
¢ > 0 and for a scalel, for which 7 (w; x(2))/ () > 1, for everyj > J,. Let
j > 1. We have, by (5.2),

271
Z (wjx(2))/@te) > gig—1/(ate)g=ja/azte)
k=0
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Fore small,1/(a +¢) = 1/a — g/a? + o(¢), and thus our constraint is reached as soon
asl < C~1/ate/o®+o(e)gje/atolic;) This leads to

je/a+o(je) + (logy C)(—=1/a +e/a’ + o(g)) > 0.

There is a generatioffy such that the last inequality is realized by= %. Subse-
quently, one necessarily hagH,;(Z) > 1/(a + ¢) for everyj > Jy, since

291 291
Do @ik2)VEFD > Y (win(2))V D =1
k=0 k=0

and the mapping — Zi;Bl (w; x(Z))Y" is increasing withh. HenceH,;(Z) < a +¢.
Using the same method, we obtdif)(Z) > o — 2¢ for j > Jp.
Finally, we have foundJ, large enough so that for evejy> Jy, |H;(Z) — a| < &,
where we have sety = 2¢ = 41og, C/(Jy).

For everyJ > 1 andK € {0,...,27 — 1}, we easily get the same convergence rates
of H;(Z; k) towarda from the self-affinity property of the Weierstrass funcgomMore
precisely, fixJ and K, and letj > J + 1. Remark that by construction &f; x, we have

wi—gk(Z1K) = %W We are looking for a value af for which

1/(a+
3 (M) fes
k=0,...,29 —1:1; . C Ly xc wik(Z)

for everyj large enough. By (5.2) (used two times), and remarking thextet are2’—~
dyadic intervals of generatiohincluded inl; g, we get

1/(a+e)
Z (wj-,k(z) > > 2j7J072/(a+s)27(j7J)a/(a+6)'
k=0,...,29 —1:1; ,, Cl 7 K wJ’K(Z)
The same computations as above yield that, if we imppse= 1/log,JJ ande; =
4(log, C)(logy J)/J, then foreveryy > J + Jny, Hi—;(Z; k) < o — 5. Similarly, we
obtainH;(Z) > a4 2, forj > J + Jn;.

Finally, for everyj > J + Jny, |Hj—;(Z; k) — a| < e, ande; = o(1/(log 7)%*%).

Consequently, the Weierstrass functions satidfyandC2 with H = «, and they are
also monofractal from our viewpoint.
5.2. Sample paths of Brownian motions and fractional Brownian mdions. Classical
estimations on the oscillations of sample paths of Browniations(B,).>¢ yield ([11])
1

P(win(B) <j2797%) < —em(—f*n%)
T
1__. 45 .
P (ijk(Bt) 2 32 ]/2> < %GXP(*J2/8)

Hence, by a classical Borel-Cantelli argument, with prdlitslone, there is a generation
J.. such that for every > J., we have the bound}sQ*j/2 < wjk(By) < j279/% for the
oscillations.
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The same computations as for the Weierstrass functions gtaivthere is a generation
Jo suchthatifj > Jy > J., then

27 -1 29 _1
Z (w_j,k(Bt))l/(l/Q-'rEJo) ~ 1 and Z (wj,k(Bt))1/(1/2_gJU) <1,
k=0 =

wheres 5, > C1%-% (for some suitable consta6Y. As a consequencg;(B;) —1/2| <

e, for everyj > J.

The self-similarity property of Brownian motions yieldsattfor everyJ > 1 andK €
{0,...,27 — 1}, for everyj > J/log J, |H;((B;)s.x) — 1/2| < e, wheree; = Cl&L
for some constant' independent off and K. We omit the details here, that can be easily
checked by the reader.

Consequently, a sample path of Brownian motion satisfids pribbability oneC1 and
C2, with H(B,) = 1/2.

Similar estimations on the oscillations of fractional Broman motionsB;, of Hurst
exponenth lead to the same almost sure result for the sample pathshvaltso satisfy
almost surelyC1 andC2 with H(B},) = h.

6. APPLICATIONS TO SELFSIMILAR FUNCTIONS. THEOREM 1.9

We consider the class of self-similar functions defined ififidgon 1.8, with the pa-
rameters o7 and the contractionS;, satisfying (1.9).

The multifractal analysis of such a functighis performed in [9]. Here we are going
to prove that, under the conditions (1.9) on theand theSy, Z is CMT, and that the
multifractal behavior ofZ can be directly deduced from this analysis. It is a case where
our analysis provides a natural way to compute the singulspiectrum ofZ.

6.1. Preliminary results on the oscillations of Z. Let us introduce some notations: for
everyn > 1, for every(ey,ea,...,e,) € {0,1,...,d — 1}, we denotd,, ., .. ., theinter-

val S, o S., o...0 S, ([0,1]). The integen being given, the open intervalg., -, . .. )
are pairwise disjoint, and the union of the closed interva|s, .. .. equals(0, 1]. Now
fix an integern > 1 and a sequencg, ¢, ...,&,) € {0,1,...,d — 1}™. The interval
I, e,...., hasalength equal tQ, r, - - - ., . Finally, by iterating: times formula (1.10),
we getthatforevery e I, ., ..,

(6.1) Z(t) = Ay Ay Ae, (Z0857' 0 ST oo SNt
)\61 ' >‘62 e >‘€n71 ' ((bo S;ll,l © S;nl,z ©...0 S‘;l)(t)

.....

+
+ ..
+ Ay Aey (0SS o SIH(®)
+ Ay (00 S5H(®)
+  ot).
Recall thaty . is defined in (1.9).
Proposition 6.1. Letx = % Then eitherZ is a s-Lipschitz function, or there is a
constaniC' > 1 such that for every, > 1, for every(ey, €9, ...,e5) € {0,1,...,d — 1},
(62)  C7' ey Aey Ao, | < wr Z)<C ey Aey - Ay .
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Proof. We first find an upper-bound far, .. . (Z). We use the iterated formula (6.1).
Letn and(e1,e2,...,en) € {0,1,...,d— 1}" ‘Remark that whetirangesine, ,. ...
(S;toSzt o.o S;ll)(t) ranges |r{0 1]. Hence the oscillation of the first term of (6.1)

is upper-bounded by., Ac, - A, | - w011 (2).

Now, for everyk € {1,...,n — 1}, Whent ranges inl;, c,,..c., (S5 oSS! o0
S-1)(t) rangesin., ... Usmg thate is a Lipschitz functlon, we get that the oscil-
lation of each term of the form., A, --- A, - (¢ 0 S ' o S;1 0.0 S71)(t) is upper

bounded byA., Ac, - Ac, (7, , -7, ). Finally, we obtain using (1.9)

.....

Wl eo,...em (Z) < |>\€1)\52...>\€n| =+ Z |>‘61>‘62 .“>\5k| ) (T5k+1 "'ren)

PAeeseAe, |1+ (IE[T—J)}

IN

< Peder A [T+ 30 M) £ QLA A,

whereCy = 1+ 30,55 x5 < +oo.

We now move to the lower bound. Assume tlrats not x-Lipschitz. There are two
real numberd) < to,¢, < 1 such thatZ(t;) — Z(to)| > (k + n)|t{, — to|, for some
n > 0. Letn and(al,gg, w&n) € {0,1,...,d —1}™. Letuscallt, = S;0S30...0
Sp(to) andt!, = S1 082 0 ... 0 S, (yo). We obviously have,,,t, € I., ., .., and
thuswr, ., .. (Z) > |Z(t},) — Z(t,)|. Using again (6.1), we get by the same lines of
computaﬂons as above

.....

n—1
> [Aey Ao A, | 1Z(tG) — Z(t0)| — Z R e [ e, )|to — tol

k=1

n—1 k |t + |
> ) A _ __fo =01
> ey e 12005) = Z(t0)] 1= 3 E ) Tz = Za)
—+oo
> e Aoy oA |- |Z(8h) = Z(t0)] |1 - —me} > Co - Pedes +Ae, |
whereCs = |Z(ty) — Z(to)|(1 — K—Jmlx%) > 0 by assumption.

Finally, (6.2) is proved witfC' = max(Cy,Cy'). O

6.2. Comparaison of Z with a self-similar measure. In order to prove that the function
Z (1.10) satisfies our conditiorzl andC2, we introduce a self-similar measytewhose
multifractal behavior will be compared with the one 4f and the notion of multifractal
formalism.

Let us consider the exponeht> 1 such that (1.11) holds and the associated self-similar
measure: defined by (1.12), = Zk Opk (1o S;h). In our case where the similitudes
do not overlap, it is easily checked that by constructiongfeeryn and(eq, €2, ...,e,) €
{0,1,...,d — 1}, we haveu(l., c,.. c.) = PeyPes Der, = |Aey Aey - e, [P
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This class of measures has been extensively studied [6,, 2,816 For instance, the
multifractal analysis of is very well known. For this, let us introduce the so-called
spectrum of.: defined by

] 271 JARY
(6.3) T,:qeR—T1,(q) = Elglﬁlgcf 7.(j,q), wherer,(j,q) = 082 Zk__oj Hlik) )

We only recall the properties we need [7, 16, 18]

Proposition 6.2. (1) Foreveryg € R, 7,(q) is the unique real number satisfying the
equationy_¢{_} (px)?(r1,)™(@ = 1. The mapping; — 7,(q) is analytic on its
support. Moreover, the liminf used to defingq) is in fact a limit for every; such
that 7, (q) is finite.

(2) There is an interval of exponenis = [amin, ®max] SUch that for everyy € I,,,
du(@) = (1,)*(a), where(r,)*(@) = infger(ga — 7,(q)) is by definition the
Legendre transform of,,.

(3) Ifa ¢ I, then{z : o, (t) = a} = 0.

(4) ThereisM > 1 such that for every, k large enough2 /" < (I, ;) < 279/M,

Part (2) above is known as the multifractal formalism for sweas, when it holds.

Let us come back to the functiod. The reader can check that such a functidon
satisfiesC1 and C2, and is thus CMT. Here we propose a quick proof of Theorem 1.9,
especially adapted to this case.

The aim is to prove that can be writtenZ = go Each dyadic interval; ;, is included
in one dyadic interval., . ., and contains a dyadic interv&l, . . ..., such that
I, . c,andl, . ., .. canbewritten respectively: ., andl;» ,» with0 < j—j’, 5" —

J' < C, for some constant’ independent of andk. Consequentlyyy, (Z) <
wr, ,(Z2) Swr,, (Z), and thus

----- En En41

,,,,, en

C_lﬂ(lé‘l,---,emanJrl)l/ﬁ S wj7k(Z) S O/J’(1817~~~75n,)1/6'

Using now the self-similarity properties of the measure tredopen set condition, we

see thamaxy (pr) - 1(le,,...cnenpr) = WLjk) @Ndp(ljk) = ming(pr) - p(le,....c,.)-
Hence, combining this with the last double inequality, wéadbthat for everyj andk

(6.4) C (I )P < wjn(Z) < Cu(I;p)'?

for another constar, i.e. Proposition 6.1 extends to all dyadic intervals.
Let us check tha¥ satisfies condition€1 andC2. Remark that, because of (6.4),

291 2791 271
CP=C"N " ulIin) <D (win(2)? <C” Y uIx) = C°.
k=0 k=0 k=0

Lete; > 0. Using part (4) of Proposition 6.2 to find upper- and lowetHbds forw; ,(Z2)
uniformly in k&, we obtain

291 291
> Wik(2)P7 = (win(2)(CulIg) > ¢ a/M
k=0 k=0
291 29 -1

and 3 (Wk(2)7 < 3 (@i 2)P(CulL) > CorergTia,
k=0 k=0
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Hence, the same computations as in the case of Weierstrag#ofus lead to the following
choice: for someJ, large enough, we set; = %, and thus for every > Jy,
|H;(Z) — H(Z)| < e

Let now J, K be two integerss > 0, and focus orf{ (Z; i ). The same computations
as above and as in the Weierstrass case yielg forJ

29-7 1 29 -1 B—¢
k(2
Y (wjaw (Zsk)T = ) (7%”“((;)) :
k'=0 k=0:1; , Cls x Wik

. . B—e —fB+e o _
First notice that(m) > (W) > C~P~ep(I; )~ </P. Then
we remark that

271 291
Yo (wik@)' = > (@@ (Culir) e
kzo:lj,kCIJ,K kZOIIj’kCIJVK

Combining these inequalities we get

¥ -1 271

S (@ (Zax)?E = CPE Y (w6(2))? p(Lyx)*/"
J—J, s = )

R'=0 k=0:1; ,CIx wlyrx)  pLye)®

Iy i Al k)P (M(IJ,K))E ; ;
Let us focus on““(lT. Sinces3 > 1, we have w2 ey ) - This quantity

is lower bounded by.7—7)¢ for some constant (uniformly in & and K), since the ratio
of they-measures of a dyadic interval and its father (in the dyadi)tis uniformly upper-
and lower-bounded for our dyadic self-similar measuré&inally, we obtain

v = (@@
> (wiiaw(Zrk)E = o N %Luws
k'=0 k=0:1,,Cly, i #lsx)
291
> C—Qﬁ—Qa Z :U/(Ij,k) L(j—J)E
B 1Ly, i)

kZO:I]‘,kCIJVK
> C—Qﬁ—QaL(j—J)E.

Hence if we fixn; = 1/log, J, then the sum above is greater than 1 as soop as

J+ [Jng) ande > 22EERe T Thus forj > J + [Jn), Hi—(Zs k) — H(Zs k) <
. og C'log, .

7= < S +eswithe, = HoETo8d

Similarly one shows that fof > J + [Jn], Hj—;(Z;x) — H(Z; k) > % —ey,and

C2 holds true forZ.

Applying Theorem 1.6 yields that is CMT and can be written a8 = g o F', whereg
is monofractal of exponent/ 5.

6.3. Computation of the singularity spectrum of F'. Applying directly the construction
of Section 3, we find a function monofractal with exponerit/ 3 and a strictly increasing
function f such thatZ = g o f.

One can even enhance this result as follows. Following thefgf Section 3, we see
that for everyp > 1, for everyk € {0,1,...,27» — 1},

(L, ) < f (L, 0| < p(Lr,6)' ",
where(r,),>1 IS @ positive sequence decreasing to zerosaizddefined by (1.12).
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Let us denote by the integral of the self-similar measuysei.e. fort € [0,1] F(t) =
u([0,]). We claim thatf = g; o F' for some functiory which belongs ta!~"([0, 1]),
for everyn > 0. Indeed, define for every e [0,1] g1(t) = f o F~1(t). This is possible
sinceF is an homeomorphism ¢, 1].

By construction, for every > 1, for everyk € {0,1,...,27 — 1}, g1(F (15, 1)) =
foF toF(I; 1) = f(I;, ) thus by the inequality above,

[F (L, i)' = p(Ly, 1) < |g1(F (1, 1)) < (L, ) =" = [F(Ly, 6)' "7,

where we used thdf"(1;, x)| = w(Is, ). Now the sets of interval§F (I;, x)) : k €
{0,1,...,27»—1}} obviously forms a covering df, 1] to which Lemma 2.2 can be applied
with H = 1.

Flnally, we find thatZ = go g1 o F' = g5 o I, wheregs is clearly monofractal with
exponentl /[ sinceg andg; are monofractal respectively with exponehfs and1 (the
resulting functiory, is monofractal since the oscillations g@fandg; are upper and most
important lower bounded on every interval).

7. AN EXAMPLE OF FUNCTION SATISFYINGC1-C2IN A TRIADIC BASIS

We recall the contruction of multifractal functions of [18lhich somehow generalizes
the Bourbaki’s and Perkin’s functions.

Let us consider the functio#, defined for0 < a < 1 as the limit of an iterated
construction: Start fronZ?(¢) = ¢ on [0, 1], and defineZi (¢) recursively onl0, 1] by the
following scheme: Suppose thay is continuous and piecewiese affine on each triadic
interval (k377 (k +1)377], k € {0,...,37 — 1}. ThenZi*1 is constructed as follows: On
each triadic intervalk3~7, (k +1)377], ZJ*1 is still a continuous function which is affine
on each triadic subintervat’3— G+ (k' + 1)3-U+D] included in[k377, (k + 1)377],
and

Zi N (k37) = Z](k37)
ZItN (g3~ £ 370Dy = Zi(k379) 4 a(Zg((k +1)377) — Zf;(k:3‘j))
Zi+ (k37 4 2.3-G+D) ZI(k379) + (1 — a) (Zg((k +1)37) - Zf;(k?ﬁj))

ZIMN(k+1)379) = ZI((k+1)379).

This simple construction is better explained by the Figure 7

It is straightforward to see that the sequei¢);~; converges uniformly to a contin-
uous functionZ, as soon aé < a < 1. Bourbaki’s function is obtained when= 2/3,
while Perkin’s function corresponds &= 5/6.

Fora < 1/2, the function is simply the integral of a trinomial measuf@arameters
(a,1—2a,a), hence its singularity spectrum is completely known. Wegaiag to explain
why the functionsZ,, whena > 1/2, satisfy our assumptions, and thus can be written
as the composition of a monofractal functigniwith an exponentd we are going to
determine) with an increasing function. We will also dedfioen this study the singularity
spectrum ofZ,,.

Fora > 1/2, the limit functionZ, is nowhere monotone. Let us compute the oscilla-
tions of Z, on each triadic interval.
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p+a(d-p)

p+(1-a)(g-p

FIGURE 1. Iterated construction df,,, from stepj to stepj + 1

Remark first that the slope &f; on[0,1/3] is 3a, itis —3(2a — 1) on[1/3,2/3] and3a
on[2/3,1]. lteratively, if j > 1 andk € {0,...,3/ — 1}, we writek3~7 = 37, £,377,
with &; € {0, 1,2}. Then the slope of? on[k377, (k + 1)377] is simply

(3a) 50 (=3(2 = 1)) (3a)"* = 8 (a)*3° (=(2a = 1))"*5 (a)"*57,

whereny, ; ; is the number of integerse {1, ..., j} such that, = i (fori = 0, 1,2) in the
triadic decomposition of3~7.

Let us consider the trinomial measuyrg of parameterg—*=, ig:}, 1.5)- Thenitis
obvious that the absolute value of the slop&g@bn each triadic intervdk3 =7, (k+1)377]
can be written ag, ([k377, (k + 1)377])37 (4a — 1)7. As a final remark, we also notice
that the oscillations o, on each triadic intervak3 7, (k 4+ 1)377] is the same as the
oscillations ofZ7 on each triadic intervdk3 7, (k + 1)377], which is equal t& 7 times
the slope, i.e.

(7.1) pa([k379, (k +1)377])(4a — 1).

Letq € R. Let us compute the sum of the oscillationsffat generatiorj. We have

371 391
(7.2) > (@Wis—r,ts1)3-11(Za)* = D (na([k377, (k + 1)377]))73% loa(da=1),
k=0 k=0

Let us explain now how we easily compute the exporféptsuch that (1.4) holds true.
For a multinomial measure, (in fact, for any positive Borel measure), it is very claasic
in multifractal analysis to introduce the functions, ;(¢) and the scaling function,, (¢)
defined forg € R as (6.3) but in the triadic basis:

mi 1ogs Y% 1 (1o (377, (k + 1)379]))4
TMQ(Q):?Ej&fTua,j(q), where 7, i(q) = 8 2 k=0 ( ([] ( )3771) -

In our simple case, it is easy to see that for eveby 1 andg € R

s@ = @ = —on((55) + (57) + (255) )

—logz(2(a)? + (2a — 1)) + qlogz(4a — 1).
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What matters to us is the value @ffor which the sum in (7.2) equals 1. Let us write
this specific valug as1/H, for someH > 0. When this sum is 1, then we have

371
3—i7u(1/H) gj(logz(4a—1))/H _ Z (Ma([k?)_j, (k + 1)3—3']))1/H3j(10g3(4a—1))/H - 1.
k=0
Let H, be the solution of the equationr,(1/H,) + logs(4a — 1)/H, = 0, which is
equivalent to

(7.3) 2(a)He 4 (20 — 1)V He =1,

This solution is positive, unique, and strictly smallerrihb.  Hence, in this case, the
monofractal exponert, is defined through an implicit formula.

In order to get the whole conditio@2, it suffices to notice that any rescaled function
(Z4) 1,k (as defined in (1.6), but here with triadic intervals) is affijuequal toZ,, (if Z, is
increasing ok3 7, (k+1)3~7]) orto Z,(1—.) (if Z, is decreasing ofk3~7, (k+1)377]).
HenceH ((Z,), k) is a limit for everyJ, K, and is even constant equali,. ThusC2 is
satisfied.

We can then apply Theorem 1.6, a#d is the composition of a monofractal function
ga Of exponentH, with an increasing functior¥,. Fora = 2/3, we see that{, =
1/2 is the solution to (7.3), sinc&(2/3)? + (1/3)? = 1. We have plotted in Figure 7
the Bourbaki’s functionf, 3, its corresponding time chandg 3 and the corresponding
monofractal functiony, /3 of exponent /2 such thatf /3 = go/3 0 Fy/3.

In this case, we can even go further and compute the singutgréctrum ofZ,. The
trinomial measure satisfy the multifractal formalism foeasures, i.e. the singularity spec-
trum of i1 is given by the Legendre transformgf, :

dp, (@) = (T,)" (@) == ég]fR(qa — 7. (2)),
for everya € [—logs(a/(4a — 1)), —logg(2a — 1)/ (4a — 1)].

It is easy to see, using (7.1), thatif has a local Holder exponent equaki@t a point
to, thenZ, has att, a pointwise Holder exponent equaldd/ = — logs(4a — 1). Hence
the multifractal spectrum of, is deduced from the one @f, by the formula

dz,(h) = d,, ((h + log(4a — 1))1/H)

for everyh € [(—logs(a))'/Ha) —logs(4a—1), (— logz(2a—1))/Ha) —log,(4a—1)]. A
more explicit formula is obtained as follows: for everg R, if o = 7,,, thenJMa (o) =
q(70,)" (@) = Tpo (@)

The singularity spectra of,,3 andpu,,3 are given in Figure 7.

Finally, remark that the maximum of the spectrum is obtafoed., = ((7,,,)’(0))"/Ha —
logs(4a — 1), anddz, (o) = 1. After computations, we find, = = (logs(a?(2a — 1)).

Let us consider the value af, such thate,, = 1. Thena?(2ap — 1) = 1/27, i.e.
54a3 — 27a% = 1. Whena > ay, the set of pointg for which iz, (t) > 1 is of Lebesgue
measure 1, hence we recover the main result of [15]:is differentiable on a set of
Lebesgue measure 1. Here we obtain in addition the wholéfraatal spectrum ofZ,,.
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