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Let Z : [0, 1] → R be a continuous function. We show that if Z is "homogeneously multifractal" (in a sense we precisely define), then Z is the composition of a monofractal function g with a time subordinator f (i.e. f is the integral of a positive Borel measure supported by [0, 1]). When the initial function Z is given, the monofractality exponent of the associated function g is uniquely determined. We study in details a classical example of multifractal functions Z, for which we exhibit the associated functions g and f . This provides new insights into the understanding of multifractal behaviors of functions.

INTRODUCTION AND MOTIVATIONS

Local regularity and multifractal analysis have become unavoidable issues in the past years. Indeed, physical phenomena exhibiting wild local regularity properties have been discovered in many contexts (turbulence flows, intensity of seismic waves, traffic analysis,..). From a mathematical viewpoint, the multifractal approach is also a fruitful source of interesting problems. Consequently, there is a strong need for a better theoretical understanding of the so-called multifractal behaviors. In this article, we investigate the relations between multifractal properties and time subordination for continuous functions.

The most common functions or processes used to model irregular phenomena are monofractal, in the sense that they exhibit the same local regularity at each point. Let us recall how the local regularity of a function is measured.

Definition 1.1. Let Z ∈ L ∞ loc ([0, 1]). For α ≥ 0 and t 0 ∈ [0, 1], Z is said to belong to C α t0 if there are a polynomial P of degree less than [α] and a constant C such that, locally around t 0 , (1.1)

|Z(t) -P (t -t 0 )| ≤ C|t -t 0 | α .
The pointwise Hölder exponent of Z at t 0 is h Z (t 0 ) = sup{α ≥ 0 : f ∈ C α t0 }. The singularity spectrum of Z is then defined by d Z (h) = dim{t : h Z (t) = h} (dim stands for the Hausdorff dimension, and dim ∅ = -∞ by convention).

Hence, a function Z : [0, 1] → R is said to be monofractal with exponent H > 0 when h Z (t) = H for every t ∈ [0, 1]. For monofractal functions Z, d Z (H) = 1, while d Z (h) = -∞ for h = H. Sample paths of Brownian motions or fractional Brownian motions are known to be almost surely monofractal with exponents less than 1. For reasons that appear below, we focus on monofractal functions associated with an exponent H ∈ (0, 1].

More complex models had to be used and/or developed, for at least three reasons: the occurrence of intermittence phenomena (mainly in fluid mechanics), the presence of oscillating patterns (for instance in image processing), or the presence of discontinuities (in finance or telecommunications). Such models may have multifractal properties, in the sense that the support of their singularity spectrum is not reduced to a single point. Among these processes, whose local regularity varies badly from one point to another, let us mention Mandelbrot multiplicative cascades and their extensions [6,14,12, 1] , (generalized) multifractional Brownian motions [17,3] and Lévy processes [4,10] (for discontinuous phenomena).

Starting from a monofractal process as above in dimension 1, a simple and efficient way to get a more elaborate process is to compose it with a time subordinator, i.e. an increasing function or process. Mandelbrot, for instance, showed the pertinency of time subordination in the study of financial data [13]. From a theoretical viewpoint, it is also challenging to understand how the multifractal properties of a function are modified after a time change [19,2].

A natural question is to understand the differences between the multifractal processes above and compositions of monofractal functions with multifractal subordinators. Definition 1.2. A function Z : [0, 1] → R is said to be the composition of a monofractal function with a time subordinator (CMT) when Z can be written as

(1.2) Z = g • f,
where g : [0, 1] → R is monofractal with exponent 0 < H < 1 and f : [0, 1] → [0, 1] is an increasing homeomorphism of [0, 1].

In this article, we prove that if a continuous function Z : [0, 1] → R has a "homogeneous multifractal" behavior (in a sense we define just below), then Z is CMT. Hence, Z is the composition of a monofractal function with a time subordinator, and shall simply be viewed as a complication of a monofractal model. This yields a deeper insight into the understanding of multifractal behaviors of continuous functions, and gives a more important role to the multifractal analysis of positive Borel measures (which are derivatives of time subordinators). We explain in Section 6 and 7 how this decomposition can be used to compute the singularity spectrum of the function Z.

Let us begin with two cases where a function Z is obviously CMT: 1. If Z is the integral of any positive Borel measure µ, then Z = Id [0,1] • Z, where the identity Id [0,1] is monofractal and Z is increasing. Remark that in this case, Z may even have exponents greater than 1.

2. Any monofractal function Z H can be written

Z H = Z H • Id [0,1]
, where Z H is monofractal and Id [0,1] is undoubtably an homeomorphism of [0, 1].

These two simple cases will be met again below.

To bring general answers to our problem and thus to exhibit another class of CMT functions , we develop an approach based on the oscillations of a function Z : [0, 1] → R. For every subinterval I ⊂ [0, 1], consider the oscillations of order 1 of Z on I defined by

ω I (Z) = sup t,t ′ ∈I |Z(t) -Z(t ′ )| = sup t∈I Z(t) -inf t∈I Z(t).
In the sequel, we assume that Z is continuous and for every non-trivial subinterval I of [0, 1], ω I (Z) > 0. This entails that Z is nowhere locally constant, which is a natural assumption for the results we are looking for.

It is very classical that the oscillations of order 1 characterize precisely the pointwise Hölder exponents strictly less than 1 (see Section 2).

Let us introduce the quantity that will be the basis of our construction.

For every j ≥ 1, k ∈ {0, ..., 2 j -1}, we consider the dyadic intervals I j,k = [k2 -j , (k+ 1)2 -j ), so that k=0,...,2 j -1 I j,k = [0, 1[, the union being disjoint. For every j ≥ 1 and k ∈ {0, ..., 2 j -1}, for simplicity we set

ω j,k (Z) = ω I j,k (Z)(= ω I j,k (Z) since Z is C 0 ).
Definition 1.3. For every j ≥ 1, let H j (Z) be the unique real number such that (1.3)

2 j -1 k=0 (ω j,k (Z)) 1/Hj (Z) = 1.
We then define the intrinsic monofractal exponent of Z H(Z) as

(1.4) H(Z) = lim inf j→+∞ H j (Z).
This quantity H(Z) characterizes the asymptotic maximal values of the oscillations of Z on the whole interval [0, 1]. This exponent is the core of our theorem, because it gives an upper limit to the maximal time distortions we are allowed to apply.

It is satisfactory that H(Z) has a functional interpretation. Indeed, if Z can be decomposed as (1.2), then the exponent of the monofractal function g shall not depend on the oscillation approach nor on the dyadic basis. In Section 4 we explain that

(1.5) H(Z) = inf p > 0 : Z ∈ B 1/p,∞ p,loc ((0, 1)) = inf p > 0 : Z ∈ O 1/p p ((0, 1)) ,
where B q,∞ 1/q,loc ((0, 1)) and O 1/p p ((0, 1)) are respectively the Besov space and oscillation space on the open interval (0, 1) (see Jaffard in [11] for instance).

For multifractal functions Z satisfying some multifractal formalism, the exponent H(Z) can also be read on the singularity spectrum of Z. Indeed (see Section 4), H(Z) corresponds to the inverse of the largest possible slope of a straight line going through 0 and tangent to the singularity spectrum d Z of Z.

These remarks are important to have an idea a priori of the monofractal exponent of g in the decomposition Z = g • f . They also give an intrinsic formula for H(Z).

Let us come back to the two simple examples above: 1. For the integral Z of any positive measure µ,

2 j -1 k=0 ω j,k (Z) = 2 j -1 k=0 µ(I j,k ) = 1, hence H j (Z) = H(Z) = 1,
which corresponds to the monofractal exponent of the identity Id [0,1] from the oscillations viewpoint.

2. The first difficulties arise for the monofractal functions Z H . When Z H is monofractal of exponent H, then we don't have necessarily H(Z H ) = H. We always have H(Z H ) ≤ 1 (see Lemma 2.3 in Section 2), but it is always possible to construct wild counter-examples. Nevertheless, we treat in details the examples of the Weierstrass functions and the sample paths of (fractional) Brownian motions in Section 5, for which the exponent H(Z H ) meets our requirements.

Unfortunately, the knowledge of H(Z) is not sufficient to get relevant results. For instance, consider a function Z that has two different monofractal behaviors on [0, 1/2) and [1/2, 1]. Such an Z can be obtained as the continuous juxtaposition of two Weierstrass function with distinct exponents H 1 < H 2 : We have H(Z) = H 1 , and Z can not be written as the composition of a monofractal function with a time subordinator. This is a consequence of Lemma 2.4, which asserts that two monofractal functions g 1 and g 2 of disctinct exponents H 1 and H 2 never verify g 1 = g 2 • f for any continuous increasing function f : [0, 1] → [0, 1] (indeed, such an f would "dilate" time everywhere, which is impossible).

We need to introduce a homogeneity condition C1 to get rid of these annoying and artificial cases. This condition heuristically imposes that the oscillations of any restriction of Z to a subinterval of [0, 1] have the same asymptotic properties as the oscillations of Z on [0, 1]. Definition 1.4. Condition C1: Let J ≥ 0, and K ∈ {0, ..., 2 j -1}. Let Z J,K be the function

Z J,K : t ∈ [0, 1] -→ Z • ϕ J,K (t) ω J,K (Z) ∈ R,
where ϕ J,K is the canonical affine contraction which maps [0, 1] to I J,K . Condition C1 is satisfied for Z when there is a real number H > 0 such that for every J ≥ 0 and K ∈ {0, ...,

2 j -1}, H(Z J,K ) = H(= H(Z)).
Hence Z J,K is a renormalized version of the restriction of Z to the interval I J,K . Remark that H(Z J,K ) does not depend on the normalization factor 1/ω J,K (Z). Although self-similar functions are good candidates to satisfy C1, a function Z fulfilling this condition does not need at all to possess such a property. In order to guarantee that Z is CMT, we strengthen the convergence toward H(Z J,K ).

Definition 1.5. Condition C2:

Assume that Condition C1 is fulfilled. There are two positive sequences (ε J ) J≥0 and (η J ) J≥0 and two real numbers 0 < α < β with the following property:

(1) (ε J ) J≥0 and (η J ) J≥0 are positive non-increasing sequences that converge to zero, and ε J = o 1 (log J) 2+κ for some κ > 0.

(2) For every J ≥ 0 and K ∈ {0, ..., 2 J -1}, the sequence (H j (Z J,K )) j≥1 converges to H = H(Z J,K ) (it is not only a liminf, it is a limit) with the following convergence rate: For every j ≥ [Jη J ],

|H -H j (Z J,K )| ≤ ε J , (1.6) and for every k ∈ {0, ...,

2 j -1}, 2 -jβ ≤ ω j,k (Z J,K ) ≤ 2 -jα . (1.7)
Assuming that H(Z J,K ) is a limit is of course a constraint, but not limiting in practice, since this condition holds for most of the interesting functions or (almost surely) for most of the sample paths of processes. Similarly, the decreasing behavior (1.7) is not very restrictive: such a behavior is somehow expected for a C γ function.

The convergence speed (1.6) is a more important constraint, but the convergence rate we impose on (ε J ) J≥0 toward 0 is extremely slow, and is realized in the most common cases, as shown below.

Theorem 1.6. Let Z : [0, 1] → R be a continuous function.

Assume that Z satisfies C1 and C2.

Then Z is CMT and the function g in (1.2) is monofractal of exponent H(Z).

Remark 1.7. Such a decomposition is of course not unique: If Z is CMT and w :

[0, 1] → [0, 1] is C ∞ and strictly increasing, then Z = (g • w) • (w -1 • f ), where g • w is still a monofractal function of exponent H(Z) < 1 and w -1 • f is an increasing function.
Nevertheless, if two decompositions (1.2) exist respectively with functions g 1 , g 2 , f 1 and f 2 , then g 1 and g 2 are necessarily monofractal with the same exponent H(Z). This is again a consequence of Lemma 2.4.

An important consequence of Theorem 1.6 is that the (possibly) multifractal behavior of Z is contained in the multifractal behavior of f . More precisely, since f is an increasing continuous function from [0, 1] to [0, 1], f is the integral of a positive measure, say µ, on [0, 1]. The local regularity of µ is classically quantified through a local dimension exponent defined for every t ∈ [0, 1] by

α µ (t) = lim inf r→0 + | log µ(B(t, r))| r = lim inf j→+∞ | log 2 µ(B(t, 2 -j ))| j ,
where B(t, r) stands for the ball (here an interval) with center t and radius r, and |A| is the diameter of the set A (|B(t, r)| = 2r). The singularity spectrum of µ is then

(1.8) dµ (α) = dim{t : α µ (t) = α}.
It is very easy to see that if α µ (t 0 ) = α, then h f (t 0 ) = αH. Hence for every h ≥ 0, d f (h) = dµ (h/H), i.e. there is a direct relationship between the singularity spectrum of Z and the one of µ. As a conclusion, Theorem 1.6 increases the role of the multifractal analysis of measures, since for the functions satisfying C1 and C2, their multifractal behavior is ruled exclusively by the behavior of µ.

As an application of Theorem 1.6, we will prove the following Theorem 1.9, which relates the so-called self-similar functions Z introduced in [9] with the self-similar measures naturally associated with the similitudes defining Z.

Let us recall the definition of self-similar functions. Let φ be a Lipschitz function on [0, 1] (we suppose that the Lipschitz constant C φ equals 1, without loss of generality), and let S 0 , S 1 , ...., S d-1 be d contractive similitudes satisfying:

(1) for every i = j, S i ((0, 1))

∩ S i ((0, 1)) = ∅ (open set condition), (2) d-1 i=0 S i ([0, 1]) = [0, 1] (the intervals S i ([0, 1]) form a covering of [0, 1]).
We denote by 0 < r 0 , r 1 , ..., r d-1 < 1 the ratios of the non trivial similitudes S 0 , ..., S d-1 .

By construction

d-1 k=0 r k = 1. Let λ 0 , λ 1 , ..., λ d-1 be d non-zero real numbers, which satisfy (1.9) 0 < χ min = min k=0,...,d-1

r k λ k ≤ χ max = max k=0,...,d-1 r k λ k < 1. Definition 1.8. A function Z : [0, 1] → [0, 1] is called self-similar when Z satisfies the following functional equation (1.10) ∀ t ∈ [0, 1], Z(t) = d-1 k=0 λ k • (Z • (S k ) -1 )(t) + φ(t).
Relation (1.9) ensures that Z exists and is unique [9]. Let us consider the unique exponent β > 1 such that (1.11)

d-1 k=0 (λ k ) β = 1.
This β is indeed greater than 1, since d-1 k=0 r k = 1 and |λ k | > r k for all k by (1.9). With the probability vector (p 0 , p 1 , ..., p d-1 ) = (|λ 0 | β , |λ 1 | β , ..., |λ d-1 | β ) and the similitudes (S k ) k=0,...,d-1 can be associated the unique self-similar probability measure µ satisfying (1.12)

µ = d-1 k=0 p k • (µ • S -1 k ).
Theorem 1.9. Let Z be defined by (1.10). Then, either Z is a κ-Lipschitz function for some constant κ > 0 (expliciteley found in Section 6), or Z is CMT and there is a monofractal function g of exponent 1/β such that

(1.13) for every t ∈ [0, 1], Z(t) = g(µ[0, t]),
where µ is the self-similar measure (1.12) naturally associated with the parameters used to define Z.

The multifractal analysis of Z follows from the multifractal analysis of µ, which is a very classical problem (see [6]).

The paper is organized as follows. In Section 3, Theorem 1.6 is proved, by explicitly constructing the monofractal function g and the time subordinator f . Section 4 contains the possible extensions of Theorem 1.6, the explanation of the heuristics (1.5), and the discussion for exponents greater than 1. In Section 5, 6 and 7, we detail several classes of examples to which Theorem 1.6 applies. First we prove that the usual monofractal functions Z with exponents H verify C1 and C2. We prove Theorem 1.9 in Section 6. Finally we explicitly compute and plot the time subordinator and the monofractal function for a classical family of multifractal functions (Z a ) a∈[0,1] which include Bourbaki's and Perkin's functions.

Let us finish by the direct by-products and the possible extensions of this work:

The reader can check that the proof below can be adapted to more general contexts:

• the dyadic basis can be replaced by any b-adic basis.

• if (ε J ) converges to zero (without any given convergence rate), then (under slight modifications of (η J )) the same result holds true. We focused on a simpler case, but in practice, a convergence rate

ε J = o 1 (log J) 2+κ
shall always be always obtained.

• The fact the the quantities H(Z J,K ) are limits is only used at the beginning of the proof. In fact, only the existence of the scale [Jη J ] such that (1.6) and (1.7) hold true at scale [Jη J ] is determinant. In particular, the conditions may be relaxed: We could treat the case where the H(Z J,K ) are only liminf (and not limits). Again, in practice they are often limits, this is why we adopted this viewpoint.

PRELIMINARY RESULTS

2.1. Oscillations and pointwise regularity. For every t ∈ [0, 1], let I j (t) be the unique dyadic interval of generation j that contains t, and

I + j (t) = I j (t) + 2 -j , I - j (t) = I j (t) - 2 -j .
Let us recall the characterization of the pointwise Hölder exponents smaller than 1 in terms of oscillations of order 1 (see for instance Jaffard in [11]).

Lemma 2.1. Let Z : [0, 1] → R a C γ function, for some γ > 0. Assume that h Z (t) < 1. Then h Z (t) = lim inf r→0 + | log ω B(t,r) (Z)| | log r| = lim inf j→+∞ | log 2 ω B(t,2 -j ) (Z)| j .
In Lemma 2.2, we impose some uniform behavior of the oscillations of Z on a nested sequence of coverings of [0, 1]. This is used later to prove the monofractality property of the function g in the decomposition Z = g • f (Section 3), and also to decompose self-similar functions (in Section 6). function, t ∈ (0, 1) andH ∈ (0, 1).

Lemma 2.2. Let Z : [0, 1] → R be a continuous
Suppose that there exists an infinite sequence

(T n ) of coverings of [0, 1] such that • each T n is a finite sequence of disjoint non-trivial intervals of [0, 1], such that T ∈Tn T = [0, 1], • lim n→+∞ max T ∈Tn |T | = 0, • each interval T in T n is contained in a unique interval T ′ of T n-1 , • for every T ∈ T n and T ⊂ T ′ ∈ T n-1 , we have |T ′ | 1+Zn ≤ |T | ≤ |T ′ |, for some positive sequence (Z n ) that converges to zero when n → +∞.
Then:

(1) If there exists a positive sequence (κ n ) n≥1 such that for every

T ∈ T n , ω T (Z) ≤ |T | H-κn , then for every t ∈ [0, 1], h Z (t) ≥ H. (2) If there exists a positive sequence (κ n ) n≥1 such that for every T ∈ T n , ω T (Z) ≥ |T | H+κn , then for every t ∈ [0, 1], h Z (t) ≤ H.
Remark that in part (2) of this Lemma, the property needs to be satisfied only for a subsequence (n k ) k≥1 of integers.

Proof. Let t ∈ (0, 1), and r > 0 small enough. For every n ≥ 1, t belongs to one interval T ∈ T n , that we denote T n (t). Denote by n r the smallest integer n so that

T n (t) ⊂ B(t, r). By construction, t ∈ T nr-1 (t) and |T nr-1 (t)| ≥ r (since T nr-1 (t) ⊂ B(t, r)). By the fourth property of the sequence (T n ), we have 2r ≥ |T nr (t)| ≥ |T nr-1 (t)| 1+Zn r ≥ r 1+Zn r .
Let us start by part (2), which is very easy to get. We have

ω B(t,r) (Z) ≥ ω Tn r (t) (Z) ≥ |T nr (t)| H+κn r ≥ r (1+Zn r )(H+κn r ) .
Applying Lemma 2.1, and using that Z nr and κ nr go to zero when r goes to zero, we obtain h Z (t) ≤ H.

We now focus on part (1), which is slightly more delicate. If B(t, r) ⊂ T nr-1 (t), then we have ω

B(t,r) (Z) ≤ ω Tn r -1(t) (Z) ≤ |T nr-1 (t)| H-κn r -1 ≤ (2r) (H-κn r -1)/(1+Znr -1) .
If B(t, r) ⊂ T nr-1 (t), then there is an integer p (which depends on r) such that B(t, r)\T nr-1 (t) is covered by one interval T ∈ T p and not covered by any interval of T p+1 . Using the same arguments as above, we get

|T | ≤ |B(t, r)\T nr -1 (t)| 1/(1+Zp+1) ≤ r 1/(1+Zp+1) (remark that |B(t, r)\T nr -1 (t)| ≤ r). Now we have ω B(t,r) (Z) ≤ ω Tn r -1(t) (Z) + ω B(t,r)\Tn r-1 (t) (Z) ≤ (2r) (H-κn r -1 )/(1+Zn r -1) + |T | H-κp ≤ (2r) (H-κn r -1 )/(1+Zn r -1) + r (H-κp)/(1+Zp+1)
Since κ nr , Z nr , κ p and Z p converge to 0 as r → 0, Lemma 2.1 yields h Z (t) ≥ H.

Two easy properties for the study of H(Z).

Let us begin with an easy upper-bound for H(Z).

Lemma 2.3. Let Z : [0, 1] → R be a non-constant continuous function. Then H(Z) ≤ 1.
Proof. We can assume without loss of generality that ω

[0,1] (Z) = 1. Let j ≥ 1. By construction, 2 j -1 k=0 ω j,k (Z) ≥ 1.
In order to have (1.3), we necessarily have H j (Z) ≤ 1. Hence the result.

Lemma 2.4. Let g 1 and g 2 be two real monofractal functions on

[0, 1] of disctinct expo- nents 0 < H 1 < H 2 < 1. There is no continuous strictly increasing function f : [0, 1] → [0, 1] such that g 1 = g 2 • f . Proof. Suppose that such a function f exists. Let ε > 0. This function f is Lebesgue- almost everywhere differentiable. There is a set E of positive Lebesgue measure such that for every t ∈ E, f ′ (t) > 0. Around such a t, we have f (t + h) -f (t) = f ′ (t)h + o(t). Consequently, since h g2 (f (t)) = H 2 , for every |h| small enough we have |(g 2 • f )(t + h) -(g 2 • f )(t)| ≤ |f (t + h) -f (t)| H2-ε ≤ C|h| H2-ε . This shows that h g2•f (t) ≥ H 2 . Using again that h g2 (f (t)) = H 2 , there is a sequence (h ′ n ) n≥1 converging to zero such that for every n ≥ 1, |g 2 (f (t) + h ′ n ) -g 2 (f (t))| ≥ |h ′ n | H2+ε . Choosing h n so that f (t + h n ) = f (t) + h ′ n , we see that |(g 2 • f )(t + h n ) -(g 2 • f )(t)| ≥ |f (t + h n ) -f (t)| H2+ε ≥ C|h n | H2+ε .
This holds for an infinite number of real numbers (h n ) converging to zero. Hence

h g2•f (t) = H 2 , which contradicts h g1 (t) = H 1 .

A functional interpretation of H(Z).

Note first that the previous results hold in the case where a b-adic basis, b ≥ 2, is used instead of the dyadic basis. In fact, there is a functional interpretation of the exponent H(Z), independent of any basis, provided by the Oscillation spaces of Jaffard [11] and the Besov spaces. Let us recall their definition, that we adapt to our context of nowhere differentiable functions.

Let Z be a C γ function on (0, 1), where C γ is the global homogeneous Hölder space and γ > 0. Since [9] where the theoretical foundations of multifractal analysis of functions were given, a quantity classically considered when performing the multifractal analysis of Z is the scaling function η Z (p) = sup s > 0 : Z ∈ B s/p,∞ p,loc ((0, 1)) . Later, in [11], Jaffard also proved the pertinency in multifractal analysis of his oscillation spaces O s/p p ((0, 1)), whose definitions are based on wavelet leaders (we do not need much more details here). He also considered the associated scaling function

ζ Z (p) = sup s > 0 : Z ∈ O s/p p ((0, 1)) .
Finally, still in [11], Jaffard studied the spaces V s/p p ((0, 1)), which are closely related to our exponent H(Z), defined as follows: Denote, for j ≥ 1 and k ∈ {0, ..., 2 j -1}, Ω j,k (Z) = ω [k2 -j -32 -j ,k2 -j +32 -j ] (Z), and consider the associated scaling function (we assume hereafter that Z is nowhere differentiable, as in Theorem 1.6)

ν Z (p) = 1 + lim inf j→+∞ log 2 2 j -1 k=0 (Ω j,k (Z)) p -j .
For p > 0 fixed, it is obvious that there is a constant C p > 1 such that

1/C p 2 j -1 k=0 (ω j,k (Z)) p ≤ 2 j -1 k=0 (Ω j,k (Z)) p ≤ C p 2 j -1 k=0 (ω j,k (Z)) p , since ω j,k (Z) ≤ Ω j,k (Z) ≤ l∈{-3,-2,...,2,3} ω j,k+l (Z). As a consequence, ν Z (p) = 1+ lim inf j→+∞ log 2 2 j -1 k=0 (ω j,k (Z)) p -j
. Comparing the definition of H(Z) with this formula, we easily see that H(Z) is the unique positive real number such that ν Z (1/H(Z)) = 1.

The main point is that the three scaling functions η Z , ζ Z and ν Z coincide as soon as p ≥ 1 [11], andη 

Z (1/H(Z)) = ζ Z (1/H(Z)) = 1.
Using the property of the Besov domains, we have

H(Z) -1 = inf p > 0 : Z ∈ B 1/p,∞ p,loc ((0, 1)) = inf p > 0 : Z ∈ O 1/p
p ((0, 1)) . Z is said to obey the multifractal formalism for functions if its singularity spectrum is obtained as the Legendre transform of its scaling function, i.e.

for every

h ≥ 0, d Z (h) = inf p∈R (ph -ζ Z (p) + 1) (∈ R + ∪ {-∞}).
In particular, since ζ Z (1/H(Z)) = 1, we always have d Z (h) ≤ h/H(Z) (by using p = 1/H(Z) in the inequality above). Moreover, assume that

h c = ζ ′ Z (1/H(Z)
) exists and that Z satisfies the multifractal formalism associated with ζ Z at the exponent h c . This means that the inequality above holds true for h

= h c , i.e. d Z (h c ) = h c /H(Z).
From the two last properties we get that 1/H(Z) is the slope of the tangent to the (concave hull of the) singularity spectrum of Z, as claimed in the introduction.

PROOF OF THE DECOMPOSITION OF THEOREM 1.6

The functions g and F are constructed iteratively. First remark that since (η j ) converges to zero, one can also assume, by first replacing η j by max(η j , 1/ log j) and then by imposing that (η j ) is non-increasing, that the sequence (η j ) satisfies:

• for every j ≥ 1, η j ≥ 1/ log j,

• (jη j ) is now a non-decreasing sequence and jη j → +∞ when j → +∞,

• (η j ) still satisfies (1.6) and (1.7).

Assume that conditions C1 and C2 are fulfilled.

3.1. First step of the construction of g and f . The exponent H(Z 0,0 ) = H(Z) = H is the limit of the sequence H j (Z), so there exists a generation J 0 ≥ 1 such that for every

j ≥ J 0 , |H -H j (Z)| ≤ ε 0 .
We set H 0 = H J0 (Z), and by construction we have

2 J 0 -1 k=0 (ω J0,k (Z)) 1/H0 = 1.
We then define the first step of the construction of the function f : we set

f 0 (t) = k-1 k ′ =0 (ω J0,k ′ (Z)) 1/H0 + (ω J0,k (Z)) 1/H0 (2 J0 t -k) if t ∈ I J0,k .
This function f 0 is strictly increasing, continuous and affine on each dyadic interval. Moreover, f 0 ([0, 1]) = [0, 1]. Let us denote U J0,k the image of the interval I J0,k by f 0 , for every k ∈ {0, ..., 2 J0 -1}. The set of intervals {U J0,k : k ∈ {0, ..., 2 J0 -1} clearly forms a partition of [0, 1). One remarks that

(3.1) ∀k ∈ {0, ..., 2 J0 -1}, |f 0 (I J0,k )| = |U J0,k | = (ω J0,k (Z)) 1/H0 .
The first step of the construction of g is then naturally achieved as follows: we set

g 0 (y) = Z((f 0 ) -1 (y)) for y ∈ [0, 1],
or equivalently g 0 (f

0 (t)) = Z(t) for t ∈ [0, 1].
This function g 0 maps any interval U J0,k to the interval Z(I J0,k ), and thus satisfies:

ω U J 0 ,k (g 0 ) = ω J0,k (Z) = |U J0,k | H0 .
As a last remark, there are two real numbers 0 < α ′ < β ′ such that for every k 2 -J0β ′ /H0 ≤ |U J0,k | ≤ 2 -J0α ′ /H0 . Without loss of generality, we can assume that α ′ = α and β ′ = β (α and β appear in condition C2) by changing α into min(α ′ , α) and β = max(β, β ′ ), so that

(3.2) for every k, 2 -J0β/H0 ≤ |U J0,k | ≤ 2 -J0α/H0 .
3.2. First iteration to get the second step of the construction of g and f . We perform the second step of the construction. Let us focus on one interval I J0,K , on which we refine the behavior of f 0 . By condition C2 and especially (1.6), we have

(3.3) k ′ =0,...,2 [J 0 η J 0 ] -1 (ω [J0ηJ 0 ], ′ k (Z J0,K )) 1/H1 = 1,
where

H 1 = H [J0ηJ 0 ] (Z J0,K ) satisfies |H -H 1 | ≤ ε J0 . Let J 1 = J 0 + [J 0 η J0 ], hence J 1 -J 0 = [J 0 η J0 ].
Remark that, by (1.7), we have for every

k ′ ∈ {0, ..., 2 [J0ηJ 0 ] -1} (3.4) 2 -[J0ηJ 0 ]β ≤ |ω [J0ηJ 0 ],k ′ (Z J0,K )| ≤ 2 -[J0ηJ 0 ]α .
Now, remembering the definition of Z J0,K , we obtain that for every k ′ ∈ {0, ..., 2 J1-J0 -1},

(3.5) ω J1-J0,k ′ (Z J0,K ) = ω J1,K2 J 1 -J 0 +k ′ (Z) ω J0,K (Z) .
Consequently, (3.3) is equivalent to k=0,...,2 J 1 -1:

I J 1 ,k ⊂IJ 0 ,K (ω J1,k (Z)) 1/H1 = (ω J0,K (Z)) 1/H1 ,
and thus k=0,...,2 J 1 -1:

I J 1 ,k ⊂IJ 0 ,K (ω J1,k (Z)) 1/H1 (ω J0,K (Z)) 1/H0-1/H1 = (ω J0,K (Z)) 1/H0 .
We now define the function f 1 as a refinement on f 0 on the dyadic interval I J0,K . We set for every k ∈ {K2 J1-J0 , ..., (K + 1)2 J1-J0 -1} and for t ∈ I J1,k

f 1 (t) = f 0 (K2 -J0 ) + k-1 k ′ =K2 J 1 -J 0 (ω J1,k ′ (Z)) 1/H1 (ω J0,K (Z)) 1/H0-1/H1 + (ω J1,k (Z)) 1/H1 (ω J0,K (Z)) 1/H0-1/H1 (2 J1 t -k).
This can be achieved simultaneously on every dyadic interval I J0,K , K ∈ {0, ..., 2 J0 -1}, by using the same generation J 1 for the subdivision (indeed, condition C2 ensures that the convergence rate of H j (Z J0,k ) does not depend on k). The obtained function is again an increasing continuous function, affine on every dyadic interval of generation J 1 .

Let us denote U J1,k the image of the interval I J1,k by f 1 , for every k ∈ {0, ..., 2 J1 -1}. The set of intervals {U J1,k : k ∈ {0, ..., 2 J1 -1} again forms a partition of [0, 1). We get

(3.6) ∀k ∈ {0, ..., 2 J1 -1}, |U J1,k | = (ω J1,k (Z)) 1/H1 (ω J0,K (Z)) 1/H0-1/H1 .
but the main point is that we did not change the size of the oscillations of f 0 on the dyadic intervals of generation J 0 , i.e. f 1 (I J0,K ) = f 0 (I J0,K ).

The second step of the construction of g is realized by refining the behavior of g 0 : Set

g 1 (y) = Z((f 1 ) -1 (y)) for y ∈ [0, 1].
This function g 1 maps any interval U J1,k to the interval Z(I J1,k ), and thus satisfies:

ω U J 1 ,k (g 1 ) = ω J1,k (Z) with |U J1,k | = (ω J1,k (Z)) 1/H1 (ω J0,K (Z)) 1/H0-1/H1 .
Finally, we want to compare the size of the interval U J1,k with the size of its father interval (in the preceding generation) U J0,K . For this, let us choose k ∈ {0, ..., 2 J1 -1} and K ∈ {0, ..., 2 J0 -1} are such that I J1,k ⊂ I J0,K (hence k can be written k = K.2 J1-J0 +k ′ with k ′ ∈ {0, ..., 2 J1-J0 -1}). Then, by (3.5),

|U J1,k | = (ω J0,K (Z)) 1/H0 (ω J1-J0,k ′ (Z J0,K )) 1/H1 = |U J0,k |(ω J1-J0,k ′ (Z J0,K )) 1/H1 . Using (3.4) we get |U J1,k | ≥ |U J0,k |2 -(J1-J0)β/H1 = |U J0,k |2 -[J0ηJ 0 ]β/H1 .
On the other side, we know by

(3.2) that |U J0,k | ≤ 2 -J0α/H0 , hence |U J0,k | ≥ |U J1,k | ≥ |U J0,k | 1+ηJ 0 βH 0 αH 1 ,
where the left inequality simply comes from the fact that I J1,k ⊂ I J0,K .

3.3. General iterating construction of g and f . This procedure can be iterated. Assume that the sequences (J p ) p≥1 , (f p ) p≥1 and (g p ) p≥1 are constructed for every p ≤ n, and that they satisfy:

(1) for every 1 ≤ p ≤ n, J p = J p-1 + [J p-1 η Jp-1 ] and |H -H p | ≤ ε Jp-1 , (2) for every 1 ≤ p ≤ n, f p is a continuous strictly increasing function, affine on each dyadic interval I Jp,k and if we set

f p (I Jp,k ) = U Jp,k , then (3.7) |f p (I Jp,k )| = |U Jp,k | = (ω Jp,k (Z)) 1/Hp p-1 m=0 (ω Jm,Km(k) (Z)) 1/Hm-1/Hm+1 , where K m (k) is the unique integer such that I Jp,k ⊂ I Jm,Km(k) , for m < p, (3) For every 1 ≤ p ≤ n, the set of intervals {U Jp,k : k ∈ {0, ..., 2 Jp -1} forms a partition of [0, 1). (4) For every 1 ≤ p ≤ n, if U Jn,k ⊂ U Jp-1,Kp-1(k) , then |U Jp-1,Kp-1(k) | 1+ηJ p-1 βH p-1 αHp ≤ |U Jp,k | ≤ |U Jp-1,Kp-1(k) |, (5) for every 1 ≤ p ≤ n, for y ∈ [0, 1], g p (y) = Z((f p ) -1 (y)) (6) for every 1 ≤ p ≤ n, for every k ∈ {0, ..., 2 p -1}, we have f m (k2 -p ) = f p (k2 -p )
for every p ≤ m ≤ n.

The last item ensures that once the value of f p at k2 -p has been chosen, every f m , m ≥ p, will take the same value at k2 -p .

To build f n+1 and g n+1 , the procedure is the same as above. We use J n+1 = J n + [J n η Jn ], and we focus on one interval I Jn,K . We have by (1.6) k=0,...,2 J n+1 -Jn -1

(ω Jn+1-Jn,k (Z Jn,K )) 1/Hn+1 = (ω Jn,K (Z)) 1/Hn+1 , where H n+1 = H [JnηJ n ] (Z Jn,K ) satisfies |H -H n+1 | ≤ ε Jn . we have for every k ′ ∈ {0, ..., 2 [JnηJ n ] -1} (3.8) 2 -[JnηJ n ]β ≤ |ω [JnηJ n ],k ′ (Z Jn,K )| ≤ 2 -[JnηJ n ]α .

and

(3.9)

ω Jn+1-Jn,k ′ (Z Jn,K ) = ω Jn+1,K2 J n+1 -Jn +k ′ (Z)
ω Jn,K (Z) .

The same manipulations as above yield k=0,...,2 J n+1 -1:

I J n+1 ,k ⊂IJ n ,K (ω Jn+1,k (Z)) 1/Hn+1 n m=0 (ω Jm,Km(k) (Z)) 1/Hm-1/Hm+1 (3.10) = (ω Jn,K (Z)) 1/Hn n-1 m=0 (ω Jm,Km(k) (Z)) 1/Hm-1/Hm+1 , Then f n+1 is a refinement on f n : For every k ∈ {K2 Jn+1-Jn , ..., (K +1)2 Jn+1-Jn -1} and for t ∈ I Jn+1,k f n+1 (t) = f n (K2 -Jn ) + k-1 k ′ =K2 J n+1 -Jn (ω Jn+1,k ′ (Z)) 1/Hn+1 n m=0 (ω Jm,Km(k ′ ) (Z)) 1/Hm-1/Hm+1 + (ω Jn+1,k (Z)) 1/Hn+1 n m=0 (ω Jm,Km(k) (Z)) 1/Hm -1/Hm+1 (2 Jn+1 t -k).
Remark that for every (k, k ′ ) ∈ {K2 Jn+1-Jn , ..., (K + 1)2 Jn+1-Jn -1} 2 , for every m ∈ {0, ...., n}, K m

(k) = K m (k ′ ).
This can be achieved simultaneously on every dyadic interval I Jn,K , K ∈ {0, ..., 2 Jn -1}, by using the same generation J n+1 for the subdivision. The obtained function is again an increasing continuous function which is affine on every dyadic interval of generation J n+1 .

We then define g n+1 by g n+1 (y) = Z((f n+1 ) -1 (y)) for y ∈ [0, 1]. Let U Jn+1,k be the image of the interval I Jn+1,k by f n+1 , for every k ∈ {0, ..., 2 Jn+1 -1}. This function g n+1 maps any interval U Jn+1,k to the interval Z(I Jn+1,k ), and thus satisfies:

ω U J n+1 ,k (g n+1 ) = ω Jn+1,k (Z) with |U Jn+1,k | = (ω Jn+1,k (Z)) 1/Hn+1 n m=0 (ω Jm,Km(k) (Z)) 1/Hm-1/Hm+1 .
At this point, all the items of the iteration are ensured, except the item (4). We prove it now. As above, let us choose k ∈ {0, ..., 2 Jn+1 -1} and K ∈ {0, ..., 2 J2 -1} are such that I Jn+1,k ⊂ I Jn,K , and let k ′ ∈ {0, ..., 2 Jn+1-Jn -1} be such that k = K.2 Jn+1-Jn + k ′ . We have by (3.9)

|U Jn+1,k | = (ω Jn,K (Z)) 1/H0 (ω Jn+1-Jn,k ′ (Z Jn,K )) 1/Hn+1 = |U Jn,k |(ω Jn+1-Jn,k ′ (Z Jn,K )) 1/Hn+1 . (3.11) Then, by (3.4), |U Jn+1,k | ≥ |U Jn,k |2 -(Jn+1-Jn)β/Hn = |U Jn,k |2 -[JnηJ n ]β/Hn+1 .
As above, since by (3.2) that |U Jn,k | ≤ 2 -Jnα/Hn , we have

|U Jn,k | ≥ |U Jn+1,k | ≥ |U Jn,k | 1+ηJ n βHn αH n+1 .
3.4. Convergence of (g n ) n≥0 and (f n ) n≥0 . The convergence of the sequence (f n ) to a function f is almost immediate. Indeed, each f n is an increasing function from [0, 1] to [0, 1], and by item (5) of the iteration procedure, for every j ≥ 1, for every k ∈ {0, ..., 2 j -1}, f m (k2 -j ) is constant as soon as J m ≥ j.

Recall that for every m and k, |f As a consequence, if m ≥ n, then

f n -f m ∞ ≤ max k∈{0,...,2 Jm -1} |f m (I Jm,k )| ≤ max k∈{0,...,2 Jm -1} |U Jm,k | ≤ C2 -Jmα .
This Cauchy criterion immediately gives the uniform convergence of the function series (f n ) to a continuous function f , whose value at each dyadic number is known as explained just above. The limit function f is also strictly increasing, since it is strictly increasing on the dyadic numbers.

The convergence of the functions sequence (g n ) n≥0 is then straightforward. Indeed, each f n is an homeomorphism of [0, 1], and admits a continuous inverse f -1 n . We thus have, for every n ≥ 1,

g n = Z • f -1 n . The series (f -1 n ) also converges uniformly on [0, 1]. Since Z is uniformly continuous on [0, 1], (g n ) converges uniformly to a continuous function g : [0, 1] → [0, 1].
Remark that f also admits an inverse function f -1 , and that g = Z • f -1 . 3.5. Properties of g and f . Obviously, f is a strictly increasing function from [0, 1] to [0, 1], which is what we were looking for. All we have to prove the monofractality property of g. This will follow from Lemma 2.2.

It has been noticed before that if we set, for every n ≥ 0, T n = {U Jn,k : k ∈ {0, ..., 2 Jn -1}}, then every T n forms a covering of [0, 1] constituted by pairwise distinct intervals. We obviously have:

• lim n→+∞ max T ∈Tn |T | = 0 (using the remarks of Section 3.4 above),

• (T n ) is a nested sequence of intervals,

• by item (4) of the iteration procedure, if

T ∈ T n ⊂ T ′ ∈ T n-1 , then we have |T ′ | 1+Zn ≤ |T | ≤ |T ′ |, , with Z n = η Jn-1 βHn-1
αHn . This sequence (Z n ) converges to zero, since (η n ) converges to zero and (H n ) converges to H.

In order to apply Lemma 2.2 and to get the monofractality property of g, it is thus enough to prove the last required properties, i.e. there is a positive sequence (κ n ) converging to zero such that for every

T ∈ T n , |T | H+κn ≤ ω T (g) ≤ |T | H-κn .
For this, let n ≥ 1 and T ∈ T n . This interval T can be written U Jn,k for some k ∈ {0, ..., 2 Jn -1}. We have |U Jn,k | = (ω Jn,k (Z)) 1/Hn n-1 m=0 (ω Jm,Km(k) (Z)) 1/Hm-1/Hm+1 by construction , and g(U Jn,k ) = g n (U Jn,k ) = ω Jn,k (Z). We just have to verify that |U Jn,k | H+κn ≤ ω Jn,k (Z) ≤ |U Jn,k | H-κn , for some κ n > 0 independent of k.

We have

log |U Jn,k | = 1 H n log ω Jn,k (Z) + n-1 m=0 ( 1 H m - 1 H m+1 ) log ω Jm,Km(k) (Z) Writing that 1 Hm -1 Hm+1 ≤ 1 H 2 (ε Jm + ε Jm+1 + o(ε Jm )) ≤ 2 H 2 (ε Jm + o(ε Jm )) and 1 Hn ≤ 1 H (1 + εJ n H + o(ε Jn )), we obtain log |U Jn,k | log ω Jn,k (Z) - 1 H ≤ ε Jn H 2 + 2 H 2 n-1 m=0 (ε Jm + o(ε Jm )) log ω Jm,Km(k) (Z) log ω Jn,k (Z) (3.13) Let us denote d m,k = -log ω Jm,Km(k) (Z)
, and ψ m = ε Jm for every m and k. Comparing the last inequality with the desired result, all we have to show is that

(3.14) n-1 m=0 ψ m d m,k d n,k → 0 when n → +∞, indepently of k.
This is obtained as follows: Start from J 1 , that we suppose (without loss of generality) to be greater than 100. Recall that, by the remarks made at the beginning of Section 3, we assumed that for every n ≥ 1, η Jn ≥ (log J n ) -1 . Subsequently, every term J n is greater than l n , where (l n ) is the sequence defined recursively by l n+1 = l n (1 + 1/ log l n ) and l 1 = 100. Let us study the growth rate of such a sequence. It is obvious that lim n→+∞ l n = +∞. We set v n = log l n . We have

v n+1 = v n + log(1 + 1/v n ) ≥ v n + (1 -ε)/v n
for every n, with ε that can be taken less than 1/4 since v 1 is large enough. In particular, since

v 1 ≥ √ 2, v 2 ≥ √ 2 + (1 -ε)/ √ 2 ≥ √ 3. Recursively, if we assume that v n ≥ √ n + 1, then v n+1 ≥ √ n + (1 -ε)/ √ n ≥ √ n + 1.
Hence the sequence (l n ) converges to +∞ faster than exp √ n, and thus faster than any polynomial n δ . ( We could be more precise, and prove using the same arguments that the growth rate of (l n ) is exactly exp √ n.) Let us now find an upper bound for ψ m . Using the item (1) of condition C2, we have that ε j = o 1 (log j) 2+κ . Using the lower bound we found for J m with ε chosen small enough, we get that

ψ m = o(n -1/2(2+κ) ) ≤ o(n -1-κ/2 ).
The crucial point is that m≥1 ψ m < +∞. Now, since d m,k is a sequence increasing toward +∞, rewrite the left term of (3.13) as

n-1 m=0 ψ m d m,k d n,k , where 0 ≤ d m,k d n,k ≤ 1.
By a classical Caesaro method, we get that (3.14) is true, independtly of k.

This directly implies, by (3.13), that independlty of k,

log |U Jn ,k | log ω Jn ,k (Z) -1
H ≤ κ n , for some sequence κ n that converges to zero.

We now apply Lemma 2.2, which implies that g is monofractal with exponent H.

AROUND THEOREM 1.6

4.1. Possible extensions for exponents greater than 1. Let us finally say a few words about functions having regularity exponents greater than 1. The presence of a polynomial in the definition (1.1) of the pointwise Hölder exponent is a source of problems when analyzing the local regularity after time subordination. Indeed, suppose that a continuous function g 1 behaves like |tt 0 | α (0 < α < 1) around a point t 0 , and that another continuous function g 2 behaves like a(tt 0 ) + |tt 0 | 3/2 (a = 0) around t 0 = g 1 (t 0 ). Then h g1 (t 0 ) = α, h g2 (t 0 ) = 3/2, but h g2•g1 (t 0 ) = α, which is different than the expected regularity 3α/2. Applying the construction above and getting a decomposition of a function Z as Z = g • f , because of such problems, we didn't find any way to guarantee the monofractality of g. This is related to the fact that, still for the just above toy example, ω B(t0,r) (g 2 ) ∼ 2ar when r is small enough, while one would expect ω B(t0,r) (g 2 ) ∼ r 3/2 . The use oscillations of order greater than 2 (so that ω 2 B(t0,r) (g 2 ) ∼ r 3/2 ) was not sufficient for us to prove Theorem 1.6 for exponents greater than 1.

An unsatisfactory result is the following: If Z has all its pointwise Hölder exponents less than M > 1, then W 1/2M • Z has all its exponents smaller than 1 (W 1/2M is the Weierstrass function (5.1) monofractal with exponent 1/2M ), and one shall try to apply Theorem 1.6 to this function.

As a consequence, this problem is still open and of interest.

THE CASE OF CLASSICAL MONOFRACTAL FUNCTIONS AND PROCESSES

It is satisfactory to check that classical monofractal functions verify the conditions of Theorem 1.6, and that the exponent H(Z) is actually equal to their monofractal exponent. The proofs below are also representative examples of the method used to get convergence rates for H j (Z) to H(Z). 

Z(t) = ∞ k=0 b -αk w(b k t).
By [5], either the function Z is C β , or it is monofractal with exponent α. For w(t) = sin(t), we obtain the classical Weierstrass functions monofractal with exponent α. In fact, it is proved in [5] that, if Z / ∈ C β (which is our assumption from now on), then there is a constant C > 1 such that (5.2)

C -1 2 -jα ≤ ω j,k (Z) ≤ C2 -jα . As a direct consequence, C -1/α ≤ 2 j -1 k=0 (ω j,k (Z)) 1/α ≤ C 1/α , and obviously H(Z) = α.
Let us find the convergence rate of H j (Z) toward H(Z). We are looking for a value of ε > 0 and for a scale J 0 for which 2 j -1 k=0 (ω j,k (Z)) 1/(α+ε) > 1, for every j ≥ J 0 . Let j ≥ 1. We have, by (5.2),

2 j -1 k=0 (ω j,k (Z)) 1/(α+ε) ≥ 2 j C -1/(α+ε) 2 -jα/(α+ε) .
For ε small, 1/(α + ε) = 1/αε/α 2 + o(ε), and thus our constraint is reached as soon as 1 < C -1/α+ε/α 2 +o(ε) 2 jε/α+o(jεj ) . This leads to

jε/α + o(jε) + (log 2 C)(-1/α + ε/α 2 + o(ε)) > 0.
There is a generation J 0 such that the last inequality is realized by ε = 2 log 2 C J0 . Subsequently, one necessarily has 1/H j (Z) ≥ 1/(α + ε) for every j ≥ J 0 , since

2 j -1 k=0 (ω j,k (Z)) 1/(α+ε) > 2 j -1 k=0 (ω j,k (Z)) 1/Hj (Z) = 1 and the mapping h → 2 j -1 k=0 (ω j,k (Z)) 1/h is increasing with h. Hence H j (Z) ≤ α + ε.
Using the same method, we obtain H j (Z) ≥ α -2ε for j ≥ J 0 . Finally, we have found J 0 large enough so that for every j ≥ J 0 , |H j (Z) -α| ≤ ε 0 , where we have set ε 0 = 2ε = 4 log 2 C/(J 0 ).

For every J ≥ 1 and K ∈ {0, ..., 2 J -1}, we easily get the same convergence rates of H j (Z J,K ) toward α from the self-affinity property of the Weierstrass functions. More precisely, fix J and K, and let j ≥ J + 1. Remark that by construction of Z J,K , we have

ω j-J,k (Z J,K ) = ω j,K2 -J +k (Z) ωJ,K (Z) 
. We are looking for a value of ε for which k=0,...,2 j -1:

I j,k ⊂IJ,K ω j,k (Z) ω J,K (Z) 1/(α+ε) > 1,
for every j large enough. By (5.2) (used two times), and remarking that there are 2 j-J dyadic intervals of generation j included in I J,K , we get k=0,...,2 j -1:

I j,k ⊂IJ,K ω j,k (Z) ω J,K (Z) 1/(α+ε)
≥ 2 j-J C -2/(α+ε) 2 -(j-J)α/(α+ε) .

The same computations as above yield that, if we impose η J = 1/ log 2 J and ε J = 4(log 2 C)(log 2 J)/J, then for every j ≥ J + Jη J , H j-J (Z J,K ) ≤ αε J . Similarly, we obtain H j (Z) ≥ α + 2ε J for j ≥ J + Jη J . Finally, for every j ≥ J + Jη J , |H j-J (Z J,K ) -α| ≤ ε J , and ε j = o(1/(log j) 2+κ ).

Consequently, the Weierstrass functions satisfy C1 and C2 with H = α, and they are also monofractal from our viewpoint.

Sample paths of Brownian motions and fractional Brownian motions. Classical estimations on the oscillations of sample paths of Brownian motions

(B t ) t≥0 yield ([11]) P ω j,k (B t ) ≤ j2 -j/2 ≤ 1 2π exp (-j 2 π 2 ) P ω j,k (B t ) ≥ 1 j 2 -j/2 ≤ 4j 2π exp (-j 2 /8)
Hence, by a classical Borel-Cantelli argument, with probability one, there is a generation J c such that for every j ≥ J c , we have the bounds 1 j 2 -j/2 ≤ ω j,k (B t ) ≤ j2 -j/2 for the oscillations.

The same computations as for the Weierstrass functions show that there is a generation J 0 such that if j ≥ J 0 ≥ J c , then

2 j -1 k=0 (ω j,k (B t )) 1/(1/2+εJ 0 ) > 1 and 2 j -1 k=0 (ω j,k (B t )) 1/(1/2-εJ 0 ) < 1, where ε J0 ≥ C log J0
J0 (for some suitable constant C). As a consequence, |H j (B t ) -1/2| ≤ ε J0 for every j ≥ J 0 .

The self-similarity property of Brownian motions yields that for every J ≥ 1 and K ∈ {0, ..., 2 J -1}, for every j ≥ J/ log J, |H j ((B t ) J,K ) -1/2| ≤ ε J , where ε J = C log 2 J J , for some constant C independent of J and K. We omit the details here, that can be easily checked by the reader.

Consequently, a sample path of Brownian motion satisfies with probability one C1 and C2, with H(B t ) = 1/2. Similar estimations on the oscillations of fractional Brownian motions B h of Hurst exponent h lead to the same almost sure result for the sample paths, which also satisfy almost surely C1 and C2 with H(B h ) = h.

6. APPLICATIONS TO SELF-SIMILAR FUNCTIONS: THEOREM 1.9

We consider the class of self-similar functions defined in Definition 1.8, with the parameters of Z and the contractions S k satisfying (1.9).

The multifractal analysis of such a function Z is performed in [9]. Here we are going to prove that, under the conditions (1.9) on the λ k and the S k , Z is CMT, and that the multifractal behavior of Z can be directly deduced from this analysis. It is a case where our analysis provides a natural way to compute the singularity spectrum of Z.

6.1. Preliminary results on the oscillations of Z. Let us introduce some notations: for every n ≥ 1, for every (ε 1 , ε 2 , ..., ε n ) ∈ {0, 1, ..., d -1} n , we denote I ε1,ε2,...,εn the interval S ε1 • S ε2 • ... • S εn ([0, 1]). The integer n being given, the open intervals • (I ε1,ε2,...,εn ) are pairwise disjoint, and the union of the closed intervals I ε1,ε2,...,εn equals [0, 1]. Now fix an integer n ≥ 1 and a sequence (ε 1 , ε 2 , ..., ε n ) ∈ {0, 1, ..., d -1} n . The interval I ε1,ε2,...,εn has a length equal to r ε1 r ε2 • • • r εn . Finally, by iterating n times formula (1.10), we get that for every t ∈ I ε1,ε2,...,εn ,

Z(t) = λ ε1 • λ ε2 • • • λ εn • (Z • S -1 εn • S -1 εn-1 • ... • S -1 ε1 )(t) (6.1) + λ ε1 • λ ε2 • • • λ εn-1 • (φ • S -1 εn-1 • S -1 εn-2 • ... • S -1 ε1 )(t) + ... + λ ε1 • λ ε2 • (φ • S -1 ε2 • S -1 ε1 )(t) + λ ε1 • (φ • S -1 ε1 )(t) + φ(t).
Recall that χ max is defined in (1.9). Proposition 6.1. Let κ = χmax 1-χmax . Then either Z is a κ-Lipschitz function, or there is a constant C > 1 such that for every n ≥ 1, for every

(ε 1 , ε 2 , ..., ε n ) ∈ {0, 1, ..., d -1} n , (6.2) C -1 • |λ ε1 • λ ε2 • • • λ εn | ≤ ω Iε 1 ,ε 2 ,...,εn (Z) ≤ C • |λ ε1 • λ ε2 • • • λ εn |.
Proof. We first find an upper-bound for ω Iε 1 ,ε 2 ,...,εn (Z). We use the iterated formula (6.1).

Let n and (ε 1 , ε 2 , ..., ε n ) ∈ {0, 1, ..., d -1} n . Remark that when t ranges in I ε1,ε2,...,εn ,

(S -1 εn • S -1 εn-1 • ... • S -1 ε1 )(t) ranges in [0, 1].
Hence the oscillation of the first term of (6.1) is upper-bounded by

|λ ε1 λ ε2 •••λ εn | • ω [0,1] (Z).
Now, for every k ∈ {1, ..., n -1}, when t ranges in I ε1,ε2,...,εn , (S -1

ε k • S -1 ε k-1 • ... • S -1
ε1 )(t) ranges in I ε k+1 ,...,εn . Using that φ is a Lipschitz function, we get that the oscillation of each term of the form

λ ε1 λ ε2 •••λ ε k • (φ • S -1 ε k • S -1 ε k-1 • ... • S -1 ε1 )(t) is upper bounded by |λ ε1 λ ε2 •••λ ε k |(r ε k+1 •••r εn ).
Finally, we obtain using (1.9)

ω Iε 1 ,ε 2 ,...,εn (Z) ≤ |λ ε1 λ ε2 •••λ εn | + n-1 k=1 |λ ε1 λ ε2 •••λ ε k | • (r ε k+1 •••r εn ) ≤ |λ ε1 λ ε2 •••λ εn | 1 + n-1 k=1 k j=1 r j λ j ≤ |λ ε1 λ ε2 •••λ εn | 1 + n-1 k=1 χ k max ≤ C 1 |λ ε1 λ ε2 •••λ εn |,
where C 1 = 1 + +∞ k=1 χ k max < +∞. We now move to the lower bound. Assume that Z is not κ-Lipschitz. There are two real numbers

0 ≤ t 0 , t ′ 0 ≤ 1 such that |Z(t ′ 0 ) -Z(t 0 )| ≥ (κ + η)|t ′ 0 -t 0 |, for some η > 0. Let n and (ε 1 , ε 2 , ..., ε n ) ∈ {0, 1, ..., d -1} n . Let us call t n = S 1 • S 2 • ... • S n (t 0 ) and t ′ n = S 1 • S 2 • ... • S n (y 0
). We obviously have t n , t ′ n ∈ I ε1,ε2,...,εn , and

thus ω Iε 1 ,ε 2 ,...,εn (Z) ≥ |Z(t ′ n ) -Z(t n )|.
Using again (6.1), we get by the same lines of computations as above

|Z(t ′ n ) -Z(t n )| ≥ |λ ε1 λ ε2 •••λ εn | • |Z(t ′ 0 ) -Z(t 0 )| - n-1 k=1 |λ ε1 λ ε2 •••λ ε k |(r ε k+1 •••r εn )|t ′ 0 -t 0 | ≥ |λ ε1 λ ε2 •••λ εn | • |Z(t ′ 0 ) -Z(t 0 )|   1 - n-1 k=1 k j=1 r j |λ j | |t ′ 0 -t 0 | |Z(t ′ 0 ) -Z(t 0 )|   ≥ |λ ε1 λ ε2 •••λ εn | • |Z(t ′ 0 ) -Z(t 0 )| 1 - 1 κ + η +∞ k=1 χ k max ≥ C 2 • |λ ε1 λ ε2 •••λ εn |,
where

C 2 = |Z(t ′ 0 ) -Z(t 0 )|(1 -1 κ+η χmax 1-χmax ) > 0 by assumption. Finally, (6.2) is proved with C = max(C 1 , C -1
2 ).

6.2. Comparaison of Z with a self-similar measure. In order to prove that the function Z (1.10) satisfies our conditions C1 and C2, we introduce a self-similar measure µ, whose multifractal behavior will be compared with the one of Z, and the notion of multifractal formalism.

Let us consider the exponent β > 1 such that (1.11) holds and the associated self-similar measure µ defined by (1.12) µ = d-1 k=0 p k • (µ • S -1 k ). In our case where the similitudes do not overlap, it is easily checked that by construction, for every n and (ε 1 , ε 2 , ..., ε n ) ∈ {0, 1, ..., d -1} n , we have µ(I ε1,ε2,...,εn

) = p ε1 p ε2 ••• p εn = |λ ε1 λ ε2 •••λ εn | β .
This class of measures has been extensively studied [6,7,16,18]. For instance, the multifractal analysis of µ is very well known. For this, let us introduce the so-called L qspectrum of µ defined by (6.3) τ µ : q ∈ R → τ µ (q) = lim inf j→+∞ τ µ (j, q), where τ µ (j, q) = log 2 2 j -1 k=0 µ(I j,k ) q -j .

We only recall the properties we need [7,16,18] Proposition 6.2.

(1) For every q ∈ R, τ µ (q) is the unique real number satisfying the equation d-1 k=0 (p k ) q (r k ) τµ(q) = 1. The mapping q → τ µ (q) is analytic on its support. Moreover, the liminf used to define τ µ (q) is in fact a limit for every q such that τ µ (q) is finite.

(2) There is an interval of exponents I µ = [α min , α max ] such that for every α ∈ I µ , dµ (α) = (τ µ ) * (α), where (τ µ ) * (α) := inf q∈R (qατ µ (q)) is by definition the Legendre transform of τ µ . (3) If α / ∈ I µ , then {x : α µ (t) = α} = ∅. (4) There is M ≥ 1 such that for every j, k large enough, 2 -jM ≤ µ(I j,k ) ≤ 2 -j/M . Part (2) above is known as the multifractal formalism for measures, when it holds.

Let us come back to the function Z. The reader can check that such a function Z satisfies C1 and C2, and is thus CMT. Here we propose a quick proof of Theorem 1.9, especially adapted to this case.

The aim is to prove that Z can be written Z = g• Each dyadic interval I j,k is included in one dyadic interval I ε1,...,εn , and contains a dyadic interval I ε1,...,εn,εn+1 , such that I ε1,...,εn and I ε1,...,εn,εn+1 can be written respectively I j ′ ,k ′ and I j ′′ ,k ′′ with 0 ≤ j-j ′ , j ′′j ′ ≤ C, for some constant C independent of j and k. Consequently, ω Iε 1 ,...,εn,ε n+1 (Z) ≤ ω I j,k (Z) ≤ ω Iε 1 ,...,εn (Z), and thus C -1 µ(I ε1,...,εn,εn+1 ) 1/β ≤ ω j,k (Z) ≤ Cµ(I ε1,...,εn ) 1/β .

Using now the self-similarity properties of the measure and the open set condition, we see that max k (p k ) • µ(I ε1,...,εn,εn+1 ) ≥ µ(I j,k ) and µ(I j,k ) ≥ min k (p k ) • µ(I ε1,...,εn ). Hence, combining this with the last double inequality, we obtain that for every j and k (6.4)

C -1 µ(I j,k ) 1/β ≤ ω j,k (Z) ≤ Cµ(I j,k ) 1/β
for another constant C, i.e. Proposition 6.1 extends to all dyadic intervals.

Let us check that Z satisfies conditions C1 and C2. Remark that, because of (6.4),

C -β = C -β 2 j -1 k=0 µ(I j,k ) ≤ 2 j -1 k=0 (ω j,k (Z)) β ≤ C β 2 j -1 k=0 µ(I j,k ) = C β .
Let ε 1 > 0. Using part (4) of Proposition 6.2 to find upper-and lower-bounds for ω j,k (Z) uniformly in k, we obtain

2 j -1 k=0 (ω j,k (Z)) β-ε1 ≥ 2 j -1 k=0 (ω j,k (Z)) β (Cµ(I j,k )) -ε1 ≥ C -β-ε1 2 jε1/M and 2 j -1 k=0 (ω j,k (Z)) β+ε1 ≤ 2 j -1 k=0 (ω j,k (Z)) β (Cµ(I j,k )) ε1 ≥ C β+ε1 2 -jε1M .
Hence, the same computations as in the case of Weierstrass functions lead to the following choice: for some J 0 large enough, we set ε 1 = 2βM log 2 C log J0

, and thus for every j ≥ J 0 , |H j (Z) -H(Z)| ≤ ε 1 .

Let now J, K be two integers, ε > 0, and focus on H(Z J,K ). The same computations as above and as in the Weierstrass case yield for j ≥ J

2 j-J -1 k ′ =0 (ω j-J,k ′ (Z J,K )) β-ε = 2 j -1 k=0:I j,k ⊂IJ,K ω j,k (Z) ω J,K (Z) β-ε . First notice that 1 ωJ,K (Z) β-ε ≥ 1 Cµ(IJ,K ) 1/β -β+ε ≥ C -β-ε µ(I J,K ) -1+ε/β . Then we remark that 2 j -1 k=0:I j,k ⊂IJ,K (ω j,k (Z)) β-ε ≥ 2 j -1 k=0:I j,k ⊂IJ,K (ω j,k (Z)) β (Cµ(I j,k )) -ε .
Combining these inequalities we get

2 j-J -1 k ′ =0 (ω j-J,k ′ (Z J,K )) β-ε ≥ C -β-2ε 2 j -1 k=0:I j,k ⊂IJ,K (ω j,k (Z)) β µ(I J,K ) µ(I J,K ) ε/β µ(I j,k ) ε .
Let us focus on

µ(IJ,K ) ε/β µ(I j,k ) ε . Since β > 1, we have µ(IJ,K ) ε/β µ(I j,k ) ε ≥ µ(IJ,K ) µ(I j,k ) ε
. This quantity is lower bounded by L (j-J)ε for some constant L (uniformly in k and K), since the ratio of the µ-measures of a dyadic interval and its father (in the dyadic tree) is uniformly upperand lower-bounded for our dyadic self-similar measure µ. Finally, we obtain

2 j-J -1 k ′ =0 (ω j-J,k ′ (Z J,K )) β-ε ≥ C -β-2ε 2 j -1 k=0:I j,k ⊂IJ,K (ω j,k (Z)) β µ(I J,K ) L (j-J)ε ≥ C -2β-2ε 2 j -1 k=0:I j,k ⊂IJ,K µ(I j,k ) µ(I J,K ) L (j-J)ε ≥ C -2β-2ε L (j-J)ε .
Hence if we fix η J = 1/ log 2 J, then the sum above is greater than 1 as soon as j ≥

J + [Jη J ] and ε ≥ 4β log C log 2 J J log L . Thus for j ≥ J + [Jη J ], H j-J (Z J,K ) -H(Z J,K ) ≤ 1 β-ε ≤ 1 β + ε J with ε J = 8 log C log 2 J Jβ log L . Similarly one shows that for j ≥ J + [Jη J ], H j-J (Z J,K ) -H(Z J,K ) ≥ 1
βε J , and C2 holds true for Z.

Applying Theorem 1.6 yields that Z is CMT and can be written as Z = g • F , where g is monofractal of exponent 1/β. 6.3. Computation of the singularity spectrum of F . Applying directly the construction of Section 3, we find a function g monofractal with exponent 1/β and a strictly increasing function f such that Z = g • f .

One can even enhance this result as follows. Following the proof of Section 3, we see that for every p ≥ 1, for every k ∈ {0, 1, ..., 2 Jp -1},

µ(I Jp,k ) 1+κp ≤ |f (I Jp,k )| ≤ µ(I Jp,k ) 1-κp ,
where (κ p ) p≥1 is a positive sequence decreasing to zero and µ is defined by (1.12).

Let us denote by F the integral of the self-similar measure µ, i.e. for t ∈ [0, 1] F (t) = µ([0, x]). We claim that f = g 1 • F for some function g which belongs to C 1-η ([0, 1]), for every η > 0. Indeed, define for every t ∈

[0, 1] g 1 (t) = f • F -1 (t). This is possible since F is an homeomorphism of [0, 1].
By construction, for every p ≥ 1, for every k ∈ {0, 1, ...,

2 Jp -1}, g 1 (F I Jp,k ) = f • F -1 • F I Jp,k ) = f I Jp,k ), thus by the inequality above, [F (I Jp,k )| 1+κp = µ(I Jp,k ) 1+κp ≤ |g 1 (F I Jp,k ) | ≤ µ(I Jp,k ) 1-κp = [F (I Jp,k )| 1-κp ,
where we used that [F (I Jp,k )| = µ(I Jp,k ). Now the sets of intervals {F I Jp,k ) : k ∈ {0, 1, ..., 2 Jp -1}} obviously forms a covering of [0, 1] to which Lemma 2.2 can be applied with H = 1.

FInally, we find that Z

= g • g 1 • F = g 2 • F
, where g 2 is clearly monofractal with exponent 1/β since g and g 1 are monofractal respectively with exponents 1/β and 1 (the resulting function g 2 is monofractal since the oscillations of g and g 1 are upper and most important lower bounded on every interval).

AN EXAMPLE OF FUNCTION SATISFYING C1-C2 IN A TRIADIC BASIS

We recall the contruction of multifractal functions of [15], which somehow generalizes the Bourbaki's and Perkin's functions.

Let us consider the function Z a defined for 0 ≤ a ≤ 1 as the limit of an iterated construction: Start from Z 0 a (t) = t on [0, 1], and define Z j a (t) recursively on [0, 1] by the following scheme: Suppose that Z j a is continuous and piecewiese affine on each triadic interval [k3 -j , (k + 1)3 -j ], k ∈ {0, ..., 3 j -1}. Then Z j+1 a is constructed as follows: On each triadic interval [k3 -j , (k + 1)3 -j ], Z j+1 a is still a continuous function which is affine on each triadic subinterval [k ′ 3 -(j+1) , (k ′ + 1)3 -(j+1) ] included in [k3 -j , (k + 1)3 -j ], and

Z j+1 a (k3 -j ) = Z j a (k3 -j ) Z j+1 a (k3 -j + 3 -(j+1) ) = Z j a (k3 -j ) + a Z j a ((k + 1)3 -j ) -Z j a (k3 -j ) Z j+1 a (k3 -j + 2.3 -(j+1) ) = Z j a (k3 -j ) + (1 -a) Z j a ((k + 1)3 -j ) -Z j a (k3 -j ) Z j+1 a ((k + 1)3 -j ) = Z j a ((k + 1)3 -j ).
This simple construction is better explained by the Figure 7.

It is straightforward to see that the sequence (Z j a ) j≥1 converges uniformly to a continuous function Z a as soon as 0 < a < 1. Bourbaki's function is obtained when a = 2/3, while Perkin's function corresponds to a = 5/6.

For a ≤ 1/2, the function is simply the integral of a trinomial measure of parameters (a, 1 -2a, a), hence its singularity spectrum is completely known. We are going to explain why the functions Z a , when a ≥ 1/2, satisfy our assumptions, and thus can be written as the composition of a monofractal function g (with an exponent H we are going to determine) with an increasing function. We will also deduce from this study the singularity spectrum of Z a .

For a > 1/2, the limit function Z a is nowhere monotone. Let us compute the oscillations of Z a on each triadic interval.

p+(1-a)(q-p) Remark first that the slope of Z 1 a on [0, 1/3] is 3a, it is -3(2a -1) on [1/3, 2/3] and 3a on [2/3, 1]. Iteratively, if j ≥ 1 and k ∈ {0, ..., 3 j -1}, we write k3 -j = j p=1 ξ p 3 -p , with ξ i ∈ {0, 1, 2}. Then the slope of Z j a on [k3 -j , (k + 1)3 -j ] is simply (3a) n k,j,0 (-3(2a -1)) n k,j,1 (3a) n k,j,2 = 3 j (a) n k,j,0 (-(2a -1)) n k,j,1 (a) n k,j,2 , where n k,j,i is the number of integers p ∈ {1, ..., j} such that ξ p = i (for i = 0, 1, 2) in the triadic decomposition of k3 -j .

Let us consider the trinomial measure µ a of parameters ( a 4a-1 , 2a-1 4a-1 , a 4a-1 ). Then it is obvious that the absolute value of the slope of Z j a on each triadic interval [k3 -j , (k+1)3 -j ] can be written as µ a ([k3 -j , (k + 1)3 -j ])3 j (4a -1) j . As a final remark, we also notice that the oscillations of Z a on each triadic interval [k3 -j , (k + 1)3 -j ] is the same as the oscillations of Z j a on each triadic interval [k3 -j , (k + 1)3 -j ], which is equal to 3 -j times the slope, i.e.

(7.1) µ a ([k3 -j , (k + 1)3 -j ])(4a -1) j .

Let q ∈ R. Let us compute the sum of the oscillations of Z a at generation j. We have (7.2)

3 j -1 k=0 
(ω [k3 -j ,(k+1)3 -j ] (Z a )) q = 3 j -1 k=0 (µ a ([k3 -j , (k + 1)3 -j ])) q 3 qj log 3 (4a-1) .

Let us explain now how we easily compute the exponent H a such that (1.4) holds true. For a multinomial measure µ a (in fact, for any positive Borel measure), it is very classical in multifractal analysis to introduce the functions τ µa,j (q) and the scaling function τ µa (q) defined for q ∈ R as (6.3) but in the triadic basis:

τ µa (q) = lim inf j→+∞ τ µa,j (q), where τ µa,j (q) = log 3 3 j -1 k=0 (µ a ([k3 -j , (k + 1)3 -j ])) q -j .

In our simple case, it is easy to see that for every j ≥ 1 and q ∈ R τ µa,j (q) = τ µa (q) =log 3 a 4a -1 q + 2a -1 4a -1 q + a 4a -1 q =log 3 (2(a) q + (2a -1) q ) + q log 3 (4a -1).

What matters to us is the value of q for which the sum in (7.2) equals 1. Let us write this specific value q as 1/H, for some H > 0. When this sum is 1, then we have 3 -jτµ(1/H) 3 j(log 3 (4a-1))/H = 3 j -1 k=0 (µ a ([k3 -j , (k + 1)3 -j ])) 1/H 3 j(log 3 (4a-1))/H = 1.

Let H a be the solution of the equation -τ µ (1/H a ) + log 3 (4a -1)/H a = 0, which is equivalent to (7.3) 2(a) 1/Ha + (2a -1) 1/Ha = 1.

This solution is positive, unique, and strictly smaller than 1. Hence, in this case, the monofractal exponent H a is defined through an implicit formula.

In order to get the whole condition C2, it suffices to notice that any rescaled function (Z a ) J,K (as defined in (1.6), but here with triadic intervals) is actually equal to Z a (if Z a is increasing on [k3 -j , (k+1)3 -j ]) or to Z a (1-.) (if Z a is decreasing on [k3 -j , (k+1)3 -j ]). Hence H((Z a ) J,K ) is a limit for every J, K, and is even constant equal to H a . Thus C2 is satisfied.

We can then apply Theorem 1.6, and Z a is the composition of a monofractal function g a of exponent H a with an increasing function Z a . For a = 2/3, we see that H a = 1/2 is the solution to (7.3), since 2(2/3) 2 + (1/3) 2 = 1. We have plotted in Figure 7 the Bourbaki's function f 2/3 , its corresponding time change F 2/3 and the corresponding monofractal function g 2/3 of exponent 1/2 such that f 2/3 = g 2/3 • F 2/3 .

In this case, we can even go further and compute the singularity spectrum of Z a . The trinomial measure satisfy the multifractal formalism for measures, i.e. the singularity spectrum of µ is given by the Legendre transform of τ µa : d µa (α) = (τ µa ) * (α) := inf q∈R (qατ µa (q)), for every α ∈ [-log 3 (a/(4a -1)),log 3 (2a -1)/(4a -1)].

It is easy to see, using (7.1), that if µ a has a local Hölder exponent equal to α at a point t 0 , then Z a has at t 0 a pointwise Hölder exponent equal to α 1/Halog 3 (4a -1). Hence the multifractal spectrum of Z a is deduced from the one of µ a by the formula d Za (h) = dµa (h + log 3 (4a -1)) 1/H for every h ∈ [(-log 3 (a)) 1/Ha )-log 3 (4a-1), (-log 3 (2a-1)) 1/Ha )-log 3 (4a-1)]. A more explicit formula is obtained as follows: for every q ∈ R, if α = τ µa , then dµa (α) = q(τ µa ) ′ (q)τ µa (q).

The singularity spectra of f 2/3 and µ 2/3 are given in Figure 7.

Finally, remark that the maximum of the spectrum is obtained for α a = ((τ µa ) ′ (0)) 1/Halog 3 (4a -1), and d Za (α a ) = 1. After computations, we find α a = -1 3 (log 3 (a 2 (2a -1)). Let us consider the value of a 0 such that α a0 = 1. Then a 2 0 (2a 0 -1) = 1/27, i.e. 54a 3 0 -27a 2 0 = 1. When a > a 0 , the set of points t for which h Za (t) > 1 is of Lebesgue measure 1, hence we recover the main result of [15]: Z a is differentiable on a set of Lebesgue measure 1. Here we obtain in addition the whole multifractal spectrum of Z a .

2. 4 .

 4 Precisions for functions satisfying a multifractal formalism. Consider the scaling function ζ Z (p) above. Then for any function Z having some global Hölder regularity [11],

  m (I Jm,k )| = |U Jm,k |. By (3.11), and using (3.4), we obtain that |U Jm+1,k | ≤ |U Jm,k |2 -(Jm+1-Jm)α , and iteratively (3.12) for every m ≥ 1, |U Jm,k | ≤ C2 -Jmα , for some constant C. Hence the sequence (|U Jm+1,k |) m≥1 converge exponentially fast to zero, with an upper bound independent of k.

5. 1 .

 1 Weierstrass-type functions. Let 0 < α < 1, β > α and b > 1 be three real numbers. Let w be a bounded function that belongs to the global Hölder class C β ((0, 1)). Consider the Weierstrass-type function (5.1)

FIGURE 1 .

 1 FIGURE 1. Iterated construction of Z a , from step j to step j + 1
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