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Abstract

The surface of Mars is currently being imaged with an unprecedented combination of spectral and spatial resolution. This high
resolution, and its spectral range, give the ability to pinpoint chemical species on the surface and the atmosphere of Mars
moreaccurately than before. The subject of this paper is to present a method to extract informations on these chemicals from
hyperspectral images. A first approach, based on Independent Component Analysis (ICA) [1], is able to extract artifacts and
locations of CO2 and H2O ices. However, the main independence assumption and some basic properties (like the positivity of
images and spectra) being unverified, the reliability of all the independent components (ICs) is weak. For improving the component
extraction and consequently the endmember classification, a combination of spatial ICA with spectral Bayesian Positive Source
Separation (BPSS) [2] is proposed. To reduce the computational burden, the basic idea is to use spatial ICA yielding a rough
classification of pixels, which allows selection of small, but relevant, number of pixels and then BPSS is applied for the estimation
of the source spectra using the spectral mixtures provided by this reduced set of pixels. Finally, the abundances of the components
is assessed on the whole pixels of the images. Results of this approach are shown and evaluated by comparison with available
reference spectra.

Key words: Mars Express mission, hyperspectral data, source separation, independent component analysis, Bayesian source separation,
positivity constraint.

1. Introduction

The Mars Express (European Space Agency) on board
instrument OMEGA [3] (Observatoire pour la Minéralogie,
l’Eau, les Glaces et l’Activité) is an imaging spectrometer,
which provides hyperspectral images of planet Mars, with
a spatial resolution from 300 m to 4 km, on 256 frequency
channels in the near infrared spectral band and 128 chan-
nels in the visible range. This high spatial resolution cou-
pled with its wide spectral range, give the ability to pin-
point chemical species on the surface and the atmosphere
of Mars more accurately than before.

As solar light - incident to the planet - is partially trans-
mitted, reflected and diffused back by interaction with the
different constituents of the atmosphere and the surface,
the analysis of reflectance spectra may allow the identifica-
tion and the quantification of the chemical species present

along the light path. The simplest model of this physics
claims that each measured spectrum at the ground is a
mixture of the pure component spectra. In this model, the
planetary surface area associated to each pixel, due to the
spatial resolution, can contain a few constituents, and the
reflected light is a linear mixture - called geographical -
of chemical species present on the surface. Consequently,
recovering the endmembers and their concentrations, is
equivalent to solving a source separation and spectral un-
mixing problems, for which, at first glance, independent
component analysis (ICA) algorithms seem to be attractive
candidates.

However, in this problem as in any actual applications
of blind source separation, we don’t know exactly the
sources. Since ICA always provides independent 1 com-

1 in fact, only as independent as possible
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ponents (ICs), we have to pay attention to their physical
interpretation. In fact, additional knowledges can be used.
In this purpose: (i) synthetic reference spectra of the main
endmembers obtained after inversion [4]; (ii) a supervised
classification using wavalet transform called wavanglet

which is in accordance with Mars physical knowledge [5].
Finally, a last difficulty is to check the relevance of the
linear mixture model as well as the hypothesis on which
the algorithm is based.

From a methodological point of view, the objective of
this paper is to point out that, when source independence
assumption is not fully satisfied, an ICA algorithm can pro-
vide spurious ICs and one has to prefer semi-blind meth-
ods which relax partially independence assumption and ac-
counts for additional informations. Especially, in hyper-
spectral imaging an evident prior concerns the positivity of
the images and the component spectra.

The paper is organized as follows. Section 2 presents the
simplified observation model in the case of a geographi-
cal mixture and the possible decomposition models. Sec-
tion 3 recalls briefly the source separation problem. Section
4 presents the results when applying ICA to hyperspec-
tral data, and discuss the relevance of the separation. Sec-
tion 5 introduces the Bayesian framework and shows how
Bayesian methods can ensure the positivity of the sources
and of the mixing coefficients. The results on Mars hyper-
spectral data are then discussed. Section 7 recalls the main
results and gives some perspectives of this research work.

2. Hyperspectral Data Modeling

The OMEGA spectrometer, carried by Mars Express
spacecraft on an elliptical orbit, has a spatial resolution
range from 300 m to 4 km. This instrument has three chan-
nels, a visible channel and two near infrared channels. We
will focus in this work only on the near infrared channels
since the behavior between major chemicals can be dis-
criminated in this spectral range. The analysis is focused
on a data set consisting in a single hyperspectral data cube
obtained by looking to the South Polar Cap of Mars in
the local summer where CO2 ice, water ice and dust were
previously detected [5, 6]. This data cube is made up with
2 channels: 128 spectral planes from 0.93 µm to 2.73 µm
with a resolution of 0.013µm and 128 spectral planes from
2.55µm to 5.11µm with a resolution of 0.020µm. After cal-
ibration, the dimensionless physical unit used to express
the spectra is the ”reflectance”, which is the ratio between
the irradiance leaving each pixel toward the sensor and the
solar irradiance at the ground. Interactions between pho-
tons coming from the sun and the planet Mars, through its
atmosphere and surface, allows us to identify the different
compounds present in the planet. Those compounds are
mixed and usually different chemical species can be identi-
fied in each measured spectra. Two kinds of physical mixing
at the ground can be observed [7]:
– Geographic mixture: each pixel is a patchy area made

of several pure compounds. This type of mixture, some-
times called ”sub-pixel mixture”, happens when the spa-
tial resolution is not large enough to observe the complex
geological combination pattern. The total reflectance in
this case will be a weighted sum of the pure constituent
reflectances. The weights (abundance fractions) associ-
ated to each pure constituent are surface proportions in-
side the pixel.

– Intimate mixture: each pixel is made of one single terrain
type which is a mixture at less than the typical mean-
path scale (typically the order of 1mm scale). The total
reflectance in this case will be a nonlinear function of
pure constituent reflectances.

The case of intimate mixtures, which needs nonlinear source
separation methods and further development, is not ad-
dressed here. In this paper, we perform our analysis with
hypothesis of a geographical mixtures and hence linear mix-
ing models.

2.1. Observation Model

The hyperspectral images can be modeled by examining
all the factors that contribute to the radiance signal reach-
ing the sensor after interaction of the sunlight with a plan-
etary surface. An analytical expression of the measured ra-
diance factor in a case of a Lambertian surface 2 with a
homogeneous atmosphere has been proposed in [8], under
the following assumptions: (i) the multiple diffusion term
r and the diffusion terms E(µ) are negligible, (ii) the path
through the atmosphere is equivalent for all pixels, (iii) the
direct atmospheric contribution only depends on the wave-
length, (iv) the emergence direction is always the same.
Thus, based on this model and using the geographic mix-
ture assumption, the radiance factor at location (x, y) and
at wavelenght λ satisfies the following observation model:

L(x, y, λ) =
(

ρa(λ) + Φ(λ)

P
∑

p=1

αp(x, y) ρp(λ)

)

cos [θ(x, y)] (1)

where Φ(λ) is the spectral atmospheric transmission,
θ(x, y) the angle between the solar direction and the sur-
face normal (solar incidence angle), P the number of
endmembers in the region of coordinates (x, y), ρp(λ) the
spectrum of the p-th endmember, αp(x, y) its weight in
the mixture and ρa(λ) the radiation that did not arrive
directly from the area under view. This mixture model can
also be written as:

L(x, y, λ) =

P
∑

p=1

α′
p(x, y) · ρ

′
p(λ) + E(x, y, λ) (2)

where

2 a surface that reflects the light independently of both incidence

and emergence directions
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α′
p(x, y) = αp(x, y) cos [θ(x, y)] ,

ρ′p(λ) = Φ(λ) ρp(λ),

E(x, y, λ) = ρa(λ) cos [θ(x, y)] .

(3)

As it can be seen in equation (3) the true endmember spec-
tra are affected by the atmospheric attenuation and the
abundance fractions are corrupted by the solar angle effect.
It is not attempted here to remove the atmospheric effect,
and thus the spectra obtained are ideally the spectra of the
endmembers with atmospheric contribution. On the con-
trary, it is attempted to correct the solar angle effect to give
a map of the constituent proportions in the observed area.
In fact, since the abundance fraction is proportional to the
quantity of each constituent in the geographical mixture,
it can be deduced from the mixture model (2) and equa-
tion (3) that the abundance fractions are not altered by the
geometrical effect since:

cp(x, y) =
α′

p(x, y)
∑P

j=1 α
′
j(x, y)

,

=
αp(x, y) cos[θ(x, y)]

∑P

j=1 αj(x, y) cos[θ(x, y)]
,

=
αp(x, y)

∑P
j=1 αj(x, y)

. (4)

2.2. Data Size

Practically, the data sets used here are collected in the
infrared region ranging from 0.96 µm to 4.16 µm, total of
174 wavelengths where noisy, hot and dead spectels 3 have
been excluded. Those OMEGA channels correspond to the
deterioration of the detector during the time in the space
environment. Those channels can be determined during the
calibration process. The spatial size of the data sets varies:
323 ≤ Nx ≤ 751 and Ny ∈ {64, 128}, for a total 4 pixel
number: 41344 ≤ Nx · Ny ≤ 56832. Each data set (one
hyperspectral image) is then a data cube of size Nx ×Ny ×
Nf which contains about 10, 000, 000 data values, in fact
between 7, 193, 856 and 9, 888, 768 according to the image
size.

2.3. Decomposition Models

Let us now consider a hyperpectral data cube with Nf

images of Nz = (Nx × Ny) pixels obtained from Nf fre-
quency bands. For simplicity, assume raw vectorized im-
ages I(n, λk), with 1 6 n = (i − 1)Ny + j 6 Nz (where i
and j are the initial row and column image indices) is the
spatial index and k, k = 1, . . . , Nf , is the spectral index for
wavelength λk. Consequently, two representations of the

3 respectively, detector with unusual high noise level, detector in a

wrong high level and detector in failure
4 all the {Nx, Ny} combinations are not used: the smallest image

size is 373 · 128 = 41344, and the largest is 444 × 128 = 56832.

hyperspectral data can be considered: spectral and spatial
mixture models.

Spectral Mixture Model: Each pixel of spatial index n gives
an observed spectrum of Nf frequency samples, which is
represented by the linear approximation:

In(λk) ≈
Nc
∑

p=1

a(n,p)ψp(λk), ∀n = 1, ..., Nz, (5)

where ψp(λk), for p = 1, . . . , Nc, are the constituent re-
flectance spectra, and the number Nc is chosen according
to the desired accuracy of the approximation. Denoting the
vectorized image (of dimension Nx ×Ny) I(λk), the (Nz ×
Nc) mixing matrix A and Ψ(λk) = [ψ1(λk), . . . , ψNc

(λk)]T ,
this spectral mixture model is then expressed as:

I(λk) ≈ A · Ψ(λk). (6)

Practically, this spectral model intends to approximate the
spectrum of each pixel as a sum of Nc component spectra
of the area corresponding to this pixel coordinates. If ICA
is used for the estimation, then the Nc basis spectra ψp,
p = 1, . . . , Nc, should be statistically independent. More-
over, the p-th column of the matrix A is the unfolded im-
age associated to the basis spectrum ψp. According to this
model, we have Nx ·Ny ≈ 50, 000 sensors and a small num-
ber of samplesNf = 174, for estimating the large matrix A

which has Nz ×Nc ≈ 250, 000 parameters (taking Nc = 5).

Spatial Mixture Model: This model assumes that for each
wavelength λk, the measured image Iλk

(n) is a weighted
sum of Nc basis images, denoted IIp(n), p = 1, . . . , Nc:

Iλk
(n) ≈

Nc
∑

p=1

b(λk,p)IIp(n), ∀k = 1, ..., Nf . (7)

In vector notations, denoting the Nf × Nc matrix B and
II(n) = [II1(n), . . . , IINc

(n)]T , one can write:

I(n) ≈ B · II(n). (8)

Practically, this spatial model intends to approximate the
whole image at each frequency as a sum of Nc basis im-
ages. If ICA is used for the estimation, then the Nc basis
images IIp, p = 1, . . . , Nc, should be statistically indepen-
dent. Moreover, the k-th column of the matrix B is the
spectrum associated to the basis image IIk. According to
this model, we have Nf = 174 sensors, and a very large
number of samples Nz ≈ 50, 000 for estimating the matrix
B which has Nf ×Nc < 900 parameters (taking Nc = 5).

Comment on the notations: For limiting notation com-
plexity, in the two models, the hyperspectral dataset is al-
ways denoted I, but, in the spatial model, one considers the
dataset like a Nf ×Nz matrix while it is a Nz ×Nf matrix
in the spectral model. The two matrices contain exactly the
same entries, but are in fact transposed from a model to
the other one.
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Figure 1. (a,b,c) Reference spectra and (d,e,f) detection masks produce by the wavanglet classification.

2.4. Reference Data and Classification

Because no ground truth is possible on Mars, excepted at
some areas where the Mars Exploration Rovers stand, we
need some reference informations. To validate the results,
two kinds of reference data are used (see figure 1), following
one supervised classification study [5] made on the same
observations: first are the reference spectra of CO2 ice, H2O
ice and dust, which will be noted as ψCO2

(λ), ψH2O(λ) and
ψdust(λ) respectively. Both reference spectra of CO2 ice
and H2O ice are simulations produced by a radiative trans-
fer model in typical physical conditions of the Permanent
South Polar Cap of Mars [4]. These two reference spectra
are atmosphere free simulations. The dust reference spec-
trum is an OMEGA’s observation endmember selected with
a PCA method. This last reference spectrum contains the
atmospheric transmission, in particular in region around 2
µm and 2.9 µm. The second reference information is the re-
sults of the wavanglet classification [5], which will be noted
as ICO2

(n), IH2O(n) and Idust(n). This method is based on
the correlation between observed and reference spectra in
a wavelet filtered space using three main steps: (i) keeping
only the wavelet at lower scale in order to minimize the ef-
fect of the observation geometry ; (ii) choosing the wavelet
that maximize the difference between reference spectra in
order to provide a better classification ; (iii) using a cor-

relation coefficient (or angle) in order to discard the scale
factor effect. This pattern recognition approach is then su-
pervised because it requires a prior knowledge about the
reference spectra. The wavanglet classification method pro-
duces classification masks (Fig. 1, (d) to (f)) which are nei-
ther unique nor complete, that is pixels can be in more than
one class and not all the pixels are classified.

3. Source Separation

Source separation consists in retrieving unknown signals,
s(t) = (s1(t), . . . , sn(t))T , which are observed through un-
known mixtures of them [9,10]. Denoting the observations
x(t) = (x1(t), . . . , xp(t))

T , one can write:

x(t) = A(s(t)), (9)

where A(.) denotes the unknown mixture, a function from
R

n to R
p. If the number of observations p is greater than

or equal to the number of sources, n, the main idea for
separating the sources is to estimate a transform B(.) which
inverses the mixture A(.), and provides estimates of the
unknown sources. Of course, without other assumptions,
this problem cannot be solved. Basically, it is necessary to
have priors about
– the nature of the mixtures: it is very important to choose

a separating transform B(.) suited to the mixture trans-
form A(.),
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– the sources: sources properties - even weak - are necessary
for the estimation of B(.).

In the purpose of hyperspectral data and according to the
spatial and spectral approximation models, a first prior im-
plicitly assumed is the linearity of the mixing which can be
accepted in the case of geographical mixture. However, as
introduced before, this model is not valid in the case of inti-
mate mixtures. A second prior information is the positivity
of the reflectance spectra of the chemicals. Thus, the pos-
itivity is a hard constraint that should be satisfied to get
meaningful solutions. In that respect, two approaches can
be applied: source separation by independent component
analysis and source separation with positivity constraints.

4. Hyperspectral Data Analysis by ICA

If the assumptions on sources are restricted to their sta-
tistical independence, the above problem is referred to as
blind source separation (BSS), and the method based on
source independence property has been called independent
component analysis (ICA) [1]. In the simplest case, the
model is assumed to be linear and memoryless, i.e. A re-
duces to a mixing matrix A with scalar entries. This prob-
lem has been intensively studied in the last two decades, and
many methods and algorithms are available, based on 4th-
order statistics, entropic criteria, characteristic functions,
etc. For this reason, the ICA principles as well as the ICA
algorithms will not be developed in this paper. For more
details, we recommend the reader to refer to [1, 11–13].

In the framework of hyperspectral data, although there is
some evidence for a mixture model, one considers a sparse
representation of the data using a sparse basis, with special
properties. ICA provides such a model where the special
property is mutual independence of the estimated sources.
However, a scale indeterminacy can not be avoided when
using ICA. Without imposing positivity constraints on the
independent components (ICs) or on the mixing matrix re-
sults at least in a sign ambiguity. In this Section, we con-
sider spatial mixture model (7) and we use the well known
ICA algorithm, JADE, based on the joint approximate di-
agonalization of cumulant matrices [14].

4.1. Spatial ICA

In this experiment, we use two sets of data. The first one is
the original data set, while the second one is a preprocessed
data set 5 , obtained from the original data set by canceling
the geometrical effect, the atmospheric effect and a few
known defects of the sensors.

4.1.1. Source Number Determination

The number, Nc, of independent component (IC) is re-
lated to the number of sources present in the mixtures. Of
course, if Nc increases, the accuracy of the approximation

5 the preprocessing is done by astrophysicists

(7) increases too. A first step is then to choose this number.
This is done using principal component analysis (PCA):
with 7 principal components, 98.58% of the variance of the
initial image is preserved. Then, we run JADE and obtain
the estimated ICs. In figure 2, we show the 7 ICs obtained
with the original data set.

A second step consists in evaluating the relevance of each
component ICk in the approximation. This is done by mea-
suring the relative quadratic loss:

ǫk = −10 log10

(

PÎNc
− PÎNc|Nk

PÎNc

)

, (10)

obtained when replacing the Nc-order approximation ÎNc

by with the (Nc − 1)-order, denoted ÎNc|Nk
obtained by

canceling the ICk, and where the energies of the approxi-
mated images are computed as:

PÎNc
=

Nf
∑

m=1

Nz
∑

n=1

(

Nc
∑

p=1

b(λm,p)IIp(n)

)2

(11)

PÎNc|Nk

=

Nf
∑

m=1

Nz
∑

n=1





Nc
∑

p=1,p6=k

b(λm,p)IIp(n)





2

. (12)

These values, computed for the ICs estimated with the two
sets of data, are given in table 1.

Finally, one has to wonder if the ICs are relevant and
especially if they are robust with respect to the ICA algo-
rithm, to similar images and to the number of ICs. In this
purpose, we did three sets of experiments:

(i) we both consider two sets of data, data without pre-
processing (RDS, for raw data set) and data set with
preprocessing (PDS, for preprocessed data set) which
remove a few physical artifacts: luminance gradient
effect, sensor shift and atmospheric effect. We checked
that a high quality reconstruction is achieved with 4
ICs for PDS and with 7 ICs for RDS. If more than 4
(or 7) ICs are used, one always get the same main (4
or 7) ICs, the others have very small contributions on
the image reconstruction and cannot be interpreted.
For this reason, we chose 4 ICs for PDS and 7 ICs
with RDS.

(ii) in both data sets, images are resized by line sub-
sampling (one line over two is kept). Then, this pro-
vides two different but very similar images that we
call odd image and even image. We can check that
ICA (with different IC numbers) of matched odd and
even image leads to almost rigorously equal results,
which again shows the reliability of the extracted ICs.

(iii) we run three algorithms: FastICA [12] with various
non-linearities in the symmetric or deflation versions
and JADE [14]. In all the experiments, one obtained
very similar results (ICs and reconstruction perfor-
mance) with JADE and symmetric FastICA, while
performance of deflation FastICA was worse. JADE
is preferred since it has a very weak computational

5
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Figure 2. Independent components of the RDS hyperspectral image of south polar cap using JADE with 7 ICs.

load, even with a large number of ICs, and required
any parameter, except a stopping criterion.

RDS data PDS data

k Identification Figure ǫk [dB] ǫk [dB]

1 Solar angle effect 2(a) 32.6 1.3

2 CO2 ice 2(b) 16.3 10.7

3 Atmospheric effect 2(c) 12.2 0.88

4 Intimate mixture 2(d) 6.8 6.6

5 Corrupted line 2(e) 6.2 -

6 H2O ice 2(f) 7.1 5.9

7 Channel shift 2(g) 2.0 0.1

Table 1
Independent Components estimated with JADE. First column indi-

cates the number of the IC. IC interpretation (see text for details) is
given in column two. The third column refers to the Figure number
(from a to g). The fourth and fifth column are the loss in dB (ǫk)

obtained if ICk is not used in the approximation, for initial data or
for preprocessed data, respectively. Note that IC2 is in fact inverted,
due to the scale indeterminacy with a negative value.

4.1.2. IC Interpretation

In this spatial approximation, each ICk can be viewed
as an image, while the column k of the mixing matrix is
the spectrum related to ICk. Comparing the IC spectra
to the reference spectra, the components IC2 and IC6 can
be easily identified (table 1) to respectively CO2 ice and
H2O ice. Conversely, the spectrum associated to IC4 has
typical bands of both dust, CO2 and H2O ices. We could
interpret this IC as a nonlinear intimate mixture effect or
a non independent distribution of those components.

The other four components (IC1, IC3, IC5 and IC7) are
difficult to interpret with spectral informations. We remark

that the energies of these ICs are very small for the pre-
processed data (Table 1, column 5). Consequently, one can
assume that the importance of these ICs has been strongly
reduced by the preprocessing, and they are related to phe-
nomena cancelled by the preprocessing. In fact, the first IC
(figure 2(a)) has a luminance gradient which is character-
istic of the solar angle effect which should be the E(x, y, λ)
term in equation (3). The IC7 (figure 2(g)) looks like a high-
pass filter mainly on the y direction of the image. This along
track direction maximizes the instrument shift between the
two near IR detectors. This effect is independent of the
spectra model and thus it is detected as a separate IC and
can be used to assess the quality of the preprocessing. IC3

could be associated to the transmission in the atmosphere
effect because it is similar to a map of topography. How-
ever, if this interpretation is correct, our model hypothe-
sis about the equivalent path in the atmosphere for all the
pixels is wrong. At first glance, IC5 (figure 2(e)) was not
recognized. But at a closer look, the first line in the image
has a very low response, and corresponds to a corrupted
line in the dataset. This IC is then due to a sensor failure,
known by the astrophysicists.

4.1.3. Classification

From IC2 and IC6 interpretation, we deduce classifica-
tion masks of CO2 and H2O ices with an easy criteria : if
the IC has a positive value then CO2 ice - respectively H2O
ice - is detected. The classification results compared with
the reference classification is seen in table 2. False alarm

and missing indicate the differences between the classifica-
tion based on the ICs with respect to that based on wavan-
glet classification. However, keep in mind that the reference
images, although pertinent, are not the ground truth and
thus the false classifications in this case are not necessarily
false.
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An interesting result is that the classification of the orig-
inal dataset is slighly better than the classification of the
preprocessed dataset. This is in accordance to the SNR
gained in table 1, since the atmospheric removal seems to
take some information from the CO2 and H2O ice compo-
nents.

4.2. Dependence of Spatial IC

Clearly, looking at the reference spectra and reference
images, it appears that the fundamental assumption of in-
dependence is not at all satisfied neither in the spectral nor
in the spatial dimensions. The spatial independence can be
tested by looking at the covariance between the reference

Correct Missing False alarm

Original Data

CO2 97.1 % 1.1 % 1.8 %

H2O 91.3 % 8.7 % 1.0 %

Preprocessed Data

CO2 95.9 % 2.0 % 2.1 %

H2O 90.0 % 8.1 % 1.9 %

Table 2
Classification of CO2 and H2O ices compared with the reference

classification

classification masks (figure 1).

Rs{Idust, ICO2
, IH2O}=











1 −0.61 −0.24

−0.61 1 −0.25

−0.24 −0.25 1











. (13)

When using spatial ICA, components of CO2 and H2O ices
are retrieved but dust does not appear as a separate com-
ponent as seen on figure 2. The negative correlation seen in
(13) is not surprising when looking at figures 1 (d, e and f).
Spatially, dust and CO2 ice are strongly complementary,
and even more than the reference images indicate. As a re-
sult, dust is not retrieved when using spatial ICA, but is
frequently recovered from the ICs as the negative of CO2

ice.
The IC which corresponds to CO2 ice can be seen on

figure 3(a), and the corresponding mixture. As can be seen
in the entries 6 of A (Fig. 4), this IC is both used as a
positive and negative component in the mixture. From the
graph in figure 3, it can be seen that when the mixing
coefficients take a positive value, for example at 2.98 µm,
the dominating element for this wavelength is CO2 ice as
seen on figure 3(c). When the mixing coefficients take a
negative value as at 1.98 µm the dominating element is dust
as seen of figure 3(b). Taking a closer look at the mixing
matrix reveals that the IC seen above is by far the strongest
component in the mixing matrix for the layers where dust
and CO2 ice are most visible. It is thus evident that this IC
presents in fact both CO2 ice and dust.

4.3. Discussion

At first glance, spatial ICA provides ICs which can be
interpreted as artifacts or endmembers. Concerning artifact
ICs, the results are very interesting, and suggest that the
data preprocessing could be avoided and done using ICA
results. In fact, the classification performance seems 7 even

6 we recal that the column k of A can be interpreted as the spectrum

related to ICk
7 remember that we do not have ground truth, but only a refer-

ence classification, designed by astrophysicists. Consequently, “bet-
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a little bit better on original data than in preprocessed
data. Conversely, only two endmembers (CO2 and H2O
ices) are associated to IC2 and IC6: the third one, dust,
only appears as the negative on CO2, which results in a
very poor classification of dust. Moreover, the IC statistical
independence, the main hypothesis on which ICA is based,
is not satisfied. Especially, in the endmember classification,
it appears that dust and CO2 ice are strongly correlated.
Thus, the reliability of ICA is not sure, and the relevance
of the extracted ICs is poor. Consequently, other methods,
based on priors satisfied by the data, must be used.

5. Source Separation with Positivity Constraint

5.1. Problem Statement

The main constraint in hyperspectral mixture data de-
composition is the positivity of both the mixing coefficients
and the source signals. Unfortunately, this constraint alone
does not lead to a unique solution unless under some par-
ticular conditions [15,16]. Thus, in general cases additional
assumptions are required to select a particular solution
among the admissible ones. The estimation can then be
performed using either a constrained or a penalized least
square estimation. In the constrained approach, there are
mainly two methods: alternating least squares (ALS) [17]
and non-negative matrix factorization (NMF) [18]. While
ALS method performs a decomposition of the mixture by
minimizing alternatively the least square criterion with re-
spect to source signals and mixing matrix, under the non-
negativity constraint [19, 20], the NMF method minimizes
this criterion with gradient descent algorithm over this
objective function by updating iteratively mixing coeffi-
cients and source signals using a multiplicative learning rule
that ensures the estimates to remain non-negative. The key
point is that the solution using only non-negativity is not
unique, therefore the results provided by ALS and NMF
methods depend on the initialization. In a penalized least
square method, a regularization criterion is added to the
weighted mean squares criterion in order to select a partic-
ular solution fulfilling the additional assumptions. This is
the basis of methods such as positive matrix factorization

(PMF) [21] and non-negative sparse coding (NNSC) [22,23].
Unlike the constrained least squares methods, penalized
approaches lead to an unconstrained optimization problem
and ensures the uniqueness of the solution for a fixed set
of the regularization parameters. However, to also estimate
the regularization parameters it is more suitable to address
the separation problem in a Bayesian framework.

ter performance” only means “better correlation” with the reference

classification.

5.2. Bayesian Positive Source Separation

In a Bayesian source separation approach, one can ideally
incorporate every prior knowledge as long as this prior can
be stated in probabilistic terms. The approach is founded
on the likelihood p (x|A, s) and prior distributions of the
source signals and mixing coefficients. Applying Bayes’ the-
orem leads to:

p(A, s|x) ∝ p(x|A, s) × p(A) × p(s). (14)

From this posterior law, both the mixing matrix A and
sources s can be estimated using various Bayesian estima-
tors. A complete discussion on Bayesian approach to source
separation can be found in [24–26]. However, its applica-
tion to the case of positive sources and mixing has only
received a few attention [27–29]. In this purpose, a recent
contribution consists of the method termed by Bayesian

positive source separation (BPSS) [2, 30], which allows to
jointly estimate source signals, mixing coefficients and reg-
ularization parameters in an unsupervised framework.

5.2.1. Bayesian Model

The probabilistic model for source separation in the case
of a spectral mixture model is based on the hypothesis of in-
dependent and identically distributed Gaussian errors and
Gamma distributions priors on source signals and mixing
coefficient distributions. The spectral mixing model being
expressed by:

In(λk) =

Nc
∑

p=1

a(p,n)ψp(λk)+En(λk) ∀n = 1, ..., Nz, (15)

whereEn(λk) is a noise term which models errors due to the
simplified model (2), the restricted number of components,
Nc and measurement noise, the Bayesian model is then
summarized as:

(

En(λk)|σ2
n

)

∼ N (En(λk); 0, σ2
n), (16)

(ψp(λk)|αp, βp) ∼ G(ψp(λk);αp, βp), (17)
(

a(p,n)|γp, δp
)

∼ G(a(p,n); γp, δp), (18)

where N (z; 0, σ2) represents a Gaussian distribution of the
random variable z with zero mean and variance σ2 and
G(z;α, β) stands for a Gamma distribution of the random
variable z with parameters (α, β). The Gamma law takes
into account explicitly the positivity constraint since it
leads to a posterior distribution with positive support (the
probability distribution function is zero for negative values
of the sources and the mixing coefficients). In addition, its
two parameters give a flexibility to adapt its shape to that
of spectral source signals. According to this probabilistic
model and Bayes’ theorem, with the hypothesis of statisti-
cal independence of the source signals and the mixing co-
efficients, the joint a posteriori distribution can be calcu-
lated:
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p (Ψ,A|I,θ) ∝

Nf
∏

k=1

Nz
∏

n=1

N

(

In(λk);

Nc
∑

p=1

a(n,p) ψp(λk), σ2
n

)

×
Nc
∏

p=1

Nf
∏

k=1

G((ψp(λk);αp, βp) ×
Nz
∏

n=1

Nc
∏

p=1

G(a(p,n); γp, δp).

(19)

The criterion corresponding to the logarithm of this pos-
terior distribution can be decomposed into three parts

J(Ψ,A|I,θ) = − log p (Ψ,A|I,θ)

= Q(Ψ,A|I,θ) +RS(Ψ|θ) +RA(A|θ), (20)

where Q,RS and RA are given by

Q =

Nf
∑

k=1

Nz
∑

n=1

1

2σ2
n

(

In(λk) −
Nc
∑

p=1

a(p,n)ψp(λk)
)2

, (21)

RS =

Nf
∑

k=1

Nc
∑

p=1

(

(1 − αj) logψp(λk) + βjψp(λk)

)

, (22)

RA =

Nz
∑

n=1

Nc
∑

p=1

(

(1 − γj) log a(p,n) + δja(p,n)

)

. (23)

The first partQ of the objective function is the mean square
criterion, while the last two parts RA, RS are regulariza-
tion terms. This criterion may be connected with those of
previously proposed methods:
– The case where {(1 − αp) = α}Nc

p=1, {(1 − γp) = γ}Nc

p=1,

{βj = β}Nc

p=1 and {δj = δ}Nc

p=1, allows to get a criterion

similar to that in PMF [21]. Therefore, it may be inter-
preted as a particular case of the proposed criterion, in
which the same prior parameters are assigned to all the
source signals and the same prior parameters are assigned
to all the mixing coefficients.

– The case where {αp = 1}Nc

p=1, {βp = β}Nc

p=1, {γp = 1}Nc

p=1,

{δp = 0}Nc

p=1 corresponds to assigning an exponential dis-
tribution prior to the source signals and a uniform posi-
tive prior to the mixing coefficients, leading to the non-
negative sparse coding (NNSC) criterion [22].

Thus, the proposed Bayesian model with Gamma prior has
the advantage of using a more flexible prior model and offers
a well stated theoretical framework for estimating the hy-

perparameters
{

σ2
n

}Nz

n=1
, {αp, βp, γp, δp}

Nc

p=1 which are also
included in the Bayesian model with appropriate prior dis-
tributions [2, 31]. Thus, by using Bayes’ theorem and as-
signing appropriate a priori distributions to these hyper-
parameters, the whole a posteriori distribution, including
the hyperparameters, is expressed as

p(Ψ,A,θ|I) ∝ p(Ψ,A|I,θ) × p(θ). (24)

The joint estimation of the pure spectra, of the mixing
coefficients and of the hyperparameters is then performed
from this a posteriori distribution.

5.2.2. Estimation Algorithm

The estimation of the source signals and of the mixing co-
efficients is performed using marginal posterior mean esti-
mator and Markov Chain Monte Carlo (MCMC) methods.
These stochastic methods are extensively documented in
the statistical literature (see the books [32,33] and the ref-
erences therein). In short, these iterative methods (Gibbs
sampling [34] and Metropolis-Hastings [35, 36]) generate
random numbers from the posterior distribution and use
these simulated realizations to approximate expectations
with respect to the posterior distribution by empirical av-
erages.

To simulate p (Ψ,A,θ|I), at each new iteration r of the
algorithm, the main steps consist in simulating
1. the source signals Ψ(r+1) from

p
(

Ψ|I,A(r),θ(r)
)

∝

p
(

I|Ψ,A(r),θ(r)
)

× p
(

Ψ|θ(r)
)

, (25)

2. the mixing coefficients A
(r+1) from

p
(

A|I,Ψ(r+1),θ(r)
)

∝

p
(

I|Ψ(r+1),A,θ(r)
)

× p
(

A|θ(r)
)

, (26)

3. the hyperparameters θ
(r+1) from

p
(

θ|I,Ψ(r+1),A(r+1)
)

∝ p
(

I|Ψ(r+1),A(r+1),θ
)

× p (θ1) . (27)

After a random initialization, the MCMC sampler is run
to have M realizations of Ψ, A and θ from the posterior
distribution (24). The first L realizations corresponding to
the burn-in of the Markov chain being discarded, the Monte
Carlo approximation for marginal posterior mean estima-
tion is achieved by

X̂ ≈
1

M − L+ 1

M
∑

r=L+1

X
(r), (28)

where X ∈ {Ψ,A,θ}. All the stochastic simulation steps
including the expressions of the conditional posterior distri-
butions and their simulation techniques are detailed in [2],
where this method is termed Bayesian Positive Source Sep-

aration (BPSS).

6. Hyperspectral data analysis by BPSS

A practical constraint in the case of hyperspectral data
is the high resolution of the acquisition instrument which
provides a data cube of large size. In such case, the com-
putation load of the BPSS approach becomes very impor-
tant and even the computation becomes impossible with
a standard computer (need of a huge memory space, high
computation time). To illustrate this problem table 3 shows
the computation time per iteration, with a standard PC
(3 GHz and 512 MO RAM) , for different image sizes with
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Nf = 200 spectral bands and Nc = 4 components. For ex-
ample, it can be seen that for a data cube where the im-
age size is 128 × 128 pixels, the computation time for 104

iterations is about 4 days and 14 hours. In that respect,
a reduction of the dimension is necessary before applying
the BPSS approach to the hyperspectral data provided by
the OMEGA instrument. Of course, to reduce the com-
putation burden one can also use deterministic optimiza-
tion methods to jointly estimate the unknown parameters
and hyperparameters (see [37] and [38] for two examples in
signal deconvolution/restoration with non-negativity and
sparsity constraints).

Image size (pixels) (16 × 16) (32 × 32) (64 × 64) (128 × 128)

Time per iteration (s) 0.58 2.39 9.89 39.85

Table 3
Computation time of BPSS for different image sizes

6.1. Combination of Spatial ICA with Spectral BPSS

A more realistic solution to handle the computation time
limitation is to process a smaller data set which is represen-
tative of the whole hyperspectral images. That is a selec-
tion of pixels corresponding to areas where all the chemi-
cals present in the whole image are present. Therefore, their
pure spectra can be estimated by BPSS with a reduced
computation load. Our proposal is to exploit the spatial
independent component analysis results (Section 4) for se-
lecting a few number of pixels in independent areas of the
spatial coordinates, i.e. areas classified as H2O ice, CO2 ice
or dust. We define the relevant pixels associated to each
source as those where the contribution of this source is im-
portant. To measure this contribution at each pixel n, we
use the spatial SNR loss which is defined as the variation
of the spatial SNR when one particular source is removed
from the mixture. Thus, removing the component IIj , one
gets:

SNRj(n) = SNR(n) − 10 log10






∑Nf

k=1 Iλk
(n)2

∑Nf

k=1

(

Iλk
(n) −

∑Nc

p=1,p6=j a(λk,p)IIp(n)
)2






, (29)

where SNR(n) is the spatial SNR of the approximation
with Nc components, defined by:

SNR(n) = 10 log10






∑Nf

k=1 Iλk
(n)2

∑Nf

k=1

(

Iλk
(n) −

∑Nc

p=1 a(λk,p)IIp(n)
)2






. (30)

For each chemical, we define the most relevant pixels as the
first 15% with the highest spatial SNR loss and then we
select randomly a fixed number of pixels among this set.
In the sequel, we select 50 pixels from each independent
component image.
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(a) Spatial SNR loss and
selected pixels from IC 4
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(b) Selected pixels from the
whole image.

Figure 5. Illustration of the pixel selection step.

6.2. Experimental Results

The proposed approach is applied to the RDS hyperspec-
tral images presented in section 2. Figure 5 illustrates the
spatial SNR loss and the selected pixels from the fourth in-
dependent component image and the selected pixels after
processing of all the independent components.The results
of the separation using BPSS with the mixture spectra pro-
vided by the selected pixels are post-processed to correct
scale and ordering ambiguities and deduce abundance frac-
tions. The identification of the spectra is straightforward
from the correlation with the reference spectra as seen from
equation (31) where the matrix entries rij of the matrix R

are the correlation coefficients between the reference spec-
tra ψi ∈ {ψH2O, ψCO2

, ψdust} and the estimated pure spec-

tra ψ̂j ∈ {ψ̂1, ψ̂2, ψ̂3].

R =











0.91 0.79 0.87

0.72 0.65 0.99

0.89 0.96 0.55











(31)

One can note that the correlation coefficient is high (0.99)
for the dust endmember and lower for CO2 ice and H2O ice.
After scaling and permutation of the identified spectra, the
reference spectra are plotted together on figure 6. It can be
noted the similarity between the estimated spectra and the
references ones. The similarity is lower for the both CO2

ice and H2O ice in the spectral region near 2 µm because
of the presence of a deep atmospherical band. On the con-
trary, the dust source is in relative better agreement with
the reference spectra (see equation (3)) because both con-
tain the atmospherical transmission. These similarities lead
to an easy identification of the chemical component asso-
ciated to each estimated source. Furthermore, the spectral
information in the estimated sources is rich enough to pro-
vide knowledge about the physical properties of the surface
constituents (such as : grain size, rugosity, density, etc.).

On the other hand, one can compute the abundance frac-
tions in each pixel of the hyperspectral images, which are
shown in figures 7 as soon as the simplest physical model is
true. It can be seen that the abundance fractions not only
agree with the results of the wavanglet classification shown
in figure 1, but also give information about the amount of
the chemicals in the south polar cap of Mars - which was
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Figure 6. Estimated and reference spectra (a,b,c) and (d) spectral reconstruction error in dB (continuous line, scale on the left), atmospheric
transmission (dotted line, scale on the right)

not available with the wavanglet method since the classifi-
cation only provides binary masks. This unsupervised de-
tection and classification based on source separation is an
original result which has not been obtained before.

In order to estimate robustness and quality of these re-
sult, we analyze both spatial and spectral reconstruction
errors. Spectral SNR is relatively low in all atmospherical
absorption bands (2 and 2.9 µm) because our modeling is
not valid for the atmosphere (figure 6-d). As previously ex-
posed in figure 2 and in table 1, spatial IC3 also show this
effect. The atmosphere spectra is mainly controlled by a
factor depending on the altitude. Altitude can change in our
scene from 1000 m to more than 2000 m. Second the spec-
tral bands around 2 and 3 µm are present everywhere and
implies strong absoptions (figure 6 for reference spectra of
CO2 ice and H2O ice and dust). At the larger wavelength,
near 4 microns, the thermal emission of the planet is su-
perposed to the reflectance spectra for temperature higher
than 140 K which can be the case for some unfrosted area.
Spatial SNR estimate the reconstruction in the spatial do-
main (figure 7-d). The general pattern is similar to spatial
IC7 (figure 2) provided for the same RDS and the inter-
pretation of the channel shift remain the best one (table 1).
The simple correction applied to avoid the shift of the two

near infrared detectors is the number of pixel in the y di-
rection that best fit the overlapping spectral domain. How-
ever, a more accurate correction (leading to a real-valued
shift) can be done by resampling the data, but this can-
not be done without loosing information. We choose here
to use the integer shift correction. Therefore, all relative
disagreement in both spatial and spectral domain can be
interpreted as non-linearities justified by specific physical
phenomena that occur on planet Mars and in the OMEGA
detector.

7. Conclusion and further works

In this paper we have proposed an application of source
separation methods to the problem of hyperspectral data
analysis. It appears that ICA can be usefull for providing
efficient preprocessing of the observation data without in-
formation on the accurate geometry, measurement errors
and sensor defects. However, classification based on ICA
seems neither reliable nor accurate, especially since it is
based on a wrong assumption: source spectra and locations
of endmembers in the observed hyperspectral cubes are
not independent. In a second step, enforcing positivity of
spectra and mixing coefficients, we proposed a semi-blind

11



 

 

0

0.3

0.6

0.9

(a) H2O ice

 

 

0

0.3

0.6

0.9

(b) CO2 ice

 

 

0.1

0.4

0.7

1

(c) dust

 

 

23

29

35

40

(d) Spatial SNR

Figure 7. Estimated abundance fractions of water ice, CO2 ice and dust (a, b and c) and spatial reconstruction error (d)

approach allowing to jointly estimate the pure spectra of
the chemicals composing the area under view and compute
their abundances. In this second step, ICA classification,
although approximate, is used for selecting a restricted set
of pixels, representative of the constituents: this reduces
the BPSS computational load without penalizing the per-
formance. The spectral accuracy allows the user to easily
identify the chemical species, and the estimated sources are
precise enough to provide knowledge about their physical
properties. Finally, the linked abundance are in agreement
with the reference wavanglet masks.

Current works include two tasks. First, the study con-
cerning the result confidence is very important for astro-
physicists. Secondly, since the approximation done by ICA
as well as BPSS is based on a linear model of Nc com-
ponents, the spatial reconstruction error (Îλk

(n)− Iλk
(n))

should inform on the local quality of the approximation. A
too large error could be associated either to a wrong local
model, i.e. due to intimate (nonlinear) mixture, or to the lo-
cal presence of another endmember, which does not belong
to theNc extracted components. On the other hand, future
works should be done in the case of OMEGA hyperspectral
images with more ambiguous spectral endmembers. Espe-

cially with minerals because associated spectral signatures
are thinner than the ice one. Furthermore, the new genera-
tion of hyperspectral imaging instruments will soon incor-
porate a new dimension: the observation angle. An instru-
ment, like CRISM on the NASA’mission Mars Reconnais-
sance Orbiter, will observe the same field of view according
to different angles. Semi-blind approaches, inspired of these
presented in this paper, seem straightforward candidates
for analyzing this type of dataset, which is a real challenge
for the next years.
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l’Eau, les Glaces et l’Activité, ESA SP-1240, 2004, Ch. Mars
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Denis Diderot, Paris, France, after working
3 years at the Laboratoire de Glaciologie et
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