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Abstract

This paper presents a complete finite-element description of a hybrid passive/active sound package concept for
acoustic insulation. The sandwich created includes a poroelastic core and piezoelectric patches to ensure high
panel performance over the medium/high and low frequencies, respectively. All layers are modelled thanks to a
Comsol environment4. T h e  piezoelectric/elastic and poroelastic/elastic coupling are fully considered. The study
highlights the reliability of the model by comparing results with those obtained from the Ansys finite-element
software and with analytical developments. The chosen shape functions and mesh convergence rate for each layer
are discussed in terms of dynamic behaviour. Several layer configurations are then tested, with the aim of
designing the panel and its hybrid functionality in an optimal manner. The differences in frequency responses are
discussed from a physical perspective. Lastly, an initial experimental test shows the concept to be promising.

1. Introduction

Multilayered panels are widely used as solutions for limiting

the transmission of acoustic waves. These so-called

‘sandwiches’ are made up of two elastic materials and a core.

The simplest core could be an airgap, but highly dissipative

media such as poroelastic materials would make the best

candidates. Such passive panels are efficient enough at medium

and high frequencies but exhibit a lack of performance at low

frequency, where resonance inherent to the layer distribution

occurs. Active control appears to be the right approach for

remedying this problem. Piezoelectric patches are added to the

panel and behave as a secondary vibrational source, interfering

with the low frequency disturbance propagating in the panel.

4 Comsol is the new name of the finite element software previously called

Femlab.

The first major investigations on this hybrid concept

were conducted by Guigou [1] and Fuller [2]. The purpose

therein was to reduce sound transmitted into an aircraft. Two

configurations were proposed: a smart skin composed of

piezoelectric actuators bonded onto a polyurethane foam, and

a secondary ‘speaker diaphragm’ driven by two bimorph active

beams. Double panel systems were proposed a few years

later. Carneal [3] developed a robust analytical model of a

simply supported plate–air–plate system. Prediction of the

transmission losses (TLdB) was compared with measurements

performed on a specific test bench. An initial parametric

work was aimed at finding the best placement for piezoelectric

patches.

The present study has taken advantages of new solutions

developed at Ecole Centrale de Lyon for the design of

a hybrid broadband absorbing liner, which associates the
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passive properties of porous materials with active control [4].

The concept is to be adapted herein to sound insulation.

The widespread design of such active/passive mufflers is

still an open topic, which may now be addressed thanks

to the development of new predictive tools. Recent

advances allow modelling the complete harmonic poroelastic

problem using the finite-element method [5]. The well-

adapted formulation has been implemented within the Comsol

environment. Coupling this formulation with elastic, acoustic

and piezoelectric application modes provided by Comsol offers

the possibility to directly solve the multiphysics harmonic

problem of multilayered mufflers.

In this paper, the results presented will focus first on the

high reliability of each layer model. The Comsol formulation

for poroelastic material is described completely; this implies

equations for both the Neumann and Dirichlet boundary

conditions. The model is validated by describing results for

the analytically solved case of a one-dimensional (1D) porous

layer bonded onto a rigid wall. The pertinent shape functions

and converged mesh are discussed in terms of dynamic layer

behaviour. A rather similar discussion is then conducted

regarding the coupled piezoelectric/elastic problem. The

forced response of these two-layer arrangements is calculated

thanks to a Comsol and Ansys software application for two

different geometries. Limitations arising from calculation costs

will also be highlighted.

The second part of this paper studies the dynamic response

of the whole sandwich assembly. The properties of different

layers are tested; these involve changes in elasticity moduli,

damping factors and piezoelectric matrices. The complete

coupling with fluid media (air) allows calculating efficiency

indicators, such as transmission loss (TLdB). Differences are

then investigated in terms of resonant behaviour of the panel.

Conclusions lead first to discussions on ideal active patches

(properties and position) and the passive poroelastic core.

Lastly, initial experimental measurements of the transmission

losses are performed on a specific set-up, with results being

compared to those obtained numerically from the new finite-

element code.

2. Poroelasticity modelling

2.1. Motion equations

Comsol does not currently provide a specific application mode

for poroelasticity. In problems where the hypothesis of a rigid

skeleton for porous media is valid, the pre-established acoustic

application mode can obviously be used to implement the fluid-

equivalent model of the porous layer. The study developed

here does not allow for this assumption to be adopted since the

active control procedure must be efficient over low frequencies,

where strong coupling between the fluid and solid phases of the

poroelastic material occurs. The biphasic theory introduced by

Biot in [6] then becomes necessary. The classical formulation

involves two unknown fields, us and U f, which stand for

the frame and the fluid displacements, respectively5. For a

three-dimensional (3D) discretized problem, six degrees of

freedom per node are present. Considering the fact that the

behaviour of such a material is frequency dependent, a sizeable

calculation time is needed, which prevents a parametric study

5 In this document ‘ ’ stands for a vector and ‘ ’ for a matrix.

from being conducted. In 1998, Atalla et al [7] introduced

the new (us, p) formulation, valid only for harmonic motion.

No new assumptions were adopted for comparison with Biot’s

formulation, and only four degrees of freedom remain since the

fluid phase is described by means of the pore pressure.

Implementation is performed by directly programming the

(us,p) formulation under Comsol’s general partial differential

equation (PDE) mode. The partial differential equations have

to be rewritten in order to fit the software standard detailed in

equation (1).

Ŵ · ∇ = F in �,

−n · Ŵ = G +

(

∂ R

∂U

)T

l on ∂�N,

0 = R on ∂�D,

(1)

where �, ∂�D and ∂�N are the calculation domain, Dirichlet

boundary and Neumann boundary, respectively. U is the

vector of unknowns and Ŵ the equation matrix governing

the problem. n is the outward normal unit vector, R the

‘Dirichlet’ vector, and G the ‘Neumann’ vector. l denotes the

Lagrange multiplier, and lastly ∇ is the nabla operator. For

the three-dimensional harmonic (us, p) formulation, U and F

are column vectors with four rows, and Ŵ is a matrix with four

rows and three columns. Equations (2) and (3) describe the

complete matrices introduced to solve the harmonic problem

at an angular frequency of ω. The orthonormal basis is

(x1, x2, x3) and the notation vi, j stands for the differentiation

operation of the xi component of vector v over x j . Indices i

and j obviously vary from 1 to 3. The summation convention

is used, by implying vk,k as the divergence of vector v.

[

Ŵi j

Ŵ4 j

]

=

[

µs

(

us
i, j + us

j,i

)

+ λ̂s us
k,kδi j

p, j

]

, (2)

[

Fi

F4

]

=

[

−ω2ρ̃us
i − γ̃ p,i

−ω2 ρ̃22

λ̃f
p + ω2 ρ̃22 γ̃

φ2 us
k,k

]

, (3)

where

λ̂s = λ̃s −

(

λ̃sf
)2

λ̃f
, (4)

ρ̃ = ρ̃11 −

(

ρ̃12
)2

ρ̃22
, (5)

γ̃ = φ

(

ρ̃12

ρ̃22
−

λ̃sf

λ̃f

)

. (6)

The above equations entail numerous complex, frequency-

dependent, poroelastic parameters. φ is the porosity defined

as the ratio between fluid phase volume and total volume of

the sample. λ̂s, µs and λ̃f are the two Lamé-like coefficients of

the solid phase and the one fluid phase coefficient, respectively.

ρ̃11 and ρ̃22 are the relative densities. Coupling between the

solid and fluid phases is represented by the two parameters ρ̃12

and λ̃sf. These two coefficients highlight the complex coupling

occurring in poroelastic materials. Apart from the classical

interaction due to constitutive relations (term λ̃sf), a strong

inertial coupling can be represented by ρ̃12. This coupling

prevents us from just mixing pre-established acoustic and solid

elastic Comsol application modes. This is the reason for using

the general PDE application mode.
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2.2. Boundary and coupling conditions

To derive a well-expressed formulation, the boundary con-

ditions need to accommodate equation (1). The acous-

tic/poroelastic and elastic/poroelastic coupling conditions will

be presented next. Simpler boundary conditions (a rigid wall,

imposed pressure, imposed displacements) can be directly de-

rived from the two formulations described below.

2.2.1. Poroelastic/acoustic coupling. In the case of a

poroelastic medium linked to an acoustic medium, system (7)

states the continuity of the total normal stress, acoustic pressure

and fluid flow.

σ t · n = −pan,

p = pa,

(1 − φ)us · n + φU f · n =
1

ρ0ω
2
∇ pa · n,

(7)

where pa is the pressure in the acoustic medium, ρ0 its

density and σ t the total stress tensor in the poroelastic material.

Equations (8) and (9) express the well-formulated vectors G

and R.
[

G i

G4

]

=

[

{

1 − φ
(

1 + λ̃sf

λ̃f

)}

pani

0

]

, (8)

[

Ri

R4

]

=

[

0

p − pa

]

. (9)

Moreover, the continuity of fluid flow at the coupling interface

can be expressed as an acceleration imposed upon the fluid

in the acoustic medium. By substituting p for U f using

equation (10), the correct normal acceleration can be obtained,

as written in equation (11).

U f =
φ

ω2ρ̃22
∇ p −

ρ̃12

ρ̃22
us, (10)

1

ρ0

∇ pa · n = ω2

[

us · n

(

1 − φ

(

1 +
ρ̃12

ρ̃22

))]

+ ω2

[

∇ p · n

(

φ2

ω2ρ̃22

)]

. (11)

2.2.2. Poroelastic/elastic coupling. The poroelastic material

is assumed to be bonded onto an elastic solid, which

encompasses total continuity between the solid phase and

elastic displacements. The total normal stress is also to be

conserved. Moreover, one additional condition is needed

to ensure the absence of relative fluid flow at the interface.

System (12) summarizes these coupling formula.

σ t · n = σ e · n,

us = ue,

U f · n − us · n = 0

(12)

where the superscript ‘.e’ indicates the data relative to the

elastic solid. The continuity of elastic and solid phase

displacements can be easily achieved. Once reformulated,

other conditions lead to equations (13) and (14).

[

G i

G4

]

=

[

−φ
(

1 + λ̃sf

λ̃f

)

pni − σ e
i j n j

−ω2

φ
(ρ̃12 + ρ̃22)us

i ni

]

, (13)

Table 1. Poroelastic parameter of the studied felt.

h (m) φ σ (N s m−4)

2 × 10−2 0.98 33 000

α∞  (m) ′ (m)

1.1 50 × 10−6 110 × 10−6

ρpr (kg m−3) Epr (Pa) υpr

60 100 000 (1 + 0.88j) 0

[

Ri

R4

]

=

[

ue
i − us

i

0

]

. (14)

It should be noted that the cases of an imposed pressure or

displacement field can be directly derived from equations (8)

and (9), by simply keeping R4 and G i , and from equations (13)

and (14) by considering just Ri and G4. Lastly, system (1)

is fully defined, and a variational property is obtained by

the software. After the meshing step, the mass and stiffness

matrices are assembled and the problem is solved.

2.3. Validation of the implemented poroelasticity model

Model accuracy is validated by studying the case of a one-

dimensional porous sample bonded onto a rigid wall and

impinged by a normal harmonic unit pressure field. This

configuration is relevant since an analytical solution can be

derived. No shear wave exists and the propagating wave

can be considered as the sum of two compression waves.

The parameters of the felt sample have been summarized

in table 1. The configuration is modelled using a three-

dimensional geometry with appropriate boundary conditions

on lateral faces.

In the table, j is the imaginary unit, j2 = −1. φ once again

stands for the porosity. σ , α∞,  and ′ are the flow resistivity,

tortuosity, and characteristic viscous and thermal lengths,

respectively. These parameters are sufficient for applying the

equivalent-fluid model of Johnson and Allard [6]. Epr, ρpr and

υpr are the Young’s modulus, density and Poisson’s ratio of

the poroelastic material, respectively. With these coefficients,

the Biot–Johnson–Allard theory is fully applicable. The

finite-element calculation has been carried out for various

meshes and two shape functions called shlag2 and shlag3 for

the quadratic and cubic Lagrange polynomials. For better

comprehension, the mesh denomination of the sample square

cross-section is explained in figure 1. The 2D mesh partition

will be that used for studying the whole hybrid panel. The

final 3D mesh used for solving the problem is obtained by

extruding this 2D mesh. As an example, a {7|8|4} 3D mesh

denotes M = 7, N = 8 and four extruded layers from 0 to h.

Figure 2 shows the real and imaginary parts of the surface

impedance Zs at normal incidence, which is defined as the

complex ratio of the acoustic pressure and total velocity at the

impinged face. Since the amplitude of the incident pressure

front is 1 Pa and considering the propagation axis to be x3, Zs

can be stated as in equation (15).

Zs(ω) =
[

jω
(

φU f
3 + (1 − φ)us

3

)]−1
,

=

[

jω

{

φ2

ω2ρ̃22
p,3 +

(

1 − φ

(

1 +
ρ̃12

ρ̃22

))

us
3

}]−1

. (15)
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Figure 1. 2D mesh of the cross-section of the porous sample. Two
parameters (M and N) are needed to generate a quad mesh. These
meshes are denominated {M|N}.

The real and imaginary parts of Zs exhibit good agreement

between the exact and approximated solutions. The relative

error does not exceed the 2% value attained for the

shlag2 {7|8|4} 3D mesh case. These discrepancies are present

for both the real and imaginary parts but are not visible on the

imaginary plot due to the range used. It is important to point

out that the shlag3 {5|5|2} 3D mesh and the shlag2 {7|8|4} 3D

mesh cases, which have the same number of nodes, lead to

different results. Moreover the shlag2 {7|8|6} case displays

more nodes than the shlag3 case and still approximates the

same results. This behaviour is due to differences in the way

the pressure gradient is calculated. The use of a second-order

polynomial shape function for p involves a linear interpolation

for the pressure gradient and then a biased approximation of

fluid displacement. Figure 3 shows the approximated pressure

gradient for various discrete cases; it reveals that a highly

accurate finite-element formulation of the problem requires a

polynomial of at least order 3. This conclusion tends to agree

with previous results on the convergence of finite-element

poroelasticity problems [8, 9]. To avoid prohibitive calculation

time, the discretized formulation chosen for the entire panel

study uses a second-order polynomial on a {5|5|4} mesh.

3. The coupled piezoelectric/elastic problem

The test case is a two-layer model made of a piezoelectric

plate glued to a simply supported elastic plate, i.e.,

the x3 displacement is constrained at zero. The lateral

dimensions of the piezoelectric patch and the elastic material

are different, which makes the coupling interface smaller than

the entire meshed model. Two geometric configurations,

involving different lateral dimensions and mass ratios, are

studied. The forced harmonic responses of these systems to an

applied electric potential on the upper face of the patch will be

examined and the results obtained from Comsol compared to

reference data from Ansys. Figure 4 depicts the typical study

configuration. Symmetry considerations allow for modelling

just a quarter of the sandwich. It should be noted that in both

software applications, complete three-dimensional modes are

considered, while the use of shell elements would decrease the

calculation time. This choice has been motivated by the fact
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Figure 2. Real (a) and imaginary (b) parts of the surface impedance
for the felt sample. (—) Analytical solution, (++) shlag3 {5|5|2} 3D
mesh, (◦◦) shlag2 {7|8|4} 3D mesh and (××) shlag2 {7|8|6} 3D
mesh.

that Comsol provides no quad-mapped mesh for the Mindlin

plate application mode. The elastic–solid and piezoelectric

Comsol application modes are then used.

3.1. Similarly shaped layers

The first configuration contains a 55 × 55 mm2 elastic plate, of

thickness 0.3 mm. Its density, Young’s modulus and Poisson’s

ratio are 2700 kg m−3, 6.85 × 1010 Pa and 0.3, respectively.

The square piezoelectric (piezo 1) patch has 38 mm edges

and is 0.19 mm thick. Table 2 lists its elasticity parameters

and dielectric properties. All materials are presumed to be

isotropic. The two layers are discretized using second-order

interpolation (shlag2). Meshes are denominated by merely

their lateral number of elements {M|N} since the thickness of

both the plate and piezoelectric patch are discretized using just

one element.

Figure 5 shows the x3 displacement of the lower

symmetric edge of the elastic plate (the bold line on figure 4).

The two chosen frequencies, 100 and 1500 Hz, correspond

to the extrema of the frequency range targeted in this study.

The Comsol results agree very well with Ansys reference

results. The relative error for converged meshes lies at

3% between the two software applications at a frequency of
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Figure 3. Real part of the pressure gradient at frequency 200 Hz.
(a) Total depth. (b) Close-up view near the impinged depth. (—)
Analytical solution, (⊳) shlag3 {5|5|4} 3D mesh, (++)
shlag3 {5|5|2} 3D mesh, (◦◦) shlag2 {7|8|4} 3D mesh and (××)
shlag2 {7|8|6} 3D mesh.

Figure 4. Model of a quarter piezoelectric/elastic configuration. The
electric potential is applied to the upper face of the patch. Dashed
line: simply supported edges, bold line: picked up data.

100 Hz. It must be stressed that the two Comsol calculations

with different discretizations yield very similar results. The

same study, conducted at a frequency of 1500 Hz, reveals

larger discrepancies of 5%. It seems that the Ansys model is

not converged for this discretization. The more complicated

behaviour of the sandwich at this frequency explains the slower

mesh convergence. Once again however, the two Comsol

results are similar. This finding stems from the fact that Ansys

provides incomplete Lagrange quad elements, whereas Comsol
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Figure 5. x3 displacement on the lowest symmetric edge for
piezoelectric/elastic configuration 1. (a) Frequency 100 Hz,
(b) frequency 1500 Hz. (++) Comsol shlag2 {5|5}, (××) Ansys

shlag2 {5|5}, (◦◦) Comsol shlag2 {10|10}, (⊳) Ansys

shlag2 {10|10}.

Table 2. Piezoelectric (piezo 1) properties.

E pi1 (Pa) υpi1 ρpi1 (kg m−3)

9.6 × 1010 0.34 7650

e31 (C m−2) e33 (C m−2) ε11 ε33

−6.18 6.18 1142 668

provides complete Lagrange elements. The resulting degrees

of freedom for the two software applications are then dissimilar

for an equivalent mesh. The fact that the Ansys{10|10} results

differ less from Comsol’s calculated displacement than {5|5}

from the mesh supports this explanation. Furthermore, the

coupling between elastic and piezoelectric materials, using

pre-established Comsol application modes, is validated.

3.2. Differently shaped layers

The second configuration entails a 66×66 mm2 elastic plate, of

thickness 0.2 mm. Its density, Young’s modulus and Poisson’s

ratio are 7700 kg m−3, 2 × 1011 Pa and 0.27, respectively. The

piezoelectric patch is different from the previous case. This
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Figure 6. x3 displacement on the lowest symmetric edge for
piezoelectric/elastic configuration 2. (a) Frequency 100 Hz,
(b) frequency 1500 Hz. (××) Comsol shlag2 {8|8}, (◦◦) Comsol

shlag2 {10|10}, (⊳) Comsol shlag3 {8|8}, (++) Comsol

shlag3 {10|10}.

Table 3. Piezoelectric (piezo 2) properties.

E pi2 (Pa) υpi2 ρpi2 (kg m−3)

7 × 1011 0.3 14 435

d31 (C m−2) d33 (C m−2) ε11 ε33

−186 × 10−12 0 1850 1850

material, called piezo 2, contains a cross section of 15×15 mm2

and is 2 mm thick. Table 3 lists the associated physical

properties, which are completely different from piezo 1. This

time, displacements calculated only by using Comsol have

been plotted in figure 6. The elastic plate is discretized with

one element over its thickness, as opposed to the piezoelectric

material, which has four thickness elements.

The mesh does not seem to converge for the same

lateral {5|5} discretization as in the previous case. The

use of cubic polynomial shape functions apparently does not

increase the convergence rate. In fact, a {10|10} lateral

discretization of the sandwich, with four elements in the

thickness of the piezoelectric material, is still not sufficient

Figure 7. A quarter panel, configuration B–B with active patches
bonded onto the incident plate. The impinging acoustic wavefront is
normal to x3.

Table 4. Poroelastic parameters of the rock wool.

h (m) φ σ (N s m−4)

2 × 10−2 0.94 40 000

α∞  (m) ′ (m)

1.1 56 × 10−6 110 × 10−6

ρpr (kg m−3) Epr (Pa) υpr

130 4400 000 (1 + 0.1j) 0

at frequency 1500 Hz. Differences in the dynamic behaviour

between distinct layers seems to exert considerable influence

on the required level of mesh refinement. Discretization has

not been further investigated since the calculation time was

already approximately 3 min per frequency using a Pentium 4

processor with sufficient memory to use the fastest solver. This

case illustrates that classic meshing rules are not applicable to

a coupled problem. Each configuration has to be tested and

meshed separately. Furthermore, the use of shell elements

would allow using finer elements for the piezoelectric material

without wasting nodes, and hence calculation time, for the

elastic plate thickness. This assessment would have to be tested

when the quad mesh for the Mindlin plate application mode is

implemented in Comsol.

4. Modelling the entire hybrid panel

The entire panel (see figure 7) is modelled, thanks to the

Comsol environment, by taking into account the previous

remarks. The lateral dimensions are 66 × 66 mm2. The

2 cm core is made of either felt (see table 1 above) or rock

wool, whose characteristics are summarized in table 4. This

core is sandwiched by two elastic plates 0.2 mm thick with

properties given in section 3.2. The piezoelectric patches

are those described in table 2, with a squared section of

38 × 38 mm2 and a thickness of 0.19 mm. For all layers,

the surface mesh is the {5|5} version, and shape functions are
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Figure 8. Passive and active transmission losses with piezoelectric
patches glued onto the impinged plate. (a) Rock wool core. (b) Felt
core. (◦◦) Passive B–G configuration, (××) active B–G
configuration, (++) passive B–B configuration, (⊳) active B–B
configuration.

a second-order Lagrange polynomial. The piezoelectric and

elastic layers have one thickness element, and the poroelastic

core is discretized using four thickness elements. The

piezoelectric/elastic and poroelastic/elastic coupling are fully

considered. This configuration was shown above to yield

sufficiently, although not totally, converged results to carry out

a qualitative parametric study with a ‘relatively’ acceptable

calculation time. The case of rock wool was not treated

in section 2.3 since convergence results are similar to those

obtained for the felt.

The sandwich boundary conditions are ideal. The

two elastic faceplates are simply supported, and the normal

displacement of lateral faces of the core is blocked. The

actuating solution chosen involves two pieces of piezoelectric

material glued to the impinged elastic plate. This two patches

are polarized to deform in phase opposition. This bimorph

solution has not been tested on the radiating plate due to its

lack of practical applicability caused by the control strategy

developed. The error sensor must indeed be bonded to the

radiated plate in order to monitor normal displacement. Two

passive stacks containing the core, to be fully coupled (B–B

configuration) to both elastic plates or a 2 × 10−6 m air gap
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Figure 9. Passive transmission losses for the B–B configuration with
piezoelectric patches glued to the impinged plate and different cores.
(a) Rock wool core. (b) Felt core. (++) Poroelastic core, (××)
porous core with rigid frame, (◦◦) elastic solid core with
poroelastic skeleton properties.

between the core and the radiating plate (B–G configuration),

are modelled.

Lastly, for all these configurations, the panel is impinged

by a harmonic unit amplitude pressure field under normal

incident, and both passive and active responses are calculated.

The following sections will detail the significant qualitative

results. The transmission loss (TLdB) [10] defined in

equation (16) is used as a performance indicator, along with

the direct results.

TLdB = 10 log10

Wi

Wt

, (16)

where Wi and Wt are the incident and transmitted energies,

respectively.

4.1. Passive panel properties

The passive and active transmission losses for the two core

materials have been plotted in figure 8, for frequencies between

100 and 1500 Hz. The passive performance of the felt panel

is better with the B–B configuration than with the B–G

set-up. This behaviour is totally opposite that observed for
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Figure 10. Deformation of the radiating plate for the piezoelectric
patches glued to the impinged plate. (a) Frequency 220 Hz.
(b) Frequency 1100 Hz.

the rock wool panel. Figure 9 shows passive transmission

losses for the same layer configuration yet with three different

core models that include the previously described poroelastic

model, the equivalent-fluid model and the ‘equivalent-solid’

model. The latter model describes the mid-layer as an elastic

solid with elastic properties similar to those of the poroelastic

skeleton. The calculated attenuations illustrate the solid phase

dependence of the poroelastic dynamic response.

The B–G configuration highlights two frequencies where

the panel is acoustically transparent. Transmission loss is

in fact driven by the response of the radiating plate. At a

frequency of 220 Hz, coincidence with the 1–1 plate mode

starts to appear. At a frequency of 1100 Hz, the losses

decrease once again, due to coincidence with both the 3–1

and the 1–3 resonant frequencies of the square plate. The

deformed shape is then a combination of these two modes, as

plotted in figure 10. These remarks are also applicable to the

configuration where a single piezoelectric patch is glued to the

radiating plate. The transmitted wave is then controlled by the

piezoelectric/elastic dynamic behaviour. These singularities

do not depend on the poroelastic material for these ideal

lateral boundary conditions applied to the core and therefore

constitute specific issues that may be easily designed by

choosing appropriate elastic plate properties.

4.2. Active panel properties

The applied active control strategy used in figure 8 is aimed

at minimizing the out-of-plane displacement at the centre of

the radiating plate. First, the panel is excited by an incident

pressure wave and the P0 transfer function is calculated.

Second, a unit voltage is applied to piezoelectric patches and

the V0 transfer function is then obtained. Next, the linearity

of the physics involved allows applying the superposition

principle to calculate the suitable voltage for achieving the

control.

Results indicate a significant increase in transmission loss

for the B–G felt panel. Previously described resonant modes of

the B–G configuration are well reduced, and only the double-

leaf resonance at 400 Hz remains. Improved performance

is obtained for the B–G rock wool panel, whereas the B–B

case illustrates an active strategy yielding unwanted results.

The transmission loss decreases over the entire frequency

range studied. The primary source excites the impinged

plate with a deformed shape with a similar appearance as

a 4-antinode mode. Once the wave has propagated through

the core, the output plate radiates mainly on its 1–1 mode.

The secondary path then does not preserve shape. Similarly,

the piezoelectric patches deforming the impinged plate will

deform the radiating plate near the same 4-antinode mode

with very little displacement at the centre. During active

control, interferences between the primary pressure source and

the vibrational secondary source are constructive, as shown

in figure 11. This dysfunction can be partially overcome by

minimizing the out-of-plane displacement of the radiating plate

over a finite area, but not by gluing a single piezoelectric

material onto the upper plate instead of the incident plate,

as shown in figure 12. This latter solution was tested on

other panel configurations but was not selected herein since

active/passive results were generally not as good as those

calculated from a panel with patches on the incident plate.

Moreover, different piezoelectric matrices have been used that

involve just e31, e32 or e33 coupling terms. Active results were

quite similar with equivalent voltages and are not reported in

this paper.

This initial study exhibits the qualitative reliability of the

whole panel model. As discussed previously, quantitative

results could not be derived due to the need for refined meshes

that dramatically increase the calculation time. Nevertheless,

qualitative trends have been illustrated. The choice between

a partially glued and a totally glued panel thus depends on the

core elastic properties. An overly stiff core will be less efficient

and hard to actively control if totally bonded onto the incident

and radiating plates. In contrast, an airgap will optimize the

transmission losses even if it is being controlled by resonant

plate modes. Such resonances are well localized and then

become reasonable targets for available control algorithms.

For the panel studied, piezoelectric patches need to be placed

on the impinged plate. Finally, the overall passive/active

performance for piezoelectric patches glued onto the radiating

plate is not as good as in the case with patches glued onto the

incident plate.

5. Numerical and experimental comparison

This section presents a comparison between calculated and

experimental TLdB for a hybrid panel. The elastic plates are
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Figure 11. Out-of-plane absolute displacement of the quarter
radiating plate for rock wool core in the B–B configuration with
active patches onto the incident plate. (a) Unit pressure excitation.
(b) Unit voltage excitation. (c) Unit pressure with active control.

those used in the previous section. The piezoelectric patches

are piezo 2 and they are glued onto the impinged plate. The

core is the 2 cm thick felt described in table 1. Experimental

results have been obtained thanks to a specific set-up allowing

us to measure transmission losses under normal incidence until

reaching 2500 Hz. Figure 13 shows the passive and active

TLdB obtained experimentally and numerically for frequencies

ranging from 0 to 500 Hz.

Both results highlight an active increase in transmission

losses at resonant frequencies of the panel. Discrepancies

between numerical and experimental values are due to the

difficulty involved in generating perfect simply supported

experimental boundary conditions. Moreover, the coupling

between layers is modelled using the B–G configuration,

which is not experimentally true. The mesh used was the

same {5|5} as the one above, which has shown to lead to non-

convergent results. In addition, the experimental increase is

not attained at very low frequencies, due to a lack of power

supplied to the actuators. The piezoelectric material used is not
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Figure 12. Active and passive TLdB for rock wool core in the B–B
configuration. (a) Piezoelectric patches glued to the incident plate.
(b) Single piezoelectric patch glued to the radiating plate. (++)
Passive results. (◦◦) Active minimization of the displacement at the
radiating plate centre. (××) Active minimization of the radiating
plate displacement over a finite area.

optimal and the appropriate voltage was calculated to be more

than 200 V. The hybrid concept has however been qualitatively

validated, as has the finite-element model developed.

6. Conclusion

In this paper, a new multiphysics finite-element model of

a hybrid piezoelectric/poroelastic sandwich panel has been

discussed in detail. Implementation was performed using

the Comsol environment. The complete formulation of the

poroelastic problem was presented and validated by comparing

the results with analytical solutions. The reliability study of

each panel layer was conducted and mesh convergence was

shown to be highly correlated with the shape functions used

and the various physics scales involved. Several calculations

focusing on different layer configurations and properties were

also carried out. The initial qualitative results demonstrate

the potential for enhancing transmission losses by the use of

active control procedures. Moreover, the configuration with

an airgap between the core and radiating plate was found to

be a straightforward case for designing panel resonances. In
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Figure 13. Comparison between experimental (a) and predicted
(b) TLdB. Solid line: passive mode, dashed line: active mode.

contrast, the bonded–bonded panel was found to depend upon

poroelastic properties in a complex manner, and to offer limited

active controllability. Lastly, the concept of an active/passive

panel was proven to be experimentally conceivable. The next

step consists of quantitatively optimizing such sandwiches.

However, while the model developed was shown to be robust,

the calculation time still prevents an optimization study from

being performed. The use of sub-structuring techniques is now

envisaged.
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