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Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time

single-point energy components, using linear theory. In addition to potential energy, turbulent

kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in

terms of vertical and horizontal components. Since the axial symmetry around the direction n

swhich bears both the system angular velocity and the mean density gradientd is consistent with
basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case.

A general way to construct axisymmetric initial data is used, with a classical expansion in terms of

scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion
for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal

energy components. The expansion involves Legendre polynomials of arbitrary order, P2n
0 scos ud,

sn=0,1 ,2 , . . . ,N0d, in which the term fcos u= sk ·nd / ukug characterizes the anisotropy in

k-wavespace; two sets of parameters, b
2n
sed

and b
2n
szd
, separately generate the directional anisotropy

and the polarization anisotropy. In the rotating case, the phase mixing results in damping the

polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate

after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The

envelope of these oscillations decay with time like sftd−2 sf being the Coriolis parameterd, whereas
those for the vertical and horizontal components decay like sftd−3. The long-time limit of the ratio
of horizontal component to vertical one depends only on b

2

sed
, which is eventually related to a

classical component in structure-based modeling, independently of the degree of the expansion of

the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance

in terms of potential and poloidal sor kinetic gravity waved energy are investigated. The latter

unbalance is characterized by a ratio x /2, assuming initial proportionality between the kinetic

energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in

terms of poloidal and potential energy components, and analytical solutions are found in terms of

Weber functions. At large time, the damped oscillations for poloidal, potential and vertical

components decay with time like sNtd−1/2 sN is the buoyancy frequencyd, while the oscillations for
the horizontal component decay with time like sNtd−3/2. The long-time limit of the ratio of horizontal
component to vertical one depends only on the parameters x, b

2

sed
, b

0

szd
, b

2

szd
, and b

4

szd
.

© 2007 American Institute of Physics. fDOI: 10.1063/1.2728934g

I. INTRODUCTION

The study of turbulence dynamics in a rotating stably

stratified fluid presents interest in many geophysical or astro-

physical applications. In the present study, we consider an

initially anisotropic turbulence subjected to the Coriolis or

the buoyancy forces. We use the linear theory to examine the

role of the initial conditions in determining the subsequent

time development of stratified or rotating flows. For this pur-

pose, a systematic way is used here to generate anisotropic

initial data for two-point single-time velocity correlations.

Physically relevant initial data are chosen to be axisymmetric

in agreement with the symmetry consistent with the basic

dynamical equations. We use a modified spherical harmonic

decomposition in terms of Legendre polynomials.

Wave modes, with their particular anisotropic dispersion

relations, greatly complicate the dynamics of turbulence by

permitting parametric instabilities and a richer range of pos-

sibilities for cascade dynamics, ranging from weak swave-
turbulenced to fully developed strong turbulence. These pos-
sibilities are surveyed in the special case of gravity waves in

a stratified nonrotating fluid.
1

In the canonical case of a three-dimensional unbounded

flow, with constant rotation parameter sCoriolis parameter fd
and constant stratification parameter sBrunt-Vaisala fre-

quency Nd, analytical solutions can be found for the initial

value, or Cauchy problem, for the linearized Navier-Stokes

equations with buoyancy forces in the Boussinesq approxi-

mation. Linear dynamics is characterized by superposed
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steady and unsteady motions, the first corresponding to

quasigeostrophic sQGd motion and the second to dispersive

inertia-gravity waves. The most general linear solution is

generated by a Green’s function in Fourier space,
2,3

and this

gives access to eigenmodes and to relevant dispersion laws

of the wave motion. Related linear solutions can be derived

for any statistical moments in terms of velocity and buoy-

ancy fluctuations. The result is often known as rapid distor-

tion theory sRDTd, whose applications are essentially re-

stricted to second order statistics.

On the one hand, purely linear dynamics yields marginal

information if statistics are restricted to second order single-

time correlations; there is no significant isotropy breaking

since both total and QG energy are strictly conserved, keep-

ing their three-dimensional spectral distribution constant in

time. This disappointing behavior reflects the suppression of

phase information by forming products of terms with the

time dependence e±ıst, s being the dispersion frequency of

waves. An interesting behavior, however, was found at the

level of two-time second order correlations
2,4

with applica-

tion to Lagrangian diffusivity, and at single-time third-order

correlations, with application to nonlinear energy transfer

and to wave-turbulence in the rotating
5,6

and in the stratified
7

flow case.

On the other hand, single-time second-order statistics are

more informative if the RDT solution is started with aniso-

tropic, or somewhat unbalanced sin terms of energy equipar-
titiond initial data. The evolution continues to reflect the con-
servation of some energetic quantities sQG and total energyd,
but also exhibits trends towards equipartition via damped
oscillations. These damped oscillations are found even in the
purely inviscid case and reflect angular phase-mixing, which
is directly controlled by the dispersion law of inertia-gravity

waves.
2,4,5

The effect of angular phase-mixing can be understood

from a simple integral

Isftd = E
0

1

fsxdcoss2xftddx ,

which results in damped oscillations, developing in time t,
and always reaches the zero value at large t for any weight-
ing function fsxd, up to regularity conditions. In the example
above, xf is the dispersion frequency of inertial waves, as

investigated in Sec. IV. At a given value of x, the function in
the integrand above exhibits pure oscillations in time, with

period p / sxfd, but the period is continuously changed from

p / f to infinity in the integral; any discrete numerical scheme
amounting to a finite Dx can be questioned if the elapsed

time is large enough. Correct decay of oscillations, even if

satisfactorily captured by conventional DNS at short nondi-

mensional time ft, can be wrongly recovered at larger ft.
This issue yielded using the implicit numerical scheme given

by the linear eigenmode decomposition for DNS of rapid

rotation se.g., Ref. 8d. Accordingly, only analytical solutions
are carried out in this paper. Our main objective is to predict

time history for key quantities, with maximum accuracy,

given an initial anisotropic input to linear theory.

Complex linear evolution, completely missed in conven-

tional Reynolds stress modeling, was shown in the case of

rapid rotation, with anisotropic initial data.
5,9

The rapid

change sa quarter of a revolutiond of the structure of the

initial Reynolds stress tensor was interpreted as resulting

from strict conservation of directional anisotropy and rapid

damping of polarization anisotropy, justifying the splitting of

the deviator bij of the Reynolds stress tensor into two sepa-
rate contributions, bij

sed
and bij

szd sas also used in fully nonlin-
ear studies

6,8d. This effect of damping polarization anisotropy
reflects the above mentioned anisotropic phase mixing. This

effect was recovered independently by Kassinos et al.,10 and
called “rotational randomization.” The response of initially

anisotropic flows to rotation was studied by Mansour et al.11

using both direct numerical simulation sDNSd and RDT with

the same eigenmode decomposition sdirectional/polarizationd
as Cambon and Jacquin.

6
Damped oscillations in RDT and

DNS were shown to compare well. A pure return-to-isotropy,

forced by rapid rotation, was also shown using some special

version of a spectral model
12
for initial data, as discussed in

Sec. VI.

Similar comparisons between RDT and DNS were car-

ried out by Refs. 13 and 14 and by Ref. 15, with identifica-

tion of similar damped oscillations. In addition, the former

authors have shown the importance of the initial ratio of

kinetic energy to potential energy for determining the subse-

quent development of stratified turbulence.

The present study is along the line of the above-

mentioned RDT ones, considering physically relevant initial

anisotropic data and analytically determining the develop-

ment of energy components ssuch as the vertical contribution
to kinetic energyd, but we show as clearly as possible why

solenoidal modes are useful in simplifying the description of

the linear processes. The so-called Craya–Herring
16
decom-

position, with its counterpart in the complex plane
5,17 shelical

mode decompositiond, is used for this purpose, and its close
analogy with the poloidal/toroidal decomposition is ex-

ploited for physical interpretation in both flow cases srotating
and stratifiedd. Eigenmode decomposition is simplified using
this decomposition, which is moreover consistent with a ra-

tional anisotropic description of second order correlations, in

terms of directional and polarization anisotropy. The way of

building anisotropy can be related to the ansatz by Ref. 18,

similarly to Ref. 19, and more generally to the recent ap-

proach of Ref. 20.

The paper is organized as follows: In Sec. II, we intro-

duce the linearized equations and we briefly discuss the con-

dition for the validity of these equations. In Sec. III, the

decomposition in terms of spherical harmonics to generate

anisotropic initial data is introduced. In Sec. IV, we consider

the case of solid body rotation, and we analytically deter-

mine the evolution of typical energy components, poloidal/

toroidal as well as horizontal/vertical. Long time behavior

and asymptotic values of typical ratios are given, for initial

data using arbitrary degrees of angular harmonics expansion.

Stable stratification without rotation is addressed in Sec. V,

using a similar analysis. In Sec. VI, some typical parameters

for the initial data, which are called into play in the linear

solutions, are physically interpreted and eventually expressed
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in terms of single-point deviatoric structure tensors. Section

VII deals with our conclusion.

II. GOVERNING EQUATIONS

In this section, we introduce the linearized equations for

the fluctuations of velocity and density, and we briefly dis-

cuss the condition for validity of these equations. The linear

solutions for the Fourier components are given in a local

frame attached to the wave vector, the Craya–Herring

frame.
16

A. Linearized equations

The governing dynamical equations for velocity u and

buoyancy b fluctuations are linearized Navier-Stokes equa-

tions within the Boussinesq approximation, or

]u

]t
+ fn 3 u = ¹ · p + bn,

]b

]t
= − N2

u · n . s1d

Coriolis and buoyancy/stratification effects are given by con-

stant f sCoriolis parameterd and N sBrunt-Waisalad frequen-
cies, respectively. Here, p is a modified pressure term only

needed to ensure the solenoidal property ¹ ·u=0, and n de-

notes the vertical upwards unit vector which bares both

gravitational acceleration and system vorticity.

Conditions for validity of the linear theory were dis-

cussed as follows se.g., Derbyshire and Hunt
21d: The above

linearized equations are valid if the nonlinear term fi.e.,
su ·=dug in the Navier Stokes equations is small compared to
either the Coriolis term sfn3ud or the buoyancy term bn. At

the same time, the term su ·=db must be small compared to

N2
n ·u in the equation for b, considering the nonstratified

rotating case. At large time sft@1d, a condition for validity

of s1d is that the Rossby number must be very small, i.e.,

fRot=u / sf,d!1g where , is the eddy size and us,d is its

characteristic velocity. Regarding the stratified nonrotating

case, a condition for validity of s1d is that the turbulent

Froude number must be very small, i.e., Frt=u / sN,d!1.

At low and moderate Reynolds number sas in laboratory
experiments for grid turbulence and in most of the DNSd,
Re=u0,0 /n, where ,0 and u0 are the length scale and the

velocity scale of energy-containing eddies, Rot,R0
=u0 / sf,0d!1 frespectively, Frt,Fr=u0 / sN,0d!1g is the

condition for the validity of s1d in the rotating sstratifiedd
case since u /,=Osu0 /,0d. However, at high Reynolds num-
ber, Rot,R0s,0 /,d2/3!1 frespectively Frs,0 /,d2/3!1g is the
condition for validity of s1d in the rotating sstratifiedd case
since u /,=Os«1/3,−2/3d, where « is the dissipation rate se.g.,
Ref. 14d.

The previous analysis must be compared to recent,

weakly or not, theoretical nonlinear analyses, since the

above-mentioned conditions of small Rossby and Froude

numbers are not always sufficient and/or necessary. In rotat-

ing turbulence, nonlinearity is really weak in the limit of low

Rossby number, but it can accumulate over a very large time

in order to create a special cascade relevant for wave-

turbulence theory. Such a theory predicts a depletion of non-

linearity due to interacting dispersive inertial waves, so that a

significant nonlinear cascade only appears at a very long

time, typically
6,22 ft,OsRo

−2d. Consequently, linear theory is
relevant for a much larger elapsed time than what is sug-

gested by conventional dimensional analysis in the rotating

flow case. On the other hand, gravity waves dynamics only

affect the poloidal part of the fluctuating motion in the stably

stratified flow case, whereas the complementary part, or tor-

oidal motion, remains essentially constant, as we will show

again in the next section. Pure nonlinear interactions for the

toroidal component are possibly important even in the low

Froude number limit; additional depletion of nonlinearity

possibly affects the interactions including waves only. Toroi-

dal cascade was suggested to explain the horizontal layering

of strongly stratified flows.
3,7

Nevertheless, this is the linear

phase-mixing of gravity waves which allows eventual emer-

gence of the toroidal cascade, so that the linear limit remains

useful to investigate. In short, basic linear time scales such as

N−1 or f−1 characterize the period of rapid oscillations, but

more relevant and larger time scales characterize the phase-

mixing which controls the decay of the envelopes of rapid
oscillations. Finally, nonlinear time scales could be evalu-

ated, but l /u is only a crude a priori estimate, and refined

nonlinear theories are needed. In wave turbulence, the non-

linear time scale is very large, and the one of the toroidal

cascades in the stably stratified case cannot be a priori
evaluated.

Finally, in the absence of effects of mean shear or mean

strain, there is no space distortion, whereas interacting dis-

persive waves can induce a depletion of nonlinearity and

delay it. Accordingly, it is relevant to use linear theory for

large times, and the acronym RDT will be avoided from now

on, except for some initialization processes.

B. Linear solutions for an optimal set of fluctuating
variables

The solutions of these equations are most easily

obtained via Fourier synthesis, fusx , td ,bsx , tdg
=okfûsk , td , b̂sk , tdgexpsık ·xd, where k is the wave vector,

the discrete summation possibly being replaced by an inte-

gral. A spectral formalism allows us to take into account the

solenoidal condition, which amounts to the orthogonality of

û with k. The latter simple condition then yields a reduced

number of components by projecting u in the

Craya–Herring
16
frame. This frame coincides with the hori-

zontal fixed frame if k is vertical sk ind, and otherwise is

defined by

e
s1d =

k 3 n

uk 3 nu
, e

s2d =
k 3 sk 3 nd

uk 3 nu
s2d

so that

û = us1d
e

s1d + us2d
e

s2d s3d

ssee Ref. 3 for detailsd. If k'= uk3nuÞ0, us1d and us2d corre-

spond to toroidal and poloidal velocity components in physi-

cal space. The limit of pure vertical wave numbers gives the

vertically sheared horizontal flow sVSHFd sRef. 23d, a par-
ticular mode of motion which is very important in the strati-

fied flow case. For convenience, a third component us3d is

related to the buoyancy force, using the scaling

055102-3 Anisotropic phase-mixing: An analytical study Phys. Fluids 19, 055102 ~2007!

Downloaded 14 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



us3d = −
b̂

N
s4d

which ensure that kus3d*us3dl /2 is the spectral density of po-

tential energy, as kûi
*ûil /2 is the spectral density of kinetic

energy, in the stratified case. Here, k·l denotes ensemble av-
eraging and the superscript * denotes complex conjugate. If

N=0 spure rotating unstratified cased, this third component is
simply ignored. The general problem in five components in

physical space su1 ,u2 ,u3 ,p ,bd therefore reduces to a three-

component sus1d ,us2d ,us3dd one, and the system of Eq. s1d
becomes

]

]t1
us1d

us2d

us3d2 + 1
0 − sr 0

sr 0 − ss

0 ss 0
21
us1d

us2d

us3d2 = 0 s5d

in which

sr = f
ki

k
= f

k · n

k
= f cos u , s6d

ss = N
k'

k
= N

uk 3 nu

k
= N sin u s7d

are the dispersion frequency of inertial and gravity waves,

respectively. It clearly appears that the anisotropic distribu-

tion is characterized by the polar angle u= sk ,nˆ d. The solu-
tion of s5d is of the form

1
us3d

us2d

us1d2 = 1
cos sst sin sst 0

− sin sst cos sst 0

0 0 1
21

u0
s3d

u0
s2d

u0
s1d2 s8d

for the stratified case, and

1
us1d

us2d

us3d2 = 1
cos srt sin srt 0

− sin srt cos srt 0

0 0 1
21

u0
s1d

u0
s2d

u0
s3d2 s9d

for the rotating case. Here, the subscript 0 denotes the initial

values. As it can be expected, the above solutions are similar,

but the toroidal mode fus1dg and the potential mode fus3dg in
the stratified case are interchanged with respect to the rotat-

ing case. Incidentally, in the stratified case only, poloidal and

toroidal exactly correspond to the “wave” and “vortex”

modes used by Riley et al.24

III. INITIALLY AXISYMMETRIC TURBULENCE

A. Statistical descriptors: Arbitrary anisotropy

We recall a general formulation
5
of the spectral tensor of

second order velocity correlations R̂ij=Rkûi
*û jl, which is

valid for arbitrary anisotropy,

s10d

in which Pij=ei
s1de j

s1d
+ei

s2de j
s2d
=dij−kik j /k

2 is the conven-

tional transverse projection operator and Ni=ei
s2d
− ıei

s1d
is a

complex “helical mode,” Esk , td is the kinetic energy radial

spectrum si.e., the spherical averaged

Esk,td =
1

2
E
Sk

R̂iisk,tdd
2
k, Esk,td =

1

2
R̂iisk,td −

Esk,td
4pk2

s11d

and

Zsk,td =
1

2
Ni
*R̂ijsk,tdN j

*

=
1

2
skus2dus2d*l − kus1dus1d*ld + ıRkus1dus2d*l s12d

is a complex-valued deviatoric term. Directional anisotropy,

in close connection with dimensionality, indicates the depar-

ture of the distribution of spectral 3D energy density e

= s1/2dR̂iisk , td from its spherical equipartition Esk , td /4pk2,
whereas the polarization anisotropy reflects that the direc-

tions of û, at fixed k and located in the plane normal to k, are

not statistically equivalent when rotating around k. The real

part of Z also reflects the unbalance between toroidal and

poloidal kinetic energy density. The imaginary part of Z, as a
mixed poloidal/toroidal co-spectrum, also reflects the break-

ing of mirror symmetry, and can be linked to the “stropholy-

sis” term
10
when rapid rotation is present.

B. Decomposition in terms of spherical harmonics

Restricted to axial symmetry saround nd, which is the

simplest symmetry consistent with the governing equations,

we find

Esk,td =
Esk,td
4pk2

Fo
n=1

N0

e2nsk,tdP2n
0 scos udG , s13d

Zsk,td = sin2 u
Esk,td
4pk2 Fo

m=0

2N0

zmsk,tdPm
0 scos udG s14d

using a modified spherical harmonic decomposition in terms

of Legendre polynomials Pm
0 . The polar angle u characterizes

the anisotropy, with

k' = k sin u = kÎ1 − x2, ki = k cos u = kx . s15d

As an important remark, this decomposition, suggested by

previous studies in Cambon’s team from Ref. 19 does not

apply in the same way to the “directional” E and to the “po-

larization” part Z of the anisotropy. The weighting factor

sin2 u allows a correct convergence of the polarization Z to-

wards 0 when the wave vector becomes aligned with the

axial direction. This approach is consistent with the ansatz
18

for axisymmetric turbulence, choosing only even degrees m
=2n. In addition, the “polarization” part Z is chosen to be

real in agreement with mirror symmetry salso assumed by

Ref. 18d. More generally, for arbitrary anisotropy, the use of

conventional scalar spherical harmonics for “directional,”

but not for “polarization,” anisotropy reflects the need for a

more accurate approximation using higher order expansions

based on irreducible representations of the rotation group

SO3. This representation theory has recently been found to be
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very useful in clarifying the scaling properties of correlation

functions in turbulent flows.
25

On the other hand, some

strongly anisotropic “two-component” initial data used in

RDT sRef. 26d correspond to F1skd=E / s4pk2d+Zskd=0 and
F2skd=E / s4pk2d−ZskdÞ0; they are not only physically

questionable but mathematically wrong.

IV. ROTATING HOMOGENEOUS TURBULENCE

We determine the evolution of poloidal, toroidal, verti-

cal, and horizontal components in terms of the Bessel func-

tions. We show that the ratio K
spold /Kstord exactly equilibrates

after damped oscillations, independently of the degree of the

initial angular harmonic expansion, and the long-time limit

of the ratio K
shord /Ksverd depends only on the initial direc-

tional anisotropy, after damping of the initial polarization

anisotropy.

A. Spectral densities of energies

In the rotating case, with N=0, us3d is irrelevant, as is the

potential energy. From the solution s9d we easily show that

the radial spectrum and the directional anisotropy do not

change with time, i.e.,

Esk,td = Esk,0d, Esk,td = Esk,0d , s16d

whereas the polarization anisotropy exhibits an oscillatory

behavior if its initial value is not zero,

Zsk,td = Zsk,0de2ıftx = Zsk,x,0dcoss2ftxd . s17d

By substituting s16d and s17d into s10d, we obtain the spectral
density of the vertical component as,

1

2
kû3stdû3

*stdl =
1

2
s1 − x2dSEsk,0d

4pk2
+ Esk,x,0d

+ Zsk,x,0dcoss2ftxdD . s18d

In agreement with ûini=−sin uus2d using s3d, the spectral den-
sity of poloidal contribution to kinetic energy takes the form,

1

2
kus2dstdus2d*stdl =

1

2
SEsk,0d
4pk2

+ Esk,x,0d

+ Zsk,x,0dcoss2ftxdD . s19d

Because the spectral density of kinetic energy is conserved in

the linear inviscid limit, the poloidal component is then de-

rived from the latter equation,

1

2
kus1dstdus1d*stdl =

1

2
SEsk,0d
4pk2

+ Esk,x,0d

− Zsk,x,0dcoss2ftxdD , s20d

while the horizontal one is derived by substracting s18d from
s16d,

1

4
fkû1stdû1

*stdl + kû2stdû2
*stdlg

=
1

2
s1 − x2dSEsk,0d

4pk2
+ Esk,x,0d − Zsk,x,0dcoss2ftxdD .

s21d

B. Poloidal and toroidal parts of kinetic energy

By substituting the expressions of Esk ,x ,0d and

Zsk ,x ,0d, given by s16d and s17d, into s19d and then integrat-
ing it over wave space we obtain the poloidal energy com-

ponent as

2Kspoldstd

Ks0d
= 1 + e

15

8
o
n=0

N0

b2n
szdE

−1

+1

s1 − x2dP2n
0 sxdcoss2ftxddx .

Using the fact that the polynomials P0
0sxd, P2

0sxd, P4
0sxd , . . .

are orthogonal,
27
i.e.,

E
−1

+1

Pn
0sxdPm

0 sxddx = 5
0 if mÞ n

2

2n + 1
if m = n , 6 s22d

and they can be expanded as ssee the Appendixd

P2n
0 sxd = o

,=0

n

a,,ns1 − x
2d,, s23d

where a0,n=1, we obtain

2Kspoldstd

Ks0d
= 1 + e

15Îp

8
o
n=0

N0

o
,=0

n

b2n
szda,,ns, + 1d!sftd−s,+3/2d

3J,+3/2s2ftd , s24d

in which e=1 and J,+3/2szd is the Bessel function of the first
kind of order ,+3/2 ssee Ref. 27d. For example, J3/2szd
=Î2/pzssin z /z−cos zd. Here, the parameters

b2n
sed = −

1

15Ks0dE0
`

Esk,0de2nskddk ,

s25d

b2n
szd =

4

15Ks0dE0
`

Esk,0dz2nskddk

characterize the directional anisotropy and the polarization

anisotropy, respectively sthe special prefactor 1 /15 is justi-

fied in Sec. VId, and Ks0d=e0
`Esk ,0ddk is the initial kinetic

energy. The toroidal contribution to kinetic energy is ob-

tained by replacing in s24d e=1 by e=−1. Both short-time

and long-time evolution can be derived from the latter ex-

pressions. Short-time behavior sft!1d is obtained by using

the series representation of Jnszd ssee Ref. 27d, and yields
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2Kspoldstd

Ks0d
= 1 +

15Îp

8
o
n=0

N0

o
,=0

n

b2n
szda,,ns, + 1d!F 1

Gs, + 5/2d

−
1

Gs, + 7/2d
sftd2 + . . . G . s26d

During the initial phase and when

o
n=0

N0 Fo
,=0

n
a,,ns, + 1d!

Gs, + 5/2d Gb2n
szd . 0

the toroidal contribution of kinetic energy grows with time

flike sftd2g, whereas the poloidal contribution decays with

time flike sftd2g. Later, the energy is exchanged periodically
between these components. At large time sft@1d, the Bessel
function J,+3/2s2ftd behaves as ssee Ref. 27d,

J,+3/2s2ftd ,
1

Îpft
cosS2ft − ,p

2
D .

Therefore, the contribution of the first spherical harmonics

z0skd on the evolution of these components is important since
the oscillations decay with time like sftd−2. In addition, these
components exactly equilibrate after damped oscillations,

sKstord /Kspoldd`=1, independently of the initial angular har-

monic expansion.

C. Vertical and horizontal parts of kinetic energy

In a similar way, we determine both the vertical and

horizontal parts of kinetic energy,

3Ksverdstd

Ks0d
= 1 + 3b2

sed +
45Îp

16
o
n=0

N0

o
,=0

n

b2n
szd

3a,,ns, + 2d!sftd−s,+5/2dJ,+5/2s2ftd , s27d

3Kshordstd

Ks0d
= 1 −

3

2
b2

sed −
45Îp

32
o
n=0

N0

o
,=0

n

b2n
szd

3a,,ns, + 2d!sftd−s,+5/2dJ,+5/2s2ftd . s28d

When ft!1, both vertical and horizontal parts of kinetic

energy behave like sftd2. At large time sft@1d, the oscilla-
tions for these parts of kinetic energy decrease like t−3. In
addition, the ratio of horizontal to vertical energy compo-

nents reaches an asymptotic value, or

hstd =K
shordstd/Ksverdstd → 1 −

9b2
sed

2 + 6b2
sed s29d

as ft→` independently of the degree of the initial angular

harmonic expansion. This is rediscussed in Sec. VI.

Viscous effects can easily be added, since the initial

spectrum Eskd has just to be replaced by Eskdexps−2nk2td. In
the above equation, b

2

sed
could be replaced by its counterpart

bsvisd2
sed std, in the limit of large times, as discussed further in

Sec. V D.

V. STABLY STRATIFIED HOMOGENEOUS
TURBULENCE

In this section, we use the solution s8d to express the

spectral density of energy in terms of the scalars Esk ,0d and
Zsk ,0d. Considering initial axisymmetric data generated by

Esk ,x ,0d and Zsk ,x ,0d given by Eqs. s13d and s14d, the spec-
tral density of energy is integrated over wave space to obtain

the time development of typical energy components,

poloidal/toroidal, horizontal/vertical, and potential. Both

short-time and long-time behaviors of energies are ad-

dressed. We show that the poloidal part of the kinetic energy

and the potential energy exactly equilibrate after damped os-

cillations, independently of the degree of the initial angular

harmonic expansion. The long-time limit of the ratio of the

vertical part to the horizontal one is, however, sensitive to

the initial anisotropic data.

A. Spectral density of energy

In the stratified case, the linear inviscid solution fEq. s8dg
yields

kus1dstdus1d*stdl = ku0
s1du0

s1d*l , s30d

kus2dstdus2d*stdl + kus3dstdus3d*stdl = ku0
s2du0

s2d*l + ku0
s3du0

s3d*l ,

s31d

meaning that the spectral density of the toroidal contribution

to kinetic energy is strictly conserved. Also the sum of po-

loidal and potential spectral energy densities, which corre-

sponds to total gravity wave energy, is conserved.

In the present study, we assume that the initial poloidal

buoyancy flux is zero, or Rku
0

s2du
0

s3d*l=0 sthe other compo-
nent, or toroidal density flux is always zero in the axisym-

metric case with mirror symmetry
7d, and that the spectral

density of potential energy is proportional to the spectral

density of kinetic energy, i.e.,

ku0
s3du0

s3d*l =
x

2
sku0

s1du0
s1d*l + ku0

s2du0
s2d*ld

=
x

2
SEsk,0d
2pk2

+ 2Esk,x,0dD , s32d

where x is a constant. The latter assumption leads to the

relationship Espotdsk ,0d= sx /2dEsk ,0d used in several studies
se.g., Ref. 14d. In view of s32d and the following relation-

ship:

ku0
s2du0

s2d*l =
Esk,0d
4pk2

+ Esk,x,0d + Zsk,x,0d , s33d

deduced from s10d, we express the spectral density of the

poloidal component
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1

2
kus2dstdus2d*stdl =

1

4
sku0

s3du0
s3d*l + ku0

s2du0
s2d*ld

−
1

4
sku0

s3du0
s3d*l − ku0

s2du0
s2d*ldcos 2sst ,

s34d

in terms of the scalars Esk ,0d, Esk ,x ,0d, and Zsk ,x ,0d,

1

2
kus2dstdus2d*stdl

=
1

4
Fsx + 1dSEsk,0d

4pk2
+ Esk,x,0dD + Zsk,x,0dG

−
e

4
Fsx − 1dSEsk,0d

4pk2
+ Esk,x,0dD − Zsk,x,0dG

3coss2Ntxd , s35d

where e=1. The expression of the spectral density of poten-
tial energy is also given by s35d with e=−1. As for the ex-
pression of the spectral density of the vertical part, it is ob-

tained by multiplying the rhs of s35d by s1−x2d.
By substituting the expression of Esk ,x ,0d and Zsk ,x ,0d

given by s13d and s14d, respectively, into s35d we obtain

1

2
kus2dstdus2d*stdl

= F sx + 1d
4

Esk,0d
4pk2

+
sx + 1d

4
o
n=1

N0 Esk,0d
4pk2

e2nskdP2nsxd

+
1

4
o
n=0

N0 Esk,0d
4pk2

z2nskdP2nsxdG + coss2NtÎ1 − x2d

3F sx − 1d
4

Esk,0d
4pk2

+
sx − 1d

4
o
n=1

N0 Esk,0d
4pk2

e2nskdP2nsxd

−
1

4
o
n=0

N0 Esk,0d
4pk2

z2nskdP2nsxdG . s36d

The above spectral density is integrated over wave space to

obtain the development of poloidal contribution to kinetic

energy.

B. Poloidal part of kinetic energy
and potential energy

The integration of s36d over wave space yields

2Kspoldstd

Ks0d
= F sx + 1d

2
+
5

4
b0

szd −
1

2
b2

szd −
sx − 1d

4
I0s2NtdG

+ F15sx − 1d
4

o
n=1

N0

o
,=0

n

b2n
seda,,nI,s2NtdG

+ F15
16

o
n=0

N0

o
,=0

n

b2n
szda,,nI,+1s2NtdG , s37d

where

Ins2Ntd = E
−1

+1

s1 − x2dn coss2NtÎ1 − x2ddx . s38d

Furthermore, the latter integral can be expressed in terms of

the Weber functions ssee the Appendixd, which are associated
with the Bessel functions

27,28

I,−1s2Ntd =
p

22,−2 o
m=0

,−1
s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 + md!
W2,−2m−1s2Ntd .

s39d

Consequently, the poloidal contribution to kinetic energy

takes the form

2Kspoldstd

Ks0d
= F sx + 1d

2
+
5

4
b0

szd −
1

2
b2

szd − e
sx − 1d

4
pW1G

+ eF15sx − 1d
4

o
n=1

N0

o
,=1

n+1

o
m=0

,−1 Sb2n
sed p

22,−2
a,−1,nD s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 − md!
W2,−2m−1G

+ eF15
16

o
n=0

N0

o
,=2

n+2

o
m=0

,−1 Sb2n
szd p

22,−2
a,−2,nD s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 − md!
W2,−2m−1G , s40d

with e=1. The potential energy, K
spotd, is obtained by replacing in the above expression e=1 by e=−1. As for the vertical

density flux, ku3bl, can be determined using the following relation:

d

dt
K

spotd = − ku3bl , s41d

derived from Eq. s1d, and the functional relation 2dWn /dt=Wn−1−Wn+1.

For initial isotropic data fi.e., b
2n
szd
=b

2n
sed
=0g, these energies reduce to
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2Kspoldstd

Ks0d
=

sx + 1d
2

−
sx − 1d

4
pW1s2Ntd , s42d

2Kspotdstd

Ks0d
=

sx + 1d
2

+
sx − 1d

4
pW1s2Ntd , s43d

indicating that, at x=1, there is no linear evolution; this case

was studied in Ref. 7 for emphasizing nonlinear effects,

whereas the peculiar RDT solution for this flow case was

also quoted by Hanazaki and Hunt.
14
The evolution of K

spold,

K
spotd and K

stords=constantd, normalized by K
sverds0d, is

shown in Fig. 1sad for isotropic initial data with x=0,1 ,2.

Both short-time and long-time evolution can be derived

from s40d. Short-time behavior sNt!1d is obtained by using
the series representation of W2n+1s2Ntd ssee Ref. 27d

W2n+1s2Ntd = o
,=0

`
s− 1d,+nsNtd2,

Gs, + n + 3/2dGs, − n + 1/2d
,

where Gszd is the Gamma function27

GSm +
1

2
D = Îp

2m
s2m − 1d!!, GS1

2
− mD = s− 1dm

2mÎp

s2m − 1d!!
.

During the initial phase, both K
spold and K

spotd behave like

sNtd2, and if K
spold decreases with time, then K

spotd increases

and vice versa, since, in the linear inviscid limit, the sum of

these parts of energy is strictly conserved, as the toroidal

part. Later, the energy is exchanged periodically between the

poloidal kinetic energy and the potential energy. At large

time sNt@1d, the Weber function Ws2Ntd behaves like the
Bessel function of the second kind Us2Ntd salso called the

Neumann functiond, so that

Wns2Ntd , −
1

ÎpNt
sinS2Nt − np

2
−

p

4
D . s44d

Accordingly, The oscillations for K
spold and K

spotd decay with

time proportionally to t−1/2, and the oscillation period asymp-
totically approaches T=p /N at long times. Because

Wns2Ntd→0 as Nt→`, the long-time limit of these energy

components depends only on b
0

szd
and b

2

szd
, and not on b

2n
sed
.

Furthermore, they exactly equilibrate after damped oscilla-

tions, i.e., sKspotd /Kspoldd`=1, independently on the degree of

the initial angular harmonic expansion.

C. Vertical and horizontal contributions to kinetic
energy

The spectral density of vertical kinetic energy is derived

by multiplying the rhs of s34d by s1−x2d, as already indi-

cated. The integration of ku3u3
*l /2 over wave space yields

3Ksverdstd

Ks0d
= F sx + 1d

2
+
3sx + 1d

2
b2

sed +
3

2
b0

szd −
3

7
b2

szd +
1

14
b4

szd −
3

32
sx − 1ds3W1 −W3dG

+ F15sx − 1d
4

o
n=1

N0

o
,=2

n+2

o
m=0

,−1 Sb2n
sed p

22,−2
a,−2,nD s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 − md!
W2,−2m−1G

+ F15
16

o
n=0

N0

o
,=3

n+3

o
m=0

,−1 Sb2n
szd p

22,−2
a,−3,nD s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 − md!
W2,−2m−1G . s45d

Using the functional relation
27

W2n−1s2Ntd +W2n+1s2Ntd =
2n

Nt
W2ns2Ntd ,

the expression of the horizontal contribution to kinetic energy

FIG. 1. Stable stratification, isotropic initial data with initially unbalanced

poloidal/potential energy. The toroidal component remains constant and

equal to the initial poloidal component, Eqs. s42d and s43d.
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K
shordstd =

1

2
S1 + x

2
DKs0d −

1

2
K

sverdstd −
1

2
K

spotdstd ,

is found as

3Kshordstd

Ks0d
=
7 + x

8
−
3s1 + xd

4
b2

sed −
27

16
b0

szd +
33

56
b2

szd −
3

84
b4

szd −
3sx − 1d
32sNtd

pW2s2Ntd

− F15sx − 1d
2

o
n=1

N0

o
,=1

n+1

o
m=0

,−1 Sb2n
sed p

22,−2
a,−1,nD s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 − md!

s, − md

Nt
W2,−2mG

− F15
8

o
n=0

N0

o
,=2

n+2

o
m=0

,−1 Sb2n
szd p

22,−2
a,−2,nD s− 1ds,+m−1ds2, − 1d!

m!s2, − 1 − md!

s, − md

Nt
W2,−2mG . s46d

When Nt!1 both K
sverdstd and K

shordstd behave like sNtd2. At large time, the oscillations for the vertical component decay with
time proportionally to t−1/2, whereas those of the horizontal component decay proportionally to t−3/2. The long-time limit of the
ratio K

shord /Ksverd depends on x, b
2

sed
, b

0

szd
, b

2

szd
, and b

4

szd
. Also, the long-time limit of K

spold /Ksverd depends on these parameters,

SK
spotd

K
sverdD

`

=
3

2
S1 − f3sx + 1d/2gb2

sed + s1/4db0
szd + s1/14db2

szd + s1/14db4
szd

fsx + 1d/2g + f3sx + 1d/2gb2
sed + s3/2db0

szd − s3/7db2
szd + s1/14db4

szdD . s47d

Only for initial isotropic data fi.e., b
2n
sed
=b

2n
szd
=0g, the above

ratio reduces to 3/2 independently of the value of the param-

eter x ssee Ref. 14d. The development of K
sverd and K

shord

normalized by K
sverds0d is shown on Fig. 1sbd for isotropic

initial data with x=0.

Figures showing the development of energy components

for anisotropic initial data are given in Sec. VI.

D. Additional viscous effects

It is also easy to account for the laminar viscous effects,

provided that Pr=n /k=1, i.e., the molecular Prandtl or

Schmidt number. The solution of linearized equations which

include viscosity can be obtained simply by multiplying the

solutions s8d by exps−nk2td.
It follows that the evolution of energy components for

the viscous case is expressed in terms of

asvisdstd =
1

Ks0dE0
`

Eskdexps− 2nk2tddk ,

bsvisd2n
sed std = −

1

15Ks0dE0
`

Eskde2n exps− 2nk2tddk ,

bsvisd2n
szd std =

4

15Ks0dE0
`

Eskdz2n exps− 2nk2tddk .

The inviscid limit is recovered with asvisd=1, bsvisd2n
sed

=b
2n
sed

and bsvisd2n
szd

=b
2n
szd
. Consequently, the long-time limit of

the ratio K
spoldstd /Kstordstd is one even if the viscous terms are

taken into account, and the long time limit of

K
shordstd /Ksverdstd and K

spotdstd /Ksverdstd has the same form as

in an inviscid fluid, provided a=1, b
2

sed
, b

0

szd
, b

2

szd
and b

4

szd
are

replaced by asvisd, bsvisd2
sed

, bsvisd0
szd

, bsvisd2
szd

and bsvisd4
szd

, respec-

tively. It follows that, for initial isotropic data, the long-time

limit of the ratio in Eq. s47d is 3 /2.

VI. PHYSICAL INTERPRETATION OF THE
PARAMETERS FOR INITIAL DATA: TYPICAL RESULTS

Linear solutions call into play the sets of b
2n
sed

and b
2m
szd

parameters, which directly reflect the directional anisotropy

and the polarization anisotropy, respectively. Is it possible to

link these parameters to statistical quantities, such as those

used in structure-based modelling? The answer is positive, at

least at the lowest degree. Consequently, the choice of the

most relevant parameters can be made on a more physical

basis, and will be used for the last figures of this article.

A. Dimensionless and tracefree second-order
tensors

The most classical anisotropy indicator is the deviatoric

part of the Reynolds stress tensor, denoted as bij. Any similar
tensor, dimensionless and tracefree, can be written

bij =
bsverd

2
s3nin j − dijd ,

in axisymmetric turbulence, characterized by a single saxiald
component denoted bsverd=bijnin j ssee, e.g., Ref. 5d. In accor-
dance with the general equation s10d, bij can be split into a

directional bij
sed

component and a polarization one bij
szd ssee

Ref. 9d, and this splitting allows a distinction between “di-

mensionality” and “componentality,” as also proposed by

Ref. 10.

Because of axial symmetry, only a single component per

tensor, bsverd
sed

and bsverd
szd

, will be needed. In addition, the defi-

nitions of spherically averaged spectra
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Kstdbij
sedstd = E

0

`

Esk,tdHij
sedsk,tddk

and

Kstdbij
szdstd = E

0

`

Esk,tdHij
szdsk,tddk s48d

are also useful. Hij
sedsk , td and Hij

szdsk , td are derived from the

spherically averaging Eq. s10d, so that

is the k spectral counterpart of the splitting of the Reynolds
stress tensor bij=bij

sed
+bij

szd
. Once again, axisymmetry implies

that only Hsverd
sed

and Hsverd
szd

are needed.

The truncated expansion for both directional and polar-

ization anisotropy at the lowest order for constructing the

anisotropic part of R̂ijskd in s10d was recently found
20
to be

rigorously equivalent to the following tensorial expansion in

terms of k, Hij
sed
, and Hij

szd
,

E = −
15

2

E

4pk2
Hij

sedkik j
k2

, Z =
5

2

E

4pk2
Hij

szdNis− kdN js− kd .

For instance, the five independent components of the strace-
free symmetricd tensor Hij

sed
have for exact counterpart the

five coefficients e2
l skd, l=−2,−1,0 ,1 ,2 of the lowest order

decomposition of E in terms of classical scalar spherical har-

monics.

In axisymmetric turbulence, the corresponding decom-

position at the lowest order involves only e2skd and z0skd,
and the linkage reduces to

e2skd = − 15Hsverd
sed , z0skd =

15

4
Hsverd

szd , s49d

so that b
2

sed
=bsverd

sed
and b

0

szd
=bsverd

szd
. The coefficients b

2

sed
and

b
0

szd
can therefore directly be identified to statistical indica-

tors relevant in single-point structure based modeling.

Unfortunately, it is not possible to interpret in a similar

way the coefficients at the four degree, for instance involved

in Eq. s47d. A possible way would be to use the spherically

averaged spectrum of the rapid pressure-strain rate tensor.

B. Final choice of initial parameters: Brief discussion
of previous models

Axisymmetric initial data can be created by an axisym-

metric convergent duct in grid-generated turbulence. This

suggests choosing initial data similar to those precalculated

by irrotational axisymmetric RDT started with isotropic ini-

tial data. In their structure-based modeling approach, Kassi-

nos et al.10 advocated for a simple equivalence of “dimen-

sionality” and “componentality” for any irrotational strain,

which corresponds to −2bij
sed
=bij

sed
+bij

szd
equating the devia-

toric part of the “dimensionality structure tensor” and the

deviatoric part of the Reynolds stress tensor. Although we do

not think that such a relationship is really general, it is valid

at least for weak anisotropy obtained by rapid distortion

theory from strictly isotropic initial data, the first order time-

development giving
20

Hij
sed =

1

15
S1 − k

E

dE

dk
DSijDt; Hij

szd = −
2

5
SijDt; s50d

bij
sed = − s1/3dbij

szd

independently of the applied ”distorting” mean velocity gra-

dient matrix, whose symmetric part is Sij. A similar result,

but with different proportionality of bij
sed

to bij
szd
can be found

in the limit of weak anisotropy but large nonlinearity susing
the sophisticated LRA closure theoryd, at least for large k
ssee Ref. 29d, as discussed in Ref. 20.

Retaining the last relationship in s50d, which is also con-
sistent with Ref. 10, it is possible to derive the two crucial

parameters b
2

sed
and b

0

szd
from the single initial bsverd: a posi-

tive value of bsverd corresponds to a “cigar” type of Reynolds

stress tensor, with the axial component larger than the two

transverse ones, such as the axisymmetry resulting from the

effect of an axisymmetric divergent duct. A negative value

corresponds to a “pancake” type of Reynolds stress tensor,

with the axial component smaller than the two transverse

ones, such as the axisymmetry resulting from the effect of a

convergent duct. Considering reasonable values of contrac-

tion in a hypothetical convergent duct, one finally chose

bver = − 0.04, b2
sed = bver

sed = 0.02, b0
szd = bsverd

szd = − 0.06.

s51d

Models from Refs. 30 and 12 used a tuned parameter to

prescribe a proportionality between directional anisotropy

and polarization anisotropy. In the more general model, the

unique tuning parameter ask , td in Ref. 30 can be interpreted
as an Hsed-to-Hszd partition ratio, so that a constant value of

this parameter amounts to replacing bsed by s2+3ad fb
2

sed

+b
0

szdg /2, and b
0

szd
by −2afb

2

sed
+b

0

szdg /5. Anyway, the constant
value of a is not consistent with Eqs. s50d if spectra are

considered.

The constant g plays a similar role of a bij
sed
-to-bij

szd
par-

tition ratio, in Ref. 12, whose model is a simplified version

of the former, so that it amounts to replacing b
0

szd
by f6/ s7

−2gdg fb
2

sed
+b

0

szdg and b
2

sed
by fs1−2gd / s7−2gdg fb

2

sed
+b

0

szdg.
In addition, the value g=1/2 prescribed by Ref. 12

yields to discard the directional anisotropy, giving bsed

=bsverd
sed

=0 here, and more generally bij
sed
=0. This choice is

inconsistent with the analyses presented previously sit is only
used to enforce realizabilityd and will be rejected as unphysi-
cal. For instance, a pure return-to-isotropy was obtained by

Ref. 11 in the case of rapid rotation, using this initial condi-

tion, contrary to cases where initial anisotropy results from a

physical process.

C. Selection of figures with typical parameters

The evolution of the single relevant component bsverd

=bijnin j of the Reynolds stress tensor is shown on Fig. 2, for
two initial cases, bsverds0d=−0.04 and bsverds0d=0.04. The
former corresponds to initial data given by Eq. s51d, as in all
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of the following figures. The rapid change of sign of this

indicator in about a quarter of a revolution sft /p,1d is the
most spectacular result of the linear solution. This behavior

is completely missed in any Reynolds stress model, which

gives a wrong zero value to the rapid pressure-strain term in

this situation.

Corresponding evolution of typical energy components,

divided by the initial vertical energy component, is collected

in Fig. 3.

The same quantities are plotted on Fig. 4, but for the

stratified case. The additional initial parameters b
2

szd
and b

4

szd
,

involved in the final ratios, as well as x, are taken with zero

value for the sake of simplicity.

VII. CONCLUSION

We have determined and analyzed, using the linear

theory, the time evolution of the evolution of typical energy

components, poloidal/toroidal, horizontal/vertical, and poten-

tial, for initial anisotropic axisymmetric data consistent with

the dynamical equations in rapidly rotating and strongly

stratified homogeneous flows. The initial anisotropic data

have been generated using a modified spherical harmonic

decomposition in terms of even Legendre polynomials and in

agreement with mirror symmetry.
18,19

For the stratified case, we have assumed that the initial

spectral density of potential energy is proportional to that of

kinetic energy sx /2 is the proportionality coefficientd, and
the initial density fluxes are zero. We have shown that the

poloidal part of the kinetic energy and the potential energy

equilibrate after damped oscillations independently on the

degree of the initial angular harmonic expansion even if vis-

cous and diffusive terms with Pr=1 are taken into account.

At large time, the oscillations for these energies, as well as

those of the vertical part of kinetic energy, decay with time

proportionally to t−1/2, whereas those of the horizontal com-
ponent decay proportionally to t−3/2. The long-time limit of
the ratio K

shord /Ksverd depends on x and on the initial direc-

tional anisotropy and polarization anisotropy, more precisely

on b
2

sed
, b

0

szd
, b

2

szd
, and b

4

szd
. In addition, the long-time limit of

the ratio of the potential energy to the vertical kinetic energy

depends on these parameters, and reduces to 3/2 only for

initially isotropic data.

For the rotating case, we have shown that the poloidal

and toroidal contributions to kinetic energy equilibrate after

damped oscillations independently on the degree of the ini-

tial angular harmonic expansion, and even in the presence of

viscous terms. While, at large time, the envelope of oscilla-

tions for these parts of energy behave like sftd−2, those for
the vertical and horizontal parts decrease like sftd−3, and the
long-time limit of the ratio h=K

shord /Ksverd only depends on

b
2

sed
, independently of the degree of the initial angular har-

monic expansion. The evolution reflects a spectacular change

of the sign of the single anisotropy component shere bijnin jd,
which means a change of sign for the Lumley’s invariant III.

Although similar results are found in both flow cases

sstratified and rotatingd, the damping of rapid oscillations is

significantly more rapid, or equivalently, the angular disper-

FIG. 2. Pure rotation, evolution of the axial sverticald component of the

deviatoric part of the Reynolds stress tensor.

FIG. 3. Pure rotation, same anisotropic initial data, various energy compo-

nents, Eqs. s24d, s27d, and s28d.
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sity is more pronounced, in the rotating case than in the

stratified case.

The main parameters called into play for constructing

initial data, which governs the long time evolution and

asymptotic ratios, were finally expressed in terms of the rel-

evant single saxial or verticald component of directional bij
sed

and polarization bij
szd
components of the deviatoric part of the

Reynolds stress tensor bij. Previous simplified models
12,30

are shown to prescribe a bij
sed
-to-bij

szd
ratio via a tuned constant.

Only low order coefficients, such as b
2

sed
and b

0

szd
are con-

cerned in the rotating case. Higher order parameters, such as

b
2

szd
and b

4

szd
, are involved in the stratified flow case. They

could be related to the spectrum of the rapid pressure-strain

rate tensor at t=0+.

APPENDIX: DETAIL ON LEGENDRE POLYNOMIALS
AND WEBER FUNCTIONS

Legendre polynomials of even degree
written in expanded form

Because the polynomials P0sxd and xP1sxd and P2sxd can
be written as

P0sxd = 1, xP1sxd = 1 − s1 − x2d, P2sxd = 1 −
3

2
s1 − x2d ,

and due to the following recurrence formulas ssee Ref. 27d:

sn + 1dPn+1sxd − s2n + 1dxPnsxd + nPn−1sxd = 0,

we deduce that the Legendre polynomials of even degree can

be written in expanded form as

P2n = o
,=0

n

a,,ns1 − x
2d, with a0,n = 1.

Expression of the integral In−1„2Nt… in terms
of the Weber functions

In this Appendix, we will establish the relation s39d. We

write the integral In−1s2Ntd as

In−1s2Ntd = E
−1

+1

s1 − x2dn−1 coss2NtÎ1 − x2ddx

= E
0

p

sin2n−1 u coss2Nt sin uddu ,

or equivalently, using the representation of sin2n−1 u in terms

of functions of multiples of the angle u ssee Ref. 27d

s− 1dn+,−1
s2n − 1d!

,!s2n − 1 − ,d!
sins2n − 2, − 1du ,

In−1s2Ntd =
1

22n−2
o
,=0

n−1

s− 1dn+,−1
s2n − 1d!

,!s2n − 1 − ,d!
E
0

p

sins2n

− 2, − 1du coss2Nt sin uddu .

The latter integral can be expressed in terms of the Weber

functions that are associated with the Bessel functions.
27,28

Indeed, the integral representation of the Weber functions

W2n−1szd reads

W2n−1szd =
1

p
E
0

p

sinfs2n − 1du − z sin ugdu

=
1

p
E
0

p

sinfs2n − 1dugcossz sin uddu

since

E
0

p

cosss2n − 1dudsinsz sin uddu = 0,

so that

FIG. 4. Stable stratification, same anisotropic initial data, zero potential

energy initially, Eqs. s40d, s45d, and s46d.
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In−1s2Ntd =
p

22n−2
o
,=0

n−1

s− 1dn+,−1
s2n − 1d!

,!s2n − 1 − ,d!
W2n−1−,s2Ntd .
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