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Numerical studies for two protocols of micromixing based on chaotic advection to improve DNA
chip hybridization are presented. The first protocol uses syringes; the other one, pumps. For both
protocols, numerical Poincaré sections and Lyapunov exponents of the three-dimensional,
time-periodic flow are investigated as functions of the period. Model experiments also confirm
numerical results. Homogeneity of the dispersion of particles inside the chamber is of primary
importance to achieve best chip reliability: although global chaos was obtained for both protocols,
we find that the one employing the pumps is more likely to achieve better and more rapid
hybridization. © 2007 American Institute of Physics. fDOI: 10.1063/1.2431322g

I. INTRODUCTION

The DNA chip has become one of the core technologies
for genetic research purposes.1 Whereas, up to now, it has
been mainly used for gene expression studies, this technol-
ogy is now finding applications in the field of medical diag-
nosis. For obvious reasons, this is subject to its ability to
provide highly reliable and rapid results while also allowing
standard, automated operations. An important field of appli-
cation is the detection of the presence sand abundanced of
pathogenic viruses or bacteria. In that case, because very low
concentrations may be involved, the detection method is re-
quired to be highly sensitive.

A DNA chip is composed of an array of biological
probes fixed to a solid surface. A probe is a chain of nucle-
otides si.e., cDNA, oligonucleotided with a predetermined
ssyntheticd sequence of the four bases: A, T, C, and G sthe
usual notation for adenine, guanine, cytosine, and thymined.
Typically, the length of a synthetic sequence is in the range
12–60 bases. The array consists of spots, each of which con-
tains many identical sequences characteristic of a particular
genome or a particular mutation inside a genome; the exact
number of sequences depends on the technology employed
in making the chip, but, as an illustration, 108 identical se-
quences for a spot of 200-mm-diam is typical. With improve-
ments in miniaturization techniques, it is possible to have
hundreds of thousands of spots per cm2 sRefs. 2 and 3d sthe
order of magnitude of a chip surface aread, allowing as many
different sequences. The working principle of DNA microar-
rays is the so-called base-pairing or hybridization phenom-
enon. The situation is sketched in Fig. 1. Two single-stranded
DNA fragments tend naturally to combine if their sequences
are complementary to one another; that is, if A-T or G-C
couples are formed at each location of the double-stranded
molecule arising from assembling the fragments. Otherwise,
the two fragments do not combine. Thus, when the array is

exposed to a solution containing single-stranded DNA
samples sthe targetsd, the latter have a tendency to hybridize
with the complementary probe on the chip, if present. Since
the targets have been marked with a fluorescent marker sor
radioactive labeld as a preliminary step, once the solution is
blown out, only hybridized spots of the array fluoresce sor
are radioactived, allowing determination of the chemical
composition sthe genotypingd of the DNA samples.

Hybridization is thus a critical step, even if many other
steps, including the manufacture of the chip itself, are also
important. The simplest way to perform hybridization, usu-
ally referred to as passive or static hybridization, is to put a
drop of solution s50 ml, for exampled onto the DNA chip,
cover it with a glass plate, and wait a certain amount of time.
Usually, overnight hybridization is necessary to obtain mean-
ingful results; furthermore, even after waiting that long, sig-
nificant variations in the response of the chip are commonly
observed.4 There is thus a need to speed up the hybridization
process as well as improve the reliability of the results. Also,
for near-future applications, the goal is to improve sensitivity
so as to allow solutions with very low target concentrations.
Theoretical studies of passive DNA chip hybridization usu-
ally employ a model, such as a Langmuir adsorption
model,5,6 which describes the overall kinetics of the interac-
tion between the chip as a whole and the solution as a whole.
But in fact, hybridization in DNA chips involves at least two
mechanisms: sid diffusion of target molecules within the so-
lution, a random process which ensures that targets reach the
probes, and siid hybridization reactions between target and
probe molecules sformation of hydrogen bonds between
complementary basesd. This interaction between the probe
and the target is a very complicated process, dependent on
many parameters, e.g., the length and complexity of the mol-
ecules and the temperature, and characterization of the re-
sulting kinetics is beyond the scope of the present paper.

Hybridization at the surface of each spot removes target
molecules from solution in the immediate, microscopic vi-
cinity of the surface. Diffusion is needed to bring in freshadPreviously at Rosatech, 69130 Écully, France.
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target molecules for reaction, taking a time of order d2 /D for
a molecule initially at distance d, where D is the diffusion
coefficient of target molecules. For water solutions, D is
typically of order 10−9–10−10 m2 s−1 at most,

7
whereas the

solution layer is typically of vertical thickness h<500 mm

and horizontal extent ,<10 mm. The corresponding diffu-

sion times are

th =
h2

D
< 4 to 40 min s1d

and

t, =
,
2

D
< 30 to 300 h. s2d

Whether or not target molecules need to be brought in from

such distances depends on their concentration and the num-

ber required for an observable result of hybridization. This is

particularly important given the current aim of going to

lower concentrations. Ideally, all target molecules in the so-

lution should have the potential to react at all spots, which

requires a long time of order t, if one relies on diffusion

alone. Another aspect of the problem arises if the concentra-

tion of target molecules is initially nonuniform, i.e., if insuf-

ficient mixing has been applied prior to hybridization. In that

case, diffusion is needed to render the concentration uniform,

otherwise the results will vary depending on the initial con-

centration distribution in a potentially uncontrolled manner.

Indeed, the large observed variability in spot hybridization

between nominally identical tests may be a consequence of a

poorly mixed solution.

Fluid flow applied during hybridization has the potential

to resolve the problems described above, leading to the idea

of active or dynamic hybridization. In addition to diffusion,

target molecules are transported by the flow, which can

greatly reduce the time required to sample all spots within

the chip and render the target molecule concentration uni-

form by mixing. However, in small devices such as these,

only creeping flow is possible; in particular, turbulence does

not occur. Laminar flows are not intrinsically efficient mix-

ing systems apart from chaotic advection flows
8–10

and, even

if the flow induces chaotic particle trajectories, attention

needs to be paid to the topological properties of those trajec-

tories. Indeed, in a chaotic flow, depending on the governing

parameters, regular regions may coexist with chaotic ones,

resulting in inhomogeneous concentration. Since the hybrid-

ization reaction depends on concentration, this may lead to

variations in the response of the chip.

We recently proposed a chaotic stirring protocol adapted

to the special geometry of DNA chip hybridization

chambers.
11
A fluid mechanical analysis was carried out, il-

lustrating the important role of the numerical simulations to

help identify the parameter ranges corresponding to best chip

specificity. The system we investigated is a variant of the

pulsed source−sink system first proposed by Aref and

Jones
12
to achieve chaotic mixing in a two-dimensional s2Dd

flow of inviscid fluid. A practical consideration of such a

pulsed mixing in a Hele-Shaw cell was later done by Evans

et al.13 Independently of our work, another team also pro-

posed a chaotic stirring protocol for DNA chips, using pulsed

pairs of syringe-driven source−sink systems: Stremler et al.
carried out a 2D mathematical analysis of their flow,

14,15

Cola et al. studied the experimental device,
16
and McQuain

et al.17 showed experimentally that hybridization was signifi-
cantly improved by this apparatus. Note that not only chaotic

mixing has been studied in the context of DNA chip analysis

and some systems using nonchaotic fluid motion have also

been proposed in the literature: Adey et al.18 proposed a

system composed of a disposable flexible lid, which contains

two air-driven bladders that continuously mix the hybridiza-

tion fluid. Liu et al.19 proposed a micromixing technique

based on cavitation microstreaming. Both papers showed hy-

bridization signal enhancement with significantly improved

signal uniformity.

In the present paper, we propose a variant shenceforth
referred to as protocol Bd of our previous chaotic stirring

system sprotocol Ad and perform a comparison between

these two protocols. Protocol A, proposed in our previous

paper, is based on time-periodic injection/extraction of fluid

in the hybridization chamber using a four-syringe system.

Protocol B uses two pumps, each one alternatively inducing

motion of the fluid in a closed loop formed by the hybridiza-

tion chamber and an outer pipe. Using numerical simula-

tions, we show that the second protocol can greatly enhance

chip hybridization: better mixing, with less total volume and

in less total time.

II. THE MIXING DEVICE

A. The hybridization chamber

Without entering into details of the microfluidic mixing

device, some characteristics dictated by manufacturing con-

straints should be emphasized. First of all, with a view to

automated processing of DNA samples, the manual coverslip

system is replaced by a hybridization chamber, which con-

sists of a large aspect-ratio cavity with fluid inlet/outlet ports

located at the corners of the cavity. The width of the cavity is

imposed by the size of the DNA chip, which we here con-

sider to be a square of side 10 mm. As shown in Fig. 2, the

DNA chip ssymbolized by the square on the lower wall of

the cavityd is located in the central region, away from the

FIG. 1. Schematic view of a DNA chip. The targets hybridize to their

complementary probes.
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four injection holes. For simplicity, we take the cavity to be
also of square shape sexcept near its corners where a circular
shape mimics the presence of an “O” ringd with width
L=15 mm and height h=0.5 mm. With such values, the vol-
ume of the chamber is

Vch = L 3 L 3 h < 110 ml . s3d

Another parameter of importance which strongly de-
pends on the available technology is the flow rate across the
chamber. Fluid flow inside the chamber is induced by impos-
ing a pressure difference between two opposite holes, con-
nected to pipes in both protocols. During a given injection/
extraction phase, the flow is stationary, with a flow rate

q = 20 ml s−1, s4d

which can typically be obtained with syringe pumps or com-

mercial peristaltic pumps. With such a value, the resulting

Reynolds number Ri in the injection pipes of diameter

d=0.8 mm is

Ri =
4q

pdn
< 30, s5d

where the kinematic viscosity n=10−6 m2 s−1 for pure water.

For the hybridization chamber, we define a Reynolds number

Rt based on the velocity scale Ut=q /Î2 hL and length

scale h,

Rt =
q

Î2 Ln
< 0.9. s6d

In the pipes, away from the ends, the flow is of Poiseuille

type and is therefore a solution of the Stokes equations. The

same is true for the Hele-Shaw flow in the chamber, away

from the injection/extraction holes. Thus, it is not unreason-

able to use Stokes flow as a first approximation to the veloc-

ity field.

B. Stirring protocols

Because the flow is almost everywhere of the Hele-Shaw

type in the chamber, it can be considered as two dimensional

to a first approximation. In 2D flows, chaotic trajectories can

only be obtained if the flow is unsteady; hence we consider

two time-periodic protocols. Note here that, since the cham-

ber has square geometry, the flow field produced during an

injection-extraction phase is symmetric about the line con-

necting two opposite holes. This property has also been used

in the numerical calculations of the flow, as we will see later.

It must be yet underlined that, since the flow is essen-

tially of the Hele-Shaw type inside the hybridization cham-

ber, the problem is unchanged if the nondimensional number

qT

L2h
s7d

is kept constant. In this way, our results can be interpreted in

a more general context and, more particularly, can be applied

to smaller total volumes of fluid.

1. Protocol A

The first protocol, referred to as protocol A, was de-

scribed in Raynal et al.11 It can be thought of as the simplest
such chaotic protocol for this kind of geometry and is based

on alternating injections using two pairs of syringes, as

shown in Fig. 3.

At the end of a quarter period, two syringes are full, the

two others are empty. During an injection-extraction phase,

the volume that enters the “sink” syringe is v=qT /4. There-
fore, the total volume necessary is

FIG. 2. Schematic view of the hybridization chamber. All lengths in mm.

The DNA chip is symbolized by the central square.

FIG. 3. Alternating injection scheme for protocol A. Each quarter-period

step of the protocol involves two opposite syringes sthe light-colored ones in
steps 1 and 3, the dark ones in steps 2 and 4d, the two other ones being

inactive.
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Vtot = Vch + 2v + vpipe s8d

=Vch + qT/2 + vpipe, s9d

where vpipe is the volume inside the pipes that connect each
hole to each syringe. It is important to note that the total
volume necessary for that protocol depends on the period T.
However, T cannot be arbitrarily chosen, because the stirring
protocol has to be optimized: since q is fixed, the only way to
achieve this is by letting the period T vary, and choosing the
period that provides the best mixing within the chamber. Us-
ing Eq. s7d, one can see that, once the best period is chosen,
the volume inside the syringes is always the same fraction of
the volume of the chamber, even if h or L is decreased. It is
therefore important to check that this extra volume is not too
large compared to the volume of the chamber.

It can be shown that the equations of the fluid-particle
trajectories are invariant under the change of variables
t→−t, x→−x, y→y, and z→z. This implies that the

Poincaré sections Pt=0, corresponding to the position of par-

ticles at successive periods, starting at t=0, are invariant un-
der reflection in the plane x=0. Moreover, a translation in

time t→ t+T /4 leaves the flow unchanged after rotation of

angle −p /4 ssee Fig. 3d. Thus, the Poincaré section Pt=T/4 is

obtained from the Poincaré section Pt=0 by a rotation of

angle −p /4. This property is important for chip hybridiza-

tion, as we will see later.

2. Protocol B

The second protocol does not require the use of syringes,

instead using two pumps. The pipes joining two opposite

holes include a pump, as shown in Fig. 4. The stirring pro-

tocol is made time periodic by switching from one pump to

the other at each half-period step. As for protocol A, the

stirring process has to be optimized by choosing the best

value for the period T. The total volume for this second

protocol is

Vtot = Vch + vpipe + vpump, s10d

where vpump is the pump volume. Note that, unlike protocol

A, Vtot does not depend on the period T. Indeed, the only

extra volume for protocol B is that of the pipes and pumps.

In our case the pump is peristaltic and so, as in most existing

microfluidic applications, the pump volume is zero. We sup-

pose that this extra volume is negligible.

It can be shown that the equations of the trajectories

are invariant under the change of variables t→−t, x→x,
y→−y, and z→z. This implies that the Poincaré sections

Pt=0 for protocol B are invariant with respect to reflection in

the plane y=0. Moreover, a translation in time t→ t+T /2
leaves the flow unchanged after reflection in the plane x=0
ssee Fig. 4d. This implies that the Poincaré section Pt=T/2 is

obtained from the Poincaré section Pt=0 by reflection in x.

3. Remark

In the case of an ideal Stokes flow with no diffusion, we

might wonder whether a particle should not always remain at

the same depth in the domain. Indeed, numerical calculations

for the velocity field show that the velocity can be every-

where considered as horizontal, except in the region of the

source and sink, where particles undergo significant changes

in their vertical positions. It is found that the volume of fluid

in which the velocity field is not horizontal is about one-

eighth of the total volume of the chamber s1/16 around each
holed. When an injection/extraction phase is stopped, a fluid

particle located in this volume was either going up or down,

but will remain at the same depth at which it had stopped

when a new injection/extraction phase begins, since it is now

located far from the source and sink. This allows for one-

eighth of the volume of the chamber to change vertical po-

sition at each new injection/extraction phase; that is, four

times in a period for protocol A, and twice for protocol B.

One must bear in mind however that for the first globally

chaotic case found for protocol A sT=10 sd, the total volume
is almost twice the volume of the chamber,

11
so that, in fact,

a fluid particle will change horizontal plane at the same rate

for both protocols.

C. Modeling the device

The numerical scheme and experimental setup for proto-

col A have already been presented in the previous paper.
11

Here we give a brief description, with a few more details

concerning protocol B.

1. Numerical scheme

Numerical calculations have been performed to deter-

mine the fluid particle trajectories generated by the alternated

injection system. The velocity field, considered as steady

during each phase, was obtained by solving the Stokes equa-

tions: a discrete velocity field Uh was obtained using a finite

element method with quadratic approximation of the velocity

sthe so-called P1–P2 or Taylor–Hood element, with linear

approximation of the pressure; see Ref. 20d. The finite ele-
ment grid shown in Fig. 5, which describes half the chamber

and part of the pipes, contains 33 849 vertices and 214 304

segments, and consequently, 248 153 grid points, per com-

ponent of the velocity. The use of such a fine grid is dictated

by the accuracy required when using the Lagrangian tracking

method, which strongly depends on satisfaction of the conti-

nuity constraint. Numerically, the flow field inside the cham-

ber is imposed by prescribing the Poiseuille profile at the

FIG. 4. Time-periodic scheme for protocol B. Each half-period step of the

protocol involves one of the pumps, the other one being inactive. One pump

always pushes the fluid in the same direction, or else is inactive.
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entry pipe; constant pressure and Neumann conditions on the
velocity are prescribed at the outlet. No-slip conditions are
prescribed elsewhere except the vertical symmetry boundary.
For protocol A, the syringes and pipes are modeled by four
“long enough” straight pipes; the flow was determined nu-
merically at the entry of each pipe, until the flow inside the
pipe is reasonably established. It is modeled by a Poiseuille
flow thereafter. The case of protocol B is quite similar, al-
though in that case the pipes are bent so as to have a semi-
circular shape above the chamber. The flow field is com-
pleted afterward by symmetry in order to track the particles
in the entire domain. The full flow field is thus achieved by a
p /2 rotation at each T /4 for protocol A, or by a p /2 rotation
followed by a −p /2 rotation, each T /2, for protocol B. The
details of the Lagrangian tracking method and the associated

Lyaponov exponent calculation method are given in a sepa-

rate paper.
21
In short, trajectories are obtained using a stan-

dard fourth-order Runge-Kutta integration adapted to piece-

wise defined functions while Lyapunov exponents are

determined using a corresponding third-order time scheme

applied to the Jacobian method.
22

2. Scaled-up experimental setup

As for protocol A, experimental investigations for proto-

col B were performed with a 10:1 scaled-up model. A

2-mm-thick horizontal green laser sheet swavelength
532 nmd was created using a divergent lens, in order to in-

duce rhodamine B fluorescence. The bottom of the chamber

was made of black ertacetal®, in order to prevent water and

rhodamine adsorption and laser reflection, while the sides

and top were made of glass. A drop of highly concentrated

rhodamine solution was injected in one of the external pipes,

near the initial fluid outlet. The alternated injection was then

started and top-view photographs recorded after each period.

Reynolds similarity imposes a flow rate of 11.2 ml mn−1.

Thus, a ratio of 9.5 310−3 is found between the real period T
and the scaled model period T.

For sake of simplicity, we used only one experimental

setup analogous to Fig. 4, with two reversible peristaltic

pumps for both protocols. Indeed, protocol A can be modeled

with such an experimental setup, provided that the pipes are

long enough: the fluid that enters a sink must never reach the

pump, to avoid mixing in the pump. Note however that, since

the volume extracted is proportional to the period T, the
larger the period, the greater the volume in the pipes. We

used pipes with two different internal diameters for the two

protocols: the larger one, d=5.5 mm, for protocol A, in order
to avoid pipes which are too long; the other one, d=3 mm,
for protocol B. We found no significant difference in the

visualizations using the pumps or the syringes.

III. RESULTS AND DISCUSSION

A. Results

We present now top-view Poincaré sections of the flow,

together with Lyapunov exponents for different periods of

FIG. 6. Top view of three-dimensional Poincaré sections for protocol A: sad
T=2 s; sbd T=4 s; scd T=6 s; sdd T=8 s; sed T=10 s; sfd T=12 s.

FIG. 5. Finite element grid of the half chamber, used for the numerical

simulations.
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the flow field. The experiments are compared with the nu-
merical calculations. Top-view Poincaré sections of protocol
A are shown in Fig. 6 for six periods, T=2, T=4, T=6,
T=8, T=10, and T=12 s. We already showed such results for
protocol A sRef. 11d: we had searched for the existence of
regular regions and concluded that a completely chaotic flow
was obtained for T$10 s. In the Poincaré sections shown in
Fig. 6, there is only one trajectory, with initial condition
taken in the chaotic region, calculated for very long times.
The reader is cautioned that, since we deal with a time-
periodic, three-dimensional s3Dd flow, the Poincaré section
cumulates the successive positions of a fluid particle after
each period, and is therefore a set of points in 3D space.
Indeed, in Fig. 6sdd sT=8 sd, the regular region is hidden by
positions of the fluid particle above or below this region. As
a consequence, in the experiment where we cannot neglect
the effect of molecular diffusion, we can expect that this
region slowly disappears with time, due to vertical mixing.
Top-view photographs of the experiment for protocol A are
shown in Fig. 7 for four different periods, T=420 s scorre-
sponding to a period of T=4 s at the real scaled, T=840 s
sT=8 sd, and T=1050 s sT=10 sd after six periods of the
flow field, and also T=1680 s sT=16 sd after three periods of
the flow field fsame total time as in Fig. 7sbd, T=8 sg. The
dye indeed appears to be well mixed for T=10 s and for all
higher periods tested sup to T=16 sd. For T=4 s and T=8 s,
the unmixed region is similar to the regular region shown in
the Poincaré sections of our previous paper. When letting the
experiment go, we find that the unmixed region is quite ro-

bust for the period T=4 s, while it tends to disappear slowly
with time for T=8 s; this is in total agreement with the
Poincaré sections shown here.

In Fig. 8 we show Poincaré sections for protocol B for
six periods, T=0.5, T=1, T=2, T=4, T=6, and T=8 s. No
regular region exists for any of those periods, which implies
that chaos is global even when the period is small. Therefore,
we checked experimentally that the length smore especially
the volumed of the pipes was not a crucial parameter for this
protocol: using longer pipes just increases the total time for
mixing sincreasing the residence time inside the piped, but
does not alter the overall mixing inside the chamber. Indeed,
the rhodamine was rapidly mixed for all periods tested: Fig-
ure 9 shows experimental results for two different periods,
T=210 s sT=2 sd and T=420 s sT=4 sd. In both cases, the
rhodamine was dispersed after the same total time s16 s in
real timed, although the concentration is still slightly inho-
mogeneous in Fig. 9sdd.

Lyapunov exponents as a function of time are shown for
protocols A and B, respectively, in Figs. 10 and 11. For pe-
riods T=4 and T=8 s of protocol A, where chaos is not

FIG. 7. Top-view flow visualization srhodamine fluorescenced for protocol
A after six periods of the flow field: sad T=4 s sT=420 sd; sbd T=8 s; scd
T=10 s, and after three periods: sdd T=16 s.

FIG. 8. Top view of three-dimensional Poincaré sections for protocol B: sad
T=0.5 s; sbd T=1 s; scd T=2 s; sdd T=4 s; sed T=6 s; sfd T=8 s.
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global, the initial point was chosen to lie inside the chaotic
region. The calculations were stopped after a specified num-
ber of periods and/or when the Lyapunov exponent had suf-
ficiently converged, which explains why the curves do not all
stop at the same time. Note that the Lyapunov exponents
converge much more rapidly for protocol B. For the sake of
clarity, the two figures are not shown with the same horizon-
tal and vertical scales, but one must bear in mind that the
periods shown for protocol B are smaller than those for pro-
tocol A.

All the results are summarized in Fig. 12, which shows
the positive Lyapunov exponent after convergence of the cal-
culations, for both protocols, as a function of the period of
the flow. Note that more periods were involved than shown
in the Poincaré sections. For each protocol, it is apparent that
the Lyapunov exponents decrease with the period. It is even
more interesting to note that for each period in common, the
Lyapunov exponent for protocol B is higher than that of
protocol A.

Recently, Stremler and Cola15 proposed using
Kolmogorov-Sinai sKSd entropy23 and a 2D model of their
mixing apparatus17 in an attempt to optimize their protocol.

In 2D flows, the KS entropy was shown to be equal to the
area of the chaotic region, multiplied by the Lyapunov expo-
nent. If we suppose that our top-view Poincaré sections are
two dimensional, using the KS entropy leads to the conclu-
sion that protocol B is better schaos is global whatever the
period and the Lyapunov exponent is always higher for a
given time periodd. However, judging 3D Poincaré sections
with a 2D projection can be misleading. For instance, the
existence of the regular region at the center of the chamber
cannot be detected using a 2D projection. Also, two points
that seem very close to each other on the top-view Poincaré
section could lie at very different depths. In order to quantify
the extent to which 3D Poincaré sections fill the volume, we
should partition the volume into cubic elements. We need at
least three cubes in the height sso that we can detect an
empty zone at the center of the cavity, for instanced and,
since L=30*h, this implies at least n=302333=24 300
cubes. Thus, the percentage of the domain covered, m, is

m = 100 3
n8

n
, s11d

where n8 is the number of nonempty cubes swhere at least
one point of the Poincaré section liesd. Of course, in order for
the statistics to be reasonably converged, this requires at least
ten more points than cubes, leading to unreasonably expen-

FIG. 11. Lyapunov exponents l for protocol B for three different periods,
T=1 s smd, T=2 s s,d, and T=4 s s−d, as a function of time t sin secondsd.

FIG. 12. Positive Lyapunov exponents l for protocols A snd and B smd as

a function of the period T sin secondsd.

FIG. 9. Top-view flow visualization for protocol B for two different periods

of the flow field, T=2 s sT=210 sd and T=4 s sT=420 sd. Top: T=2 s at

times sad t=T, sbd t=2T=4 s, scd t=4T, and sdd t=8T=16 s. Bottom:

T=4 s at times sed t=T=4 s, sfd t=2T, sgd t=3T, and shd t=4T=16 s.

FIG. 10. Lyapunov exponents l for protocol A for three different periods,

T=4 s s−d, T=8 s sPd, and T=10 s shd, as a function of time t sin secondsd.
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sive calculations. Moreover, as emphasized in Ref. 21, there
are particular problems associated with near-wall particles
for which tracking is especially difficult, which tend to re-
duce the number of available points in the Poincaré section.

Aiming at a more quantitative approach, we propose the
following:

s1d The cavity is divided into n=nL
2 3nh parallelepipedic

cells, where nL and nh are, respectively, the number of
horizontal and vertical divisions. The cells are chosen
nearly cubic, i.e., nL and nh are such that

h

nh
#

L

nL
#

h

nh − 1
. s12d

The number of cells n is varied from 100 to around 106.

s2d For each n, the percentage of the domain covered, m, is

calculated using formula s11d.
s3d Since the number of points N in each Poincaré section is

different, the result is rendered independent of N by

plotting m as a function of n /N.

The results for protocols A and B are shown on a log-log

scale in Figs. 13 and 14, respectively. Note that the Poincaré

sections of protocol A have many more points than those for

protocol B; we verified that the curves in Fig. 13 were basi-

cally unchanged when considering only half of the points.

The results are compared to the case of a random distribution

of points inside the cavity sdashed lined, which mimics the

case of ideal chaos and provides a reference. The case of

points distributed on a cubic lattice is also shown as a solid

line: in that case, the percentage of the domain covered

equals 100 as n /N increases, up until there is one point per

cell, then it decreases like 1/n. The solid symbols represent

periods in the range 2 s#T#8 s, which appear for both pro-

tocols. Clearly, periods T$2 s in protocol B are the nearest

to the random case.

B. Discussion

1. Absence of regular islands

Because the flow is unsteady, it is important to bear in

mind that, for both protocols, any regular regions move with

time. Thus, if every fixed region of space is visited by cha-

otic trajectories sor by labeled biological material in the real

deviced, even though it may lie within a regular region for a

while swithout any marked particlesd, the presence of such

regions would not be detected for high enough concentra-

tions of labeled DNA. For protocol A, for instance, the

Poincaré section Pt=T/4 is obtained from Pt=0 after rotation of

angle −p /4. As a result, if the regular regions are not located

at the center of the chamber, there will be no overlap of the

position of the regular regions at different times, and one can

assure that all fixed regions of space are visited by labeled

biological macromolecules. This is the case, for instance, for

the large regular region found both experimentally and nu-

merically for the period T=4 s and numerically for T=6 s, or

for the smaller region which appears for T=8 s. For the case

T=2 s, however, the large regular region overlaps the center

of the chamber, which means that the central region is very

unlikely to be visited.

For very small quantities of labeled macromolecules,

however, the fact that some spots on the array are not visited

for a while could lead to inhomogeneous hybridization, and

consequently, to an incorrect reading of the chip. However, it

is difficult to make sure that absolutely no regular region

exists in the 3D flow. Consider, for instance, the case of

protocol A and ideal Stokes-flow conditions, without diffu-

sion, as in our numerical simulations: for a large enough

period T, the particle located at the center of the chamber at

t=0 is swallowed by an external pipe during the first

injection/extraction phase. It remains there until the third-

quarter period, when the pipe acts as a source, reinjecting the

particle into the chamber. In the ideal conditions described

above, the particle returns exactly to its initial location at the

end of the third injection/extraction phase, as indeed it does

at the end of each multiple of 3T /4. Thus, the center of the

chamber is a period-3 periodic point of the Poincaré section.

We calculated numerically the time needed for the central

particle to enter sufficiently far into one of the external pipes,

that it is stationary during the next quarter period: we found

FIG. 14. Same as Fig. 13 for protocol B. T=0.5 s snd, T=1 s s,d, T=2 s

sjd, T=4 s sPd, T=6 s smd, T=8 s s.d.

FIG. 13. Percentage of the domain covered, m, as a function of n /N, where

n is the number of cells, and N is the total number of points of the Poincaré

section, for protocol A; dashed line: random distribution; solid line swithout

symbolsd: regular distribution; T=2 s sjd, T=4 s sPd, T=6 s smd, T=8 s

s.d, T=10 s shd, T=12 s ssd.
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that this happens for periods exceeding 10.1 s. For
T.10.1 s, similar reasoning applies to neighboring particles,
indicating the existence of a regular region for protocol A.
From this point of view, of the periods tested for this proto-
col, T=10 s appears to be the most efficient. However, be-
cause of the parabolic velocity profile, particles towards the
top or bottom of the chamber have smaller velocities and do
not follow the central particle into the pipe. Thus, the above
regular region is limited in vertical extent, and is not visible
in our 3D Poincaré sections, since particles outside the re-
gion can go above or below it. In the experiments, although
a slice of fluid is visualized thanks to the laser sheet, we saw
no sign of the existence of such a regular region sFig. 7d; this
can be explained by the action of molecular diffusion, and by
the fact that the Stokes approximation does not apply near
the injection/extraction holes, as explained earlier, so that
fluid particles in the experiment need not come back to their
initial position when the flow is reversed.

The slow convergence in time of the Lyapunov expo-
nents for protocol A could be related to the presence of regu-
lar regions, in the neighborhood of which particles remain
“stuck” for a while before they come back into the chaotic
bulk of the flow: we checked that this was the case for the
two periods T=4 and T=8 s, where the particles remain for
many periods near the large regular regions apparent in the
Poincaré sections, but it is difficult to make sure that this is
not also the case for the period T=10 s, where very small
regular regions could exist and not be apparent from the top
view of the corresponding Poincaré section. On the other
hand, the very rapid convergence of the Lyapunov exponents
for protocol B leads us to believe that no regular regions are
present.

Another problem arises when a particle arrives very near
the top or bottom wall: in the absence of diffusion, it remains
at the same depth in the domain, providing it has moved
sufficiently far from the holes. Because of the parabolic ve-
locity profile, its velocity is very slow so that it does not
move much during one period. Moreover, in the case of pro-
tocol A, the mean flow at one point during one period is zero,
which means that a particle stuck near a wall remains even
longer than for protocol B, where there is a net horizontal
flux from one side to the other. This again can explain the
much slower convergence in time of the Lyapunov exponents
for protocol A.

These results are also confirmed by Figs. 13 and 14. It is
reasonable to suppose the statistics converged when the num-
ber of points N inside the cavity is at least ten times more
than the number of cells. It is apparent that the best domain
coverage for protocol A is achieved for T=10 s. For protocol
B, however, all periods T$2 s lead to 100% coverage for
n /N#0.1.

2. Homogeneous chaos

Although global chaos can be obtained for both proto-
cols, it is also important that Poincaré sections be as homo-
geneous as possible, i.e., points are distributed regularly in-
side the whole volume. Only in this case can the probability
density of the particle position be considered as homoge-

neous over the chip surface, so that the chemical reaction
takes place at any point on the chip with the same probabil-
ity. For protocol A, and all cases with no obvious regular
region in Fig. 6 sT$10 sd, the distribution of points is not
completely homogeneous and the central region is less fre-
quently visited than the periphery. This feature is much less
pronounced for T=10 s than for T=12 s sor T=16 s in our
previous paperd, however, so that the smaller period is again
found to be more efficient. This is very probably related to
the presence of the thin regular region at the center of the
chamber for T.10.1 s, discussed earlier. For protocol B, the
distribution of points seems much more homogeneous for all
periods tested. However, the periods T#1 s show a phenom-
enon described by Bajer and Moffat24 as “trans-adiabatic
drift”: a fluid particle migrates across the family of adiabatic
surfaces, with trajectories that remain a long time near those
of the steady case in which the two sinks and the two sources
are run together.

These qualitative conclusions are confirmed by looking
at Figs. 13 and 14: the curves corresponding to protocol B
and periods T$2 s are the only ones lying very nearly on the
curve representing a random distribution. Based on the cri-
terion of homogeneity, protocol B is again more efficient
than protocol A.

3. Total volume small enough

A biochemical reaction takes place on the chip when the
labeled DNA molecules hybridize to their complementary
probe. To a first approximation, the speed of this reaction can
be taken to be proportional to the concentration in labeled
DNA. It is thus important to have a total volume as small as
possible, in order to have the highest concentration possible.
For protocol A, global chaos was found for T large enough.
However, increasing the period also increases the volume of
fluid inside the syringes, as shown by Eq. s9d. For the first
globally chaotic protocol found sT=10 sd, the total volume
snot taking into account the volume in the pipesd is almost
twice the volume of the chamber. As a result, for a given
quantity of labeled DNA, the concentration has been divided
by two. For protocol B, the total volume is independent of
the period, so that, if the volume of the pipes and pumps is
small enough, the concentration of labeled DNA may be
much larger than for protocol A.

4. Rapid mixing

Although the speed of reaction is proportional to the
concentration, the total time for hybridization is primarily
related to rapid mixing: the labeled particles, introduced at
one point and time, must spread rapidly over the whole
volume.

A classical way to measure mixing ability is via the
Lyapunov exponents, which measure the exponential rate of
separation of two nearby particles; it gives an idea of the
rapidity of dispersion of particles inside the flow and can be
considered as the inverse of a mixing time scale. Thus, the
larger the Lyapunov exponent, the more rapid the mixing
inside the chaotic region. It is interesting to note that, al-
though the flow is 3D and time periodic, one of the three
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Lyapunov exponents is always nearly zero for each period of
each protocol, as shown in Figs. 10 and 11. This confirms
that chaos is mainly produced by the nonstationarity, like in
purely two-dimensional flows; the vertical effects near the
sink and the source just allow a fluid particle to change of
horizontal plane in a reasonably small time. For a given pro-
tocol, as already explained, the Lyapunov exponent de-
creases with the period T. Therefore, mixing is more rapid
for smaller periods of the flow field, and, from this point of
view, the period should not be chosen too large. Note, how-
ever, once again, that for protocol B, the Lyapunov exponent
is quite constant for T$3 s. Also, for all periods in common,
the positive Lyapunov exponent is always larger for protocol
B, so that the mixing time based on this parameter is smaller.
This, again, favors the second protocol.

Just looking at some Poincaré section and judging which
is the most homogeneous is not enough: even if the mol-
ecules are mixed after a few periods, the total time depends
on how long the period is. This was pointed out by Raynal
and Gence,25 in two-dimensional flows, who introduced a
“flux” of chaotic particles snamely the size of a lobe from
lobe dynamics26 divided by the periodd and showed that this
parameter was a maximum for a given period in their model
flow. Indeed, for small values of the period, the flow is very
close to the steady case and not globally chaotic sthe size of
the lobe is exponentially smalld. In a closed flow, however,
the size of the lobes is bounded and the parameter goes to
zero for large values of the period. Rom-Kedar and Poje27

showed later this result in a more general case. Although this
result has been demonstrated for 2D flows, we expect
quasi-2D Hele-Shaw flows, such as the present ones, to also
have an optimum period for mixing rapidity. In other words,
for two globally chaotic flows, the one which mixes more
rapidly is that with the smallest period T, and protocol B
seems more appropriate once again.

One could argue that the limiting factor for total time is
the kinetics of the hybridization, rather than the mixing time.
However, one must bear in mind that the labeled molecules
are introduced in a very small volume stherefore highly con-
centratedd at the beginning of the process. If the spreading of
molecules is not rapid enough, the spots of the array visited
at the beginning, while the volume containing labeled mol-
ecules is still small and concentrated, will potentially be
much more hybridized than the others. For this reason, the
spreading of the molecules over the whole domain must be
achieved at smaller time scales than the kinetics of hybrid-
ization. This is a classical result in chemical engineering for
turbulent flows, where the micromixing time must be as
small as possible when compared to the reaction time. And,
for this reason again, protocol B appears much more efficient
than protocol A.

5. Miniaturizing the device

We turn now to the feasibility of reducing the size of a
device designed in the spirit of protocol B. As discussed
earlier, such size reduction is desirable to allow as small
DNA samples as possible. While the volume of the hybrid-
ization chamber itself can easily be reduced by decreasing its

depth, the external dead volume must also be sufficiently
small. For fluid mechanics engineers, the most important
problem associated with miniaturization is a significant in-
crease of the pressure drop across the microfluidic system.28

Here we consider a device using standard commercial micro-
pumps that can presently be manufactured. Of course, future
developments of miniature pump technology may well allow
still further improvements, but our aim is to see what could
currently potentially be achieved.

Let us begin with our model: in our numerical simula-
tions, two holes were connected by a pipe of diameter
d=0.8 mm and length 153Î23p.67 mm, implying a to-
tal external dead volume of Vext=2333 ml. In a scale 1:1
experiment corresponding to our calculations, connecting
two opposite holes via the peristaltic pump would require a
longer pipe, of maximum total length L=23200 mm, for
example. In order to keep the same external volume, the
pipe’s diameter would need to be d=0.33 mm. The Reynolds
number in the injection pipe would then increase by a factor
of up to 2.4 for the same flow rate faccording to Eq. s5dg and
the flow would remain laminar. The pressure drop in the
pipes may be easily evaluated using the Poiseuille law,

dPp = L 3 S128mq

pd4 D , s13d

where m is the dynamical viscosity of water, leading to
dPp<2.83104 Pa. The pressure drop inside the chamber
can be estimated using the Hele-Shaw approximation as

dPch ~ mq/h3, s14d

where the numerical constant of proportionality obtained
from our numerical simulations, which yield dPch<6 Pa, is
much smaller than dPp.

Let us now consider the effects of size reduction. In
order to fix ideas, suppose that h is reduced from 500 to
50 mm sMcQuain et al.17 used a 25-mm depth chamberd: the
volume of the chamber is now 11 ml. Keeping the period
unchanged, the flow rate is now q=2 ml s−1 so as to maintain

qT /L2h constant, according to Eq. s7d. While delivering such

a flow rate, peristaltic pumps can work with pipes of diam-

eter as small as d=0.19 mm sRef. 29d. Since the length of the

pipes remains the same as previously, the external volume in

the connecting pipes becomes 11 ml. The pressure drop in-

side the chamber can be calculated from the previous value

using s14d: dPch<600 Pa, which can be neglected. The

dominant contribution comes from the pressure drop in the

pipes, which is now, using s13d, dPp<2.53104 Pa, i.e., es-

sentially unchanged. Note also that the Reynolds numbers

inside the injection pipes and chamber are both decreased,

following Eqs. s5d and s6d. There is therefore a real possibil-

ity of greatly reducing the size of the device, using existing

components.

IV. SUMMARY AND CONCLUSION

We have studied two stirring protocols for use during

hybridization in a DNA chip. The first one uses two pairs of

syringes, while the second one operates using two pumps. In

order to be efficient, a protocol should lead to very rapid and
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homogeneous mixing of macromolecules inside the chamber,
and use as little volume of fluid as possible, so that chemical
reactions can potentially take place at each probe of the chip
with the same probability. Although both protocols allow ef-
ficient hybridization of the chip, the second one is clearly
more efficient from all points of view: no regular islands
formation, more homogeneous Poincaré sections, less total
volume, larger Lyapunov exponents, and smaller total time
required. Moreover, it is interesting to note that, from the
qualitative look at top-view Poincaré sections, or else from
the more quantitative results obtained from the percentage of
domain covered, or at least from the calculation of Lyapunov
exponents, all show that protocol B is very robust with varia-
tions of the period, since all the quantitative parameters were
almost constant for T$3 s. Therefore, its mixing efficiency
does not depend much on the period, which makes it a very
good candidate for this type of application.

Finally, since the protocols can be scaled down to
smaller volumes fproviding the parameter in Eq. s7d is kept
constantg, one can wonder if they can be easily integrated on
a lab on a chip: the answer is yes for the second protocol.
Indeed, different microfluidic pumps have already been pro-
posed in the literature, and some of those are already used for
lab on chips, while the integration of syringe-like systems
seems much more difficult in practice.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Noël Gence,
Jérôme Broutin, and Vincent Dugas for many discussions,
and Christian Nicot, Patrick Dutheil, Emmanuel Jondeau,
Patrick Méjean, and Jean-Michel Perrin for their help in the
experimental setup. The financial support of the BQR pro-
gram of the École Centrale de Lyon, of the Program Biosécu-
rité of the French MENRT and of the Délégation Générale de
l’Armement, the FITT program of the Région Rhône-Alpes,
and the PIR Microfluidique of the CNRS is also gratefully
acknowledged.

1Nat. Genet. 32 s1sd:1–80 s2002d, supplement on DNA chips.
2R. T. Pon and S. Yu, “Linker phosphoramidite reagents for the attachment
of the first nucleoside to underivatized solid-phase supports,” Nucleic Ac-
ids Res. 32, 623 s2004d.

3K. E. Richmond, M. Li, M. J. Rodesch, M. Patel, A. M. Love, C. Kim, L.
L. Chu, N. Venkataramaian, S. F. Flickinger, and J. Kaysen, “Amplifica-
tion and assembly of chip-eluted DNA saacedd a method for high-
throughput gene synthesis,” Nucleic Acids Res. 32, 5011 s2004d.

4C. J. Schaupp, G. Jiang, T. G. Myers, and M. A. Wilson, “Active mixing
during hybridization improves the accuracy and reproducibility of mi-
croarray results,” BioTechniques 38, 117 s2005d.

5D. Kambhampati, P. E. Nielsen, and W. Knoll, “Investigating the kinetics
of DNA-DNA and PNA-PNA interactions using surface plasmon
resonance-enhanced fluorescence spectroscopy,” Biosens. Bioelectron.
16, 1109 s2001d.

6J. Zeng, A. Almadidy, J. Watterson, and U. J. Krull, “Interfacial hybrid-
ization kinetics of oligonucleotides immobilized onto fused silica sur-
faces,” Sens. Actuators B 90, 68 s2003d.

7A. E. Nkodo, J. M. Garnier, B. Tinland, H. Ren, C. Desruisseaux, L. C.
McCormick, G. Drouin, and G. W. Slater, “Diffusion coefficient of DNA
molecules during free solution electrophoresis,” Electrophoresis 22, 2424
s2001d.

8H. Aref, “Stirring by chaotic advection,” J. Fluid Mech. 143, 1 s1984d.
9S. Wiggins, Global Bifurcations and Chaos: Analytical Methods
sSpringer-Verlag, New York, 1988d.

10J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport
sCambridge University Press, New York, 1989d.

11F. Raynal, F. Plaza, A. Beuf, Ph. Carrière, É. Souteyrand, J.-R. Martin,
J.-P. Cloarec, and M. Cabrera, “Study of a chaotic mixing system for DNA
chip hybridization chambers,” Phys. Fluids 16, L63 s2004d.

12S. W. Jones and H. Aref, “Chaotic advection in pulsed source-sink sys-
tems,” Phys. Fluids 31, 469 s1988d.

13J. Evans, D. Liepmann, and A. P. Pisano, “Planar laminar mixer,” in Pro-
ceedings of the IEEE International Workshop on Micro Electro Mechani-
cal Systems sIEEE, New York, 1997d, pp. 96–101.

14M. A. Stremler, F. R. Haselton, and H. Aref, “Designing for chaos: appli-
cations of chaotic advection at the microscale,” Philos. Trans. R. Soc.
London, Ser. A 362, 1019 s2004d.

15M. A. Stremler and B. A. Cola, “A maximum entropy approach to optimal
mixing in a pulsed source–sink flow,” Phys. Fluids 18, 011701 s2006d.

16B. A. Cola, D. K. Schaffer, T. S. Fisher, and M. A. Stremler, “A pulsed
source-sink fluid mixing device,” J. Microelectromech. Syst. 15, 259
s2006d.

17M. K. McQuain, K. Seale, J. Peek, T. S. Fisher, S. Levy, M. A. Stremler,
and F. Haselton, “Chaotic mixer improves microarray hybridization,”
Anal. Biochem. 325, 215 s2004d.

18N. B. Adey, M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel,
S. C. Coffin, T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T.
Eisenhoffer, B. K. Dalley, and M. R. McNeely, “Gains in sensitivity with
a device that mixes microarray hybridization solution in a 25-mm-thick
chamber,” Anal. Chem. 74, 6413 s2002d.

19R. H. Liu, R. Lenigk, R. L. Druyor-Sanchez, J. Yang, and P. Grodzinski,
“Hybridization enhancement using cavitation microstreaming,” Anal.
Chem. 75, 1911 s2003d.

20V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes
Equations sSpringer-Verlag, New York, 1986d.

21Ph. Carrière, “Lyapunov spectrum determination from the FEM simulation
of a chaotic advecting flow,” Int. J. Numer. Methods Fluids 50, 555
s2006d.

22J. P. Eckmann and D. Ruelle, “Ergodic theory of chaos,” Rev. Mod. Phys.
57, 617 s1985d.

23M. A. Lichtenberg and A. J. Lieberman, Regular and Chaotic Dynamics
sSpringer, New York, 1992d.

24K. Bajer and H. K. Moffatt, “On a class of steady Stokes flows with
chaotic streamlines,” J. Fluid Mech. 212, 337 s1990d.

25F. Raynal and J. N. Gence, “Efficient stirring in planar, time-periodic
laminar flows,” Chem. Eng. Sci. 50, 631 s1995d.

26V. Rom-Kedar, A. Leonard, and S. Wiggins, “An analytical study of the
transport, mixing and chaos in an unsteady vortical flow,” J. Fluid Mech.
214, 347 s1990d.

27V. Rom-Kedar and A. C. Poje, “Universal properties of chaotic transport
in the presence of diffusion,” Phys. Fluids 11, 2044 s1999d.

28H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small
devices: Microfluidics toward lab-on-a-chip,” Annu. Rev. Fluid Mech. 36,
381 s2004d.

29As a reference for commercial pumps, the Masterflex™ reference N5100F
and N55125 peristaltic mini pumps are considered.

017112-11 Towards better DNA chip hybridization Phys. Fluids 19, 017112 ~2007!

Downloaded 14 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions


