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The response of the small scales of isotropic turbulence to periodic large scale forcing is studied

using two-point closures. The frequency response of the turbulent kinetic energy and dissipation

rate, and the phase shifts among production, energy, and dissipation are determined as functions of

the Reynolds number. It is observed that the amplitude and phase of the dissipation exhibit

nontrivial frequency and Reynolds number dependence that reveals a filtering effect of the energy

cascade. Perturbation analysis is applied to understand this behavior which is shown to depend on

distant interactions between widely separated scales of motion. Finally, the extent to which finite

dimensional models sstandard two-equation models and various generalizationsd can reproduce the
observed behavior is discussed. © 2007 American Institute of Physics. fDOI: 10.1063/1.2728939g

I. INTRODUCTION

Statistical transients in turbulence remain a major chal-

lenge to both theory and modeling. The mechanisms by

which a turbulent flow readjusts to new conditions, for ex-

ample in boundary layers with sudden changes in wall

roughness or pressure gradient,
1
are not entirely understood

and continue to resist prediction by models.

Another class of statistically time-dependent turbulent

flows is defined by the presence of periodically oscillating

forcing. The classic example is steady pipe flow with small

superposed oscillations of the mean pressure gradient. This

flow has been the subject of extensive experimental,
2,3

theoretical,
4,5
and numerical

6
investigation. There are two

obvious limits: the “static” limit of slow oscillations, in

which the turbulence evolves through a sequence of local

steady states, and a limit of “frozen” turbulence in which the

turbulence does not respond at all to the oscillations.

Analysis of oscillating pipe flow typically concentrates

on the phase relations among the wall shear, centerline ve-

locity, and pressure perturbation. These quantities prove re-

markably difficult to predict at frequencies intermediate be-

tween the static and frozen limits even if the problem admits

a linearized description, indicating unanticipated subtleties in

the dynamics; indeed, the only entirely adequate predictions

are by large-eddy simulation,
6
which is very surprising in

view of the apparent simplicity of the problem.

Recently, the problem of periodically forced homoge-

neous isotropic turbulence has been proposed
7
and investi-

gated theoretically,
8
by numerical simulations,

9
and by ex-

periments using time-dependent grids.
10
Because of the

absence of complications such as near-wall behavior, this

problem provides an ideal setting in which to investigate the

time-dependent spectral dynamics of turbulence.

Previous work on this problem has been motivated by a

search for resonance-like energy response near a critical fre-

quency proportional to the inverse large-eddy turnover time,

and perhaps at integer multiples of this frequency as well.

This paper focuses instead on the properties of the dissipa-

tion rate. At frequencies intermediate between the static and

frozen turbulence limits, nontrivial Reynolds number-

dependent properties are found. The energy cascade acts like

a low-pass filter that damps high-frequency oscillations, but

as in the oscillating pipe flow, the details are more complex

than the simple problem statement would suggest.

The main results are obtained by the eddy damped qua-

sinormal Markovian sEDQNMd closure.11,12 The predictions
of this closure for periodically forced turbulence are in rea-

sonable qualitative agreement with existing results. Elemen-

tary arguments show that at forcing frequency v, the ampli-

tude of the energy and dissipation rate oscillations vary as

v−1 for large frequencies. However, the calculations show

that the dissipation rate modulation amplitude exhibits non-

trivial v−3 scaling in the intermediate frequency range, and

the phase difference between the production and the dissipa-

tion rate has complex dependence on both v and Reynolds

number in this range.

To understand this behavior, we apply asymptotic analy-

sis to two simpler models: the classical Heisenberg

model
13,14

and a recent generalization.
15
In these models, the

details of triad interactions are suppressed, but the essential

idea of nonlocal interaction is retained. We show analytically

how the energy cascade filters the oscillations, and that this

filtering is responsible for the observations.

Some finite dimensional models of the two-equation

type will be considered. The two-equation model is correct in

both the static and frozen limits, but misses important fea-

tures of the dynamics at intermediate frequencies, including

the Reynolds number dependence of the dissipation. A more

complex three-equation model allows for more complex

phase relations, but is also incapable of capturing the Rey-
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nolds number dependence. It should be emphasized that this

dependence is not a low Reynolds number effect.

A related problem involving periodic forcing is oscilla-

tory homogeneous shear flow.
16
This problem has important,

and even dominant linear effects; it therefore has a somewhat

different character from periodically forced isotropic turbu-

lence, in which only nonlinear mechanisms are important.

Another related problem can be mentioned, in which turbu-

lence is forced periodically at the boundary of the flow

region.
17,18

This flow has many interesting similarities to pe-

riodically forced isotropic turbulence; although it is simpler

in many respects than periodically modulated pipe flow, the

dynamics of this problem may include effects of turbulent

diffusion as well as energy transfer and may therefore not be

entirely amenable to the present type of analysis.

II. DEFINITIONS AND ELEMENTARY PROPERTIES

The spectral evolution equation for time-dependent

forced homogeneous isotropic turbulence is
14

Ėsk,td = Psk,td − Tsk,td − 2nk2Esk,td , s1d

where Esk , td is the energy spectrum and Tsk , td is the energy
transfer due to nonlinear interactions. The production spec-

trum Psk , td is assumed to be localized near some wavenum-
ber kPstd. Consider a basic steady state, defined by the time-
independent form of Eq. s1d:

0 = P̄skd − T̄skd − 2nk2Ēskd . s2d

The problem of periodically forced turbulence is formulated

by introducing a periodic perturbation of the production

spectrum,

Psk,td = P̄skd + P̃skdcossvtd , s3d

where we will assume the proportionality

P̃skd = cP̄skd s4d

with c!1, so that the problem can be analyzed by lineariza-

tion about the steady state defined by Eq. s2d. Then,

Esk,td = Ēskd + dEsk,td s5d

with dEsk , td! Ēskd. If at sufficiently long times, Esk , td be-
comes periodic in time, linearity implies that the period is v,

hence,

dEsk,td = Ẽskdcosfvt + cskdg . s6d

In terms of the quantities

F̃skd = Ẽskdcos cskd, G̃skd = Ẽskdsin cskd , s7d

dEsk , td is written as

dEsk,td = cossvtdF̃skd − sinsvtdG̃skd . s8d

The basic time-dependent single-point moments: total

production Pstd, turbulent kinetic energy kstd, and dissipation

rate estd, are expressed in terms of their time averages P̄, k̄,

and ē and their phase averages P̃, k̃, and ẽ as

Pstd = P̄ + P̃ cossvtd , s9d

kstd = k̄ + k̃ cossvt + fkd , s10d

estd = ē + ẽ cossvt + fed , s11d

where

P̄ = E
0

`

dkP̄skd, P̃ = E
0

`

dkP̃skd ,

s12d

k̄ = E
0

`

dkĒskd, ē = E
0

`

dk2nk2Ēskd ,

and in view of Eq. s8d,

k̃ cossfkd = E
0

`

dkF̃skd, k̃ sinsfkd = E
0

`

dkG̃skd , s13d

ẽ cossfed = E
0

`

dk2nk2F̃skd ,

s14d

ẽ sinsfed = E
0

`

dk2nk2G̃skd .

For simplicity of notation, the spectral densities P̄skd and

P̃skd are distinguished from the corresponding single-point

moments P̄ and P̃ by their arguments rather than by a new

letter.

The simplest formulation of the problem seeks the de-

pendence of the phase averaged amplitudes k̃ and ẽ and the

phase shifts fk, fe on the forcing frequency v; k̃ will be

called the modulated energy and ẽ the modulated dissipation.
Pstd, kstd, and estd are related, independently of any closure
hypothesis, by the energy balance, obtained by integrating

Eq. s1d over all wavenumbers:

k̇std = Pstd − estd , s15d

where energy conservation by nonlinear interactions implies

that

E
0

`

dkTsk,td = 0. s16d

Substituting Eqs. s9d–s11d in Eq. s15d and subtracting the

steady balance P̄= ē gives the relation for modulated quanti-

ties

− vk̃ sinsvt + fkd = P̃ cossvtd − ẽ cossvt + fed s17d

or equivalently

− vk̃ sin fk = P̃ − ẽ cos fe, s18d

− vk̃ cos fk = ẽ sin fe. s19d

Elementary trigonometric identities give the explicit

relations
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k̃ =
1

v
Îsẽ sin fed

2 + sP̃ − ẽ cos fed
2,

s20d

tan fk =
P̃ − ẽ cos fe

ẽ sin fe

,

and the equivalent relations

ẽ = Îsvk̃ cos fkd
2 + sP̃ + vk̃ sin fkd

2,

s21d

tan fe = −
vk̃ cos fk

P̃ + vk̃ sin fk

.

Although additional assumptions are obviously required

to close the problem, explicit closure hypotheses are not re-

quired to reach some simple but useful conclusions about the

limits of asymptotically high and low oscillation frequencies.

Linearity implies that the frequency of the perturbation at

any scale of motion must be the imposed frequency v, but in

the inertial range, disturbances are damped on the Kolmog-

orov time-scale se1/3k2/3d−1; accordingly, we anticipate that if
v@e1/3k2/3, the perturbations must be overdamped, but that

they are active and only weakly damped if v!e1/3k2/3. This

argument suggests that in the static limit v↓0, the turbulence

follows the slow modulations at all scales of motion, so that

also fesvd ,fksvd↓0. Equation s18d then gives P̃< ẽ; Eq.

s19d is not satisfied exactly, but is approximately true since

v<0. Assuming that for slow modulations, the relation

estd=Cekstd3/2 /L remains valid with time-independent L, and

that the small perturbations k̃ and ẽ are nearly static, then

ẽ /e= s3/2dk̃ /k. These observations suggest that in this limit,
the single-point modulated quantities admit series expan-

sions in positive powers of v:

k̃ =
2

3

k̄

ē
P̃ + Osv2d , s22d

ẽ = P̃ + Osv2d , s23d

fk = Osvd , s24d

fe = Osvd , s25d

where the powers of v are suggested by the parity properties

of Eqs. s18d and s19d under a change of sign of v. Equiva-

lently, to lowest order, we have

ẽ = v̄k̃, v̄ =
3

2

ē

k̄
, s26d

where the frequency v̄ defined by this equation is the “criti-

cal” frequency discussed by Lohse.
7

In the “frozen turbulence” limit v↑`, we see that Eq.

s18d is satisfied if fk<−p /2; then

k̃ < P̃/v . s27d

If, as the simple argument above suggests, the perturbations

are overdamped throughout the inertial range, the only scales

of motion at which the oscillating force can be effective are

the forcing scales themselves. If so, the modulated dissipa-

tion will also take place in this range of scales, so that

ẽ = E
0

`

dk2nk2Ẽskd

< 2nkP
2E

0

`

dkẼskd < 2nkP
2 k̃ < 2nkp

2 P̃

v
. s28d

As in the previous limit, the asymptotic forms Eqs. s27d
and s28d do not satisfy Eq. s19d exactly, suggesting that the

perturbation quantities should admit series expansions in

negative powers of v:

k̃ =
P̃

v
+ Osv−3d , s29d

ẽ = 2nkP
2 P̃

v
+ Osv−3d , s30d

fk = −
p

2
+ Osv−1d , s31d

fe = −
p

2
+ Osv−1d . s32d

III. NUMERICAL RESULTS FROM SPECTRAL
CLOSURE

In this section, we apply the EDQNM spectral closure
11

to this problem. The exact formulation of the model and the

numerical method is the same as in Touil et al.,19 and for

details we refer to that work. In this closure, nonlinear inter-

actions among wavenumber triads of different “shapes” are

considered explicitly, with a definite weighting derived per-

turbatively from the governing equations.

The energy spectrum was initialized by a von Kármán

spectrum; however, the influence of the initial energy spec-

trum vanishes after a transient and the results reported are

evaluated after reaching an asymptotic state. The large scale

forcing is

Psk,td = afP̄ + P̃ cossvtdgexps− gk2d, k ù k0 . 0, s33d

where a is the normalization constant such that

aek0

` exps−gk2d=1, with P̃ / P̄=0.125 and g=0.5. The spec-

tral resolution is approximately 20 wavenumbers per decade.

The Taylor-scale Reynolds number, defined as Rel

=Î20k2 / s3ned is varied between 30 and 1000. The results

are shown in Figs. 1–4. In Figs. 1 and 2 we also show direct

numerical simulations sDNSd results by Kuczaj et al.9 In the

DNS, the value of P̃ / P̄=0.2. To obtain a collapse of the low
frequency limit, the DNS results are multiplied by the ratio

between the forcing amplitudes 0.125 and 0.2. In the DNS,

one single wavenumber shell is forced. The Reynolds num-

ber varies between 30 and 50. Further details on the setup of

these simulations can be found in Ref. 9.
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A. Modulated kinetic energy k̃

Figure 1 shows a plateau for k̃ at low frequencies and
v−1 dependence for high frequencies, as suggested by the

elementary arguments leading to Eqs. s22d and s29d: the
static and frozen turbulence limits are well reproduced. In

our calculations, no local maximum of k̃ is observed. In the
DNS results of Kuczaj et al.9 a local maximum is present

around the turbulent frequency v̄ defined in Eq. s26d, but in
the shell model study by von der Heydt et al.20 this maxi-
mum was absent. The existence and explanation of this

maximum remain open questions. However, all of the avail-

able data exhibit a clear response maximum of the compen-

sated quantity vk̃ near v̄. This maximum is also prominent

in the EDQNM results shown in Fig. 1. We leave the ques-

tion of whether a response maximum of k̃ itself is or is not

consistent with closure unanswered for now. Conceivably,

the answer is not universal, but may depend on the forcing

scheme. The Reynolds number, or viscosity, does not seem to

play an important role for k̃: for moderate and high Reynolds
numbers, all the data collapse on a single curve.

B. Modulated dissipation ẽ

Figure 2 shows that ẽ also displays a plateau in the static

limit, as predicted by Eq. s23d. Like the compensated quan-

tity vk̃, the compensated data vẽ show a response maximum

approximately near v̄. Beyond this frequency, ẽ decreases

sharply; at high Reynolds number, ẽ,v−3. But at even

higher frequencies, the v−1 frequency dependence predicted

in Eq. s30d is observed. The overall agreement with DNS is

good. It is interesting to note that the high frequency v−1

range depends on the Reynolds number, and is indeed pro-

portional to the viscosity, as suggested in Eq. s30d.
What remains to be explained is the fast drop of ẽ at

intermediate frequencies. Intuitively, it can be explained as

follows. At low frequencies the energy cascade can follow

the modulation. At high frequencies the cascade filters the

modulated energy flux, since the turbulent frequency is lower

than the modulated frequency. The fast drop corresponds to

the rate at which the energy cascade filters the modulated

energy flux. Insights into this process have important physi-

cal consequences as they clarify how small scales are influ-

enced by large scale forcing.

C. Phase shifts

Phase shift data are shown in Fig. 3. The phase lags fk

and fe both go to zero for small v. In this limit, everything

is in phase, as suggested by Eqs. s24d and s25d. At high v, fk

and fe go to −p /2, consistent with Eqs. s31d and s32d. A
slight overshoot in fk is observed around the critical fre-

quency. At intermediate values, fe shows a large overshoot

with respect to −p /2 and a very noticeable dependence on

FIG. 1. Top: k̃ as a function of v / v̄ for Rel varying from 30 to 1000.

Bottom: Same for vk̃. FIG. 2. Top: ẽ as a function of v / v̄ for Rel varying from 30 to 1000.

Bottom: Same for vẽ.
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the Reynolds number. This can be explained as follows: as

long as the energy cascade can follow the modulation, i.e., at

low frequencies, the modulated energy is transferred to the

dissipation range through the energy cascade. The finite cas-

cade time Tc introduces a phase shift between k̃ and ẽ pro-

portional to vTc. This is illustrated in Fig. 4. At low frequen-

cies, fe−fk is a linear function of v, which permits

determining the cascade time. The collapse of the curves for

Relù100 indicates that at Rel=100, the asymptotic value of

the cascade time is reached. At high frequencies, the oscil-

lating contribution to the spectrum is confined to the produc-

tion scales. So all moments are determined by the same large

scales and should roughly be in phase. Both phase shifts are

−p /2 in this limit.

IV. ANALYTICAL TREATMENT BY SPECTRAL
CLOSURE

We supplement these numerical computations with ana-

lytical results. The complexity of the EDQNM transfer inte-

gral does not permit simple direct analysis, so we will con-

sider much simpler models that embody certain features of

nonlinear turbulence dynamics, but in a way that permits

analytical conclusions to be drawn relatively easily.

A. General formulation

The general closure equation is found by introducing the

closure hypothesis

Tsk,td =
]

]k
FfEsk,tdg s34d

in Eq. s1d. Equation s34d expresses the energy transfer in

terms of the energy flux F, which is assumed to be a func-

tional of the energy spectrum. In the problem of periodic

forcing, the perturbation dEsk , td, defined by Eq. s5d, satisfies

dĖsk,td = P̃skdcossvtd − LfdEsk,tdg − 2nk2dEsk,td ,

s35d

where L is the linear functional

LfFsk,tdg =
]

]k
SdF

dE
D
Ē

fFsk,tdg s36d

and sdF /dEdĒ denotes linearization of F at the steady state

Ēskd.
Separating terms proportional to cossvtd and sinsvtd,

Eq. s35d can be written as

− vG̃skd = P̃skd − LfF̃skdg − 2nk2F̃skd , s37d

− vF̃skd = LfG̃skdg + 2nk2G̃skd . s38d

In view of Eq. s36d,

E
0

`

dkLfFskdg = 0 s39d

and therefore integration of Eqs. s38d and s37d recovers the
single-point relations Eqs. s18d and s19d.

Before beginning the analysis, we note that substituting

Eqs. s37d and s38d in Eq. s13d gives

k̃ sinsfkd = −
1

v
P̃ +

1

v
E
0

`

2nk2F̃skddk ,

s40d

k̃ cossfkd = −
1

v
E
0

`

2nk2G̃skddk .

Ignoring the viscous terms recovers k̃ sin fk<−v−1P̃, which

is equivalent to k̃<v−1P̃ and fk<−p /2, the approximations

FIG. 3. Top: Phase lags −fk sin degreesd as a function of v / v̄ for Rel

varying from 30 to 1000. Bottom: Same for phase lags −fe.

FIG. 4. −sfe−fkd as a function of v / v̄ for Rel varying from 30 to 1000.
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obtained by elementary arguments as Eqs. s29d and s31d.
The corresponding substitutions in Eq. s14d yield

ẽ cos fe = −
1

v
FE

0

`

dk2nk2LfG̃skdg

+ E
0

`

dk4n2k4LfG̃skdgG , s41d

ẽ sin fe = −
1

v
FE

0

`

dk2nk2P̃skd − E
0

`

dk2nk2LfF̃skdg

− E
0

`

dk4n2k4LfF̃skdgG . s42d

Obviously, very strong assumptions are needed to reach any

conclusion about ẽ and fe, demonstrating that the behavior

of the oscillating dissipation rate is somewhat subtle. Thus,

the elementary conclusion that ẽ can be approximated by

taking only the first term in Eq. s42d requires arguing that the
terms in nL, which represent oscillatory vortex stretching,

can be ignored, and that, despite the presence of k4 in the

corresponding integrals, the terms in n2, which represent os-

cillatory enstrophy destruction, can also be neglected. These

assumptions are much less convincing than those underlying

the elementary approximation for k̃. In fact, more careful

analysis will reveal nontrivial features of the dynamics of the

modulated dissipation. But these features can only be com-

puted using a model; this issue will be considered in the next

section.

B. Simplified integral closure models

Kraichnan
21
showed that if the correlation equation in a

closure of the DIA sDirect Interaction Approximationd family
is simplified by restricting attention to distant interactions

only, an energy transfer model close in structure to the clas-

sical Heisenberg model is obtained. Following this observa-

tion, Rubinstein and Clark
15

constructed a generalized

Heisenberg model by adding asymptotically local interac-

tions to the transfer model. The result is the energy flux

closure

FfEskdg = CHE
0

k

dmm2EsmdE
k

`

dpEspduspd

− E
0

k

dmm4E
k

`

dp
Espd2uspd

p2 J , s43d

where the time argument is not explicitly written. Here and

subsequently, C will denote some constant, but not necessar-

ily the same constant each time it appears. This energy trans-

fer model was supplemented
15
by an evolution equation for

the time-scale uskd, but the present work will use the simple
algebraic closure,

uskd = fk3Eskdg−1/2. s44d

The first term on the right side of Eq. s43d has the struc-
ture of the Heisenberg model: it represents energy transfer as

the product of a viscosity due to modes with wavenumber

larger than k sthe second integrald times the square of a strain
rate due to modes with wavenumber less than k sthe first

integrald. If the model only contained this term, the energy

flux would necessarily be positive, and energy would neces-

sarily be transferred from large to small scales. The second

term is a “backscatter” contribution that allows the energy

flux to be negative. Then energy can also be transferred from

small to large scales. The same term appears in the closely

related model of Canuto and Dubovikov.
22

The significance of the backscatter term, and its particu-

lar analytical form, are linked to the possibility of inviscid

equipartition ensembles. Rewriting the energy transfer as

Tskd =
]F

]k
= CHk4E

k

`

dpuspdEspdFEspd

p2
−
Eskd

k2 G

+ EskduskdE
0

k

dmm4FEsmd

m2
−
Eskd

k2 GJ s45d

shows that Tskd;0 is consistent with Eskd~k2. This prop-

erty is lost in the classical Heisenberg model
13

FfEskdg = CE
0

k

dmm2EsmdE
k

`

dpEspduspd , s46d

in which Tskd=0 is only possible if Eskd=0. Despite this

conceptual drawback, the Heisenberg closure models one

feature of turbulent energy transfer that will be crucial to the

present analysis: the possibility of “distant” interactions be-

tween modes with disparate wavenumbers.

The linearized transfer for the generalized Heisenberg

model is

LfFskdg = CHk2FskdE
k

`

dpÎĒspd

p3
−ÎĒskd

k3 E
0

k

dmm2Fsmd +
1

2
k2ĒskdE

k

`

dp
Fspd

hĒspdp3j1/2

−
1

2

Fskd

hĒskdk3j1/2
E
0

k

dmm2Ēsmd −
3

2
k4E

k

`

dp
Ēspd1/2Fspd

p7/2
+
3

2

Ēskd1/2Fskd

k7/2 E
0

k

dmm4J . s47d

055107-6 Bos, Clark, and Rubinstein Phys. Fluids 19, 055107 ~2007!

Downloaded 14 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



and the linearized transfer for the classical Heisenberg model

is

LfFskdg = CHk2FskdE
k

`

dpÎĒspd

p3
−ÎĒskd

k3

3E
0

k

dmm2Fsmd +
1

2
k2Ēskd

3E
k

`

dp
Fspd

hĒspdp3j1/2

−
1

2

Fskd

hĒskdk3j1/2
E
0

k

dmm2ĒsmdJ . s48d

Returning to the analysis of Eqs. s37d and s38d, we note
that they can be decoupled to give

fv2I + sL + 2nk2Id2gF̃skd = sL + 2nk2IdP̃skd ,

s49d

fv2I + sL + 2nk2Id2gG̃skd = − vP̃skd .

Ignoring the viscous terms in comparison to the linearized

transfer gives the approximate system of equations

sv2I + L2dF̃skd = LfP̃skdg ,

s50d

sv2I + L2dG̃skd = − vP̃skd .

If ẽ is computed for high oscillation frequency on the basis

of the approximate Eq. s50d, the result proves to be propor-
tional to n, or of order Re−1 swith Re the Reynolds number

based on the integral and lengthscaled, because the frozen

turbulence limit confines the oscillations to the largest scales

of motion. If ẽ were computed in this limit using Eq. s49d
instead, the result would be to include corrections of order

n2, or of order Re−2. It is reasonable to ignore such correc-

tions in the high Reynolds number limit. These consider-

ations of high Reynolds number justify ignoring the direct

viscous effects in Eq. s49d and working with the simpler
system Eq. s50d.

Inversion of the linear operators on the left side of Eq.

s50d gives the solution for F̃ and G̃ in the high Reynolds

number limit. However, since exact inversion is only pos-

sible numerically, we will seek asymptotic solutions for large

v using standard methods. A lowest-order approximate solu-

tion of Eqs. s37d and s38d is obtained by balancing the lead-
ing order terms in v, so that

F̃skd < 0, G̃skd <
1

v
P̃skd . s51d

Since this result ignores nonlinearity, it might be called

“rapid distortion theory” for this problem.

A formal solution of Eqs. s37d and s38d can be con-
structed in powers of v−1 by perturbing about the leading

order solution Eq. s51d; taking only the correction terms of
the next order gives

F̃skd = v−2LfP̃skdg ,

s52d

G̃skd = − v−1P̃skd + v−3L2fP̃skdg .

This approximation can also be obtained by operator inver-

sion in Eq. s50d by a Neumann series. The resulting series is
divergent but asymptotic in v; therefore, as usual in such

cases, the truncated series can provide useful information.

The corrections in Eq. s52d depend on LfP̃skdg. We note

from Eqs. s48d and s47d that LfP̃skdg consists of three types

of terms: s1d terms proportional to P̃skd, s2d terms propor-

tional to ek
`P̃spddp, and s3d the term common to both mod-

els,

ÎĒskd

k3
E
0

k

dmm2P̃smd , s53d

Terms of types s1d and s2d both vanish for large k since P̃skd
is nonzero only for small k. These terms correspond to the

intuitive idea that oscillatory disturbances are strictly con-

fined to large scales. The important phenomenon is repre-

sented by Eq. s53d, which shows that the oscillatory distur-
bance can indeed propagate to small scales through the effect

of distant interactions between scales with wavenumber k

and large production range scales. Because this term pertains

to forward transfer alone, we obtain it in the Heisenberg

model; the backscatter term in the generalized Heisenberg

model therefore plays no role in this particular analysis.

Thus, the contribution to linearized transfer in Eq. s53d
shows that the oscillatory disturbance is not confined to the

region where P̃skd is nonzero, even at asymptotically large
v, contrary to the conclusion suggested by elementary con-

siderations. Instead, the oscillatory disturbance can propa-

gate into all scales of motion. Eq. s53d provides the leading

order solution in the regions where P̃skd vanishes.
Thus, for large k,

LNLfP̃skdg =ÎĒskd

k3
E
0

k

dmm2P̃smd , kP
2 P̃ē1/3k−7/3,

s54d

LNL
2 fP̃skdg ,ÎĒskd

k3
E
0

k

dmkP
2 P̃ē1/3m−7/3

, kP
2 P̃ē2/3k−5/3. s55d

Adding these nonlocal contributions to the leading order so-

lution Eq. s51d, the approximation Eq. s52d takes the form

F̃skd , v−2kP
2 P̃ē1/3k−7/3,

s56d

G̃skd , v−1P̃skd + v−3kP
2 P̃ē2/3k−5/3.

Applying the operator LNL to both sides of Eq. s55d shows

that LNL
3 fP̃skdg,k−10/3+1 and that for the general power of

order p, LNL
p fP̃skdg,k−10/3+p. It follows that the higher-order
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terms in the series expansions for F̃skd and G̃skd will even-
tually contain positive powers of k, indicating the divergence

of the series noted earlier.

Assuming that scaling ranges for F̃ and G̃ both begin at

a scale of the order of kP, we will have

k̃ cossfkd = E
0

`

dkF̃skd , v−2ē1/3kP
2/3P̃ ,

s57d

k̃ sinsfkd = E
0

`

dkG̃skd , − v−1P̃ + v−3ē2/3kP
4/3P̃ .

If v is large, the terms of order larger than v−1 can be ig-

nored, and we again return to the elementary estimate k̃

< P̃ /v and fk<−p /2 with corrections depending on

ē1/3kP
2/3 /v.

The situation is quite different for the modulated dissi-

pation rate, for which

ẽ cossfed = E
0

`

dk2nk2F̃skd , v−2kP
2 P̃ē1/3nkd

2/3

= v−2kP
2 P̃ē1/2n1/2,

s58d

ẽ sinsfed = E
0

`

dk2nk2G̃skd , v−12nkP
2 P̃ + v−3kP

2 P̃ē ,

where kd= se /n3d1/4 is the Kolmogorov scale. Evidently,

there is a competition between the limits v→` and n

,Re−1→0. The limit v→` at fixed Re will indeed recover

the elementary result ẽ,v−1, but at fixed large v, the limit

Re→` gives instead ẽ,v−3kP
2 P̃ē. The phase has the gen-

eral approximate value tan fe<vn1/2ē−1/2+v−1n−1/2ē1/2, in-

dicating a complex joint dependence on v and Re.

The competition between these limits reflects some basic

physics of the oscillatory dynamics. To leading order, the

oscillating part of the motion is confined to the production

scales, giving the “frozen turbulence” approximation Ẽ0skd

~v−1P̃skd, as suggested by elementary arguments. The pro-
duction range scales make a contribution to the energy that

scales as Re0, and a contribution to the dissipation of order

Re−1.

Distant interactions induce a correction Ẽ1skd
~v−3ē2/3k−5/3 with formally the same scaling as a Kolmog-

orov spectrum. This correction therefore makes Re0 contri-

butions to oscillations of both the energy and the dissipation

rate. In the case of the oscillating contribution to dissipation

rate, for sufficiently large v, the v−3 contribution is eventu-

ally dominated by the v−1 contribution; the transition be-

tween these ranges occurs when v−3,Re−1v−1, so that v

,Re−1/2.

C. Scaling analysis for ẽ

The analysis in the previous section shows how nonlocal

interactions in the Heisenberg and generalized Heisenberg

models can carry the oscillatory disturbance into the inertial

range. These observations suggest a simple scaling analysis

for the modulated energy flux. Assume, following the discus-

sion in Sec. II that scales of motion for which the oscillations

are overdamped, that is, scales satisfying ūskd−1.v do not

transfer any modulated flux, but that modulated flux is trans-

ferred by scales of motion such that ūskd−1,v. The cross-

over occurs at the scale kv defined by ūskd−1=v, or kv

=Îv3 / ē. In both the Heisenberg and generalized Heisenberg

models, the transfer of modulated flux is then given approxi-

mately by

ẽ , E
0

kP

dmm2ẼsmdE
kv

`

dpĒspdūspd , kP
2 k̃ē1/3kv

−4/3

, kP
2 P̃v−1ē1/3v−2ē2/3 , kP

2 P̃v−3ē . s59d

This result is consistent with the existence of a contribution

to G̃ scaling as k−5/3 obtained more formally in Eq. s56d.
The argument can be extended to the EDQNM closure as

follows. Modulated kinetic energy is injected in the flow

around the wavenumber kP. This energy will leave the large

scales to enter the energy cascade at a rate einskPd. Using
classical reasoning, this rate can be estimated by

einskPd ,
k̃

ūskPd
s60d

at high frequencies the modulated energy is

k̃ , P̃v−1 s61d

and the time-scale can be estimated by

ūskPd , ē−1/3kP
−2/3, s62d

so that

einskPd , P̃v−1ē1/3kP
2/3. s63d

The point is now that this energy will be overdamped if it

passes through the scales kP,k,kv. The only way to reach

the zone that can transfer the modulated flux, k.kv, is by

nonlocal energy transfer. This transfer will involve, for kP

!kv, triads with two legs of a length kv and one leg equal to

kP. The disparity parameter s defined as

s =
maxsk,p,qd

minsk,p,qd
s64d

with k ,p ,q the norms of the wavevectors forming a triad, is

for these triads

s <
kv

kP
,

v3/2

kPē1/2
. s65d

It was predicted by Kraichnan
23 scompare also the DNS

study by Zhou
24d, that the nonlocal part of the energy transfer

involving triads with a disparity around s, e fsk ,sd with re-

spect to the total energy flux e fskd scales as

e fsk,sd

e fskd
, s−4/3. s66d

In our case we identify the total flux of modulated energy,

i.e., e fsk ,sd, with einskPd. The nonlocal flux e fsk ,sd corre-
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sponds to the modulated energy flux that manages to reach

the range k.kv and that will eventually be dissipated, and

thus is equal to ẽ. One finds therefore combining Eqs. s60d
and s66d that the modulated dissipation for high frequencies
equals

ẽ ,
k̃

uskPd
s−4/3 , kP

2 P̃ēv−3, s67d

in agreement with Eq. s59d. The inviscid nature of this cor-

rection to the modulated dissipation is in agreement with the

observation in Fig. 2.

It is now possible to draw conclusions on the extension

of the v−3 range of ẽ. The onset can be estimated using

expression s23d for the “static” limit and s67d, which yields

v,kP
2/3ē1/3, a frequency of the order of the eddy turnover

frequency. The transition of the v−3 range to the v−1 range of

ẽ can be estimated by computing the intersection of expres-

sion s67d and s28d. This yields a crossover of the order of the

mean Kolmogorov frequency v,Îē /n=t−1. In Fig. 5, the

EDQNM results for ẽ sFig. 2d are replotted as a function of
vt. The normalization of ẽ by nt is chosen to make the v−1

range collapse.

An important distinction between the classical and gen-

eralized Heisenberg models and EDQNM is that the power-

law scaling of Eq. s66d applies for all s in the simple models,
but is given by a more complex expression for EDQNM.

This implies a difference in the detailed predictions when

kv /kP is of order 1.

V. FINITE DIMENSIONAL MODELS

The problem of periodically forced turbulence has been

investigated through properties of the single-point moments

kstd and estd; complete results for these quantities have been
found from various spectral closure theories. Single-point

modeling attempts to circumvent spectral modeling by con-

structing closed equations for the single point moments

themselves. It is an important theoretical question whether

such equations exist,
25
and indeed, much stronger assump-

tions are needed to close the problem at this level. In this

section, we will assess how much of the dynamics is acces-

sible to single-point modeling.

In order to permit the underlying steady state, a two-

equation model for periodically forced turbulence must take

the form

k̇ = P − e , s68d

ė = C
e

k
sP − ed , s69d

where Eq. s68d is just the energy equation previously stated
as Eq. s15d. For forcing at a fixed length scale, it can be

shown
26
that C=3/2; the e transport equation Eq. s69d then

states that L=k3/2 /e is constant, since Eqs. s68d and s69d

imply L̇ /L= s3/2dk̇ /k− ė /e=0, the same argument that gave

Eq. s22d.
Equations s68d and s69d admit a steady solution in which

Pstd= P̄=estd= ē. We consider the perturbation about this

steady state due to oscillating forcing Eq. s9d; linearization
about the steady state and using the value of the model con-

stant C=3/2 gives

vk̃ sinsvt + fkd = P̃ cossvtd − ẽ cossvt + fed , s70d

− vẽ sinsvt + fed = v̄fP̃ cossvtd − ẽ cossvt + fedg , s71d

where Eq. s70d restates Eq. s17d. Divide Eqs. s70d and s71d to
obtain

sinsvt + fed

sinsvt + fkd

ẽ

k̃
= v̄ s72d

so that

fk = fe = f s73d

and

ẽ = v̄k̃ . s74d

The linearized equations reduce to

vk̃ sin f = P̃ − v̄k̃ cos f ,

s75d
− v cos f = v̄ sin f .

Note that this is just the general result of Eqs. s18d and s19d
with the special closure hypothesis fk=fe. It follows that

tan f = −
v

v̄
, k̃ =

P̃

v̄
cos f =

P̃

v̄

1

Î1 + sv/v̄d2
. s76d

The limits

f , − p/2, k̃ , P̃/v for v → ` ,

s77d

f , 0, k̃ , P̃/v̄ for v → 0

are consistent with the limiting results previously obtained as

Eqs. s29d and s22d. Whereas it is certainly expected that a

two-equation model should be adequate in the static limit, it

FIG. 5. ẽ / sntd as a function of vt for Rel varying from 30 to 1000; t

=În / ē is the mean Kolmogorov frequency.

055107-9 Small scale response and modeling Phys. Fluids 19, 055107 ~2007!

Downloaded 14 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



may be surprising that the frozen turbulence limit for k̃ is
also predicted correctly, particularly in view of the

suggestion
5
that in oscillating channel flow, predicting the

frozen turbulence limit requires rapid distortion theory.

Despite these successes, the two-equation model has

some important limitations. First of all, the phase shifts fk

and fe are equal for all v, in disagreement with Fig. 3.

Second, Eq. s74d states that ẽ and k̃ are proportional for all v.

Recall that this proportionality was found in Eq. s26d as a
consequence of assuming a constant length scale. Compari-

son of Figs. 1 and 2 shows that k̃ and ẽ are certainly not

always proportional. This comparison demonstrates that the

identification of the constant forcing scale kP
−1 with a mul-

tiple of the ratio k3/2 /e cannot be made for general values of
v; following the common terminology that “equilibrium”

turbulence is turbulence in which all dimensional arguments

are valid, we can say that periodically forced turbulence is

not in equilibrium.

What is most striking is that the two-equation model

cannot predict the n dependence of ẽ and fe, which is not a

low Reynolds number effect in this case. A fundamental ob-

servation of Speziale and Bernard
27
is that Reynolds number

dependence in the dissipation rate dynamics is a manifesta-

tion of unbalanced vortex stretching, the absence of which
underlies the classic formulation of the e equation by Ten-

nekes and Lumley.
28
Even if we were satisfied with a high

Reynolds number model, it should predict ẽ<0 for large v.

We have noted that this limit is due to the filtering effect of

the spectral cascade. Evidently, this effect cannot be captured

at the level of a two-equation model.

Another way to understand the relation between spectral

closure and the two-equation model is to note that Eq. s75d is
obtained from the general closure model Eqs. s37d and s38d
by making the single relaxation time approximation

L + 2nk2I < v̄I s78d

before integrating over k. This type of simplification, by

which the continuum of time scales in a turbulent flow is

replaced by a single dominant time scale, is a mainstay of

modeling, and is often very useful; however, in the problem

of periodically forced turbulence, it suppresses the nontrivial

features of the finite v dynamics.

One remedy is, as always, to argue that the model con-

stants should be functions. If we set C=Csv / v̄d, then if C↓0

for ṽ↑`, the correct behavior can be reproduced. However,

this ad hoc model would have no validity apart from this

very special problem and would merely amount to curve

fitting.

We would like to comment briefly on the modeling of

this flow with a more complex finite dimensional model with

two characteristic time scales; that is, a “multiple-scale”

model.
26
For example, consider a three-equation model in

which energy flux f is distinguished from dissipation e. A

general form for such a model that is consistent with a steady

state is

k̇ = P − e ,

ḟ = C1

f

k
sP − fd , s79d

ė = C2

e

k
sf − ed .

The limits C1↑` and C2↑` both recover the two-equation

model. The primary motivation for this model is that there

are now two time-scales, i.e., k /e and k / f , instead of only

one.

Linearizing as usual about the steady state

k̄ + k̃ cossvt + fkd ,

fstd = f̄ + f̃ cossvt + f fd , s80d

estd = ē + ẽ cossvt + fed .

Then,

vk̃ sinsvt + fkd = P̃ cossvtd − ẽ cossvt + fed , s81d

− v f̃ sinsvt + f fd = C1

f̄

k̄
fP̃ cossvtd − f̃ cossvt + f fdg ,

s82d

− vẽ sinsvt + fed = C2

ē

k̄
f f̃ cossvt + f fd

− ẽ cossvt + fedg . s83d

The intervention of the new quantity f in the dynamics

means that k and e are no longer constrained to be in phase.

However, prediction of the high Reynolds number result ẽ

<0 remains impossible: Equation s83d then requires f̃<0,

which is inconsistent with Eq. s82d. It is not difficult to

evaluate both phase lags f f and fe, but even without explicit

results, it is evident that Reynolds number dependence of fe

remains inaccessible to this model. Although the three-

equation model allows more complex phase relations and

modeling of time delays in the spectral cascade, it, like the

two-equation model, cannot take the Reynolds number de-

pendence into account correctly. The addition of time scales

to the dissipation rate dynamics does not solve all of the

problems of two-equation modeling.

VI. CONCLUSIONS

The influence of periodic large scale forcing on isotropic

turbulence has been investigated by spectral closure theory.

The asymptotic frequency dependence of the modulated en-

ergy and modulated dissipation as observed in recent

simulations
9
were recovered. It was pointed out that the

asymptotic behavior of the modulated dissipation, which is

proportional to v−1, corresponds to the viscous damping of

the forced wavenumbers, which is local in wavenumber

space. For high and moderate Reynolds numbers, an inter-
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mediate v−3 frequency dependence of the modulated dissipa-

tion was observed in the EDQNM calculations. This range

characterizes the filtering properties of the energy cascade.

Closures allowing for nonlocal interactions sEDQNM, clas-

sical or generalized Heisenbergd can reproduce this behavior
as it corresponds to nonlocal energy transfer between the

forced scales and a range of wavenumbers characterized by a

crossover wavenumber k.kv,Îv3 /e. Finally, it was ar-

gued that finite dimensional models cannot correctly describe

the problem of modulated turbulence.
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