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Abstract

We propose in this paper a new approach for the modelling and recognition of temporal
scenarii. A scenario is represented by three different structures. The first one models the logical
dependency between the elements of the scenario, using possibilistic logic, while the second one
is the minimal temporal graph representing all temporal constraints between the events. The
third structure explains the way the matching between observations and scenarii has to be done.
The consistency between the three structures is ensured.
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1 Introduction

Situation assessment appears to be a key issue in many fields of application involving complex
information processing coming from several sources —the so-called data fusion problem—, since
it is the crucial step on which all subsequent decisions will rely upon. When the situation is
dynamically evolving with time, and if this temporal dimension appears to be a main component
in the assessment and subsequent decisions, we are faced with the problem of having a suitable
representation of time. Such cases are more the rule than the exception in the real world, let us
cite the behaviour of football teams and sheep herds, anti-aircraft defence systems amd many other
surveillance systems.

The aim of the paper is to bring a new approach in modelling and recognition of such dynamical
situations, where we assume that we have at our disposal typical examples of evolution of situations,
or behaviours, which can be stored in a database.

These more or less complex behaviours, which we call scenarios, are made of sequences of
events or elementary actions which follow on from each other. For example, a scenario could be the
behaviour of a sheep herd chased by a wolf, an attack by a fighter, a fire hazard in an underground
station, etc. In the sequel, we will use the term activity to denote an action or an elementary event
which is a component of some scenario. Obviously, the duration of each activity, as well as the
delay between two activities, are of importance for the recognition.

The recognition of scenarios is mainly based on the matching between observations (measure-
ments and information issued from sensors in a wide sense) and behavioural models. These mea-
surements pertain to the identification of the activity, but also to their dates (beginning, end).

*This paper is an updated and extended version of a paper published in french at the RFIA conference [22].
tOn leave from THALES Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France.



We do not pretend in this paper to solve the problem in its full generality. Rather, our work was
motivated by an underlying application in the anti-aircraft defence area, which has some specific
requirements. Our aim was precisely to build an approach able to fulfill them. We give here the
main assumptions and requirements stemming from the application field.

incoming information: identification of observed events (activities), with an uncertainty level;
dates of beginning and end, or duration (possibly imprecise).

outcoming information: a list of best matching scenarios, with a level of confidence or match-
ing; estimated observation errors and (supposed) missing observations needed to match the
scenario in full.

incremental aspect: observations arrive to the system in a random way. For each new piece
of information, the system must perform a recognition step and update the current state of
knowledge, without having to wait for the whole (or a somewhat large) set of observations.

false alarms and non detections: the system must be able to cope with non detections of ac-
tivities as well as false alarms. In particular, they must not prevent the recognition of a
scenario to be done.

description of scenarios: scenarios being composed with activities, it should be possible to ex-
press the fact that some activities are mandatory for the recognition while others are faculta-
tive. Also, activities may be related by a logical OR (exclusive or not). Lastly, time modelling
should be able to take into account imprecise descriptions, such as “short duration”, “about
5 minutes”, and so on.

a priori knowledge on scenarios: for example, it should be possible to indicate which scenarios
are more frequent or more plausible (in a given context) than others.

real time: the system should be able to perform the (incremental) recognition in real time.

In addition, we make the assumption that only one scenario is going on.

We believe that these requirements are of sufficent general interest to justify the presentation
of our approach as a general methodology to tackle this kind of problem. We will situate it among
the current approaches of temporal scenario recognition, and limit ourself to a rather conceptual
presentation, illustrated with small examples. We do not address in full all issues pertaining to
implementation and validation on real scenarios. This will be the subject of future studies.

The paper is organized as follows. Section 2 gives a first intuitive definition of a scenario. Section
3 gives an overview of current approaches, while Section 4 gives a brief overview of possibilistic logic
and ATMS. Our approach is detailed in Section 5, and is illustrated on an example (Section 6).
Section 7 concludes the paper and discusses several issues not taken into account in our approach
and alternative solutions.

2 Definition and example of scenario

We propose the following informal definition of a scenario.

Definition 1 A scenario s the root of a tree, whose nodes are activities or sub-scenarios, such
that:

e a sub-scenario is a scenario



activities are sub-scenarios which cannot be decomposed further: they are directly observable.
As a consequence, they are the leaves of the tree.

e an ancestor sub-scenario is composed of all its descendant sub-scenarios

a logical connective links all descendant nodes of an ancestor node

a duration is assigned to each node, and possibly a delay with respect to other nodes. This
temporal information may be imprecise.

o q plausibility degree or frequency is assigned to the scenario.

Moreover, we call event any observation, which is supposed to match with some activity. In other
words, “activity” refers to the modelling part, while “event” refers to the recognition part.

We illustrate this definition by an example.

EXAMPLE 1: Suppose the following description of a scenario (labelled S1) given by an
expert.

At first, activity A is observed, whose duration is about 10°, then after a while,
activities B and C, which are more or less simultaneous, are observed. Their
duration is between 10" and 20’. Activity B is splitted into two sub-activities
D and E. In general, both are observed and in this case, it is always D first,
followed by E with a delay of about 5, but it is not uncommon to observe only
one or the other. In the whole, the scenario lasts between 10" and 30'.

According to our definition, we can draw this scenario under a tree form (figure 1).

S duration: 10" to 30

AND
A B duration : 10’ to 20’ C duration : 10’ to 20’
duration : about 10’ delay/A:0t05 delay/B : 0
delay/S1: 0
OR
D E

delay/B:0  delay/D : about 5

Figure 1: Representation of the scenario of Example 1

We remark that the above tree represents only partially the description given by the expert, con-
cerning activities D and E. We will come back later to this.

3 An overview of current approaches

We try to give a brief overview of main existing approaches for the modelling of temporal scenarios,
without pretending to exhaustivity. Our compilation follows in the whole the one made by Eude
[17], and incorporates previous research works done in the THALES group [5].



3.1 Modelling temporal information

Our interest here is more on the updating of temporal data than causality and reasoning aspects.
Thus, modal logics, reified logics, and temporal possibilistic logic [9] are not considered here. Three
types of representation can be distinguished:

symbolic representations: the basic element of the language is a pair [logical relation ; temporal
concept]. We can find in this category the works of Allen [1] and of Mc Dermott [7]. In
the work of Allen, the basic primitive is the temporal interval, on which binary relations
are defined, such as “before”, “after”, “covers”, “terminates”, and so on. By contrast, the
basic primitive of Mc Dermott is the instant, and the binary relations are <, >,=,#. IxTeT
(Indexed Time Table) proposed by Ghallab [20] is a simplification of the logic of Mc Dermott.

numeric representations: thay are based on graphs whose nodes are instants. Links between
nodes are disjunctions of intervals of R.

In this category we can find TCSP (Temporal Constraint Satisfaction Problem) and STP
(Single Temporal Problem), where temporal relations are respectively disjunctions of closed
intervals, and (single) closed intervals. All temporal relations defined by Mc Dermott can be
represented by a TCSP, but a STP cannot represent the relation #, equivalent to (> or <).

mixed representations: Kautz [24] has proposed to use two graphs, one of the Allen type where
all symbolic relations on intervals can be expressed, and the other of the STP type. The
two graphs are of course closely linked, and there are two algorithms able to translate the
information of one graph into the other one, with a minimal loss of information.

fuzzy representations: all basic temporal elements (dates, durations, etc.) are represented by
fuzzy numbers, i.e. fuzzy sets [37] which are convex and upper semi-continuous (see e.g. a
survey in [13]). This enables the modelling of information such as “about 5 minutes”. There
exist several ways to represent intervals. Steunou [34] and Chen [4] consider that an interval
is a pair of fuzzy instants (beginning, end), while Dubois and Prade [14] consider it as a fuzzy
set (4 p)(t) obtained by the extension principle, the function being ¢t = 1f,. Also, Marin
[28] considers it as a triplet of fuzzy numbers (beginning, duration, end).

Godo and Vila [21] propose a Horn clause-like temporal language called FTL based on a
general notion of duration or metric temporal distance. The basic predicate is Fuzzdist (t,t', ),
where t,t denotes the beginning and end of some events, and 7 is a fuzzy set representing
a fuzzy constraint on the time interval between ¢ and ¢’ (see also [30] for an equivalent
presentation based on possibilistic logic with fuzzy constants).

3.2 Temporal reasoning

Approaches based on CSP (Constraint Satisfaction Problem) are by far the most widely used (see
e.g. [32]). They are based on numerical representations of the TCSP or STP type, i.e. each problem
is represented by a graph which nodes are instants and arcs are temporal constraints (intervals or
disjunction of intervals). It is however possible to consider symbolic constraints. In the sequel,
we restrict to the case of STP with numerical constraints. We develop a little more this in what
follows, since we will rely on this approach in our method.

A constraint between nodes 7 and j is denoted C(i,j) = [a,b], which means that the time
interval between ¢ and j is a number belonging to the interval [a,b]. Elementary operations on
constraints are:



e the inverse of C(i,j) = [a,b] is defined as the constraint C(j,7) = [-b, —a].
e the intersection of two constraints on an arc is defined by [a, b]N[c, d] = [max(a, ¢), min(b, d)].

o the composition of C(i,j) = [a,b] and C(j, k) = [c,d] is defined by [a,b]o[c,d] = [a+ ¢, b+d)].
It is the basic operation for constraint propagation.

We introduce now some definitions and classical results on consistency. We define at first the
unary constraint C(i) of node i, as the constraint which limits the possible values of the variable
attached to node s.

consistency and inconsistency of a graph: a graph is inconsistent if no instanciation of the
variables satisfies the constraints. Otherwise, the graph is globally consistent.

2-consistency: a graph is 2-consistent if for any instanciation of a node i satisfying C(3), for any
node j, there exists an instanciation of j satisfying C'(j) and the binary constraint C(i, 7).
This is also called arc-consistency.

k-consistency: a graph is k-consistent if any locally consistent instanciation of k£ — 1 variables
can be extended to a locally consistent instanciation of k variables. Strong k-consistency
is m-~consistency for any m < k. For a graph with n nodes, n-consistency implies global
consistency.

path-consistency: let 4, j a pair of nodes for which there exists an instantiation satisfying C'(4, j),
C(i), and C(j). The graph is path-consistent if for any path between 7 and j, the instanciation
can be extended so that all unary and binary constraints on the path are satisfied.

The graph is complete if there is an arc between all pair of nodes. A theorem due to Montanari
[29] says that for complete graphs, path-consistency is equivalent to 3-consistency.

Two graphs are equivalent if they have the same nodes and the same set of solutions. This
equivalence relation proves the existence in each equivalence class of a minimal element in the sense
of inclusion: it is the minimal graph, which contains the most possible restrictive constraints. The
following results are noticeable:

e every partial solution of the minimal graph can be extended to a global solution (strong
n-consistency)

e if the minimal graph has no empty constraint, then it is globally consistent.

Davis has shown that in the case of numerical STP, 3-consistency filtering leads to a minimal graph.
3-consistency filtering transforms a graph into an equivalent one which is 3-consistent. Algorithms
PC1 (Montanari) and its improved version PC2 (Mackworth) implement 3-consistency filtering.
For TCSP, it is necessary to decompose into a disjunction of STP’s to get a minimal graph by PC1
or PC2.

Concerning the handling of fuzzy temporal constraints, flexible CSP have already been largely
studied, e.g. by Fargier, Verfaillie et al. [3, 31]. It is possible to adapt to fuzzy constraints concepts
of consistency and minimal graph, as well as algorithms for minimal graphs, by replacing standard
operations by their fuzzy counterparts (see also [35]). A result similar to the theorem of Montanari
can be obtained, which says that, for a graph of non disjunctive flexible constraints, 3-consistency
ensures minimality. In FTL, Godo and Vila [21] perform fuzzy constraint propagation through
some specific inference rules, some of them corresponding to the above mentionned elementary



operations. A particular rule of interest is the one translating an imprecise predicate FuzzDist with
certainty degree « to another more imprecise but certain predicate.

Lastly, we just mention other approaches for temporal reasoning. These are distance graphs
[6], which is more or less a translation of temporal graphs in terms of distance, IxTeT [20, 8], also
based on CSP techniques, and inequalities systems [5].

3.3 Scenario recognition

We suppose to have at our disposal a collection of scenarios, which is an exhaustive representation
of the set of situations we wish to recognize. As mentioned in Section 1, we restrict to incremental
techniques of recognition, i.e. the scenario has to be identified before it terminates.

Each observation is compared to the elements constituting a scenario.The matching is successfull
if the observation is of the same type as the type of the element, and if the observation satisfies all
constraints induced by the other elements of the scenario. In what follows, we distinguish between
approaches based on logical inference and on temporal aspects.

recognition by logical inference: in the approach of Kautz [24], a structural recognition is per-
formed at first, which consists in doing logical forward inferences on a rule base describing
the scenarios. Then, a temporal recognition is done, based on CSP techniques.

There exist other approaches in this category, based on abductive recognition (MATIS [16],
SCAN [27)).

recognition based on temporal information: Fontaine [19] proposes to build a graph G(S)
for each scenario S, and a graph I'(X) of the set ¥ of observations. The two graphs are then
compared, after having been made complete and minimal.

In IxTeT [20], the recognition is based on constraint propagation in a temporal graph.

mixed approach: In FTL proposed by Godo and Vila [21], temporal and atemporal variables
are treated in a common language, whose general inference rule is similar to the possibilistic
inference of possibilistic logic.

3.4 Synthesis and conclusion

In many cases, the structural and temporal aspects are distinguished (Kautz). The structure of
the scenario is often expressed under a logical form, while the temporal aspect is expressed by a
graph of instants. The best way to process temporal graphs seems to compute the minimal graph,
with adequate algorithms, since this has some theoretical basis. If the graph has no constraint in
a disjunctive form (STP), the PC1 algorithm (and its more sophisticated variants) is sufficient.

Temporal recognition is done either by comparison of the graph of observations with the graph
of scenarios (Fontaine), or by propagating constraints as soon as new observations are coming
(IxTeT).

In many cases, the recognition system merely tells if a scenario is possible or not on the basis
of the observations, and do not provide compatibility or matching degree (Fontaine). However,
it seems to be desirable to assign such degrees to plausible scenarios, both on a structural and
temporal point of view. This would permit to rank the different scenarios selected by the system.
In structural recognition, we may wish to take into account the number of identified activities, as
well as their relative importance. The more a scenario matches with observations, the higher the
confidence degree. On the other hand, all activities have not the same importance to characterize



a scenario, one may even imagine optional activities, whose non observation should not inhibit the
recognition of the scenario. Also, due to the presence of imprecise, fuzzy information (dates), it is
desirable to be able to define a compatibility degree between an observation modelized by a fuzzy
number and an activity of the graph.

To take into account these different needs, Eude [17] proposes to compute a global degree of
compatibility between a scenario and observations. The compatibility of the scenario is computed
by the aggregation of compatibility degrees at the level of components of the scenario, using a
suitable aggregation operator.

The processing of fuzzy information on dates, durations, etc. is not allowed in the above
mentionned methods, however, they can be extended in order to take them into account. Eude [17]
has developed a method for the processing of fuzzy (or flexible) constraints (FCSP) for scenario
recognition, based on previous works on this subject (see e.g. Fargier [18]). Also, the FTL language
of Godo and Vila [21] offers an alternative approach for scenario recognition with fuzzy temporal
information.

The above analysis, together with the requirements expressed in Section 1, has lead to the
approach detailed in Section 5. Here, the idea of Kautz to separate the structural and temporal
parts is kept. The temporal aspect is handled classically by CSP techniques. The structural aspect
is coded using possibilistic logic (see Section 4), which has the advantage to allow a representa-
tion of uncertainty in the modelling of a scenario and observations. Lastly, in order to obtain a
matching degree between observations and scenarios which has some expressivity, a third structure
is introduced.

4 Basic concepts in possibilistic logic

We give in this section a brief overview of possibilistic logic, restricting to concepts necessary to
our study. For a detailed presentation, see e.g. [2, 10, 15].

Let ©Q be the set of interpretations. A possibility distribution 7 on Q is a function which
expresses to which degree each interpretation w is possible (plausible). 7(w) = 0 means that w is
impossible, i.e. w can never occur, while 7(w) = 1 means that w is completely possible, i.e. nothing
prevents w to occur.

For every formula ¢, we define their possibility and necessity degree by:

II{¢) = sup m(w) (1)
wlwkEyp
N(p) = 1-T(-p) = inf (1-n(w). (2)

We have the following properties:
(i)
(i) Y, 9, I(p V ¢) = max((p), IL(%)).

(iii) Ve, 9, N(p Avp) = min(N(p), N(¢)).

N(¢) = 1 means that ¢ is certainly true, while 1 > N(¢) > 0 means that ¢ is somewhat certain
and - not certain at all. N(¢) = N(—¢) = 0 corresponds to total ignorance. 0 < II(¢) < 1 means
that ¢ is not certain at all and —¢ is somewhat certain, and II(¢) = 0 means that ¢ is certainly
false.

ML) =0, N(T)=1.



We define the notion of necessity valued formula or N-formula by a pair (¢ «), with a € [0, 1]
representing the degree of certainty of formula ¢. More precisely, (¢ «) means that N(¢) > a.

We write 7 = (¢ «) if and only if N(¢) > «, where N is the necessity induced by w. If
F={(p1 ai1),...,(pn apn)} then F E (¢ «) if and only if Vr, 7 |= F implies 7 = (¢ «).
The following deduction theorem can be shown:

FU{(¢ 1)} E (@ «)ifand only if
FE@—9y o).

The consistency degree of F is defined by Coh(F) = sup,zsup,cq 7(w). It expresses to which
degree it exists an interpretation which satisfies 7. The inconsistency degree is then Incoh(F) =
1 — Coh(F).

The most widely used resolution principle is the following:

N(pVq) >«
N(-pvr)>p

N(q V r) > min(a, ).

It is consistent and complete for refutation.

Possibilistic logic has served as a basis for extending the concept of ATMS (Assumption Truth
Maintenance System) of De Kleer, hence the name possibilistic ATMS, or II-ATMS [2].

Generally speaking, a II-ATMS is able to answer the following questions:

(i) Under what configuration of assumptions is a fact d certain to a given degree?
(i) What is the inconsistency degree of a given configuration of assumptions?
(iii) In a given configuration of assumptions, to which degree each observed fact is certain?

Usually propositional variables are split into hypotheses and non-hypotheses. The hypotheses are
all variables which can be input of the system (observations in our case). Non-hypotheses are all
other variables. Like clauses, hypotheses and non-hypotheses are (necessity-) valued.

In what follows, F = {(¢1  a1),...,(¢n an)}is aset of Horn N-clauses. A fact is a particular
clause, generally formed with non-hypotheses.

Let £ be a set of valued hypotheses. We say that:

(i) [ «a] is an environment of a fact d if € UF = (d «), where the hypotheses of £ are
considered as certain.

(ii) [€ <] is a a-environment of d if [ «] is an environment of d and if for all &/ > a, [ /]
is not an environment of d (« is maximal).

Let d be a fact. The label of d is the unique set of environments of d
L(d) ={[& oul,i €T},
where all hypotheses in the &;’s are certain, and which satisfy the 4 following properties:

consistency: V[&; «;] € L(d), Incoh(&; U F) < .



relevance: L(d) contains only environments of d.
completeness: all minimal a-environments of d are present in L(d).

minimality: L(d) does not contain two environments [€7 ;] and [€2 9] such that & C &; and
a1 > Q9.

The notions of context, interpretation and candidate have also been translated in the possibilistic
framework. Efficient algorithms for computing labels have been proposed and implemented [2].

5 A new approach to scenario modelling

As it has been said at the end of Section 3.4, we introduce three distinct structures, each having
its role in the recognition.

the decomposition tree of the scenario in observable activities or sub-scenarios. This tree rep-
resents the structure of the scenario, on a logical point of view. Temporal information, as well
as information about the relative importance of activities in the recognition of the scenario
do not appear here.

the temporal graph describing the time sequence of the different activities. Nodes of the graph
are instants, while arcs bear constraints of delay between instants.

the aggregation tree of activities and sub-scenarios describes in a precise way how the compo-
nents of the scenario intervene for its identification (importance of activities, conjunction or
disjunctions between components, compensatory effects, etc.). It is structurally identical to
the decomposition tree, and is a refinement of the decomposition tree (this will be detailed
in Section 5.4).

In what follows, we will detail individually each structure, then we will explain the link between
them, and finally give the recognition algorithm. We will not consider fuzzy temporal constraints
(see however Section 7).

5.1 Structural aspect

The decomposition tree is constituted by a root, which is the scenario itself, nodes, which are
sub-scenarios, leaves, which are observable activities, and logical connectives between links, which
are limited to AND, OR (for XOR, see Section 7). In the case of Example 1, the corresponding
decomposition tree is given in Fig. 2. This structure is now expressed with Horn N-clauses, which
will be used in a II-ATMS (see Section 4) for the recognition phase, in the following way:

e propositional variables correspond to the nodes of the tree, including the leaves and the root.

e hypotheses correspond to leaves, while all other nodes are non-hypotheses.

e each scenario or sub-scenario S is translated into a Horn N-clause of the following form:
(RAV=Ag V- VoA, V=8 Va8 Ve VaS, VS a)

where Aq,..., A, are activities, S1,...,S; sub-scenarios of S, o a certainty degree attached
to the clause, and all A;, S; are linked by a AND in the decomposition tree. In case of OR,
we split into g + r clauses.



scenario

( Sl 3\
AND
sub—scenario
A B C
activity activity
OR
D E
activity  activity
e —

Figure 2: Decomposition tree of scenario of Ex. 1
e clauses expressing the (a priori, i.e. when no observation is available) credibility of each
scenario, of the form (S «).

In the case of Fig. 2, we obtain (certainty degrees are arbitrary here):

(~AV-BV-CVS, 1)

(—|D vV B 08)
(-EVB 0.9
(S1 0.2)

We detail now the recognition phase. We suppose to observe events, translated into clauses by
(A «), where A is the activity corresponding to the observed event, identified with a certainty
degree a. For each new clause ¢, the following steps are performed:

1. ¢ is added to the knowledge base F. All tautologies and clauses subsumed by ¢ are removed
from F U {y}, the resolution principle is applied, and again subsumed clauses are removed.

2. Compute labels of all scenarios. The label of a scenario contains all minimal environments
(i.e. in our case, a list of observable activities), which will enable the recognition of the
scenario with a given degree of certainty.

10



Let us apply this procedure to our example, supposing we have observed D, F, A modelized by
(D 0.7), (E 0.6), (A 1). The new base is now:

(-BV-CV S 1)
4 1

(-EVB 0.9)
(-DV B 0.8)
(-CV S, 0.7)

(D 0.7)

(B 0.7)

(E 0.6)

(S1 0.2)

The label of S; is then:
{B,C}1,{C}o7,{}o2}

This result says that, if we observe (with certainty) B and C, we can identify S; with full certainty;
if we observe only C, then S; will be inferred with a certainty 0.7. Lastly, in the absence of further
observation, S; will be inferred with a certainty degree 0.2, which corresponds to the a priori
knowledge.

5.2 Temporal aspect

We use here a graph of temporal constraints, treated by a minimalization algorithm (PC1 or others).
The temporal graph is constituted by:

e nodes representing instants (beginning and end) of the scenario, all sub-scenarios and activi-
ties.

e arcs with delay constraints existing between two nodes, as they are specified by the expert in
the description of the scenario.

To obtain this graph, it is necessary to build at first a Gantt chart, where the begininng and end
instants of all activities, sub-scenarios and the scenario itself, with the following conventions:

e vertical lines indicates simultaneity.
e 04 indicates the duration of activity (or (sub)-scenario) A.

e the symbol A4 py indicates a delay between the beginning of A (denoted (A), and the end
of B (denoted B)), and similarly for delays between A), (B, etc.

Figure 3 shows the Gantt chart corresponding to Example 1. Question marks indicate that the
concerned information is not available. A problem however exists since the description of the
scenario does not indicate which activity terminates the scenario (B or C?), and similarly for
sub-scenario B (D or E?). To solve this problem, we can either fix arbitrarily these limits (this
is done in Fig. 3, considering that B terminates S; and E terminates B), or consider as many
scenarios as there exist different possibilities for fixing the limits, or write as a constraint the fact

11



dg in[10, 30]

Oa about 10

A p g awhile OB in[10, 20]
O (?)

A< D<E about 5 5E(r))

Oc in[10, 20]

Figure 3: Gantt chart of scenario of Example 1

that an ancestor sub-scenario A begins with the beginning of its first descendant sub-scenario, and
terminates with the end of the last descendant sub-scenario, specifically:

tiqa = min t
{4 B descendant of A (B
t A) = max t B)

B descendant of A

However, such constraints cannot be expressed in our temporal graph as defined above. We need
for this more evolved language for constraints, such as CLAIRE/Eclair [26].

Supposing that £ terminates B and B terminates Si, the graph obtained is given in figure 4.
We have assigned arbitrarily the interval [10, 20] for 6 and dp.

<S1

[ ) [0,5] 0
<b 5 <B <C

<€ 4% <p

(8, 12]

[10, 20]
WVJ
(1030 ) °
a [10, 20]
o
[10, 20]

E

A>

Dﬁ

(2]

1>

Figure 4: Temporal graph of scenario of Example 1

Once the graph is defined, we must make it complete by linking all nodes together. For these
new arcs, we choose very loose constraints. Then we make the graph minimal. Figure 5 shows the
result, where for the sake of readability, we have put only those arcs already present in the original
graph. Bold figures indicates constraints which have been updated. Since no constraint is empty,
the graph has a solution.

12



<81

(8, 12]

T_I_J [10, 16]
Vv
[14,25]WJO
a [10, 20]
o
[14, 20]

B> >

E [10, 20]

Figure 5: Minimal temporal graph of the scenario of Example 1

We detail now the recognition part. We suppose to observe one or several events, corresponding
to activities A1, Ao, ..., on which we have temporal information, either of duration, or delay with
respect to other activities, or dates. Let C be the list of constraints obtained from these informations.
For each constraint C(i,7) in C, we perform:

C*(i,5) < C*(6,5) N C(i, )

where C*(i,7) is the corresponding constraint of the minimal graph. Calling G’ the modified
graph, we compute the corresponding minimal graph. If the graph has an empty constraint, then
the observations cannot belong to the considered scenario. The procedure is repeated whenever
there are new coming observations.

Let us illustrate this procedure with our Example 1. We suppose that events are observed,
corresponding to activities A and D (E is no more observed), with the following temporal infor-
mations:

e duration of A : between 10’ and 14’ ;
e duration of D : between 18’ and 20’ ;
e delay between the beginning of A and the end of D : between 15’ and 20’.

After modification and minimalization of the graph, we obtain the graph of Figure 6. Since no
constraint is empty, observation matches the scenario for the temporal aspect.

5.3 Matching

The last step consists in computing a degree of matching between observations and a given scenario.
The aggregation tree expresses in a precise way the importance of the recognition of each node in
the whole process of recognition, as well as the type of logical connective (in a broad sense) which
links the descendant nodes of a node. This connective can be of conjunctive type, disjunctive type,
of compensatory type (see hereafter), or any combination of them, including unary connectives as
the negation.
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Figure 6: Minimal temporal graph after minimalization

The aggregation tree has the same structure than the decomposition tree. The choice of the
connectives, and importance weights if the connectives are weighted, can be done by considering
the behaviour of the connectives and the description of the expert.

Besides classical connectives from binary logic, the theory of fuzzy sets offers a large range of
(weighted or not) connectives, which permits to combine in a very flexible way degrees of matching
defined e.g. on [0, 1] (see e.g. [11, 23]). We do not detail here this topic, but we just mention the
main families, focusing on ordered weighted averages (OWA), which are of particular interest here.

minimum and maximum They correspond to the classical AND and OR respectively. More
generally, triangular norms and co-norms [33] (t-norms and t-conorms for short) are asso-
ciative connectives which generalize conjunction and disjunction (see the monograph [25] for
details). The greatest t-norm is minimum, and the smallest t-conorm is maximum.

mean operators They are comprised between minimum and maximum, and express some com-
pensatory effect between matching degree, i.e. a low (high) matching degree can be com-
pensated by a high (low) one, which is never the case with triangular norms and conorms.
Common examples are the (weighted) arithmetic mean, the geometric mean, etc. However,
it should be noted that mean operators have no clear logical interpretation, so that their use
should be avoided in this context.

weighted mimimum and maximum [12] They extend the minimum and maximum in the fol-
lowing sense. Let wy, ..., wy, be a set of weights in [0, 1] such that max; w; = 1. The weighted
minimum and maximum are defined by:

n

Wmimul,...,wn (a'la ce aan) = 1}?l:ill'l(n’la'x((l - wj), a’j))
WINAXqy,,...,wp, (a'la .- aan) = I?E‘f((min(wja a’j))

The meaning of the weighted minimum is the following in our context: a node is recognized
(high degree of matching) if all its important descendant nodes are recognized.

14



ordered weighted average (OWA) [36] Let wy,...,w, be a set of weights in [0, 1] such that
>, wi = 1. The OWA connective is defined as:

n
OWAwl,...,wn (al, “e ,(I,n) = Z ’LUZ'(I,U(Z')
i=1

where o is a permutation of indices such that a,(1) < --- < a4(,). These connectives include
minimum and maximum as particular cases, and have the meaning of a fuzzy quantifier, i.e.
in our context a node is recognized if most of (or a few, about half, etc.) its descendant nodes
are recognized.

Coming back to our example described in Section 2, it is clear that S; is formed by the conjunction
of A, B,C without weight, hence the minimum is used. For B, we deduce from the description
that:

e if D and FE are observed, then the recognition of B is completely satisfied. This is translated
by #(1,1) =1, if 1 indicates the maximal matching degree.

e if only one of the two is observed, we recognize also B, but to a less extent. We may suggest
for example H(0,1) = H(1,0) = 0.7.

In this case, the OWA connective is suitable, with weights w; = 0.3, ws = 0.7, as it can be easily
checked. Finally, our aggregation tree is given on Figure 7.

S1 min(A,B,C)
A B C
OWA (D,E)
030.7
D E

Figure 7: Aggregation tree of scenario of Example 1
We describe now the matching procedure. Let S be a scenario involving activities A1, ..., Ay,
and A C {A1,...,A,} be the subset of observed activities.

Step 1: Compute the matching degree between the observation A’ and an activity A of S, denoted
comp(A’, A), for every A € A. This degree takes into account attributes of A, but it may
consider also temporal information (see Eude [17]).

Step 2: For each non empty environment £ of the label of S, not containing sub-scenarios, compute
the matching degree of £ as follows:
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1. For any activity A € &, assign a matching degree of 1 (it may subsume the degree
computed in Step 1, when A is observed).

2. Apply recursively the following formulas to each sub-scenario S; according to the aggre-
gation tree:

e if S; is a conjunction of p descendant nodes A;,,...,A;, expressed by a clause of
certainty degree a;, then

comp(S;) = min(H;(comp(A4;,),...,comp(4;,)), )

e if §; is a disjunction of p descendant nodes A;,,...,A; expressed by p clauses of

certainty degree ;;, j = 1,...,p, then

ip

comp(S;) = Hi(min(comp(4;,), @, ), - . ., min(comp(4;,), @i, ))
where #; is the connective of sub-scenario S;.

The above procedure ensures that the decomposition tree is consistent with the aggregation tree,
so that te maching degree of S is a refinement of the certainty level of S, see Section 5.4 for precise
definitions and proofs.

Let us comment briefly about Step 2. Environments of the label of S give the certainty degree
of S if all activities and sub-scenarios in & were observed with certainty. Hence, environments
containing sub-scenarios are discarded since sub-scenarios are not observable, and matching degrees
of all A € £ are set to 1. Now, the precise usage of the matching degrees of all environments depends
on the application and what is aimed at. Environment &) := {41, ..., A, }\A is of particular interest
since it contains exactly all unobserved activities. If the aim is to decide at some instant which
scenario is the most plausible on the basis of all observed activities, we suggest to choose the one
with highest matching degree for &. If one is interested in making other assumptions (e.g. what if
observed activity A were observed with full certainty ?, etc.), one may look at other environments.

Continuing our example, let us take the label of S; computed in Section 5.1, with the above
chosen connectives. The only non empty environment which does not contain sub-scenarios is

{C}o.7 (which is &). We obtain:

comp(S1) = min(min(1, OWAg.3,0.7(min(0.7,0.8), min(0.6,0.9)), 1), 1)
=0.67.

Observe that the result is slightly inferior to 0.7, since an OWA is more conjunctive than OR.

5.4 General algorithm

We describe in this section the whole process of recognition. We suppose that the scenarios are
all modelized by the three structures described above. The problem to solve is the cohabitation of
these three structures so that they can assume their role without conflict. We carefully examine
this point in the sequel.

Temporal graph/Decomposition tree Let ¥ be the knowledge base of the II-ATMS. The
problem is that 3 contains the description of all scenarios and all observations. Clearly, if the

temporal recognition module says that S; is not possible, the clauses relative to S; in 3 should be
inhibited.
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We propose the following solution. Let Si1,S2 be two scenarios, whose activities and sub-
scenarios are denoted A, B, C, ..., some of them being possibly in common. We introduce a propo-
sitional variable for all nodes of each scenario. Even if some nodes are in common, they will be
labeled as different variables Aq, B1,..., As, Bs,.... If the scenario S is not compatible with the
temporal graph, we will put in the knowledge base only observations for So, i.e. Ay, Bo,....

Temporal graph/Aggregation tree The problem which may occur is the following: let A be a
sub-scenario composed with activities B and C linked by an OR. Let us suppose that B and C are
observed, that B satisfies the temporal constraints, but not C. This will cause the rejection of the
scenario. However, since A can be only recognized by B, it would be better to say: “sub-scenario
A is recognized, and observation C seems to belong to another scenario which is going on”.

In our case, we suppose that only one scenario is going on, hence this situation cannot occur.
However, if one would like to avoid this situation, it suffices to decompose each scenario including
OR connectives in several scenarios without OR.

Decomposition tree/Aggregation tree The compatibility between these two structures im-
plies that the connective of classical binary logic in the decomposition tree is an approximation
(preferably a restriction to {0,1}) of the corresponding one in the aggregation tree. We suggest:

e triangular norms, weighted minimum correspond to AND, while triangular co-norms and
weighted maximum correspond to OR.

e OWA may correspond to either OR or AND, depending on the weights. Yager has proposed
a degree of orness [23] attached to any OWA connective. If it is above 0.5, we may consider
that the closest connective is OR. The question is less easy for other mean connectives, which
have no clear logical interpretation, and each case should be considered individually. It seems
however reasonable to approximate a weighted sum by an OR, since a low matching degree
for one item does not necessarily implies a low global degree.

These general facts being established, we study in detail how to ensure the consistency between
the structures. We propose the following definition of consistency.

Definition 2 The computation of the matching degree is consistent with the machinery of the II-
ATMS if for all scenario S, for all set A of observed activities, the matching degree of S is equal
to its certainty level, for any environment belonging to the label of S, whenever the connectives of
the aggregation tree coincide with the logical connectives of the decomposition tree (i.e. AND is
minimum, and OR is mazimum,).

If the computation is consistent, then we can speak of refinement, since the (fuzzy) connective is
supposed to model more accurately the description of the scenario given by the expert. A consistent
computation has the following consequences, which gives some insight for the choice of connectives.
Let us consider a sub-scenario S, whose certainty level computed by the I[I-ATMS is a. In the case
of conjunctions, and if H is a t-norm, we obtain comp(S) < «, since all t-norms are smaller than
the minimum. Hence, one should use a t-norm instead of minimum only if one wishes to penalize
non-compatibility. If one wishes to put weights, the weighted minimum can be used. In this case,
comp(S) > a. It means that a weak matching for non important nodes does not penalize the global
matching degree, a desirable property. The case of disjunction works dually.

We proceed in two steps. First we consider a complete set of observations (i.e. all activities of
the scenario have been observed).
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Proposition 1 Let S be a scenario involving activities Aq,..., A, such that the decomposition
tree and aggregation tree have the same logical connectives, i.e. AND correspond to “min” and OR
corresponds to “maz”. Suppose all activities have been observed, with certainty degrees aq,. .., oy.
Then the global matching degree is equal to the certainty level for any ai,...,0n € [0,1] iff all
clauses describing the scenario are certain.

Proof: Recall that the two trees have the same structure. Two cases can happen: either a sub-
scenario is described with an AND connective, or it is described with an OR.
Let us consider the first case, i.e. a sub-scenario S described by the clause:

(—|A1V—|A2V---VﬂAnVS ,8)

Let us consider a complete set of observations, described by the clauses (4; «;), i = 1,...,n.
Then the resolution principle gives the following clause:
(S min(B,a1,...,an)) 3)

On the other hand, the matching degree of S is min(ay, ..., ay).
Consider now the second case, i.e. a sub-scenario described by the set of clauses:

(mAL VS Br)

(A, VS Bn)

and consider observations like above. Then the resolution principle leads to

(S max(min(fi,a1),...,min(fp, an)) (4)

Now, the matching degree of S; is max(aq, ..., ap).
Clearly, in both cases, the matching degree is equal to the certainty level for any «a1,...,a, €
[0,1]iff B=1and B; =1,47i=1,...,n. The fact that any scenario is an arbitrary combination of

the two above cases completes the proof. B

When the clauses are not fully certain, the proof of Prop. 1 tells us that we have to replace the
usual matching degrees by formulas (3) and (4) for the cases of sub-scenarios formed with AND
and OR respectively, so that we have the following result.

Corollary 1 Under assumptions of Prop. 1, the following computation is consistent with the II-
ATMS. For any sub-scenario S; associated to a connective H,;,

e if S; is a conjunction of p descendants nodes A;;, j = 1,...,p, expressed by a clause of
certainty degree «;, take

comp(S;) = min(H;(comp(4;,),...,comp(4;,)), o) (5)

e if S; is a disjunction of p descendants nodes A;;, j = 1,...,p, expressed by p clauses of
certainty degree a;;, j =1,...,p, take

comp(S;) = Hi(min(comp(4;,), &, ), ..., min(comp(4;,), ai,)) (6)
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The second step is to deal with the case where all activities have not (yet) been observed.

Proposition 2 Let us consider scenario S described by certain clauses involving activities Ax, . .., Ay,
and an incomplete set of observations (i.e. some activities, say A;,, ..., A;,, are not yet observed).
We suppose in addition that the connectives of the aggregation tree coincide with the logical con-
nectives of the decomposition tree. Then the global matching degree of S is equal to the certainty
level « of any non empty environment € C {A1,...,A,} in the label of S iff comp(A;) =1, for all
A; € €. In particular, & = {Aq,,..., A, } is the smallest one of such environments.

Proof: Since EUF = (S «), and all variables in £ are certain, the matching degree is equal to
a iff comp(4;) = 1, VA; € € (proceed as in the proof of Prop. 1). Now, by construction of S, &
is in the label of S, and the only environment belonging to the label properly included in & is the
empty one. Indeed, any environment & C £° has a certainty level equal to the one of the empty
environment, since at least one activity is not recognized. But then it does not belong to the label
due to the minimality requirement (see Section 4). W

General algorithms We give below the algorithms of modelling and recognition of scenarios,
based on the three structures (algorithms A.1 and A.2). Scenarios are denoted by S1,.S9, ..., while
observable activities and sub-scenarios are denoted A, B, C, .. ..

for all scenarii S;, ¢ =1,...,n, do
build the knowledge base ¥; :
=0

tagg the propositional variables involved in S; with i: A;, B;, .. .;
choose logical connectives from the description of the
scenario for building the decomposition tree;
decompose the scenario into clauses; put in X;;
add a priori knowledge (S; «;) if any in X;;
build temporal graph G :
create nodes (A4; and 4;) for every A; € S;;
build temporal diagram;
translate into temporal constraints;
complete the graph;
compute the minimal graph G;;
build aggregation tree in accordance with the
decomposition tree;
od
= Uk, %

Algorithm A.1. Construction of the model

5.5 Comments
The method presented above fulfills the requirements given in Section 1. More specifically,
incoming information: they are used.

outcoming information: the aggregation tree gives the global matching degree for any scenario
selected by the II-ATMS. Moreover, the II-ATMS gives all non-detections (labels). One
can find out false alarms (observations which are not associated to scenarios), and false
identifications.

19



S = {Sl,...,Sn};
for every set of observations {(O1 f1),...,(Om Bm)} do
; Bj is the certainty degree for observation O; to be some activity A.
; observations matching with several activities are duplicated,
; with suitable certainty degree
for every S; € S do
intersect temporal information with corresponding constraints in Gj;
compute the minimal graph G;
if there exists an empty constraint in G}
then
S + 8§\ S;; removal of S;
else
put in ¥ all clauses (4; B;), A; € S;, pertaining to
observations (O; f;);
fi
od
for all S; € S do
compute L(S;) the label of S;;
s L(Si) ={&l s - .,E;:’jap}, where Ef,aj is an
; environment of .S;, with certainty a;
for all non empty 55,%- containing no sub-scenario, such that a; >threshold do
compute matching degree for S;, taking §; for nodes
corresponding to observation O;, and 1 for nodes
in EZJ o, the latter being prioritary;
od
od
od

Algorithm A.2. Recognition of scenarios

incremental aspect: the system is clearly incremental.

false alarms and non detections: see above (outcoming info)

description of scenarios: it is possible to take into account any connective for the matching
part, not for the reasoning part. On the other hand, if one use flexible CSP [17, 18], it is

possible to take into account fuzzy descriptions of scenarios.

a priori knowledge on scenarios: clauses (S «) indicate a priori knowledge.

real time: the system seems to be able to cope with real time, although no real experiment has
been done for the moment. Indeed, for a II-ATMS including only Horn clauses, complexity
is a linear function of the size of the knowledge base. Concerning CSP, the complexity of
PC1 is O(n?®), n being the number of nodes in the graph, but there exist much more efficient
algorithms. On the other hand, the use of fuzzy constraints multiplies the complexity by a
factor log p, where p is the number of a-cuts used for describing the fuzzy sets [17].

Lastly, it is possible to provide mathematical justifications of our choices in this approach:

e possibilistic logic is complete and consistent: every deduced formula is semantically true, and

every semantically true formula can be deduced.
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e [I-ATMS allows to manage assumptions and to rank them by certainty degrees.

e the CSP framework for the processing of temporal constraints guarantees that the graph
contains all solutions of the problem, and only solutions (minimal graph).

o the use of large families of connectives issued from fuzzy set theory allows a precise modelling
of the expertise.

e consistency between certainty level inferred by the II-ATMS and matching degree is ensured.

6 Example

We illustrate the whole procedure on a simple example. We consider two scenarios with the following
description.

SCENARIO S;: activity A is observed first, whose duration is between 10" and 20°. Activity
A is in fact composed of 2 sub-activities C and D; C' begins first. with a duration between
5" and 10’, then when C is finished, after a delay of 5" to 10°, D starts, with a duration of
5 to 10°. 10’ to 20’ after the beginning of A, another activity B begins and lasts 10’ to
20'. It is essential to observe B in order to identify S;. On the whole, the scenario lasts
between 20" and 30'.

SCENARIO Ss: activity A’ starts first, with a duration of 10" to 15’. Activity A’ is composed
of sub-activities C' and D, with C beginning and lasting 5" to 10°, then when C is finished,
after a delay of at most 5', D begins and lasts 5’ to 10’. When A’ is finished, another
activity E begins after a delay of at most 10°, and lasts in general from 10" to 20°. It is
essential to observe A’ for the identification of the scenario. On the whole, the scenario
lasts between 30’ and 40’.

Sy is less frequent than Sj.

From the description, we can build the decomposition trees and aggregation trees of the two sce-
narios (Fig. 8 and 10), as well as the temporal diagram (Fig. 9 and 11). Note that a weighted
minimum has been used for S; and S2. The knowledge base is given below:

S1 Sl WmingA,B)
051
AND
A B A min(C,D) B
_/ /
AND
C D C D

Figure 8: Decomposition tree (left) and aggregation tree (right) of scenario S;
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o) in[20, 30]

S1
O, in[10, 20]
Oc in[5, 10]
AC>,<D 6D in[5! 10]
in[5, 10]
A_pin[10, 20] d, in[10, 20]

Figure 9: Temporal diagram of scenario Sy

S2 2 WminSA’,E)
105
AND
A E A" minC.D) E
_/ /
AND
C D C D

Figure 10: Decomposition tree (left) and aggregation tree (right) of scenario Sy

(nA;vV-B1VS: 1)
(—|Cl VD1V A 0.8)
(mAaV—=EyV Sy 1)
(=CyV =Dy V Ay 0.8)
(S1 0.2)
(Se 0.1)

The minimal complete graphs of the two scenarios are given under a matrix form in Tab. 6. We
suppose to observe C and D with a certainty level of 0.7 and 0.8 respectively, with the following
temporal information:

e duration of C is between 8 and 12’

e duration of D is between 5’ and &’

e delay between C) and (D is between 4’ and 6’.

Updating the graphs and after minimalization, we find that the graph of Sy has an empty constraint,
thus S is impossible. The empty constraint is the one which links (C' to D). Indeed, this constraint
is [10,15] in the minimal graph, but the data on C' and D leads to [17,25].

Let us modify the temporal data so as to keep the two scenarios. This can be achieved with:

e duration of C' is between 5’ and &’
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O, in[30,40]

O, in[10,15]

O.in[s5, 10]

D, ., Opin5, 10]

in [0, 5]
AD>,<E

in [0, 10]

O, in[10,20]

Figure 11: Temporal diagram of scenario So

e duration of D is between 5’ and &’
e delay between C) and (D is between 4’ and 6’.

Adding the clauses (C; 0.7),(D; 0.8),(C2 0.7),(D2 0.8) to the knowledge base and perform-
ing the inference, we find:

(A1 V=BV S 1)
(nA2V-EaV Sy 1)

(=CL vV =D; VA, 0.8)

(=<CLV =By VS, 0.8)

(=CyV =Dy V Ay 0.8)

(_‘CQ V —FE5 V Sy 0.8)

(D, 0.8)

(D2 0.8)

(=C1 V A; 0.8)

(=CyV Ay 0.8)

(€, 0.7)

(Cy 0.7)

(4 0.7)

(A2 0.7)

(—|Bl VvV S 0.7)

(mEy Vv Sy 0.7)

(S1 0.2)

(S 0.1)

The labels of S; and S9 are:

L(S1) ={{A1,B1}1,{C1,B1}0s,{B1}o7,{}o2}
L(S3) ={{A2, E2}1,{Ca2, Ex}08,{E2}0.7,{}o.1}

23



scenario S1

<S1 S1> <A A> <B B> <C Cc> <D D>
[ o, oJ[ 20, 30]C o, oJ[ 15, 20][ 10, 20][ 20, 30][ O, oJ[ 5, 10][ 10, 15][ 15, 20] <S1
[ o, 0] [-30, =-20][-15, 0][-20, -10]1[ O, 0] [-30, =-20][-25, -10][-20, =-5]1[-15, 0] s1>
[ o, 0J[ 15, 20][ 10, 20][ 20, 30][ o, 0oJ[L 5, 10][ 10, 15]1[ 15, 20] <A
[ o, ol[-10, 55]1[ o0, 15]1[-20, -15]1[-15, -10]1[-10, =-5][ O, O] A>
[ o, 01[ 10, 201[-20, -10][-15, ol [-10, 5][ -5, 10] <B
[ o, 0] [-30, =-20][-25, -10][-20, =-5]1[-15, 0] B>
[ o, 0J[L 5, 10][ 10, 15]1[ 15, 20] <C
[ o, 0olC 5, 101[ 10, 18] C>
[ o, 0J[ 5, 10] <D
[ 0, 0]D>

scenario S2

<s1 S1> <A A> <E E> <C c> <D D>
[ O, 0J[ 30, 401[ o, 0J[ 10, 15][ 10, 251[ 30, 40l[ O, oJL 5, 10]J[ 5, 10][ 10, 15] <S1
[ o, o0][-40, -30][-30, -15][-20, -10]J[ -0, 0][-40, -30][-35, -20][-35, -20][-30, -15] S1>
[ o, o]J[ 10, 151[ 10, 251[ 30, 40]l[ O, 0JL 5, 10]J[ 5, 10][ 10, 15] <A
[ o, o[ o, 101C 15, 30]1[(-15, -10][-10, -BJ[-10, -5][ O, O] A>
[ o, o]J[ 10, 20][-25, -10][-20, -5][-20, -5][-10, 0] <E
[ O, 0] [-40, -30][-35, -20][-35, -20][-30, -15] E>
[ o, olf 5, 101l 5, 101[ 10, 15] <C
[ o, ollL o, 5][ 5, 10] ¢
[ 0o, oJ[ 5, 10] <D
[ o, 0] D>

Table 1: Matrices of minimal complete graphs of S; and Ss

Restricting to the examination of minimal environments & (i.e those being the set of all unobserved
activities), we can conclude that:

e scenario S1 will be recognized with certainty 0.7 if we observe B with certainty
e scenario Sy will be recognized with certainty 0.7 if we observe E with certainty

The computation of the matching degrees gives:

comp(S1) = wming 5 1 (min(min(0.7,0.8),0.8),1) = 0.7
comp(Sz) = wmin; ¢ 5(min(min(0.7,0.8),0.8),1) = 0.7

This is consistent with the decision of the ATMS.

Now, if C' were observed with certainty, the environments {C1, B }o.g and {Ca, E2}o.8 of L(S1)
and L(S2) respectively tell us that S; and S would be recognized with certainty degree 0.8. As it
is easy to check, this can be also retrieved from the computation of matching degrees as above.

Lastly, suppose that we receive an ambiguous observation, similar to B and E, with certainty
degrees 0.4 for B and 0.3 for E. Let us suppose that the temporal constraints are satisfied for Sy
and So, so that no scenario is eliminated. The global matching degrees are:

comp(Sy) = wming 5 1 (min(min(0.7, 0.8), 0.8),0.4) = 0.4
comp(Sy) = wmin; ¢ 5(min(min(0.7,0.8),0.8),0.3) = 0.5

Although B is more plausible than E, B is essential for the identification of S, while E is much
less. Therefore, scenario So is more plausible.
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7 Discussion and concluding remarks

In this paper, we have presented the foundations of a new approach to scenario modelling and
recognition, based on possibilistic logic, CSP, and aggregation connectives of fuzzy set theory.
Although we have shown that our approach satisfies all requirements and is mathematically sound,
some aspects could have been defined differently, or may be further extended.

The first point concerns possibilistic logic and time. In our approach, time does not intervene in
clauses in our knowledge base. However it would have been possible to include this aspect, by using
dynamical certainty degrees. Let us suppose we have to translate the following piece of expertise:

Scenario S is formed with activities A and B (mandatory). Moreover B must be before A.

It is clearly a conjunction, with a precedence constraint. We can translate this in the following
way:
(—|A V-BVS a)

with « the certainty degree that “B is observed before A is observed”. This is clearly a degree
which is computed dynamically, as soon as A and B are observed.

The second point concerns the choice between abductive reasoning and deductive reasoning.
We have chosen the second solution, although the first one appears as a more natural choice, in the
view of the available information. When the expert says:

In scenario S1, there is always A, B and C' together

it does not mean that the observation of A, B, C necessary entails the recognition of S;. Indeed, it
may exists other scenarios where A, B, C appear jointly. In this case, we cannot write:

(~AV-BV-CVS; 1)

and we must put a value for @ which takes into account the possible existence of other situations
where the observation of A, B, C' permits to infer something different. It would be better to choose
an abductive modelling, more faithful to the spirit of the expertise, which would be:

(Sl—>A/\B/\C a)

In this case, observations are hypotheses, and scenarios and sub-scenarios are non-hypotheses. We
will compute the label of observations, which will be explained by the scenarios and sub-scenarios
(or preferably only scenarios).

The third point concerns the logical connective XOR, which was not considered in our devel-
opment since it raises some difficult issues. The case of XOR leads to clauses which are not Horn
N-clauses. This causes computation problems since practical implementations of II-ATMS do sup-
pose Horn N-clauses, but this does not entail theoretical limitations since the resolution principle
can still be applied. More specifically, for a scenario S with certainty « being defined by A4,..., 4,
linked by a XOR, we use the equivalent expression

(A1/\—|A2/\---/\—|An)V(—|A1/\AQ/\—|A3/\---/\—|An)V---V(—|A1/\---/\—|An_1/\An) (7)
This is translated as follows:

(A1 VA V---VA, VS a)
(A1V—|A2VA3V"'VA”\/S Ol)

(A1 V-V A1 V-4, VS @)
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A more cumbersome problem is that to infer S in the above situation, we have to observe e.g.
Ay and —A,,...,nA,. The actual meaning of observing the “absence of an activity” may raise
an interpretation problem, since not observing A, is not (always) equivalent to the absence of Aj.
Moreover, this will obscure the use of environments which contain yet not observed activities.

A last topic already addressed concerns the presence of fuzzy (flexible) temporal constraints,
which would constitute a more faithful modelling of the expertise (see Section 3.2). This will
induce a higher computational cost, which however remains reasonable once simple representations
of temporal constraints are adopted (e.g. trapezoidal fuzzy constraints).
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