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Abstract

We use quadratic variations to identify almost surely the coordinate
system where the standard Brownian sheet is defined. This identification
is carried out with the help of an algorithmic-like procedure.
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1 Introduction

Random fields, or spatial processes, are useful for modeling spatial phenomenon
like environmental fields including, for example, rain fall, acid precipitation, air
pollution, hydrology, geophysics and oceanography, and medical images (cf. [12]
and its bibliography).

The analysis, modeling and estimation, of the spatial covariance structure
underlying spatial processes has been the subject of increasing research in recent
years. Knowledge of the spatial covariance of a random field is fundamental
in spatial estimation or kriging and in the design of optimal monitoring net-
works. As outlined in [11], particularly important is the fact that the spatial
covariance structures underlying multi-parameter processes are almost always
non-stationary, neither isotropic, over the spatial scales of interest.

In practice, when we model a non-stationary or/and a non-isotropic spa-
tial phenomenon with a random field, the coordinate system where the latter
is defined cannot be chosen arbitrarily. In this case, the identification of the
coordinate system is as important as the estimation of the parameters of the
random field itself. In this paper, the standard Brownian sheet is an illustration
of random fields whose definition depends on the coordinate system. We propose
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an estimation of the coordinate system, where the Brownian sheet is observed,
by using quadratic variations. In a first step, we identify the quadrant where
the Brownian sheet is defined. Then we give a practical procedure to estimate
the coordinate system corresponding to this quadrant.

The quadratic variations are first introduced by Lévy [9] who shows that if
B is the standard Brownian process on [0,1], then almost surely its quadratic
variation on [0, 1] converges to 1. Baxter [2] and further Gladyshev [4] generalize
this result to a large class of Gaussian processes. Guyon and Leén [6] introduce
the H-variations for stationary Gaussian processes, a generalization of these
quadratic variations. They study the convergence in distribution of the H-
variations, suitably normalized.

For Gaussian process Z with stationary increments, Istas and Lang [7] define
general quadratic variations, substituting a general discrete difference operator
to the simple difference Z(k/n) — Z((k — 1)/n). They use these quadratic
variations to estimate the Holder index of a process. The generalization of
quadratic variations for stationary Gaussian fields indexed by R? is studied in
Guyon [5] as well as in Leon and Ortega [8]. Another generalization for non-
stationary Gaussian processes over general index spaces and quadratic variations
along curves is done in Adler and Pyke [1].

The paper is structured as follows. Section 2 sets up notations, assump-
tions and definitions. Section 3 describes the quadratic variations and their
asymptotic properties. In Section 4, these quadratic variations are combined
to propose almost sure consistent estimators of the parameters of the isomet-
ric transformation. In Section 5, simulations evaluate the performance of these
estimators. Finally, Section 6 discusses one extension of the present work for
future research.

2 Notations, assumptions and definitions

First note that all angles we are dealing with are oriented in the trigonometric
sense. Let W = {W (x,y), (z,y) € R?} be the standard Brownian sheet that is
a centered Gaussian process indexed by R? with a covariance function given by

EW (z1,y1)W (2,12)) = i(\xll +lza| — |21 = 22|) (1] + ly2l = [y1 = 2[). (1)

This definition is given in a certain coordinate system, say (O’, X,)). Suppose
that instead of W (x,y), we observe Yy o (u,v) = W(z(u,v), y(u,v)) where

{ x(u,v) = (u—a)cos(f) + (v —b)sin(0)
y(u,v) = —(u—a)sin(f) + (v — b) cos(h),

so that the covariance function of Yy 4 is given by
E(Yy,ap(u1,v1)Yp,a,6(u2,v2))
1
= 7 (zu, o))+ [a(uz, v2)] = fa(ur, v1) — 2(uz, v2)])

x (ly(ur,v1)| + [y(ug, v2)| = ly(u1,v1) — y(uz,v2)l) .



The random field Yy 4 can be viewed as a generalization of the standard Brow-
nian sheet, the latter being Yp . In practice, this means that if we want to
model a phenomenon with the help of the standard Brownian sheet for which
we do not know the coordinate system where it is defined, we must identify the
unknown parameters 6, a and b.

As illustrated by Figure 1, the standard Brownian sheet W is defined in the
unknown coordinate system (O’, X', )), the canonical coordinate system of the
standard Brownian sheet, and is observed through Yy , 5 in an arbitrarily chosen
coordinate system (O,U,V). The transformation from (O,U,V) to (O, X,))
is a rotation through an angle 6 about the origin O followed by a translation of
vector (a,b), so that it is a direct isometric transformation.

+
/\ quadrant| : x>0andy >0

open set

quadrant Il : x<0andy >0 \

quadrant Il : x<Oandy <0 N

Figure 1: Isometric transformation of the coordinate system

In this paper, we are interested in the estimation of the parameter angle 6
together with the parameters of the translation a and b, from one realization of
the random field Yp ,; observed on some open subset in the coordinate system
(O,U,V). In fact, because Yp . is almost surely equal to 0 on the axes of the
canonical coordinate system, we assume that Yy ,; is observed in an arbitrary
non vacuous open set of R? which does not intersect any axis of the canonical
coordinate system. The estimation is carried out with the help of quadratic
variations. Results from Baxter (1956) and its generalizations in Perrin (1999)
are widely used.



3 Quadratic variations

In this paper, we only consider quadratic variations along segments, like the
segment [A, B] of length L > 0. This segment is included in the open set
previously mentioned and is represented in Figure 1, where A is the point of
coordinates (u,v) in (O,U,V). Let 3 denote the angle between Ou and AB.
Each point M(t) = (x(t),y(t)) belonging to [A, B], where (z(t),y(t)) are the
coordinates of M (t) in (O’, X,)), has the following parametric representation
in (O, X,Y), for t € [0,1]

O'M(t) = O'A + tAB

z(t) = (u — a) cos(f) + (v — b) sin(f) + Lt cos(8 — 0)
{ y(t) = —(u —a)sin(f) + (v — b) cos(#) + Ltsin(8 — ).
Without restriction, we may impose 6 € [0, 5[. Indeed, the canonical coordinate
system (O', X,)) is at most at an angle § of the current coordinate system
(O,U,V). Unlike 6, the angle 3 is a parameter under our control, like L, u and
v, and we choose [ in [0, 5]. Thus the process Z indexed by [0,1] and defined

)
by

Z(t) = W(x(t),y(t)) 2)
is the restriction of W to the segment [A, B].
We set
{ z = z(0) = (u—a)cos(f) + (v —b)sin(0)
y = y(0) = —(u—a)sin(f)+ (v —1>)cos(h),

where (x,y) are the coordinates of A in (O, X,)).

In the next Paragraph, we define the quadratic variations along the segment
[A, B]. As we will see in Paragraph 3.2, the behavior of these quadratic varia-
tions will depend on the quadrant of (O’, X',Y) in which the segment [A, B] is
defined.

3.1 Results in the positive quadrant

In a first step, we assume that « and y are strictly positive. This means that the
segment [A, B] is included in the positive quadrant (quadrant I of Figure 1) of
the canonical coordinate system (O, X,)) and that it does not meet its axes.
In the following Paragraph, we will consider the three other cases (z < 0 and
y > 0 (quadrant II), z < 0 and y < 0 (quadrant III), and z > 0 and y < O
(quadrant IV), i.e. corresponding to the respective three other quadrants.

Let n be a positive integer. We set for k =1,2,...,n

AZy = Z(k/n) — Z((k — 1)/n).

1 2 —1
Let IT,,(1) = {0, — =, r , 1} be the regular partition of [0, 1] at constant
n’'n n

scale 1/n. We denote using [nt] the greatest integer smaller than or equal to



nt. For ¢t € [0, 1], we define the quadratic variations V;,(¢; 3, u,v, L) of Z along

IL,(t) = {0, l, g, ey M} as follows
n'n n
[nt]
Vn(ta ﬁ? u,v, L) = Z (AZk)2 :
k=1
0
When [nt] = 0, we set Z (AZ)? =0.
k=1

Before giving the main results concerning the asymptotic properties of V,,(¢; 5, u, v, L)
as n — oo that follow from Perrin [10], we must check that the covariance
function r(¢,t') = E(Z(t)Z(')) of Z is continuous in [0,1]? and has second
derivatives which are uniformly bounded for ¢ # t'.

For positive x1, y1, x2 and ys, the definition (1) can be written as

E(W (z1,y1)W (22,92)) = (z1 A 22)(y1 A Y2),
so that we deduce from the definition (2), for all ¢,¢ in [0, 1]

r(t,t) = E(Z®#)Z({t")) = (xz + Ltcos(8 — 0)) A (z + Lt' cos(3 — 0))
x (y + Ltsin(3 — 0)) A (y + Lt' sin(3 — 0)).

We denote using r(m’m/)(t, t') the m, m’-partial derivative of r with respect to ¢
and t'. Depending on the sign of 3 — 6 we have to consider two situations

e Situation 1: 0 <3 -0 < 3

— If t/ > t, then r(t,¢') = (z + Lt cos(8 — 0))(y + Ltsin(5 — 0)) so that

and
rOD (¢, ¢) = 0.

— If ¢/ < t, then r(¢,t') = (x4 Lt' cos(8—0))(y + Lt sin(8 — 0)) so that

r(270)(t,t’) =0
@Dt ) = 0
rO2(t,1) = L?sin(2(6 - 0)),

and

rOD (¢t = Lcos(B—6)(y + Lt'sin(B — 0)) 4+ Lsin(3 — 0)(z + Lt' cos( — 0))
= Lcos(f —0)y+ Lsin(B — 0)x + L' sin(2(3 — 0))
= L(u—a)sin(a—0) + L(v — b) cos(a — 0) + L' sin(2(3 — 0)).

e Situation 2: —% <p-0<0



— If t/ > ¢, then r(¢,t") = (x + Lt cos(8 — 0))(y + Lt' sin(5 — 0)) so that

rEOEt) = 0

and

L?tsin(2(8 — 0))
2

70(0,1)(,575) = Lxsin(f—0)+

= L((u—a)cos(d) + (v — b)sin(9))sin(8 — 0) + L2tsin(22(ﬂ -0)
— If ¢/ <t, then r(¢,#') = (v + Lt' cos(B — 0))(y + Lt sin(3 — 0)) so that
reO(Et) = 0
rBD @) =
r0A(, 1) = o,

and
L?tsin(2(8 — 0))
2
= L(—(u—a)sin(@) + (v — b) cos(f)) cos( — )

rOD(t,¢) = Lycos(B—0)+
L?tsin(2(3 — 0))
. .

Finally, in both situations the covariance function r(¢,¢') is continuous in [0, 1]?
and has second derivatives which are uniformly bounded for ¢ # ¢'. Then we
can define the singularity function «; of Z in the situation ¢, ¢ = 1,2, defined
for t € [0,1] by

a;(t; B,u,v, L) = tl}glt rOD ¢ 1) — tl/l{l}t rOD (¢, 1.

From the previous calculus we obtain

{ a1(t; B,u,v, L) = L(u—a)sin(8 —20) + L(v — b) cos(3 — 20) + L?tsin(283 — 20)
as(t; B,u,v, L) = —L(u—a)sin(B) + L(v —b) cos(f).

Note also that a; and as are continuously derivable with respect to ¢ in
[0,1], so that they have a bounded first derivative in [0, 1].

For all ¢ in [0, 1], we denote using V,, ;(¢; 8, u, v, L) the quadratic variation
Vi (t; B,u,v, L) in the situation ¢, i = 1,2. We can now directly deduce from
Perrin [10] the following result.

Theorem 3.1 Fori= 1,2, almost surely

t
lim sup |V,i(t; B, u,v,L) —/ a;(w; B, u,v, L)dw| = 0.
0

N0 ¢cl0,1]



We set

B L) = [ et Dav ©
0
= ((u—a)sin(B —20) + (v — b) cos( — 20)) Lt + L7 sin(20 — 26),
and
t
Bitiu,o.L8) = [ as(wiBuv Ldu (4)
0

= (—(u—a)sin(fB) + (v —b) cos(B)) Lt.

3.2 Results in the other quadrants

Similar computations will lead to the results that we summarize in Tables 1 and 2.
In Table 1, we give the singularity function for each of the quadrant in the sit-
uation 1 (0 < 8 — 6 < 7) and in Table 2, we give the singularity function for
each of the quadrant in the situation 2 (- < 3 —6 < 0).

Table 1: Situation 1
Quadrant Singularity function

x>0and y >0 (I L(u — a)sin(B — 20) 4+ L(v — b) cos(3 — 20) + L?tsin(25 — 260)

x <0and y >0 (II) —L(u — a)sin(B) + L(v — b) cos(f)

r<0andy<0 (III) | —L(u — a)sin(B — 20) — L(v — b) cos(B — 20) — L3t sin(283 — 26)

x>0and y <0 (IV) L(u — a)sin(8) — L(v — b) cos(B)

Table 2: Situation 2
Quadrant Singularity function

z>0andy >0 (I) —L(u — a)sin(B) + L(v — b) cos(f)

r<0andy >0 (II) | L(u—a)sin(B—20) + L(v — b) cos(B — 20) + L>tsin(23 — 20)

x <0 and y < 0 (IIT) L(u — a)sin(8) — L(v — b) cos(B)

r>0andy <0 (IV) | —L(u — a)sin(3 — 20) — L(v — b) cos(B — 260) — L*tsin(23 — 20)

4 Estimation of the transformation

Let us first recall that L, u, v and § are the parameters under our control and
that a, b and 0 are the parameters we want to estimate. For this purpose, and
as previously said, we assume that the random field Yj ,; is observed in an
arbitrary non vacuous open set of R? which does not intersect any axis of the




canonical coordinate system. This means that Yy, is observed inside one of
the four quadrants of Figure 1.

As we will see in Paragraph 4.2, the estimation of (6, a,b) is deduced from
the identification of (3) and (4) through the corresponding quadratic variations
(¢f. Theorem 3.1). However, as shown by Tables 1 and 2, the behavior of the
quadratic variations depends on the quadrant where the random field Yy, is
observed. So before estimating these parameters we first have to identify the
quadrant of (O', X,)) where Yy, is observed.

Finally note that because 0 is a unknown parameter, we are sure to be in
the situation 1 only if 3 = § and we are sure to be in the situation 2 only if
B = 0. This explains why identification and/or estimation are possible when [
is limited to these two values. But other choices for § are possible and can be

useful.

4.1 Identification of the quadrant

We use directly Tables 1 and 2 that we write again hereafter by taking explicitly
f = % in Table 1 and 3 = 0 in Table 2. We also give these Tables in terms of
the limits I (¢; u, v, L, 3) and Is(t; u,v, L, 3) as defined by (3) and (4), where we
take t = 1 in both limits, 8 = 5 in I1(t;u,v,L,3) and 8 = 0 in I5(t;u,v, L, 3).

We set I1(u,v,L) = I1(1;u,v,L, 5) and Iz(u,v, L) = I2(1;u,v, L,0).

s
2

¥y

Table 3: Situation 1 with 8
Quadrant I(u,v

L2
x>0and y>0(I) | L(u—a)cos(20)+ L(v —b)sin(260) + - sin(20)
z < 0andy >0 (II) —L(u—a)

2
x<0andy<0(Il) | —L(u — a) cos(26) — L(v — b) sin(260) — % sin(26)

xz>0and y <0 (IV) L(u—a)

Table 4: Situation 2 with 3 =0
Quadrant Iy(u,v, L)
z>0andy >0 (I) L(v—1b)

2
x<0andy>0(II) | —L(u — a)sin(26) + L(v — b) cos(26) — % sin(20)
x < 0and y < 0 (IIT) —L(v—10)

2
z>0and y <0 (IV) | L(u—a)sin(20) — L(v — b) cos(20) + % sin(20)




From Tables 3 and 4 we deduce some properties for I (u, v, L) and Iy(u, v, L)
that we gather in Table 5. As we will show in the sequel, some combinations of
these properties allow us to identify the quadrant.

Table 5: Some Properties of I1(u,v, L) and I2(u,v, L)

Quadrant I (u,v, L) Ir(u,v, L)

x>0and y >0 (I) | positively quadratic in L positively linear in L
x < 0andy >0 (II) positively linear in L negatively quadratic in L
x <0 and y <0 (IIT) | negatively quadratic in L positively linear in L

xz>0and y <0 (IV) positively linear in L positively quadratic in L

Let us give one example of identification assuming that 6 # 0. We first take
s

B = 5 and we use the fact that L is a parameter under our control. If the
limit Iy (u,v, L) of the quadratic variation V;,(1; 5, u,v, L) depends (positively)
linearly on L, then the quadrant is II or IV. Secondly, we take 3 = 0 and if the
limit Is(u, v, L) of the quadratic variation V;,(1;0,u, v, L) is positively quadratic
in L the quadrant is IV, otherwise the limit I;(u, v, L) is negatively quadratic
in L and the quadrant is II. Of course, this procedure is not unique, but all
the procedures are consistent with each other. For instance, we could have first
taken 8 = 0.

We have just assumed that 8 # 0 but this is not a restriction. Indeed, we
easily deduce from Table 5 that we can identify the angle § = 0, as well as the

angle 6 = 7.

Theorem 4.1
0 =0 if and only if I (u,v, L) + Is(u,v, L) is positively linear in L.
0 = % if and only if I (u,v, L) — I2(u,v, L) is purely quadratic in L.

From now on, we are interested in the estimation of (6,a,b) where 6 €
TUE. T
10, 3 U1% 31

4.2 Estimation of the parameters

As mentioned at the beginning of Section 4, estimation of (6,a,b) is deduced
from the limits of the quadratic variations we listed in Tables 3 and 4. So, once
the quadrant can be identified, we suppose, as an example and without any
restriction, that Yj ,; is observed in an open set strictly included in the posi-
tive quadrant I. We can estimate the three unknown parameters 6, ¢ and b by
using a convenient set of quadratic variations, that is a set that makes (6, a,b)
identifiable. However, there are different ways to estimate the parameters de-
pending on the quadratic variations we choose, that is depending on the choice
of the segment [A, B]. Nevertheless, since we have to estimate three unknown
parameters (0,a,b), we at least need a set of three quadratic variations. In
fact, we decide to take four quadratic variations, and we justify our choice in
the sequel. We consider V,,(1;0,ug,v1, L), Vi (1; 5, u1,v0, L), V(15 5, ur,v1, L)



and V,,(1; 5, u2,vo, L). From Theorem 3.1 we have almost surely, as n tends to
infinity
‘/n(l;o,’l,t(),'UhL) - L(Ul _b) (5)
™ L2
Vo (1; 5 U1, %, L) — L ((u1 —a)cos(20) + (vg — b)sin(26)) + > sin(26) (6)
s L2
Va(1; 5 U1, 1, L) — L ((u1—a)cos(20) + (v1 — b)sin(20)) + - sin(20) (7)
s . L? |
V(1 5 U2 V0, L) — L((uz —a)cos(20) + (vo — b)sin(20)) + - sin(26). (8)

We deduce from these convergences, the following estimators, a, for a, by, for b
and 6,, for 6 as follows.

(ug — u1)
(Ul - UO)(Vn g u27U07L) - Vn(la %,U1,’U0,L))

anp = u1 +

™
% ((v0 = v0)Val(L: Sour, 1, L)
L T T

+(Vn(1a Ovu())Ul)L) + 5)(Vn(17 E)ul)vlv L) - Vn(la E)UI)UO)L))> ) (9)
7 n 17 ) ) 7L
by — vy — L0 0 0 L) (10)

L
A 1 V 17 ) ) 7L _V 17 ) ) 7L -
0, = —arctan<( (L 3, w1, v, L) (L 3,11, v, L)) (uz u1)> (11)
2 (Vn(lv 2,’LL2,’U0,L) - VTL(L 2,’LL1,’U0,L)) (Ul - UO)

We also deduce the following convergence result.

Theorem 4.2 The estimators a,, b, and 0, defined by (9), (10) and (11)
converge almost surely to a, b and 0, as n tends to infinity.

Proof. In this proof we mainly insist on the construction of the estimators,
the convergence result follows easily. Note that this proof can be viewed as an
algorithm.

e First, we directly deduce from (5) that

A V. (1;0 L
bn:'vl_ n(7 7?/07,017 )

e Then from (6) and (8) we get almost surely, as n tends to infinity

U27'UO7L) - Vn(]-? EJ

™
n 17_7
Vi 5

5 uy,vg, L) — L(ug — uy) cos(20),

so that we deduce the following estimator for cos(26)

10



C&(Q\@)n: V(l, 27U2,'U0,L) V (1, bR
L(uz —u1)
This would give an estimator of 6 by using the function arccos. But
Vi (15 5, u2,v0, L) = Vi (1; 5, u1, vo, L) does not necessarily belong to [—1, 1]
so that co/s(%)n cannot always be defined. For preventing this shortage
we estimate 6 through function arctan. This is why we take four quadratic
variations instead of three. More precisely, from (6) and (7) we get almost

U1, Vo, L)

surely
™ ™ .
Vi (1; 57 UL, VL, L) -V, (1, §,u1,vo,L) — L(v1 — vp) sin(26),
when n tends to infinity, so that we deduce the following estimator for
sin(20)
T e Vl;zv ) 7L —Va 1a s U1, )L
sin(26), = n(li g, v, L) 155, ur, vo ).
L(vy — o)

Thus, an estimator for 6 is

én = 1arctan Sli(\i)” .
2 cos(20),,

e Finally, we deduce from (6)

L(vg — b )Sln(29) 5 S@) — V(15 5, u1,v0, L)
Lcos(29)n '

an = uy +

0

Remark 4.1 To use all the available information contained in the open set
where Yy o is observed, we could consider N sets of four quadratic variations

vl L), V(1,2

{Vat:0,u,0f, 1), Va1 5 5

2 )ujlvvl’ )andV( 2 uév”OvL)})

with j =1,..., N, and for a large N. From eacl} set j, we get, in the same way
as in the Proof of Theorem 4.2, the estimators (65, al,bl,) for (0,a,b). Thus, we
could propose a robust-like version of the estimators proposed in Theorem 4.2 as
follows

§Dl
I
=z~
<.
i Mz
M
D>
S

<Y
]
1
=
<.
M) =
kA
j=}
3%

8%

:G"l
I

==

Mz

<.
I
—

To focus on the main ideas we do not give details in that direction.

11



5 An experimental study

Here, we consider that the transformation from (O,U,V) to (O’,X,)) is the
identity function. This means that instead of W, we observe Yy ,; with 6 = 0,
a = 0 and b = 0. Moreover we suppose that we observe Yp ,; in the positive
quadrant I, more precisely in the square [0,2] x [0,2]. We choose this frame-
work because of the simplicity of the simulations. Indeed we first simulate a
standard discrete Brownian sheet W (or equivalently Yp . in this framework)
on the regular square grid [0, %, cel %, 2] x [0, %, o %, 2] with n = 1000
as follows

1. we simulate 4n? independent observations e(%, %), 1 <k,l <2n, from a
standard normal distribution;
J

2. the values w(%, Z), 1 <1i,j < 2n, of the Brownian sheet W on the regular

square grid are simply obtained as follows

Then, the unknown parameters (6 = 0,a = 0,b = 0) are estimated with the
help of the four quadratic variations introduced in Paragraph 4.2

Vi (1;0,ug,v1, L), Vi(1; g,ul,vo,L), Vi (1; g,ul,vl,L) and V,(1; g,ug,vo,L)
where we take in this experimental study uwg =v9 =0, u;y =v1 =1, ug = 2 and
L=1.

Finally, to evaluate the quality of the estimators (én, n, En) for (0,a,b) pro-
posed in the previous Paragraph, we repeat the simulation of the discrete Brow-
nian sheet 5000 times. For each of these repetitions, we compute the estimations
of 0, a and b. Figure 2 represents the histogram of these 5000 values for each
of the parameter. The mean and the standard error computed over the 5000
estimations are indicated above the corresponding histogram.

With respect to this simulation study, we conclude that using quadratic
variations allows us to provide a satisfying estimation of the unknown canonical
coordinate system of the standard Brownian sheet.

6 Discussion

In this Section, we wish to point out one development for extending the present
work. In the work [3], we are generalizing our results to the standard non-
degenerate fractional Brownian sheet, that is a centered Gaussian field Wy, 7, =
{Wy, (7, y), (r,y) € R?} with a covariance function given by

(lz1 [P + [z — |2g — @)

(Jya) 272 + |y2|2H2 — |y1 — yo|*2)

=

E(W (z1,y1)W (22,92)) =

12
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Figure 2: Histograms of the estimations of a (left-hand plot), b (middle plot)
and 6 (right-hand plot)

where (Hy, Hy) €]0,1]2. Like here, we assume that the random field Wy, u,
is observed in an arbitrarily chosen coordinate system (O,U,V), and that the
transformation from (O,U,V) to (O’, X,Y) (where the latter is the canonical
coordinate system of W, m,) is a rotation through an angle 6 about the origin
O followed by a translation of vector (a,b). Thus, the definition of the standard
non-degenerate fractional Brownian sheet depends on the chosen coordinate
system as well as on the values of parameters (Hj, Hs), unlike the standard
Brownian sheet which only depends on the coordinate system (indeed for the
standard Brownian sheet Hy = Hy = %)

The difficulty we are currently dealing with relies on the estimation of the
parameters of the transformation (6, a,b) together with the estimation of the pa-
rameters (Hy, Ho) of the field. However the identification method we developed
in the present paper can be applied to this more sophisticated problem. More
precisely, quadratic variations can be useful for estimating both the coordinate
system and the parameters of the random field itself, which was the original
problem mentioned in the third Paragraph of the Introduction.

Moreover, in |3], we generalize the main result of Gladyshev [4] to generalized
quadratic variations. Estimation of the true axes of a fractional Brownian sheet
is obtained as an application of this generalization.
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