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Abstract

We apply robust control technics to an adaptive optics system including a dynamic

model of the deformable mirror. The dynamic model of the mirror is a modification

of the usual plate equation. We propose also a state-space approach to model the tur-

bulent phase. A continuous time control of our model is suggested taking into account

the frequential behavior of the turbulent phase. An H∞ controller is designed in an

infinite dimensional setting. Due to the multivariable nature of the control problem

involved in adaptive optics systems, a significant improvement is obtained with respect

to traditional single input single output methods.
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1 Introduction

For several decades it has been now possible to use adaptive optic (AO) systems to ac-
tively correct the distortions affecting an incident wavefront propagating through a turbulent
medium. A particularly interesting application of this technique is in the field of astronomical
ground-based imaging. The idea behind AO systems is to generate a corrected wavefront as
close as possible to the genuine incident plane wavefront thanks to a deformable mirror (DM).
An AO system is also composed of a wavefront sensor measuring the resulting distortion of
the collected wavefront after correction by the DM. Based on these measured signals, the
voltage applied to the piezoelectric actuators is computed in order to reshape the mirror.
The tilts (first order modes) of the wavefront are corrected by a first mirror. Then, the
DM is part of the control-loop for the correction of higher-order modes of the wave front.
Different types of sensors (curvature sensor, pyramid wavefront sensor) may be used to esti-
mate the distortions affecting the incoming wave-front but the most common encountered in
existing applications is the Shack-Hartmann (SH) sensor. There also exists different type of
deformable mirrors and we choose to study the case of the most common one. For additional
details on basic principles of adaptive optics, see [1], e.g..

This paper is devoted to the design of control laws for an adaptive optics system formed
by a bimorph mirror and a Shack-Hartmann sensor (see Figure 1). Most often, the existing
adaptive optics systems use static models and very basic control algorithms based on frequent
measurements of the influence of each actuator of the mirror to each output of the SH.
This allows the computation of an interaction matrix gathering the corresponding influence

∗e-mail: baudouin@laas.fr, arzelier@laas.fr, cprieur@laas.fr, fguignard@laas.fr

1



Figure 1: An adaptive optics system - The control loop consists in a SH sensor analyzing the incoming

wavefront and a layer of piezoelectric sensors giving the precise position of the bimorph mirror, both of them

allowing the calculation of the appropriate command of the DM in order to recover the genuine wavefront.

functions. Here, our goal is to consider the design of an adaptive optics system control
loop from a modern automatic control point of view as in [2] and [3]. This means first that
dynamics of the different elements involved in the control-loop have to be taken into account.
In particular, a specific dynamic model for the DM is proposed for control purpose (as already
presented in [4] and see also [5]). Secondly, a state-space model of the turbulent phase, built
from its frequency domain characteristics, is defined [6].

The main contribution concerns the infinite dimension setting introduced in this paper.
More precisely, while in the literature, only static finite dimensional models are considered,
a model based on a particular partial differential equation (pde) is used for the DM. We
believe that our point of view matches well with the reduction of the size of the actuators
and the significant augmentation of their numbers in many devices, as in AO for Very Large
Telescopes.

In reference [7], a thin elastic plate model of a deformable bimorph mirror is derived.
This model is based on a periodic distribution of embedded piezoelectric patches that may
be used as sensors or actuators. The idea is then to elaborate a robust control strategy based
on modern control tools for distributed parameter systems [8]. Moreover, in contrast to [9]
and [2], we do not need to compute any interaction matrix modelling the relation between
the input on the piezoelectric patches attached to the mirror and the output given by the
Shack-Hartmann sensor. The interaction matrix can be seen as a static model of the mirror
whereas a more general dynamical model of the mirror is used here.

For the sake of clarity of this study, we emphasize here the main informations about
the frame we choose for our modeling of robust control of an AO system. We consider a
continuous time state-space model of an AO loop (as in [5] and instead of a discrete one in
[2] and [9]) and without delay. In practice an AO system uses discrete wavefront sensing
data with inherent temporal delays and of course it is possible to derive a discrete time
extension of our model but it is not our point here, even if we recognize that the perfor-
mance will somehow be affected. Our contribution relies mainly on the new pde model of
the DM and we aim at using the H∞ control theory for infinite dimension setting in order
to recover at least similar performance as the one of LQG control for a standard model of
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the DM (see [9]). One should notice that our model depends only on a few physical parame-
ters (such as the density, the stiffness... see the Bimorph mirror model subsection below for
more details), parameters that could be considered as uncertain quantities the control law
should take into account. Therefore,we do not need either to compute an interaction matrix
(which is more and more complicate to compute when the number of the sensors and of the
actuators increases as for Very Large Telescopes), or the inverse of this interaction matrix [1].

The control problem is solved using an H∞ control setting. The first motivation is that
H∞ control theory provides intrinsic properties of robustness while optimizing on the worst-
case performance. Another motivation is the multivariable nature of the control problem
involved in adaptive optics system design [3]. Current adaptive optics control systems use
decoupling modal control to rewrite the original problem as several decoupled single input
single output control problems. Because H∞ control framework may easily handle a mul-
tivariable dynamic model of the bimorph DM in the synthesis process, the obtained robust
controller outperforms usual static control approaches of the literature. In addition, the use
of Hinfinity controllers induces, in general, some robustness properties of the closed-loop
while H2/LQG controllers (privileged in general, see [9]) lead to improvement of the perfor-
mance but with no robustness guarantee (see [10]). So far, we do not claim to have solved
the complete problem of AOS synthesis (with delays and limitations of performance intro-
duced by sampling) but we think that this new setting will probably address fundamental
issues encountered in the very large telescopes context. This work is meant to illustrate the
realizability of such an approach on realistic instances of AOS Design.

The outline of the paper is the following. First, the adaptive optics control system is
described (see Section 2) through the presentation of the models of the bimorph mirror and
the turbulent phase. The third section is dedicated to the robust H∞ control setting in the
infinite dimension framework and its formulation in our particular case. The last section
contains the description of the truncated model and the numerical results.

2 The adaptive optics model

The bimorph mirror is composed of a purely elastic and reflective plate equipped with piezo-
electric actuators (in order to deform the shape of the mirror) and piezoelectric sensors (to
measure the effective deformation). A Shack-Hartmann sensor then analyzes the resulting
phase φres of the wavefront, after reflection in the deformable mirror of the turbulent phase
φtur.

Different types of disturbances have to be faced with: wmod represents unstructured uncer-
tainty (neglected dynamics) affecting the model, wpiezo and w

SH
are noise signals respectively

attached to piezoelectric and Shack-Hartmann sensors. Finally, φtur is the turbulent phase
of the wavefront introduced by the atmospheric perturbation.

We denote by e = e(r, θ, t) the transverse displacement of the circular mirror at point
of polar coordinates (r, θ) and time t, while λ is the light wavelength. The corrected phase
produced by e is then given by φcor = 4π

λ e leading to a resulting phase:

φres = −4π

λ
e + φtur (1)

The optic sensor’s output, computed by Shack-Hartmann sensor is:

y
SH

= −4π

λ
e + φtur + cw

SH
(2)
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where c is a modelling parameter of the perturbation.

Finally, we note that the control input is the voltage u applied to the piezoelectric ac-
tuators and the corresponding piezoelectric output is the voltage ype measured with the
piezoelectric inclusions used as sensors (see equations (3) and (4) below). Indeed, in com-
parison with many other devices, where the only information used to compute the voltage u
comes from the wavefront analyzer, the additional possibility of measuring the deflection of
the mirror through a layer of piezoelectric sensors (see Figure 1) is considered here.

It is recalled that the goal of the adaptive optics control system is to minimize the resulting
phase of the wavefront using Shack-Hartmann measurements.

Bimorph mirror model

To obtain the model of a bimorph mirror (see an outline in [4]), we consider three different
layers. One is purely elastic and reflective, the second one is equipped with piezoelectric
inclusions used as actuators, the third one is equipped with piezoelectric inclusions used as
sensors. The heterogeneities are periodically distributed. In reference [7], the authors derive
the following dynamical model of the mirror (a partial differential equation with respect to
(r, θ, t)):

ρ ∂tte + Q1∆
2e + Q2e = d̃31∆u + ρbwmod (3)

with the initial conditions e(r, θ, t = 0) = e0(r, θ) and ∂te(r, θ, t = 0) = e1(r, θ). The voltage
ype computed by the piezoelectric sensors is given by

ype = ẽ31∆e + dwpe. (4)

The following notations are defined:

• (r, θ) are the spatial coordinates of a point of the disk Ω of radius a and t is the time;

• ∆ is the Laplacian operator and for a general function v(r, θ) in polar coordinates

∆v =
∂v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂v

∂θ2
;

• u is the voltage applied to the inclusions of the actuator layer;

• ρ is the surface density, ν is the Poisson ratio of the mirror’s material, Q1 is the stiffness
coefficient and Q2 is a correction coefficient;

• ẽ31 and d̃31 are proportional to the piezoelectric tensor coefficient d31 (for more physical
details see [11]);

• b and d are linear applications on appropriate spaces;

• wmod and wpe are unknown perturbations modelling the model errors of the plate
equation and the measurement noise of the piezoelectric output.

The boundary conditions are those of the free edges case (VLT and the experimental
device SESAME, see Subsection 4.2):

∂2e

∂r2
+ ν

(
1

r

∂e

∂r
+

1

r2

∂2e

∂θ2

)∣∣∣∣
r=a

= 0

∂

∂r
(∆e) +

1

r
(1 − ν)

∂

∂r

(
1

r

∂e

∂θ

)∣∣∣∣
r=a

= 0

(5)
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Turbulent phase model

In order to complete our optics system model, we need to develop a model of the turbulence
phase.

A usual representation of atmospheric phase distortion is made through the orthogonal
basis of Zernike polynomials because the first Zernike modes correspond to the main optical
aberrations. An infinite number of Zernike functions is required to characterize the wavefront,
but a truncated basis is used in general for implementation purpose. Note that a 14-th order
approximation contains 92% of the phase information, without taking into account the piston
mode which represents the average phase distortion [9]. The tip/tilt modes are not part of
our modelling of the turbulent phase because of their correction by a dedicated mirror. We
will therefore work with the 12 first modes of Zernike given in reference [12] and recalled here
(see Table 1), excluding the three first ones.

i n m Zi(r, θ)
1 0 0 1
2 1 1 2 r

a cos θ
3 1 1 2 r

a sin θ

4 2 0
√

3(2( r
a )2 − 1)

5 2 2
√

6( r
a )2 cos 2θ

6 2 2
√

6( r
a )2 sin 2θ

7 3 1
√

8(3( r
a )3 − 2 r

a ) cos θ

8 3 1
√

8(3( r
a )3 − 2 r

a ) sin θ

9 4 0
√

5(6( r
a )4 − 6( r

a )2 + 1)

10 3 3
√

8( r
a )3 cos 3θ

11 3 3
√

8( r
a )3 sin 3θ

12 4 2
√

10(4( r
a )4 − 3( r

a )2) cos 2θ

13 4 2
√

10(4( r
a )4 − 3( r

a )2) sin 2θ

14 4 4
√

12(10( r
a )5 − 12( r

a )3 + 3( r
a )) cos 4θ

15 4 4
√

12(10( r
a )5 − 12( r

a )3 + 3( r
a )) sin 4θ

Table 1: First 15 Zernike Functions

The turbulent phase φtur is approximated as follows:

φtur(r, θ, t) ≈
NZ∑

i=4

φi(t)Zi(r, θ)

where NZ ≥ 15. Zi is the i-th Zernike function and for all i, φi(t) is a random time-varying
coefficient corresponding to the projection of φtur on Zi.

w =




w1(jω)
...

wNZ
(jω)







φ1(jω)
...

φNZ
(jω)


 = φ

H(jw)

Figure 2: Shaping filter generating φ - The turbulent phase φ is modeled through a linear shaping

filter of transfer function H from the noise w

To build a state-space representation of the turbulent phase, φtur is modelled as the
output of a linear shaping filter (illustrated by Figure 2) of the form :

φ′ = Fφ + Gw (6)
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where φ = (φ4, · · · , φNZ
), w = (w4, · · · , wNZ

), F and G are two time-invariant square ma-
trices of (NZ − 3)-dimension and w is a stationary zero-mean white gaussian noise. φtur is
therefore a stationary process.

In order to compute F and G, the results presented in [6] and based on the Kolmogorov
theory of turbulence and associated approximations in the frequency domain are used here.
They confirm similar results proposed in [13] and complete the study of frequency domain
behavior for each Zernike coefficient. Each Zernike function’s spectrum are characterized by
a cut-off frequency whose heuristic expression is given by:

fci
∼ 0.3(ni + 1)

V

D
(7)

where ni is the radial order of the Zernike number i, V is the average wind-speed and D the
diameter of the circular aperture of the telescope.

The random process φ is supposed to be composed of NZ−3 decoupled first-order Markov
processes. For i = 4 · · ·NZ , we have:

Hi(P ) =
φi(p)

ωi(p)
=

1

1 + τip
with τi =

1

2πfci

(8)

In other words, F = diagi(−
1

τi
).

i j Fi,j Gi,j i j Fi,j Gi,j

1 1 -508,9 27.10 6 6 -848.2 10.20
1 6 0 -4.499 7 7 -678.6 16.38
2 2 -508,9 27.11 8 8 -678.6 16.38
2 9 0 -4.455 9 2 0 -4.455
3 3 -508,9 27.11 9 9 -848.2 10.64
3 10 0 -4.455 10 3 0 -4.455
4 4 -678.6 15.48 10 10 -848.2 10.64
4 11 0 -3.555 11 4 0 -3.555
5 5 -678.6 15.47 11 11 -101.8 8.047
5 12 0 -3.555 12 5 0 -3.555
6 1 0 -4.499 12 12 -101.8 8.047

Table 2: Atmospheric phase distortion state-space model with the average wind-speed V =

9m s−1,
D

r0
= 8 and the wavelength λ = 550nm

The matrix G is obtained from the steady-state Lyapunov equation verified by the cor-
relation matrix Pφ(∞):

GG′ = −(FPφ(∞) + Pφ(∞)F ′) (9)

A closed-form expression for the spatial covariance matrix is given in [12].

Pφ(∞) = cov(φi, φj) = E(φiφj)

= 7.19 × 10−3 × (−1)(ni+nj−mi−mj)/2

(
D

r0

) 5

3

×
√

(ni + 1)(nj + 1)π
8

3

×
Γ
(14

3

)
Γ
(ni + nj − 5

3

2

)

Γ
(ni − nj + 17

3

2

)
Γ
(ni − nj + 17

3

2

)
Γ
(ni + nj + 23

3

2

)
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where Γ is the Gamma function and r0 is the Fried parameter (corresponding to the strength
of the turbulence [1]). Table 2 shows the non zero entries of the matrices F and G for

V = 9m s−1 and
D

r0
= 8 (as in reference [2]).

3 Robust Control Results

The point of this section is to prove that the new model we propose for AO systems is valid
for an H∞-control study. One of the difficulties comes from the infinite dimensional setting.
For a survey of the H∞-control theory for the infinite-dimensional case, the interested reader
may have a look at [14] or [15] for the state-feedback case and [8] for the output-feedback case.
The main results are a generalization of finite-dimensional regular H∞-control problems (see
for instance [10]). In particular, the solution will be given in terms of the solvability of two
coupled Riccati equations.

The linear infinite-dimensional model derived from the partial differential equations pre-
sented in Section 2 has to fit in the following standard formalism of measurement-feedback
control 





x′ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w

(P)

where x is the state of the system, u is the control input, w is the disturbance input, y is the
measured output and z is the controlled output.

w z

u y

K

P

Figure 3: Closed-loop system

Therefore, we introduce the following notations:

• the state vector x = (e, ∂te, φtur)
T where e is the transverse displacement of the plate

and φtur is the projection of the turbulent phase on the Nz first Zernike modes;

• the exogenous disturbance inputs vector w = (wmod, w
SH

, wtur, wpe)
T gathers the dif-

ferent perturbation signals (uncertainty affecting dynamics of the model and of the
turbulence phase, noise vectors of the wavefront analyzer and of piezoelectric sensors);

• the control inputs vector u is the voltage applied to piezoelectric patches;

• the measurement outputs vector y = (ype, ySH
) is composed with the piezoelectric and

the wavefront analyzer measured outputs;

• the controlled outputs vector z = (φres, u) contains an optical part (the resulting phase,
see (1)) and the control input vector u.
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The aim is to find a dynamic measurement-feedback controller K ensuring that the in-
fluence of w on z is smaller than some specific bound. The corresponding standard block
diagram is given by Figure 3.

The controller is assume to have the following form:
{

p′ = Mp + Ny
u = Lp + Ry

(K)

where M is the infinitesimal generator of a C0-semigroup on a real separable Hilbert space
and N , L and R are bounded linear operators. With this controller, the closed-loop system
can easily be derived and defines a bounded linear map SK such that z(t) = (SKw)(t). Its
bound is denoted ||SK ||∞.

The control loop defining the adaptive optics system is sketched in Figure 4. If we gather
the different equations describing the system, namely (1), (2), (3), (4) and the forthcoming
equation (11) (corresponding to (6)), we get





∂tte + Q1∆
2e + Q2e = d̃31∆u + bρwmod

∂tφtur = Fφtur + Gwtur

φres = φtur −
4π

λ
e

ype = ẽ31∆e + dwpe

y
SH

= φtur −
4π

λ
e + cw

SH
.

(10)

Actually, in order to have an unified infinite dimensional modelling of the adaptive optic
system’s state, we described the model of φtur from equation (6) as follows:

• φtur and wtur are the reconstruction of φ and w on NZ − 3 of the first Zernike modes,
such that

φtur =

NZ∑

i=4

φiZi and wtur =

NZ∑

i=4

wiZi

• F and G ∈ L(L2(Ω)) satisfy for all ϕ ∈ L2(Ω)

F(ϕ) =

NZ∑

i=4

Fii 〈ϕ, Zi〉L2(Ω) Zi

G(ϕ) =

NZ∑

i=4

NZ∑

j=4

Gij 〈ϕ, Zj〉L2(Ω) Zi

what leads to the L2 turbulent phase model given in (10)

∂tφtur = Fφtur + Gwtur (11)

where L2 is the Hilbert space of square integrable functions and L(X) stands for the set of
linear applications on X .

Thus, the operators defining the standard form P are built from (10)

A =




0 I 0

−Q1

ρ
∆2 − Q2

ρ
I 0 0

0 0 F


 , B1 =




0 0 0 0
b 0 0 0
0 0 G 0



 ,

B2 =




0

d̃31

ρ
∆

0


 , C1 =

(
−4π

λ
I 0 I

0 0 0

)
, D12 =

(
0
I

)
,

8



C2 =

(
ẽ31∆ 0 0

−4π

λ
I 0 I

)
, D21 =

(
0 0 0 d
0 c 0 0

)
.

+

+

+
+

+

+
+

Model

Model

Turbulent Phase

Mirror

Mirror

φtur

wtur

wmod

z2

P

u
ype

ySH

d
wpe

wSH

I

z1

φres

φcor

(
e
e′

)

[ẽ31∆ 0]

[
4π
λ 0

]

[
0

d̃31∆

]

K

G

[
0
b

]

Figure 4: Standard model for adaptive optics system control loop

The appropriate functional spaces associated to the infinite-dimensional model are now
precisely defined. With the boundary condition (5), we consider the state space (the mirror
Ω is a disk of radius a)

X = H2
bc(Ω) × L2(Ω) × L2(Ω)

=
{
e ∈ H2(Ω), e satisfying (5)

}
×
(
L2(Ω)

)2

the input spaces U = H2(Ω) ∩ H1
0 (Ω) and W =

(
L2(Ω)

)4
and the output spaces Y = Z =(

L2(Ω)
)2

, where H1
0 and H2 are the Sobolev spaces

H1
0 (Ω) = {f ∈ L2(Ω)/ ∀i = 1, 2, ∂if ∈ L2(Ω), f |∂Ω = 0}

H2(Ω) = {f ∈ L2(Ω)/ ∀i, j = 1, 2, ∂if, ∂i∂jf ∈ L2(Ω)}

This model satisfies all the assumptions of the main theorem of reference [8]. We give
here a simplified version of this result:

Theorem 1 [8] Let γ > 0. There exists an exponentially stabilizing dynamic output-feedback

controller of the form (K) with ‖SK‖∞ < γ if and only if there exist two nonnegative definite

operators P , Q ∈ L(X) satisfying the three conditions

(i) ∀x ∈ D(A), Px ∈ D(A∗),
(
A∗P + PA + P (γ−2B1B

∗
1 − B2B

∗
2 )P + C∗

1C1

)
x = 0

and A + (γ−2B1B
∗
1 − B2B

∗
2 )P generates an exponentially stable semigroup,

(ii) ∀x ∈ D(A∗), Px ∈ D(A),
(
AQ + QA∗ + Q(γ−2C∗

1C1 − C∗
2C2)Q + B1B

∗
1

)
x = 0

9



and A∗ + (γ−2C∗
1C1 − C∗

2C2)Q generates an exponentially stable semigroup,

(iii)
rσ(PQ) < γ2,

where rσ(PQ) stands for the spectral radius of PQ.

In this case, the controller K given by (K) and

M = A + (γ−2B1B
∗
1 − B2B

∗
2)P

−Q(I − γ−2PQ)−1C∗
2C2

N = −Q(I − γ−2PQ)−1C∗
2

L = B∗
2P

R = 0

(12)

is exponentially stabilizing and guarantees that we have ‖SK‖∞ < γ, ie

‖φres‖L2(Ω) + ‖u‖L2(Ω) ≤ γ‖w‖(L2(Ω))4 .

Finally, if the solutions to the Riccati equations exists, then they are unique.

Upon additional assumptions that are not detailed here, the main point is to prove that
A is the infinitesimal generator of a C0-semigroup on the real separable Hilbert space X .
Actually, if we consider the unbounded linear operator

A1 : D(A1) → X


e0

e1

e2



 7→




0 I 0

−∆2 0 0
0 0 0








e0

e1

e2



 =




e1

−∆2e0

0





where
D(A1) =

{
e0 ∈ H4(Ω), e0 st (5)

}
× H2(Ω) × L2(Ω),

then one can prove that A1 is dissipative on X . Indeed, we prove that for all x ∈ X ,

〈A1x, x〉X ≤ 0

using the following scalar product on H2
bc(Ω) in cartesian coordinates (x1, x2) ∈ Ω, as sug-

gested in [16]:

< u, v >H2

bc
(Ω)

=

∫

Ω

∆u∆v − (1 − ν)

(
∂2u

∂x2
1

∂2v

∂x2
2

+
∂2u

∂x2
2

∂2v

∂x2
1

)

+2(1 − ν)

(
∂2u

∂x1∂x2

∂2v

∂x1∂x2

)
dΩ.

Moreover, one can easily check that A1 is also self-adjoint and onto. Therefore, from Lumer-
Phillips’ Theorem (see [17], p. 15), A1 generates a continuous semigroup of linear contractions
acting on X. And finally, since A is the sum of A1 and of a linear operator bounded on X
(as F is assumed to be bounded, like F ), the proof is complete (see [18], p. 40).

Of course, from a numerical point of view, we need to get an appropriate finite dimensional
model.
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4 A truncated model for numerical design

4.1 Truncation

The corresponding finite dimensional model can be presented as :





x′
N = ANxN + B1NwN + B2NuN

zN = C1NxN + D12NuN

yN = C2NxN + D21NwN

(13)

where the operators of system (P) have been replaced by real-valued matrices computed on
truncated hermitian basis. We denote by NB the number of eigenfunctions of operator ∆2 we
consider and by NZ the number of Zernike modes used to describe φtur. Then, xN ∈ R

2NB+NZ

is the state vector, wN ∈ R
2NB+2NZ is the exogenous perturbation vector, uN ∈ R

NB is the
control vector, zN ∈ R

NB+NZ is the controlled output vector and yN ∈ R
NB+NZ is the

measured output vector. The matrices AN , B1N , B2N , C1N , D12N , C2N and D21N are of
appropriate dimensions.

In order to compute these objects, we still consider the case of a circular bimorph mirror
which is free at all the boundary (this is also the case of the mirror considered in Section 4.2
below). The eigenvectors of operator

−Q1

ρ
∆2 − Q2

ρ
I

are given by, for all (k, j) ∈ N
2,

Lkj(r, θ) = akj

(
Jk

(
λkjr

a

)
+ ckjIk

(
λkjr

a

))
cos(kθ)

Mkj(r, θ) = akj

(
Jk

(
λkjr

a

)
+ ckjIk

(
λkjr

a

))
sin(kθ)

where (r, θ) are the polar coordinates of x ∈ Ω, Jk and Ik are, respectively, ordinary and

modified Bessel function of first kind and order k, and −Q1

ρ

(
λkj

a

)4

− Q2

ρ the corresponding

eigenvalues. The family {
Lkj , Mkj , (k, j) ∈ N

2
}

is an Hilbertian basis of H2
bc(Ω). The dimensionless coefficients λkj and ckj depend on the

boundary conditions while akj is computed using a normalization condition on the eigenvec-
tors (see [19] for further details). In what follows, we consider the case of Poisson ratio
ν = 0.2 corresponding to the material the mirror is made of. Once a maximal azimuthal
order is given (here kmax = 5) the modes are classified according to increasing λkj and one
has the values gathered in Table 3.

The sequence of functions Lkj and Mkj need to be re-ordered. They are now denoted by
Bn and follow the increasing values of λkj , alternating cosine and sine and eliminating the
null eigenvectors M0j . Therefore,

∀x ∈ X, x =
∑

n∈N, i≥1

αiBi(r, θ)

where (αn)n≥1 is a sequence of real numbers satisfying
∑

n∈N, n≥1 α2
n < ∞.

In reference [20], one can find that this basis (Bn)n∈N with free boundary conditions is not
orthogonal in L2(Ω). However, numerically, we can prove that this basis is nearly orthogonal,
indeed lots of scalar products in L2(Ω) are null and the others are small (10−6) in comparison
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i j k λkj ckj akj

1 0 2 2.37805 0.18773 3.6157
2 1 0 2.96173 -0.092478 2.1984
3 0 3 3.60924 0.075982 4.4749
4 1 1 4.51025 -0.019949 3.8317
5 0 4 4.76934 0.034281 5.2453
6 0 5 5.89565 0.016333 5.9506
7 1 2 5.94302 -0.0056226 4.4178
8 0 2 6.18269 0.0032602 3.1394
9 1 3 7.30051 -0.0018233 4.9425
10 2 1 7.72338 0.0007269 4.9616

Table 3: Coefficients of the eigenvectors Lkj and Mkj .

with unity. So, for more numerical facilities, we will use the scalar product in L2(Ω) rather
than in H2

bc(Ω).
Given NB and NZ ∈ N, we compute AN , B1N , B2N , C1N , C2N , D12N and D21N using

the “Bessel” truncated basis {B0, B1, . . . , BNB
} and the Zernike one {Z0, Z1, . . . , ZNZ

}.
We make analogous assumptions for the tuning parameters b, c and d, i.e. b = diagi(bi),

c = diagi(ci) and d = diagi(di) where (bi)i∈N, i≥1, (ci)i∈N, i≥1 and (di)i∈N, i≥1 are sequences of
real numbers. We recall that these coefficients are weighting functions defining the respective
weights of the disturbance signals and the choice of diagonal matrices corresponds to an
assumption of decoupling between the different modes.

Futhermore φres is expressed on Besssel functions, so we need to estimate a projection
matrix to define φtur with Bessel spatial coordinates. We note Q this projection NB × NZ -
dimension matrix. Thus, the computed equation becomes:

φres,i = −4π

λ
ei +

NZ−2∑

j=1

QijBj+2

We denote by 0 each null matrix with the appropriate dimensions so that each following
matrix makes sense. We get

AN =




0 1NB
0

−ω2
i 1NB

0 0

0 0 F


 B1N =




0 0 0 0

b 0 0 0

0 0 G 0




B2N =




0

blockij

(
d̃31

ρ
〈∆Bi, Bj〉

)

0


 C1N =

[
−4π

λ
1NB

0 Q

0 0 0

]
D12N =

[
0

1NB

]

C2N =

[
blockij (ẽ31 〈∆Bi, Bj〉) 0 0

−4π

λ
1NB

0 Q

]
D21N =

[
0 0 0 d
0 c 0 0

]

where ω2
i =

Q1

ρ

(
λi

a

)4

+
Q2

ρ
and 〈·, ·〉 is the usual scalar product in L2(Ω).

4.2 Numerical results

In this subsection, numerical simulations are proposed. To get more realistic results, the
experimental device of the project SESAME of the Observatoire de Paris is considered. This
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Wind speed V = 9 ms−1

Diameter of the pupil D = 10−2 m
radius of the mirror a = 25 × 10−3 m

mirror’s stiffness coefficients Q1 = 84 Nm, Q2 = 11.25 × 108 Nm−3

mirror’s surfacic density ρ = 16.3 kg.m−2

piezoelectric coefficients d̃31 = −0.0044 NV−1, ẽ31 = −5.60× 103 Vm
wave length λ = 550 nm

Table 4: Physical parameters for the numerical simulations

experimentation uses a bimorph mirror with a distribution of 31 piezoelectric actuators. The
piezoelectric inclusions are PZT patches. We use the physical constants of Table 4

We simulate only the 12 modes which follow the tip/tilt. The performance of the control
system is evaluated by considering the spatial norm ‖.‖L2 of φres compared to ‖φtur‖L2(Ω):

‖φtur‖L2(Ω) =

Nz∑

i=4

φi(t)
2.

For identical random initial conditions and taking the respective weights of the disturbance
signals such that bi = 0.001, ci = 0.002 and di = 0.003 for all i, we obtain the results
represented in Figure 5.
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0.02
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0.035
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0.045

time (s)

||φ
||

 

 
||φ

res
||

||φ
tur

||

Figure 5: Time-evolution of ‖φtur‖L2(Ω) (solid line) and ‖φres‖L2(Ω) (dashed line)

Using Monte Carlo simulations, the ratio between temporal average of ‖φtur‖L2(Ω) and
‖φres‖L2(Ω) is near to 1.91 which represents a phase distortion attenuation of the reflected
wavefront of 48%. In addition one should recall that this result does not take into account
the tip/tilt correction. Even if these results are of the same order of magnitude as those
presented in [9], which cannot be considered as completely satisfactory when considering
usual results on real experiments, they clearly demonstrate the feasibility of the proposed
approach. The possible degradation of such a performance induced by the delay in the loop
and the discretization of the control law for implementation purpose could darken the picture.
It must be recalled that this apparent loss of performance is mainly due to the tuning of the
trade-off between robustness and performance that is inherently encountered in closed-loop
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feedback design. Numerous improvements have still to be considered as presented in the next
conclusion.

5 Conclusion

In this paper, a new framework to deal with the problem of adaptive optics is proposed. It
is mainly based on an infinite-dimensional model of the deformable mirror associated with
the definition of a standard model on which robust control techniques may be applied. The
preliminary numerical experiments show a performance level comparable with the results
of reference [9]. The main advantage of the approach suggested in this paper is that no
interaction matrix is required to control the system. We do not pretend to outperform
already existing AO systems but rather to pave the way for future major improvements in
terms of robustness and efficiency of the proposed control strategies. The authors are planing
to take into account a model for the Shack-Hartmann wavefront sensor including a time delay
associated with processing measurements. This will be covered in a next study.
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