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This paper concerns the inverse problem of retrieving a stationary potential for the Schrödinger evolution equation in a bounded domain of R N with Dirichlet data and discontinuous principal coefficient a(x) from a single time-dependent Neumann boundary measurement. We consider that the discontinuity of a is located on a simple closed hyper-surface called the interface, and a is constant in each one of the interior and exterior domains with respect to this interface. We prove uniqueness and lipschitz stability for this inverse problem under certain convexity hypothesis on the geometry of the interior domain and on the sign of the jump of a at the interface. The proof is based on a global Carleman inequality for the Schrödinger equation with discontinuous coefficients, result also interesting by itself.

Introduction

The method of Carleman estimates was introduced in the field of inverse problems by Bukhgeim and Klibanov in reference [START_REF] Bukhgeim | Global uniqueness of a class of inverse problems[END_REF] (see also [START_REF] Bukhgeim | Introduction to the theory of Inverse Problems, Inverse and Illposed problem Series[END_REF] and [START_REF] Klibanov | Inverse Problems and Carleman estimates[END_REF]). The first known results concern uniqueness of inverse problems. Then, one of the first stability result for a multidimensional inverse problem, dealing with an hyperbolic equation, can be read in [START_REF] Puel | On a global estimate in a linear inverse hyperbolic problem[END_REF] and is based on a modification of an idea of [START_REF] Bukhgeim | Global uniqueness of a class of inverse problems[END_REF].

Carleman estimates techniques are presented in [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF] for standard coefficient inverse problems for both linear and nonlinear partial differential equations; one can also read in this book the construction of globally convergent numerical methods for coefficient inverse problems and some concrete applied problems in geophysics, medical imaging and computational time reversal.

It is possible to obtain local Lipschitz stability around the single known solution, provided that this solution is regular enough and contains enough information (see [START_REF] Klibanov | Newton-Kantorovich method for threedimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data[END_REF] and [START_REF] Klibanov | Inverse Problems and Carleman estimates[END_REF]). Actually, many of the results using the same strategy we can refer to concern the wave equation. A complete list is too long to be given here but to cite some of them, related to the same kind of inverse problems of determining a potential and also using local or global Carleman estimates, see [START_REF] Puel | Generic well posedness in a multidimensional hyperbolic inverse problem[END_REF] and [START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF] for a Dirichlet boundary data and a Neumann measurement and [START_REF] Imanuvilov | Global uniqueness and stability in determining coefficients of wave equations[END_REF] for a Neumann boundary data and a Dirichlet measurement.

Recently, global Carleman estimates and applications to one-measurement inverse problems were obtained in the case of variable but still regular coefficients, see [START_REF] Yu | Determination of a coefficient in an acoustic equation with a single measurement[END_REF] for the isotropic case, and [START_REF] Lasiecka | Inverse/observability estimates for secondorder hyperbolic equations with variable coefficients[END_REF] and [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF] for the anisotropic case. It is interesting to note that these authors require a bound on the gradient of the coefficients, so that the idea of approximating discontinuous coefficients by smooth ones is not useful. Nevertheless, uniqueness and Lipschitz stability are obtained in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coefficient from a single time-dependent Neumann boundary measurement.

One can also note that a global Carleman estimate has been obtained [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, A tribute to[END_REF] for the heat equation with discontinuous coefficients. That work was initially motivated by the study of the exact null controllability of the semilinear heat equation, but the estimate has been recently used (see [START_REF] Bellassoued | Inverse source problem for a transmission problem for a parabolic equation[END_REF] ) to prove local Lipschitz stability for a one measurement inverse problem. In this field, one should also read the recent works [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient -and application to controllability and an inverse problem[END_REF], [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF] and [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems or the heat equation[END_REF]. Up to our knowledge, the result of determination of a time independent potential in Schrödinger evolution equation with discontinuous principal coefficient from a single time dependent measurement on the boundary is new. Concerning the simpler case of a "classical" Schrödinger equation (with a = 1), one can have a look at [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrdinger equation[END_REF], where the Carleman estimate and the proof of the stability of the same inverse problem are maybe easier to read and the philosophy is the same. For the same equation, one can find in [START_REF] Mercado | Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF] a method with weight functions satisfying a relaxed pseudoconvexity condition, which allows to prove Carleman inequalities with less restrictive boundary observations than in [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrdinger equation[END_REF]. The authors of [START_REF] Lasiecka | Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: H1-estimates[END_REF] deal with Carleman estimates for the Schödinger equation with variable (but regular) principal coefficient and applications to controllability. Let us notice that in the different context of Cauchy problem, V. Isakov in [START_REF] Isakov | Inverse Problems for Partial Differencial Equations[END_REF] uses local Carleman estimates for the Schrödinger equation to prove uniqueness of the solution. Finaly, for the Schrödinger operator i∂ t + div(c∇) in an unbounded strip in R 2 , reference [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip[END_REF] gives a stability result for the diffusion coefficient c in H 1 with only one observation in an unbounded domain. One will see in the proof of our main tool (an appropriate Carleman estimate) that it is based on the same strong pseudoconvexity condition (H 4 ) for the weight ψ.

Statement of the problem and main results.

Let T > 0 and let Ω ⊂ R N (N ≥ 2) be a bounded domain with C 2 -boundary ∂Ω. Throughout this paper, we use the following notations :

∇v = ∂v ∂x 1 , . . . , ∂v ∂x N , ∆v = N i=1 ∂ 2 v ∂x 2 i , v ′ = ∂v ∂t and v ′′ = ∂ 2 v ∂t 2 , ν ∈ R N
denotes the unit outward normal vector to ∂Ω, ∂v ∂ν = ∇v.ν is the normal derivative.

We will work with the following Schrödinger equation :

   iy ′ (x, t) + div(a(x)∇y(x, t)) + p(x)y(x, t) = 0, x ∈ Ω, t ∈ (0, T ) y(x, t) = h(x, t), x ∈ ∂Ω, t ∈ (0, T ) y(x, 0) = y 0 (x),
x ∈ Ω.

(

) 1 
We consider in this paper the inverse problem of the determination of the coefficient p of the lower order term in Schrödinger equation ( 1) from a single time dependent observation of Neumann data ∂y ∂ν on the boundary. The major novelty of this paper is that we deal with a Schrödinger equation in a bounded domain of R N with discontinuous principal coefficient. Indeed, let Ω and Ω 1 be two open subsets of R N with smooth boundaries Γ and Γ 1 . We choose Ω 1 simply connected and such that Ω 1 ⊂ Ω and we set Ω 2 = Ω\Ω 1 . Thus, we have ∂Ω 2 = Γ ∪ Γ 1 and we also set:

a(x) = a 1 x ∈ Ω 1 a 2 x ∈ Ω 2
with a j > 0 for j = 1, 2.

Considering equation (1), we know that for each p ∈ L ∞ (Ω), y 0 ∈ L 2 (Ω) and h ∈ L 2 (Γ × (0, T )), there exists a unique weak solution y such that

y ∈ C([0, T ]; H -1 (Ω)) ∩ H -1 (0, T ; L 2 (Ω)).
The proof is based on a transposition method, as one can read in [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF]. Let us also notice that the regularity of y also implies

∂y ∂ν ∈ H -2 (0, T ; H -3 2 (Γ)).
We will prove the well-posedness of the inverse problem consisting in retrieving the potential p involved in equation [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF], knowing the flux (the normal derivative) of the solution y(p) of (1) on the boundary. It means that we will prove uniqueness and stability of the nonlinear inverse problem characterized by the nonlinear application

p| Ω -→ a 2 ∂y ∂ν Γ×(0,T ) . (2) 
We will more precisely answer the following questions.

Uniqueness : Does the equality ∂y(p) ∂ν = ∂y(q) ∂ν on Γ × (0, T ) imply p = q on Ω ?

Stability :

Is it possible to estimate q -p| Ω by ∂y(q) ∂ν -∂y(p) ∂ν Γ×(0,T ) in suitable norms ?

Indeed, we will only give a local answer about the determination of p, working first on a linearized version of the problem, as shown is Section 3. Assuming that p ∈ L ∞ is a given function, we are concerned with the stability around p. That is to say p and u(p) are known while q is unknown. We can also add that uniqueness is a direct consequence of stability but historically, uniqueness results were obtain first (see [START_REF] Bukhgeim | Global uniqueness of a class of inverse problems[END_REF]) and stability was proved using for instance compactness-uniqueness arguments as in [START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF].

In this work we introduce a Carleman weight whose spatial part is similar to the one of the weight function constructed in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] for the two-dimensional case. We prove a new Carleman estimate for the Shrödinger equation (see Theorem 9) under the hypothesis of strong convexity -also called uniform convexity-for the interface (roughly speaking, it means that their curvatures are uniformly bounded from below by a positive constant; see Definition 6), and some sign for the jump of the main coefficient. The following result, based on this Carleman estimate, states the stability of the inverse problem.

Theorem 1. Assume that Ω 1 is strongly convex and a 1 > a 2 > 0. Let U be a bounded subset of L ∞ (Ω), p ∈ L ∞ (Ω) and r > 0. If y 0 ∈ H 1 (Ω) is real valued (or pure imaginary) and if

|y 0 (x)| ≥ r > 0, a.e. in Ω, y(p) ∈ H 1 (0, T ; L ∞ (Ω)),
then there exists

C = C(Ω, T, p L ∞ (Ω) , U) > 0 such that p -q L 2 (Ω) ≤ C a 2 ∂y(p) ∂ν -a 2 ∂y(q) ∂ν H 1 (0,T ;L 2 (Γ))
q ∈ U, where y(p) is the solution of equation (1) with potential p.

The main idea is that the nonlinear inverse problem is reduced to some perturbed inverse problem which will be solved with the help of a Carleman estimate. In order to obtain such an estimate, we first rewrite (1) as a system of two Schrödinger equations with constant coefficients and solutions y 1 and y 2 , coupled with transmission conditions. We then construct a Carleman inequality on each domain with nonzero boundary values on the interface. Next, we gather all the terms to construct a global Carleman inequality for the transmission problem. The main point is to look carefully at the interaction of y 1 and y 2 on the common boundary Γ 1 .

Notice that we state hypothesis for a function which guarantee that it would be a suitable weight function for a Carleman estimate with the only requirement that the discontinuities of a are located on Γ 1 . We shall only construct an explicit weight function for the case of a discontinuous coefficient which is constant on each subdomain (i.e. a 1 and a 2 constants). However, we could also construct a weight function for variable coefficients a 1 (x) and a 2 (x) such that their traces at the interface are constant, under additional assumptions of boundedness of ∇a j similar to those appearing in [START_REF] Yu | Determination of a coefficient in an acoustic equation with a single measurement[END_REF] (in order that the corresponding weight function would satisfy hypothesis (H 3 ) and (H 4 ) in section 2). This article is organized as follows. Section 2 is devoted to the proof of an appropriate global Carleman inequality and Section 3 concerns the proof of the Lipschitz stability of our the inverse problem.

A global Carleman estimate

In this step, we will show a global Carleman estimate concerning a function v = v(x, t) equals to zero on ∂Ω × (-T, T ) and solution of a Schrödinger equation with a bounded potential q = q(x). We set the following notations :

Q = Ω × (-T, T ) Ω 0 = Ω 1 ∪ Ω 2 Γ = ∂Ω Γ 1 = ∂Ω 1 ∩ ∂Ω 2 Σ = Γ × (-T, T ) Σ 1 = Γ 1 × (-T, T )
and if u is a function defined in Ω, for u j we will mean its restriction to the set Ω j , for each j = 1, 2.

The main hypothesis for the Carleman estimate is the existence of a weight function ψ = ψ(x) defined on R N such that, on the one hand it is pseudo-convex with respect to the Schrödinger operator in each one of the two sub-domains Ω 1 and Ω 2 , and on the other hand it has a convenient behavior at the interface Γ 1 .

Indeed, we will first suppose that ψ ∈ C 4 (Ω) verifies the natural transmission conditions:

   ψ 1 = ψ 2 on Γ 1 a 1 ∂ψ 1 ∂ν 1 + a 2 ∂ψ 2 ∂ν 2 = 0 on Γ 1 . (Tr) 
We will also suppose the following behavior at the interface

ψ(x) = cte for all x ∈ Γ 1 , (H 1 ) ∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 < 0 on Γ 1 . (H 2 )
In the interior Ω 0 we will need that

|∇ψ| ≥ δ > 0 (H 3 ) and that ∃ ǫ > 0 such that 2D 2 a ψ(ξ, ξ) + 2a 2 λ|∇ψ • ξ| 2 -a∇a • ∇ψ|ξ| 2 ≥ ǫ|ξ| 2 (H 4 ) ∀ξ ∈ C n , where D 2 a ψ = a ∂ ∂x i a ∂ψ ∂x j 1≤i,j≤N
.

Finally, it will be useful to consider weight functions satisfying (H 3 ) and (H 4 ) except in a neighborhood of a point. In this case we will need two weight functions ψ 1 and ψ 2 , each one satisfying (H 3 ) and

(H 4 ) in Ω 1 ∪ Ω 2 \ B ε (x 1 ) and Ω 1 ∪ Ω 2 \ B ε (x 2 ) respectively, (with ε small enough) such that ψ j -ψ k ≥ δ > 0 in B ε (x k ) (H 5 )
for each j, k ∈ {1, 2} with j = k. Summarizing, we set the following Definition 2.

1. Let U ⊂ Ω be an open set such that Γ 1 ⊂ U and let ψ ∈ C 4 (U \Γ 1 ). We say that ψ is a transmission weight function for equation [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] in U if it satisfies the conditions (Tr), (H 1 ) and (H 2 ) on the interface Γ 1 , and hypothesis (H 3 ) and (H 4 ) in U .

2. Let ψ 1 and ψ 2 be two functions in C 4 (Ω 1 ∪ Ω 2 ). We say that (ψ 1 , ψ 2 ) is an ε-pair of transmission weight functions for (1) if there exist x 1 , x 2 ∈ Ω 0 and ε > 0 such that for each k = 1, 2 the function ψ k is a transmission weight function for [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] in

Ω 0 \ B ε (x k ) and the hypothesis (H 5 ) is fulfilled.
Given ψ, for s > 0, λ > 0 we define on Q = Ω × (-T, T ) the following functions:

θ(x, t) = e λψ(x) (T -t)(T + t) and ϕ(x, t) = α -e λψ(x) (T -t)(T + t)
where α > e λψ L ∞ (Ω) .

We also define the space

Z = v ∈ L 2 (-T, T ; H 1 0 (Ω)) : Lv ∈ L 2 (Q), ∂v ∂ν ∈ L 2 (Σ) and v satisfies (Tr) , introduce the following norm in Z w s,λ,ψ = s 3 λ 4 T -T Ω θ 3 |w| 2 dxdt + sλ T -T Ω θ|∇w| 2 dxdt (3) 
and for • s,λ,ψ,U we will mean the above terms defined in the set U ⊂ Ω.

We finally set Lv = iv ′ + div(a(x)∇u) + qv, v = e sϕ w and P w = e -sϕ L(e sϕ w).

Hence we have P w = iw ′ + isϕ ′ w + div(a∇w) + 2sa∇ϕ.∇w + sw div(a∇ϕ) + s 2 a|∇ϕ| 2 w + qw

= P 1 w + P 2 w + qw
where we denoted

P 1 w = iw ′ + div(a∇w) + s 2 a|∇ϕ| 2 w, P 2 w = isϕ ′ w + 2sa∇ϕ.∇w + s div(a∇ϕ)w.
Our main result is the following Theorem 3. Suppose there exists for some ε > 0 an ε-pair of transmission weight functions (ψ 1 , ψ 2 ) belonging to C 3 (Ω 1 ∪ Ω 2 ). Let θ k , ϕ k and w k be the corresponding functions defined for ψ k as we did before. We also define

Σ ψ k + = (x, t) ∈ Γ × (-T, T ) : ∇ψ k (x, t) • ν(x) > 0
Then there exists C > 0, s 0 > 0 and λ 0 > 0 such that

2 k=1 P ψ k 1 (w k ) 2 L 2 (Q) + P ψ k 2 (w k ) 2 L 2 (Q) + w k 2 λ,s,ψ k ≤ C 2 k=1 P ψ k (w k ) 2 L 2 (Q) + sλ Σ ψ k + θ k a ∂w k ∂ν 2 (4) 
for all v ∈ Z, λ ≥ λ 0 and s ≥ s 0 .

Formal computations

We have

Q |P w -qw| 2 dxdt = Q |P 1 w| 2 dxdt + Q |P 2 w| 2 dxdt +2Re Q P 1 wP 2 w dxdt,
where z is the conjugate of z and Re(z) its real part.

As v ∈ L 2 (-T, T ; H 1 0 (Ω)) and v ′ ∈ L 2 (-T, T ; H -1 (Ω)) (because Lv ∈ L 2 (Q)), we have v ∈ C([-T, T ]; L 2 (Ω)) and w ∈ C([-T, T ]; L 2 (Ω)) with w(x, ±T ) = 0.
We look for lower bounds for

Re Q P 1 wP 2 w dxdt = P 1 w, P 2 w L 2 We set P 1 w, P 2 w L 2 = 3 i,j=1
I i,j , where I i,j is the integral of the product of the ithterm of P 1 w and the jth-term of P 2 w. The properties of w and some integrations by parts allow to write the following equalities.

To begin with, we have

I 11 = Re Q iw ′ (-isϕ ′ w) dxdt = - s 2 Q ϕ ′′ |w| 2 dxdt.
Applying the identity

Im(z) = -Im(z) for z = 2sλ T -T Ω
θa∇ψ•∇ww ′ dxdt we obtain:

I 12 = Re Q iw ′ (2sa∇ϕ • ∇w) dxdt = sλ Im Q θ( div(a∇ψ) + λa|∇ψ| 2 )ww ′ dxdt -sλ Im Q aθ ′ w∇ψ • ∇w dxdt +sλ Σ waθw ′ ∂ψ ∂ν dσdt
We also have

I 13 = Re Q iw ′ s div(a∇ϕ)w dxdt = -sλ Im Q θ( div(a∇ψ) + λa|∇ψ| 2 )ww ′ dxdt, I 21 = Re Q div(a∇w)(-isϕ ′ w) dxdt = sλ Im Q aθ ′ w∇ψ • ∇w dxdt + s Im Σ ϕ ′ wa ∂w ∂ν dσdt,
and

I 22 = Re Q div(a∇w)(2sa∇ϕ • ∇w) dxdt = -sλ Q θa|∇w| 2 ( div(a∇ψ) + λa|∇ψ| 2 ) dxdt -sλ Q θa|∇w| 2 ∇a • ∇ψ dxdt + 2sλ 2 Q θa 2 |∇ψ.∇w| 2 dxdt + 2sλ Re Q θD 2 a (ψ)(∇w, ∇w) dxdt -2sλ Σ θa 2 (∇ψ • ∇w) ∂w ∂ν dσdt + sλ Σ θa 2 |∇w| 2 ∂ψ ∂ν dσdt.
Using integrations by parts we obtain

I 23 = Re Q div(a∇w)s div(a∇ϕ)w dxdt = sλ Q |∇w| 2 θ(a div(a∇ψ) + λ|a∇ψ| 2 ) dxdt - sλ 2 Q |w| 2 div(θa∇ div(a∇ψ)) dxdt + sλ 2 Σ |w| 2 θa∇ div(a∇ψ) • ν dσdt - sλ 2 2 Q |w| 2 ( div(aθ∇(a|∇ψ| 2 )) + div(aθ div(a∇ψ)∇ψ)) dxdt + sλ 2 2 Σ |w| 2 θa( div(a∇ψ)∇ψ + ∇(a|∇ψ| 2 )) • ν dσdt - sλ 3 2 Q |w| 2 div(a 2 θ|∇ψ| 2 ∇ψ) dxdt + sλ 3 2 Σ |w| 2 a 2 θ|∇ψ| 2 ∂ψ ∂ν dσdt -λsRe Σ wθa( div(a∇ψ) + λ|∇ψ| 2 a) ∂w ∂ν dσdt.
and we obviously have

I 31 = Re Q s 2 a|∇ϕ| 2 w(-isϕ ′ w) dxdt = 0, I 32 = Re Q s 2 a|∇ϕ| 2 w(2sa∇ϕ • ∇w) dxdt = s 3 λ 3 Q |w| 2 θ 3 a |∇ψ| 2 div(a∇ψ) + 2aD 2 (ψ)(∇ψ, ∇ψ) dxdt + s 3 λ 3 Q |w| 2 θ 3 a|∇ψ| 2 ∇a • ∇ψ dxdt + 3s 3 λ 4 Q |w| 2 θ 3 a 2 |∇ψ| 4 dxdt -λ 3 s 3 Σ |w| 2 a 2 |∇ψ| 2 θ 3 ∂ψ ∂ν dσdt,
and

I 33 = Re Q s 2 a|∇ϕ| 2 w(s div(a∇ϕ)w) dxdt = -s 3 λ 3 Q |w| 2 θ 3 a|∇ψ| 2 div(a∇ψ) dxdt -s 3 λ 4 Q |w| 2 θ 3 a 2 |∇ψ| 4 dxdt.
Then we have Re Q P 1 wP 2 w dxdt = F (w) + G(∇w) + J + X 1 where we define

F (w) = 2s 3 λ 4 Q |w| 2 θ 3 a 2 |∇ψ| 4 dxdt, (5) 
G(∇w) = 2sλ 2 Q θa 2 |∇ψ • ∇w| 2 dxdt + 2sλRe Q θD 2 a ψ(∇w, ∇w) dxdt -sλ Q |∇w| 2 θa∇a • ∇ψ dxdt, (6) 
J as the sum of all boundary integrals

J = sλIm Σ aθw ′ w ∂ψ ∂ν dσdt sIm Σ ϕ ′ wa ∂w ∂ν dσdt -2sλRe Σ a 2 θ∇ψ • ∇w ∂w ∂ν dσdt +sλ Σ a 2 θ|∇w| 2 ∂ψ ∂ν dσdt -sλRe Σ w div(aθ∇ψ)a ∂w ∂ν dσdt -s 3 λ 3 Σ a 2 θ 3 |w| 2 |∇ψ| 2 ∂ψ ∂ν dσdt + sλ 3 2 Σ a 2 θ|w| 2 |∇ψ| 2 ∂ψ ∂ν dσdt + sλ 2 2 Σ a 2 θ|w| 2 ∇(|∇ψ| 2 ) • ν dσdt + sλ 2 2 Σ aθ|w| 2 div(a∇ψ) ∂ψ ∂ν dσdt + sλ 2 Σ aθ|w| 2 ∇( div(a∇ψ)) • ν dσdt
and X 1 as the sum of all the remaining integrals in Ω.

Moreover, if U ⊂ Ω is an open set, we will write F U (w) to denote the sum of integrals from the definition of F (w) taken in the set U , and the same for G, X 1 ...

Noticing that

• 2sλ Im Q θ ′ aw∇ψ.∇w dxdt ≤ sλ Q a 2 (θ ′ ) 1 2 |∇ψ.∇w| 2 dxdt + sλ Q (θ ′ ) 3 2 |w| 2 dxdt, • a ∈ W 2,∞ (Ω) and ψ ∈ C 4 (Ω) • |θ| ≤ Cθ 3 , |θ ′ | ≤ Cθ 2 and|ϕ ′′ | ≤ Cθ 3 on (-T, T ) × Ω, C = C(T ) > 0.
it is then easy to prove, from simple calculations, that the "negligible" terms X 1 indeed satisfy

|X 1 | ≤ Csλ Q a 2 θ|∇ψ • ∇w| 2 + Csλ 4 Q θ|w| 2 + Cs 3 λ 3 Q θ 3 |w| 2 . (7)

Proof of the Carleman estimate

In this part of the paper, we prove Theorem 3. We apply the above computations in each one of the domains Ω 1 and Ω 2 and we sum up all the terms. Since the interface Γ 1 has null R N -measure, we get an estimate in all the set Ω, plus the boundary terms from ∂Ω, and from the interface itself, where appear terms coming from both Ω 1 and Ω 2 .

Given the hypothesis we have assumed, we prove in the following propositions that we can deal with all this terms. In the sequel, C denotes a generic constant, depending on T and Ω.

The interior

Recall the norm • s,λ,ψ defined in (3) and F (w), G(∇w) defined in ( 5), [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF].

Proposition 4. Suppose that U ⊂ Ω is a open set and ψ satisfies (H 3 ) and (H 4 ) in

Ω 1 ∪ Ω 2 \ U .
Then there exist γ > 0 , C ∈ R, s 0 and λ 0 such that for all v ∈ Z,

F (w) + G(∇w) + X 1 ≥ γ w s,λ,ψ -C w s,λ,ψ,U
∀s ≥ s 0 and ∀λ ≥ λ 0 .

Proof :

First, merely by the fact that ψ ∈ C 4 (Ω), we have

|F U (w)| + |G U (∇w)| + |X 1,U | ≤ C w s,λ,ψ,U (8) 
for all v ∈ Z. Now, from [START_REF] Bukhgeim | Introduction to the theory of Inverse Problems, Inverse and Illposed problem Series[END_REF] and ψ satisfying (H 3 ) we get that for s and λ large enough,

|X 1 | ≤ sλ 2 Q θa 2 |∇ψ • ∇w| 2 + s 3 λ 4 Q |w| 2 θ 3 a 2 |∇ψ| 4 Hence, If ψ satisfies (H 3 ) and (H 4 ) in Ω * = Ω 1 ∪ Ω 2 \ U we get that ∀λ ≥ λ 0 , s ≥ s 0 and v ∈ Z, F Ω * (w) + G Ω * (∇w) + X 1,Ω * ≥ F Ω * (w) + G Ω * (∇w) -|X 1,Ω * | ≥ F Ω * (w) + G Ω * (∇w) -sλ 2 T -T Ω * θa 2 |∇ψ • ∇w| 2 -s 3 λ 4 T -T Ω * |w| 2 θ 3 a 2 |∇ψ| 4 ≥ s 3 λ 4 T -T Ω * |w| 2 θ 3 a 2 |∇ψ| 4 + sλ 2 T -T Ω * θa 2 |∇ψ • ∇w| 2 + 2sλRe T -T Ω * θD 2 a ψ(∇w, ∇ w) -sλ T -T Ω * |∇w| 2 θa∇a • ∇ψ ≥ s 3 λ 4 T -T Ω * |w| 2 θ 3 a 2 |∇ψ| 4 + ǫsλ T -T Ω * θ|∇w| 2 ≥ γ w s,λ,ψ,Ω * . (9) 
From ( 8) and ( 9) we get the desired result.

The boundary

By definition we have w = 0 on the exterior boundary Σ for each v ∈ Z. Therefore, ∇w| Σ = ∂w ∂ν ν and if we choose the legitimate notation J = J Σ + J Σ 1 , we get here

J Σ = -2sλRe Σ a 2 θ∇ψ • ∇w ∂w ∂ν dσdt + sλ Σ a 2 θ|∇w| 2 ∂ψ ∂ν dσdt = -sλ Σ θ a ∂w ∂ν 2 ∂ψ ∂ν dσdt ≥ -sλ Σ + θ a ∂w ∂ν 2 ∂ψ ∂ν dσdt ≥ -sλ ∂ψ ∂ν L ∞ (Σ) Σ + θ a ∂w ∂ν 2 dσdt ≥ -sλC Σ + θ a ∂w ∂ν 2 dσdt ( 10 
)
where we have denoted

Σ + = {(x, t) ∈ Γ × (-T, T ) : ∇ψ(x, t) • ν(x) > 0}.

The interface

We compute the sum of the integrals on the interface Σ 1 , We write J Σ 1 = 10 k=1 J k , enumerating the terms in the same order of the list in [START_REF] Bukhgeim | Introduction to the theory of Inverse Problems, Inverse and Illposed problem Series[END_REF]. For each k = 1, . . . , 10 we denote as [J k ] the sum of the k-term coming from the integrations by parts in Ω 1 with the corresponding one from Ω 2 .

Proposition 5. If ψ satisfies hypothesis (H 1 ), (H 2 ) and (Tr) then there exist λ 0 and s 0 such that

J Σ 1 = 10 k=1 (J k (w 1 ) + J k (w 2 )) ≥ 0 (11)
for all v ∈ Z, ∀λ ≥ λ 0 , s ≥ s 0 .

Proof :

It is not difficult to check that [J k ] = 0 for k = 1, 2 since ψ and w satisfy the transmission conditions (Tr). Moreover, ψ is constant on the interface and then we obtain ∇ψ • ∇w = ∂ψ ∂ν ∂w ∂ν on Γ 1 . Therefore, thanks to (H 2 ) we get

[J 3 ] = -2sλ Σ 1 θ a 1 ∂w 1 ∂ν 1 2 ∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 dσdt ≥ sλδ Σ 1 θ a 1 ∂w 1 ∂ν 1 2 dσdt.
By mean of the orthogonal decomposition ∇w = ∂w ∂ν ν + ∇ τ w, where ∇ τ w is the projection of ∇w on the tangent hyper-plane of ∂Ω 1 , and from hypothesis (H 2 ) and (H 3 ) and the fact that ∇ τ w 1 = ∇ τ w 2 we obtain

[J 4 ] = sλ Σ 1 θ a 1 ∂w 1 ∂ν 1 2 ∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 dσdt + sλ Σ 1 θ |∇ τ w| 2 a 2 1 ∂ψ 1 ∂ν 1 + a 2 2 ∂ψ 2 ∂ν 2 dσdt = sλ Σ 1 θ a 1 ∂w 1 ∂ν 1 2 ∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 dσdt + sλ Σ 1 θ |∇ τ w| 2 a 1 a 2 - ∂ψ 1 ∂ν 1 - ∂ψ 2 ∂ν 2 dσdt ≥ sλ Σ 1 θ a 1 ∂w 1 ∂ν 1 2 ∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 dσdt ≥ 2sλδ Σ 1 θ a 1 ∂w 1 ∂ν 1 2 dσdt [J 6 ] = -s 3 λ 3 Σ 1 θ 3 |w 1 | 2 a 1 ∂ψ 1 ∂ν 1 2 ∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 dσdt ≥ s 3 λ 3 δ 2 Σ 1 θ 3 a 2 1 |w 1 | 2 dσdt
Since a ∈ W 2,∞ (Ω) and ϕ ∈ C 4 (Ω), we also have

|[J 5 ]| ≤ Cs 2 λ 3 Σ 1 |w 1 | 2 θ 3 dσdt + Cλ Σ 1 a ∂w 1 ∂ν 1 2 θ dσdt and 10 k=7 [J k ] ≤ Cs 2 λ 3 Σ 1 |w 1 | 2 θ 3 dσdt.
Thus, for s large enough, we get the desired result

10 k=4 [J k ] ≥ (sδ -C) s 2 λ 3 Σ 1 |w 1 | 2 θ 3 + λ Σ 1 |a ∂w 1 ∂ν 1 | 2 θ ≥ 0 2.2.
4 Carrying all together.

From [START_REF] Crasta | The distance function from the boundary in a Minkowski space[END_REF] and Propositions 4 and 5 we obtain

w 2 s,λ,ψ -C w 2 s,λ,ψ,U -sλC Σ + θ a ∂w ∂ν 2 ≤ CRe P 1 (w), P 2 (w) L 2 (12) Adding C 2 |P 1 (w)| 2 L 2 + |P 2 (w)| 2 L 2
to both sides of ( 12) we obtain

C 2 |P 1 (w)| 2 L 2 + |P 2 (w)| 2 L 2 + w 2 s,λ,ψ -C w 2 s,λ,ψ,U -sλC Σ + θ a ∂w ∂ν 2 ≤ C |P (w) -qw| 2 L 2 ,
what means that for all s ≥ s 2 and λ ≥ λ 2 , since C > 0 is a generic constant,

|P 1 (w)| 2 L 2 + |P 2 (w)| 2 L 2 + w 2 s,λ,ψ ≤ C|P (w) -qw| 2 L 2 + C w 2 s,λ,ψ,U + sλC Σ + θ a ∂w ∂ν 2 . (13) 
Now, if (ψ 1 , ψ 2 ) is an ε-pair of transmission weight functions (see Definition 2), we have an estimate like [START_REF] Yu | Determination of a coefficient in an acoustic equation with a single measurement[END_REF] for each ψ k with U = B ε (x k ) where x j ∈ Ω, j = 1, 2 and ε > 0.

We sum up both estimates and we can show that the left hand side of each inequality can absorb the right hand side term • s,λ,ψ k ,Bε(x k ) from the other inequality provided that ε is small and λ is large enough. Indeed, by assumption we have that ψ 2 -ψ 1 > δ > 0 in B ε (x 1 ). Then, by taking λ large enough we have

e λ(ψ 2 -ψ 1 ) > 2C in B ε (x 1 ) i.e. Cθ 1 < 1 2 θ 2 in B ε (x 1 )
and we conclude that w 1 ψ 1 ,Bε(x 1 ) of the right and side is absorbed by the term w 2 ψ 2

of the left hand side. It is clear that an analogous result is true by interchanging ψ 1 and ψ 2 . Theorem 3 is proved.

Particular case.

In this part of the work, we construct explicit weight functions adapted to particular discontinuous coefficients. We need the following definition. Definition 6. We say that the open, bounded and convex set U ⊂ R N (N ≥ 2) is strongly convex if ∂U is of class C 2 and all the principal curvatures are strictly positive functions on ∂U .

Remark 1. Let us note that U ⊂ R N is strongly convex if and only if for all plane Π ⊂ R N intersecting U , the curve Π ∩ ∂U has strictly positive curvature at each point.

In particular, a strongly convex set is geometrically strictly convex.

We assume that Ω 1 ⊂ Ω is a strongly convex domain with boundary Γ 1 of class C 3 , and we set Ω 2 = Ω \ Ω 1 . Thus, we have ∂Ω 2 = Γ ∪ Γ 1 , where this is a disjoint union. We deal with the case where a is locally constant

a(x) = a 1 x ∈ Ω 1 a 2 x ∈ Ω 2 ( 14 
)
with a j > 0 for j = 1, 2.

In order to construct a convenient weight function, take x 0 ∈ Ω 1 and for each x ∈ Ω \ {x 0 } define ℓ(x 0 , x) = {x 0 + λ(xx 0 ) : λ ≥ 0}. Since Ω 1 is convex there is exactly one point y(x) such that y(x) ∈ Γ 1 ∩ ℓ(x 0 , x). Thus, we can define the function

ρ : Ω \ {x 0 } -→ R + by: ρ(x) = |x 0 -y(x)|. (15) 
Let ε > 0 be such that B ε ⊂ Ω 1 (and small enough in a sense we will precise later) and let 0 < ε 1 < ε 2 < ε. Then we consider a cut-off function

η ∈ C ∞ (R N ) such that 0 ≤ η ≤ 1, η = 0 in B ε 1 (x 0 ), η = 1 in Ω \ B ε 2 (x 0 ).
For each j ∈ {1, 2} we take k such that {j, k} = {1, 2} and we define the following functions in the whole domain Ω

ψ j (x) = η(x) a k ρ(x) 2 |x -x 0 | 2 + M j x ∈ Ω,
where M 1 and M 2 are positive numbers such that

a 1 -a 2 = M 1 -M 2 . ( 16 
)
Then, the weight function we will use in this work is

ψ(x) = ψ 1 (x) x ∈ Ω 1 ψ 2 (x) x ∈ Ω 2 . (17) 
Throughout the paper, we will use the notations ā(x) = a 2 1 Ω 1 (x) + a 1 1 Ω 2 (x) and M = M 1 on Ω 1 and M = M 2 on Ω 2 , so that we can write

ψ(x) = η(x)ā(x) |x -x 0 | 2 ρ(x) 2 + M .
As we can see in the following result, the main property of the weight function is a consequence of the strong convexity of the interior domain Ω 1 .

Lemma 7. If Ω 1 ⊂ R N is strongly convex and if the function µ : R N -→ R + is defined by µ(x) = |x -x 0 | ρ(x) then D 2 µ 2 (x) is positive definite for all x ∈ R N \{x 0 }, uniformly in bounded subsets of R N \{x 0 }.

Proof :

We shall deduce this Lemma from well-known properties of compact convex subsets of R N (called convex bodies). However, for the sake of completeness of this paper, we include in the Appendix a self-contained proof of this result.

Assuming without lost of generality that x 0 = 0, it is not difficult to see that µ is the gauge function of the convex set Ω 1 (in other words, µ is a seminorm whose unit ball is Ω 1 , see [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF], p. 43, and section 2.3 of [START_REF] Crasta | The distance function from the boundary in a Minkowski space[END_REF]).

The proof that µ is a convex function of class C 2 (hence D 2 µ ≥ 0) can be read in [START_REF] Crasta | The distance function from the boundary in a Minkowski space[END_REF] (Theorem 2.1). Moreover, it is proved that for each x ∈ R N \{0} the only null eigenvalue of D 2 µ(x) corresponds to the direction x (which is the radial direction). The others eigenvalues, as functions of x, are bounded below by a positive constant, uniformly in x = 0 given in a bounded subset of R N .

Thus, there exists δ > 0 such that for all x ∈ Ω we have

D 2 µ(x)(v, v) ≥ δ|v| 2 ∀ v ∈ x ⊥ = {y ∈ R n : y • x = 0}. ( 18 
)
On the other hand, we have ∇µ

(x) = 1 ρ(x) x |x| + |x|∇ 1 ρ (x). Since ρ is constant in the radial direction, we get x • ∇ 1 ρ (x) = 0. Hence we deduce that x • ∇µ(x) = |x| ρ(x) = µ(x) = 0. ( 19 
) Take x, v ∈ R N \{0}. Then v = v 1 x |x| + v 2 y
, where y is an unitary element of x ⊥ . In view of the fact that [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF], [START_REF] Lasiecka | Inverse/observability estimates for secondorder hyperbolic equations with variable coefficients[END_REF] and

D 2 µ 2 (v, v) = 2µD 2 µ(v, v) + 2|v • ∇µ| 2 , from
D 2 µ(x)(x, x) = 0 we get D 2 µ 2 (x)(v, v) ≥ 2µ(x)D 2 µ(x)(v 2 y, v 2 y) + 2 v 1 x |x| • ∇µ(x) 2 ≥ 2µ(x)δv 2 2 + 2 v 2 1 |x| 2 µ 2 (x) = 2µ(x)δv 2 2 + 2 ρ(x) 2 v 2 1 ≥ δ 1 (v 2 1 + v 2 2 )
and we conclude that D 2 µ 2 (x) is positive definite.

Assuming the additional hypothesis about the sign of the jump on the interface, we can prove that the functions we have defined work as a weight function: Proposition 8. Let Ω 1 be an open and bounded set in R N with smooth boundary, and a 1 , a 2 real numbers such that:

1. Ω 1 is strongly convex. 2. 0 < a 2 < a 1 .
Then, for each pair of points x 1 , x 2 ∈ Ω 1 , there exists ε > 0 such that the above construction gives up an ε-pair of transmission weight functions (ψ 1 , ψ 2 ) in the sense of Definition 2.

Proof :

For x 0 ∈ Ω 1 let ψ be the function constructed as above and defined by [START_REF] Klibanov | Newton-Kantorovich method for threedimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data[END_REF].

If x ∈ Γ 1 we have ρ(x) = |x -x 0 | and ψ j (x) = a k + M j . From (16) we get ψ 1 = ψ 2 = c on Γ 1 . Moreover, if x ∈ Γ 1 we have a 1 ∇ψ 1 (x) = a 1 a 2 ∇ |x -x 0 | 2 ρ(x) 2 = a 2 ∇ψ 2 (x).
Hence (Tr) and (H 1 ) are satisfied (recall that ν 1 = -ν 2 on Γ 1 ).

On the other hand, since Γ 1 is a level set of ψ 1 , then ψ 1 (x) < a 2 + M 1 < ψ 1 (y) for any x ∈ Ω 1 and y ∈ Ω 2 , and we have ∂ψ 1 ∂ν 1 > 0 on Σ 1 and

∂ψ 1 ∂ν 1 + ∂ψ 2 ∂ν 2 = ∂ψ 1 ∂ν 1 1 - a 1 a 2 < 0
what gives (H 2 ).

For x ∈ Ω 0 \B ε (x 0 ), denoting c(x) = ā ρ 2 (x) , we get ∇ψ = 2c(x)(x-x 0 )+|x-x 0 | 2 ∇c(x). By construction c(x) is constant in the direction of xx 0 , hence (xx 0 ) • ∇c(x) = 0 and then

|∇ψ| 2 = 4c 2 (x)|x -x 0 | 2 + |x -x 0 | 4 |∇c(x)| 2 ≥ 4c 2 (x)|x -x 0 | 2 .

Thus we have

|∇ψ| 2 ≥ 4 ā diam(Ω) 2 2 ε 2 .
in Ω 0 \ B ε (x 0 ) and ψ satisfies (H 3 ) in that set.

Property (H 4 ) is deduced from Lemma 7.

One can notice that x 0 can be arbitrarily chosen in Ω 1 since it is convex. Therefore, we can take two different points x 1 , x 2 in Ω 1 and we can construct the respective weight functions ψ 1 and ψ 2 . For each k = 1, 2, ψ k is a transmission weight function in Ω 0 \ B ε (x k ) and it remains to be shown that (H 5 ) is fulfilled in order to finish the proof of Proposition 8.

Let be d = 1 2 |x 1x 2 | such that ε < d. On the one hand, for all x ∈ B ε (x 1 ) we have:

ψ 1 (x) ≤ a ρ 2 1 ε 2 + M ≤ a α 2 1 ε 2 + M,
where α 1 = d(x 1 , Γ 1 ) > 0. On the other hand, if we denote D 2 = max y∈Γ 1 d(y, x 2 ), we get, for all x ∈ B ε (x 1 ),

ψ 2 (x) ≥ a ρ 2 2 d 2 + M ≥ a D 2 2 d 2 + M.
Consequently, we have

ψ 2 -ψ 1 ≥ a d 2 D 2 2 - ε 2 α 2 1 ∀x ∈ B ε (x 1 ). ( 20 
)
It is clear that an analogous result is true by interchanging x 1 and x 2 (now with α 2 and D 1 ). Thus, taking ε < min

dα 1 D 2 , dα 2 D 1
we get (H 5 ) and Proposition 8 is proved.

¿From Proposition 8 and Theorem 3, we obtain the following result:

Theorem 9. Let the coefficient a be constant in the open set Ω j and equal to a j for each j = 1, 2. Suppose that a 2 < a 1 and that Ω 1 is an open, bounded and strongly convex set with smooth boundary. Then we have a Carleman estimate like (4) for the Schrödinger equation (1) in the domain Ω.

Stability of the inverse problem

As described in the introduction, will only give a local answer about the determination of the potential p. We will first work on a linearized version of the problem and consider the following Schrödinger equation :

   iu ′ + div (a(x)∇u) + q(x)u = f (x)R(x, t), Ω × (0, T ) u(x, t) = 0, ∂Ω × (0, T ) u(x, 0) = 0, Ω (21) 
Here we set y = y(p) the weak solution to (1) and u = u(f ) the one to [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF]. If we formally linearize equation ( 1) around a non stationary solution, we obtain equation [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF]. In fact, we notice here that if we set f = pq, u = y(q)y(p) and R = y(p) on Ω × (0, T ), we obtain (21) after substraction of (1) with potential p from (1) with potential q and linearization.

Linear inverse problem : Is it possible to determine f | Ω from the knowledge of the normal derivative ∂u ∂ν ∂Ω×(0,T ) where R and p are given and u is the solution to (21)?

The following theorem proves that this inverse problem is well posed.

Theorem 10. Let q ∈ L ∞ (Ω) and u be a solution of equation [START_REF] Machtyngier | Exact controllability for the Schrödinger equation[END_REF]. We assume that R ∈ W 1,2 (0, T, L ∞ (Ω)), R(0) is real valued and |R(x, 0)| ≥ r 0 > 0, a.e. in Ω.

There exists a constant C = C(Ω, T, q L ∞ (Ω) , R) > 0 such that if

∂u ∂ν ∈ H 1 (0, T ; L 2 (Γ 0 )), then, f L 2 (Ω) ≤ C a 2 ∂u ∂ν H 1 (0,T ;L 2 (∂Ω)) . (22) 
Proof :

As we need to estimate ∂u ∂ν in H 1 (0, T ; L 2 (Γ 0 )) norm, we work on the equation satisfied by

v = u ′ :    iv ′ + div (a(x)∇v) + q(x)v = f (x)R ′ (x, t), Ω × (0, T ) v(x, t) = 0, ∂Ω × (0, T ) v(x, 0) = -if (x)R(x, 0), Ω (23) 
The Carleman inequality we just obtained is the key of the proof. We extend the function v on Ω × (-T, T ) by the formula v(x, t) = -v(x, -t) for every (x, t) ∈ Ω × (-T, 0). Since R(0) and f are real valued, v ∈ C([-T, T ]; H 1 0 (Ω)) and

∂v ∂ν ∈ L 2 ((-T, T ) × Γ).
We also extend R on Ω × (-T, T ) by the formula R(x, t) = R(x, -t) for every (x, t) ∈ Ω × (-T, 0) and if we denote the extention of R ′ by the same notation, then R ′ ∈ L 2 (-T, T ; W 1,∞ (Ω)). Thus, v satisfies the same equation [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems or the heat equation[END_REF], set in (-T, T ).

As defined in Theorem 3, for k = 1, 2, we set w k = e -sϕ k v and

P ψ k 1 w k = i∂ t w k + div(a∇w k ) + s 2 a|∇ϕ k | 2 w k .
Therefore, we define the following:

I = 2 k=1 Im 0 -T Ω P ψ k 1 w k w k dxdt.
On the one hand,

I = 2 k=1 Im 0 -T Ω P ψ k 1 w k w k dxdt = 2 k=1 Im 0 -T Ω i∂ t w k + div(a∇w k ) + s 2 a|∇ϕ k | 2 w k w k dxdt = 2 k=1 0 -T Ω Re ∂ t w k w k -Im a ∇w k 2 -s 2 a|∇ϕ k | 2 w k 2 dxdt = 1 2 2 k=1 0 -T Ω ∂ t |w k | 2 dxdt = 1 2 2 k=1 Ω |w k (x, 0)| 2 dx = 1 2 2 k=1 Ω |f (x)| 2 |R(x, 0)| 2 e -2sϕ k (x,0) dx. (24) 
On the other hand, Cauchy-Schwarz inequality and Carleman estimate from Theorem 9 give :

I ≤ 2 k=1 T -T Ω |P ψ k 1 w k | 2 dxdt 1 2 T -T Ω |w k | 2 dxdt 1 2 ≤ 2 k=1 P ψ k 1 (w k ) L 2 (Q) w k L 2 (Q) ≤ Cs -3 2 2 k=1 P ψ k (w k ) 2 L 2 (Q) + s Σ ψ k + θ k a ∂w k ∂ν 2 dσdt ≤ Cs -3 2 2 k=1 Q |f R ′ | 2 e -2sϕ k dxdt + s Σ ψ k + θ k a 2 ∂v ∂ν 2 e -2sϕ k dσdt .
Then, ϕ k (x, t) = α-e λψ k (x) (T -t)(T +t) is such that e -2sϕ k (x,t) ≤ e -2sϕ k (x,0) for all x ∈ Ω and t ∈ (-T, T ) and it is easy to see that θe -2sϕ is bounded on Σ ψ k + and that using the definition of the extensions of v and R ′ , we easily get

I ≤ Cs -3 2 2 k=1 T 0 Ω |f R ′ | 2 e -2sϕ k (0) dxdt + s Σ ψ k + a 2 ∂v ∂ν 2 dσdt (25) 
¿From R ∈ W 1,2 (0, T, L ∞ (Ω)) and |R(x, 0)| ≥ r 0 > 0 almost everywhere in Ω, we deduce that

∃ g 0 ∈ L 2 (0, T ), |R ′ (x, t)| ≤ g 0 (t)|R(x, 0)|, ∀x ∈ Ω, t ∈ (0, T ). k=1 Ω |f | 2 |R(0)| 2 e -2sϕ k (0) dx ≤ Cs -3 2 2 k=1 T 0 Ω |f R ′ | 2 e -2sϕ k (0) dxdt + s Σ ψ k + a 2 ∂v ∂ν 2 dσdt ≤ C 2 k=1 s -3 2 T 0 Ω |f | 2 |g 0 | 2 |R(0)| 2 e -2sϕ k (0) dxdt + C 2 k=1 s -1 2 Σ ψ k + a 2 ∂v ∂ν 2 dσdt.
But g 0 ∈ L 2 (0, T ) implies Remark : if we replace the assumption "R(0) is real valued " by the following "R(0) takes its values in iR" , then the appropriate extensions for (x, t) in Ω × (-T, 0) are v(x, t) = v(x, -t) and R(x, t) = -R(x, -t).

We will end this paper by the proof of Theorem 1 which is a direct consequence of Theorem 10. Indeed, if we set ũ = y(q)y(p), f = pq and R = y(p), then ũ is the solution of    ũ′ + div(a∇ũ) + (pf )ũ = f (x)R(x, t) (0, T ) × Ω ũ = 0 (0, T ) × Σ ũ(0) = 0 Ω [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF] where q = pf ∈ U, with U bounded in L ∞ (Ω) from the hypothesis of Theorem 1.

The key point is that in the proof of Theorem 10, all the constants C > 0 depend on the L ∞ -norm of the potential. Thus, with q ∈ U, we are actually, with equation ( 26) in a situation similar to the linear inverse problem related to equation ( 21) and we then obtain the desired result.

Appendix: Direct proof of Lemma 7

Without lost of generality, we can take x 0 = 0. Now, take x, v ∈ R N \ {0} and define g(t) = µ 2 (x + tv) for t ∈ R. Then g depends only on the restriction of µ 2 to the plane Π = {x, v} ⊂ R N spanned by the vectors x and v. Moreover, by definition of ρ, it is not difficult to see that ρ| Π = ρ 0 , where we have denoted by ρ 0 the function defined in the plane Π as in [START_REF] Isakov | Inverse Problems for Partial Differencial Equations[END_REF], but where the closed curve is given by Γ 1 = Π ∩ ∂Ω 1 , wich by hypothesis is strongly convex (see Remark 1).

It is not difficult to see that d 2 g dt 2 (0) = D 2 (µ 2 )(x)(v, v) and then this expression depends only on the curve Γ 1 ⊂ Π. We conclude that it suffices to consider the twodimensional case.

Assuming N = 2, Γ 1 can be parameterized in polar coordinates by γ(θ) = (ρ(θ) cos θ, ρ(θ) sin θ) θ ∈ [0, 2π).

The expression for the Hessian matrix of second derivatives in polar coordinates is

D 2 (µ 2 ) = Q θ H(µ 2 )Q T θ
where Q θ is the rotation matrix by angle θ, and

H(µ 2 ) =    ∂ 2 µ 2 ∂r 2 1 r ∂ 2 µ 2 ∂r∂θ -1 r ∂µ 2 ∂θ 1 r ∂ 2 µ 2 ∂r∂θ -1 r ∂µ 2 ∂θ 1 r 2 ∂ 2 µ 2 ∂θ 2 + 1 r ∂µ 2 ∂r    .
Now, since x 0 = 0, we have µ 2 (θ, r) = ā ρ(θ) 2 r 2 + M . One can notice that µ 2 is well defined and smooth in Ω 0 \ B ε (x 0 ) (which means {r ≥ ε} \ Γ 1 ). All the computations that follows are valid in this set. We already said above that ρ is constant with respect to r and only depends on θ such that ∂ρ ∂r = 0. Hence, we get

H(µ 2 ) = 2ā ρ 2

T 0 |g 0 2 2 dσdt 2 3

 00222 (t)| 2 dt ≤ K < +∞ and so we can write1 -|R(0)| 2 e -2sϕ k (0) dx ≤ Cs -that becomes easily, if s is large enough (s > (CK) ) and C remains a generic positive constant Ω |f | 2 |R(0)| 2 e -2sϕ 1 (0) + e -2sϕ 2 (0) dx ≤ Cs -|R(x, 0)| ≥ r 0 > 0 and e -2sϕ k (x,0) ≥ e -2s α-1T 2 > 0 almost everywhere in Ω, we obtain Ω |f (x)| 2 dx ≤ C Theorem 10 has been proved.
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