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Abstract

Often considered in numerical simulations related to the control of quantum systems,
the so-called monotonic schemes have not been so far much studied from the functional
analysis point of view. Yet, these procedures provide an efficient constructive method
for solving a certain class of optimal control problems. This paper aims both at ex-
tending the results already available about these algorithms in the finite dimensional
case (i.e., the time-discretized case) and at completing those of the continuous case.
This paper starts with some results about the regularity of a functional related to a
wide class of model in quantum chemistry. Those enable us to extend an inequality due
to  Lojasiewicz to the infinite dimensional case. Finally, some inequalities proving the
Cauchy character of the monotonic sequence are obtained, followed by an estimation of
the rate of convergence.

Keywords: Bilinear optimal control,  Lojasiewicz inequality, Monotonic schemes, Quantum
systems, Schrödinger equation.

AMS Classification: 49M30, 49K20.

1 Introduction

Following the increasing interest of the chemists community for optimal control of quantum
systems [21, 27] and the successful laboratory demonstration of control over molecular phe-
nomena (see, e.g., [1, 7, 32] and more recently [12, 31]), some mathematical studies of the
models involved in this topic have been carried out, see e.g. [6, 16]. In this way, it has
been proved in recent papers [4, 9] that a wide class of optimization problems considered by
chemists are well posed. Yet, these proofs are not constructive and consequently do not give
rise to concrete numerical methods to approximate their solutions.

On the other hand, at numerical simulation level [8, 22], various kind of procedures
exist and show a good efficiency. Among them, the so-called monotonic algorithms have
demonstrated their efficiency on several problems. In a recent paper, a study of the time-
discretized algorithms [24] have been presented and first functional analysis results have been
obtained about the continuous case [14, 25].

The aim of this paper is to complete these works by providing general proofs of conver-
gence of the optimizing sequences. Consequently, we obtain a constructive method, indepen-
dent of time or space discretization to compute critical points (and sometimes extrema, see

∗e-mail: baudouin@laas.fr
†e-mail: julien.salomon@dauphine.fr

1



Remark 3) of the cost functional under consideration.
Let us briefly present the monotonic schemes in the simple case of ordinary differen-

tial equations (ODE). Let A,B,C be three square matrices in Mn(R), C being symmetric
positive, α > 0 and T > 0. Consider the optimal control problem corresponding to the
maximization of the functional J defined by:

J(v) = y(T ) · Cy(T ) − α

∫ T

0

v2(t)dt,

where ′′·′′ denotes the usual scalar product of Rn. Here, the state y : [0, T ] → Rn and the
control v : [0, T ] → R are linked by the ODE:

{
y′(t) =

(
A+ v(t)B

)
y(t), ∀t ∈ (0, T )

y(0) = y0

the initial condition y0 being fixed.
Given two controls v and ṽ and the corresponding states y and ỹ, we first note that:

J(ṽ) − J(v) =
(
ỹ(T ) − y(T )

)
· C
(
ỹ(T ) − y(T )

)
+ 2
(
ỹ(T ) − y(T )

)
· Cy(T )

− α

∫ T

0

(
ṽ(t) − v(t)

)
(ṽ(t) + v(t)

)
dt.

We then introduce an auxiliary function z : [0, T ] → Rn associated to y and v by

{
z′(t) = −

(
A∗ + v(t)B∗

)
z(t),

z(T ) = Cy(T )

where A∗ and B∗ are the transposed matrices of A and B.
Focusing on the second term of the right hand side of this equation, we get:

(
ỹ(T ) − y(T )

)
· Cy(T ) =

∫ T

0

(
ṽ(t) − v(t)

)
Bỹ(t) · z(t)dt.

Thus, we finally obtain:

J(ṽ)−J(v)=
(
ỹ(T )−y(T )

)
·C
(
ỹ(T )−y(T )

)
+α

∫ T

0

(
ṽ(t)−v(t)

)( 2

α
Bỹ(t) · z(t) − ṽ(t) − v(t)

)
dt.

A simple way to guarantee that ṽ gives a better cost functional value than v, is to impose
that:

(
ṽ(t) − v(t)

)( 2

α
Bỹ(t) · z(t) − ṽ(t) − v(t)

)
≥ 0. (1)

Following this approach, the sequence (vk)k∈N defined iteratively by the implicit equation
vk+1 = 1

α
Byk+1(t)·zk(t), where yk+1 and zk correspond to vk+1 and vk respectively, optimizes

J monotonically since

J(vk+1)−J(vk) =
(
yk+1(T )− yk(T )

)
·C
(
yk+1(T )− yk(T )

)
+α

∫ T

0

(
vk+1(t)− vk(t)

)2
dt ≥ 0.

In this article, we prove the convergence of generalizations of this algorithm towards a critical
point of J in the case of the Schrödinger partial differential equation:

i∂tψ(x, t) − [H − µ(x)ε(t)]ψ(x, t) = 0.

This equation governs the evolution of a quantum system, described by its wave function
ψ, that interacts with a laser pulse of amplitude ε, the control variable. The factor µ is
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the dipole moment operator of the system. In what follows, H = −∆ + V where ∆ is the
Laplacian operator and V = V (x) the electrostatic potential in which the system evolves.
We refer to [22] for more details about models involved in quantum control.

The paper is organized as follows: we start in Section 2 with some necessary results about
the linear and nonlinear Schrödinger equations involved in the problem we are considering.
We then present the optimization problem in Section 3, and claim some regularity results
about the corresponding cost functional in Section 4. We introduce in Section 5 an important
tool for proving the convergence of the sequence, namely the  Lojasiewicz inequality and some
of its generalizations. The definition of the monotonically optimizing sequence is given in
Section 6 where some useful properties are also claimed. The convergence of the sequences
is proved in Section 7 and a first result about their rate of convergence follows in the last
section.

Throughout this paper, T is a positive real number representing the time of control of a
physico-chemical process. We denote by L2 and L∞ the spaces L2(R3,C) and L∞(R3,C),
W p,∞(R3,R) with p ∈ [1,+∞) byW p,∞, the Sobolev spaceH2(R3,C) byH2 and Lp(0, T ;X),
with p ∈ [1,+∞) denotes the usual Lebesgue space taking its values in a Banach space X .
We also use the notation 〈 . | . | . 〉 and 〈 . , . 〉 defined by:

〈f |A|g〉 =

∫

R3

f(x)Ag(x)dx, 〈f, g〉 =

∫

R3

f(x)g(x)dx,

where f and g are in L2 and A is an operator on L2. To simplify our notation, the space
variable x will often be omitted. Finally, for h ∈ Lp(0, T ;X), p ∈]1,∞], we recall that
‖h‖Lp(0,T ;X) = ‖t 7→ ‖h(t)‖X‖Lp(0,T ). Finally, we denote by Im(z) and Re(z) the imaginary
and the real part of a complex number z.

2 Preliminary existence results

The sequences we study in this paper are defined through iterative resolutions of Schrödinger
equations. Before introducing the relevant framework of our study, we present here some
necessary preliminary existence and regularity results concerning these equations. The first
one will correspond later to the initialization step in the definition of the sequences. This
lemma is a corollary of a general result on time dependent hamiltonians (see [23], p285,
Theorem X.70) but for the sake of clarity, we present here an approach using other techniques
also useful in the proof of the next lemmas.

Lemma 1 Let µ and V belong to W 2,∞ and let H = −∆ +V . If ε ∈ L2(0, T ) and ψ0 ∈ H2,
the equation {

i∂tψ(x, t) − [H(x) − µ(x)ε(t)]ψ(x, t) = 0
ψ(x, 0) = ψ0(x)

(2)

has a unique solution ψ ∈ L∞(0, T ;H2) ∩W 1,∞(0, T ;L2). Moreover:

∀t ∈ [0, T ], ‖ψ(t)‖L2 = ‖ψ0‖L2. (3)

Proof: One can also read a similar proof in [3] but we give here some details. It is well
known (see [11] for instance) that for any T > 0 and u0 ∈ H2, the Schrödinger equation

{
i∂tu(x, t) + ∆u(x, t) = 0, x ∈ R, t ∈ [0, T ]
u(x, 0) = u0(x), x ∈ R

has a unique solution u(t) = S(t)u0 such that u ∈ C([0, T ];H2) ∩ C1([0, T ];L2), where
(S(t))t∈R denotes the free Schrödinger semi-group eit∆. Moreover, for all t ∈ [0, T ] we have
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‖u(t)‖H2 = ‖S(t)u0‖H2 = ‖u0‖H2 . (4)

Let λ > 0 be a given positive number which will be fixed hereafter and denote by Y the
space C([0, T ];H2) endowed with the norm ‖ψ‖Y = supt∈[0,T ] e−λt‖ψ(t)‖H2 . The solution of
equation (2) is obtained equivalently as a solution to the integral equation

ψ(t) = S(t)ψ0 + i

∫ t

0

S(t− s)W (s)ψ(s) ds

where W (x, t) = −V (x) + µ(x)ε(t) for all t ∈ [0, T ], x ∈ R3. We are going to show that this
equation has a unique solution in Y , by proving that operator Φ defined by

Φ(ψ)(t) = S(t)ψ0 + i

∫ t

0

S(t− s)W (s)ψ(s) ds

has a unique fixed point in a closed ball BR = {ψ ∈ Y ; ‖ψ‖Y ≤ R} for suitable R.

If ψ ∈ BR, then ‖ψ(s)‖H2 ≤ eλs‖ψ‖Y ≤ Reλs and since W ∈ L2(0, T ;W 2,∞), we can set
ρ > 0 such that ‖W‖L2(0,T ;W 2,∞) ≤ ρ. Using estimate (4) and Cauchy-Schwarz inequality we
obtain

‖Φ(ψ)(t)‖H2 ≤ ‖ψ0‖H2 +

∫ t

0

‖W (s)ψ(s)‖H2ds ≤ ‖ψ0‖H2 + ρ R

(∫ t

0

e2λsds

) 1
2

.

It follows that if R > 0 is large enough so that ‖ψ0‖H2 ≤ R

2
and if we choose λ > 2ρ2, then

‖Φ(ψ)‖Y ≤ sup
t∈[0,T ]

e−λt‖ψ0‖H2 + ρ R

(∫ t

0

e2λ(s−t)ds

) 1
2

≤ R

2
+
ρ R√

2λ
≤ R.

This means that Φ maps BR into itself. Then, for ψ1, ψ2 ∈ BR it is clear that

‖(Φ(ψ1) − Φ(ψ2))(t)‖H2 ≤
∫ t

0

‖W (s)(ψ1 − ψ2)(s)‖H2ds ≤ ρ ‖ψ1 − ψ2‖Y

(
e2λt − 1

2λ

) 1
2

,

and since λ has been appropriately chosen, this proves that Φ is a strict contraction from BR

into itself as

‖(Φ(ψ1) − Φ(ψ2))‖Y ≤ ρ ‖ψ1 − ψ2‖Y sup
t∈[0,T ]

(
1 − e−2λt

2λ

) 1
2

≤ ρ√
2λ

‖ψ1 − ψ2‖Y ≤ 1

2
‖ψ1 − ψ2‖Y

and therefore Φ has a unique fixed point, yielding the solution of equation (2) in L∞(0, T ;H2).
One can notice that uniqueness is not only true in BR but also easily proved using the norm

in L∞(0, T ;L2). Moreover, calculating Im

∫

R

(2).ψ(x) dx, one can prove the conservation of

the L2-norm (3) and finally, using equation (2), it is easy to obtain that ψ ∈W 1,∞(0, T ;L2).

We will also have recourse to a similar lemma, dealing with equation (2) with a non zero
source term.

Lemma 2 Let H, µ, ε be as above and ψ ∈ L∞(0, T ;H2). Given ε′ ∈ L2(0, T ), the equation:

{
i∂tψ

′(x, t) − [H(x) − µ(x)ε(t)]ψ′(x, t) = −µ(x)ε′(t)ψ(t, x)
ψ′(x, 0) = 0

(5)
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has a unique solution ψ′ ∈ L∞(0, T ;H2) ∩W 1,∞(0, T ;L2). Moreover the following estimate
holds:

‖ψ′‖L∞(0,T ;L2) ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖ψ‖L∞(0,T ;L2). (6)

Proof: The key point to prove the existence of a solution for (5) is to underline the fact
that the source term f(x, t) = µ(x)ε′(t)ψ(t, x) of this linear Schrödinger equation belongs to
L2(0, T ;H2). It is then very classical to get from the Lemma 1 the existence and uniqueness
of a solution ψ′ to equation (5) in L∞(0, T ;H2)∩W 1,∞(0, T ;L2). Consider now ϕ ∈ C([0, T ])
defined on [0, T ] by ϕ(t) = ‖ψ′(t)‖2

L2 . We have:

d

dt
ϕ(t) = 2Re

〈
ψ′(t),

H − µε(t)

i
ψ′(t) − µε′(t)

i
ψ(t)

〉
= −2ε′(t) Im 〈ψ′(t)|µ|ψ(t)〉 . (7)

Moreover, there exists t0 such that: ϕ(t0) = supt∈[0,T ]

{
‖ψ′(t)‖2

L2

}
. We suppose ε′ 6= 0 and

ψ 6= 0, so that ϕ(t0) 6= 0 by uniqueness of the solution of (5). Since ψ′(x, 0) = 0 for all x ∈ R3,

the integration of (7) between 0 and t0 yields ϕ(t0) =

∫ t0

0

−2ε′(t)Im〈ψ′(t)|µ|ψ(t)〉dt , then:

ϕ(t0) = ‖ψ′(t0)‖2
L2 ≤ ‖µ‖L∞‖ψ′(t0)‖L2

∫ T

0

2|ε′(t)|‖ψ(t)‖L2dt.

Since ‖ψ′(t)‖L2 ≤ ‖ψ′(t0)‖L2 for all t ∈ [0, T ], we obtain

‖ψ′(t)‖L2 ≤ ‖ψ′(t0)‖L2 ≤ 2‖µ‖L∞‖ψ‖L∞(0,T ;L2)

∫ T

0

|ε′(t)|dt,

what ends the proof of estimate (6).

Finally, we claim a last result that will be useful to tackle the problems related to a nonlinear
Schrödinger equation we encounter in this study. Actually the nonlinearity we consider here
is the one that appears naturally in the adjoint system from a quadratic cost functional (as
J is in (14)), even when the state equation is linear.

Lemma 3 Let H, µ, ε and ψ0 defined as above. Given χ ∈ L∞(0, T ;H2), the nonlinear
Schrödinger equation:

{
i∂tψ(x, t) − [H(x) − µ(x)ε(t) + Im 〈χ(t)|µ|ψ(t)〉µ(x)]ψ(x, t) = 0
ψ(x, 0) = ψ0(x)

(8)

has a unique solution ψ ∈ L∞(0, T ;H2) ∩W 1,∞(0, T ;L2).

Proof: - First Step -
Let u and χ ∈ H2, we denote the nonlinear term by F (u) = Im〈χ|µ|u〉µu and we can prove
that one has the following estimates: ∃C = C(χ, µ) > 0 such that

∀u, v ∈ L2, ‖F (u) − F (v)‖L2 ≤ C(‖u‖L2 + ‖v‖L2)‖u− v‖L2 (9)

∀u, v ∈ H2, ‖F (u) − F (v)‖H2 ≤ C(‖u‖L2 + ‖v‖H2)‖u− v‖H2 (10)

‖F (u)‖H2 ≤ C‖u‖L2‖u‖H2 (11)

Indeed

‖F (u) − F (v)‖L2 ≤ ‖Im〈χ|µ|u〉µu− Im〈χ|µ|v〉µv‖L2

≤ ‖Im〈χ|µ|u〉µ(u − v)‖L2 + ‖Im〈χ|µ|(u− v)〉µv‖L2

≤ ‖µ‖2
L∞‖χ‖L2(‖u‖L2 + ‖v‖L2)‖u− v‖L2

5



which proves (9). Now, we have to establish (10) and (11). First of all we have

‖F (u) − F (v)‖2
H2 = ‖F (u) − F (v)‖2

L2 + ‖∆F (u) − ∆F (v)‖2
L2 .

The first term of the right hand side is conveniently bounded in (9). Moreover

‖∆F (u) − ∆F (v)‖L2 ≤ ‖Im〈χ|µ|u− v〉∆(µ(u − v))‖L2 + ‖Im〈χ|µ|v〉∆(µv)‖L2

≤ ‖µ‖2
W 2,∞‖χ‖L2(‖u‖L2 + ‖v‖H2)‖u− v‖H2

≤ C(‖u‖L2 + ‖v‖H2)‖u− v‖H2 .

Then, F is locally lipschitz in H2. Therefore, taking v = 0, we also get (11).

- Second Step -
The proof of a local-in-time result is based again on a fixed point theorem. We begin by
fixing an arbitrary time T > 0 and considering τ ∈]0, T ]. We also consider the functional

ξ : ψ 7−→ U( . , 0)ψ0 − i

∫ .

0

U( . , s)F (ψ(s)) ds,

where {U(t, s), s, t ∈ [0, T ]} is the propagator associated with the operator H − µε and
induced by Lemma 1 (such that U(t, s) ∈ L(H2) - for details, see [5]), and the set

B = {v ∈ L∞(0, τ ;H2), ‖ψ‖L∞(0,τ ;H2) ≤ 2M‖ψ0‖H2}.

where M satisfies ∀v ∈ H2, ‖U(t, s)v‖H2 ≤M‖v‖H2 .

If τ > 0 is small enough, the functional ξ maps B into itself and is a strict contraction in
the Banach space L∞(0, τ ;H2). Indeed, on the one hand, from estimate (11), if ψ ∈ B, we
have for all t ∈ [0, τ ]:

‖ξ(ψ)(t)‖H2 ≤
∥∥∥∥U(t, 0)ψ0 − i

∫ t

0

U(t, s)F (ψ(s)) ds

∥∥∥∥
H2

≤ M‖ψ0‖H2 + τM‖F (ψ)‖L∞(0,τ ;H2)

≤ M‖ψ0‖H2 + τCM‖ψ‖L∞(0,τ ;L2)‖ψ‖L∞(0,τ ;H2)

≤ M‖ψ0‖H2 + 4τCM3‖ψ0‖2
H2 .

Then, if we choose τ such that 4τCM2‖ψ0‖H2 < 1 we obtain ‖ξ(ψ)‖L∞(0,τ ;H2) ≤ 2M‖ψ0‖H2

and ξ(ψ) belongs to B. On the other hand, if ψ1 and ψ2 ∈ B, then for all t in [0, τ ] we have,

‖ξ(ψ1)(t) − ξ(ψ2)(t)‖H2=

∥∥∥∥
∫ t

0

U(t, s) (F (ψ1(s)) − F (ψ2(s))) ds

∥∥∥∥
H2

≤ CM
(
‖ψ1‖L∞(0,τ ;L2) + ‖ψ2‖L∞(0,τ ;H2)

) ∫ t

0

‖ψ1(s) − ψ2(s)‖H2 ds

≤ 4τCM2‖ψ0‖H2 ‖ψ1 − ψ2‖L∞(0,τ ;H2)

with 4τCM2‖ψ0‖H2 < 1. Therefore, from a usual fixed point theorem, we can deduce
existence and uniqueness in the set B, then in L∞(0, τ ;H2), for τ > 0 small enough, of the
solution of equation

ψ(t) = U(t, 0)ψ0 − i

∫ t

0

U(t, s)F (ψ(s)) ds (12)

which is in fact equivalent to equation (8). Moreover, using (8), it is easy to prove that ∂tψ
belongs to L∞(0, τ ;L2).
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The last point is then to prove the uniqueness of the solution u of (8) in the space
L∞(0, τ ;H2)∩W 1,∞(0, τ ;L2). Let ψ1 and ψ2 be two solutions of (8) and w equal to ψ1−ψ2.
Then w(0) = 0 and

i∂tw − [H(x) − µ(x)ε(t)]w = F (ψ2) − F (ψ1). (13)

Calculating Im

∫

R

(13).w(x) dx and using (9) we obtain
d

dt
(‖w‖2

L2) ≤ C‖w‖2
L2 and unique-

ness follows by Gronwall lemma. Hence the proof of uniqueness, existence and regularity of

the solution of equation (8) in R × [0, τ ] for any time τ <
1

4CM2‖ψ0‖H2

.

- Third Step -
Now, the goal is to obtain an a priori estimate of the solution in W 1,∞(0, T ;L2)∩L∞(0, T ;H2)
for any arbitrary time T , in order to prove that the local solution we obtained previously
exists globally because we have a uniform bound on the norm ‖ψ(t)‖H2 + ‖∂tψ(t)‖L2 .

Actually, since equation (8) is equivalent to the integral equation (12) and since it is easy
to prove the conservation of the L2-norm of the solution, we have,

‖ψ(t)‖H2 ≤ ‖U(t, 0)ψ0‖H2 +

∥∥∥∥
∫ t

0

U(t, s)F (ψ(s)) ds

∥∥∥∥
H2

≤ M ‖ψ0‖H2 +MC

∫ t

0

‖ψ(s)‖L2 ‖ψ(s)‖H2 ds

≤ C0,T

(
1 +

∫ t

0

‖ψ(s)‖H2 ds

)

where C0,T > 0 is a generic constant depending on the time T , on µ, χ and on ‖ψ0‖H2 . We
finally obtain from Gronwall lemma and from equation (8), that ‖ψ(t)‖H2+‖∂tψ(t)‖L2 ≤ C0,T

for all t ∈ [0, T ]. Hence the proof of Lemma 3.

3 Optimization problem

Let us now present the optimization problem we are dealing with in this paper. Let O be a
positive symmetric bounded operator on H2 and α and T two positive real numbers. Given
ψ0 ∈ H2, we consider the cost functional J defined on L2(0, T ) by:

J(ε) = 〈ψ(T )|O|ψ(T )〉 − α

∫ T

0

ε2(t)dt, (14)

where ψ is the solution of (2). In all the sequel we suppose that ‖ψ0‖L2 = 1. The existence
of a minimizer for similar cost functionals (with the opposite sign) has been obtained in [3],
[4] and [9] and follows from the construction of a minimizing sequence and a compactness
lemma (Aubin’s lemma). Here, the point is to maximize the functional J and as usual, at
the maximum of J , the Euler-Lagrange critical point equations are satisfied. A standard way
to write these equations is to use a Lagrange multiplier χ(x, t) usually called adjoint state.
The following critical point equations are thus obtained, for x ∈ R3 and t ∈ (0, T ):

{
i∂tψ(x, t) − [H(x) − µ(x)ε(t)]ψ(x, t) = 0,
ψ(x, 0) = ψ0(x),

(15)

{
i∂tχ(x, t) − [H(x) − µ(x)ε(t)]χ(x, t) = 0,
χ(x, T ) = Oψ(x, T ),

(16)
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αε(t) + Im〈ψ(t)|µ|χ(t)〉 = 0.

The existence of χ ∈ L∞(0, T ;H2) results from an adaptation of Lemma 1, as for ψ(T ) ∈ H2

since equation (15) is actually equation (2). In what follows, we also consider the linearized
equation of (16):

{
i∂tχ

′(x, t) − [H(x) − µ(x)ε(t)]χ′(x, t) = −µ(x)ε′(t)χ(t, x)
χ′(x, T ) = Oψ′(T ),

(17)

where ε′ ∈ L2(0, T ) and ψ′ is the solution of (5), corresponding to the solution ψ of (15).
The existence of χ′ ∈ L∞(0, T ;H2) follows from Lemma 2. The analysis done in the proof
of estimate (6) gives in this case:

‖χ′(t)‖L2 ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖χ‖L∞(0,T ;L2) + ‖χ′(T )‖L2. (18)

Since χ(T ) = Oψ(T ), χ′(T ) = Oψ′(T ) and from (6) and the conservation of the L2-norm,
we obtain

‖χ′‖L∞(0,T ;L2) ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖χ‖L∞(0,T ;L2) + 2‖O‖∗‖µ‖L∞‖ε′‖L1(0,T )‖ψ‖L∞(0,T ;L2)

≤ 4‖µ‖L∞‖O‖∗‖ε′‖L1(0,T ),
(19)

where ‖O‖∗ denotes the operator norm of O on L2.

4 Properties of the functional J

We begin with some properties about the regularity of the cost functional J .

4.1 Gradient of J

We start with some first order properties. As often, the use of the adjoint state χ allows us
to simplify the computation of the derivative of J . This result is the purpose of the next
lemma.

Lemma 4 The cost functional J is differentiable on L2(0, T ) and its gradient can be ex-
pressed by

(∇J(ε), ε′) = −2

∫ T

0

(
αε(t) + Im〈χ(t)|µ|ψ(t)〉

)
ε′(t)dt, (20)

where (·, ·) is the usual inner product on L2(0, T ) and ψ and χ are the solutions of (15) and
(16).

Proof: We only give here a sketch of the proof. The details can be found in reference
[3] for a slightly different cost functional. The main point is to prove the differentiability of
the functional φ : ε ∈ L2(0, T ) 7→ ψ(T ), where ψ is the solution of equation (15). Actually,
one can prove that the solution ψ′ of (5) is such that Dφ(ε)[ε′] = ψ′(T ). Therefore, since

J(ε) = 〈ψ(T )|O|ψ(T )〉 − α

∫ T

0

ε2(t)dt, we have

(∇J(ε), ε′) = 2 Re〈ψ′(T )|O|ψ(T )〉 − 2α

∫ T

0

ε(t)ε′(t)dt.

To end the proof of (20), we consider the solution χ of the adjoint state equation (16) and
we multiply equation (5) by χ (the complex conjugate of χ), integrate on R× [0, T ] and take
the imaginary part. We obtain:

Im

∫ T

0

∫

R

(i∂tψ
′ − [H − µε]ψ′)χ = Im

∫ T

0

∫

R

µε′ψχ.

8



After an integration by parts and since ψ′(0) = 0, we get

Im

∫ T

0

∫

R

i∂tχψ
′ − Im

∫

R

ψ′(T ) iχ(T ) − Im

∫ T

0

∫

R

[H − µε]χψ′ = Im

∫ T

0

∫

R

µε′ψχ.

Since χ satisfies equation (16), we then obtain

Re〈ψ′(T )|O|ψ(T )〉 = Re

∫

R

ψ′(T )Oψ(T ) = −Im
∫ T

0

∫

R

µε′ψχ = −
∫ T

0

Im〈χ(t)|µ|ψ(t)〉ε′(t)dt

what ends the proof of the lemma.

In what follows, we denote by ∇J(ε) the function t 7→ −2
(
αε(t) + Im〈χ(t)|µ|ψ(t)〉

)
and

by CJ the set of the critical points of J , i.e.,

CJ =
{
ε ∈ L2(0, T ), ∀t ∈ [0, T ], αε(t) + Im〈χ(t)|µ|ψ(t)〉 = 0

}
. (21)

Note that, thanks to the results of the section 2, we have CJ ⊂ L∞(0, T ) since for all ε ∈ CJ ,

‖ε‖L∞(0,T ) ≤ 1

α
‖〈χ|µ|ψ〉‖L∞(0,T ) ≤ C‖µ‖L∞‖χ‖L∞(0,T ;L2)‖ψ‖L∞(0,T ;L2).

Remark 1 : Note also that for α > 6T ‖µ‖2
L∞‖O‖∗, the set CJ is reduced to one point.

Indeed, suppose that CJ contains two distinct points ε1 and ε2, we then have, for t ∈ (0, T ):

α
(
ε2(t) − ε1(t)

)
+ Im〈χ2(t) − χ1(t)|µ|ψ2(t)〉 + Im〈χ1(t)|µ|ψ2(t) − ψ1(t)〉 = 0,

where ψ1, ψ2 (resp. χ1, χ2) are the solutions of (15) (resp. (16)) corresponding to ε1 and ε2
respectively. Using estimates (6) with ψ = ψ1, ψ

′ = ψ2 − ψ1, ε = ε2 and ε′ = ε2 − ε1 and
(18) with χ = χ1, χ

′ = χ2 − χ1, ψ
′ = ψ2 − ψ1, ε = ε2 and ε′ = ε2 − ε1, we obtain

α‖ε2 − ε1‖L1(0,T ) ≤ 6T ‖µ‖2
L∞‖O‖∗‖ε2 − ε1‖L1(0,T ),

which leads to α ≤ 6T ‖O‖∗‖µ‖2
L∞, and the result follows.

In order to prove the compactness of CJ , we introduce an important property of the
application ε(t) 7→ ψ(x, t), firstly presented in a more general setting by J. M. Ball, J. E.
Marsden and M. Slemrod in [2]. In our context, this result can be stated as follows.

Lemma 5 Assume that ε ∈ L1(0, T ), µ : X → X is a bounded operator and that H generates
a C0-semigroup of bounded linear operators on some Banach space X. For x ∈ R3 and
t ∈ (0, T ), we denote by ψ(x, t) the solution of

{
i∂tψ − [H − µε]ψ = 0,
ψ(0) = ψ0 ∈ X.

Then, ε 7→ ψ is a compact mapping in the sense that for any weakly converging sequence
(εn)n∈N to ε in L1(0, T ), (ψn)n∈N converges strongly to ψ in C([0, T ];X).

The precise proof of this result derives directly from [2] (Theorem 3.6, p580), see also [10]
and [26]. It allows us to obtain the following lemma.

Lemma 6 For µ ∈ W 2,∞, CJ is compact in L∞(0, T ).

9



Proof: Consider a bounded sequence (εn)n∈N of CJ . By definition, for all n ∈ N,

εn ∈ L2(0, T ) and εn(t) = − 1

α
〈χn(t)|µ|ψn(t)〉 where ψn and χn are the corresponding

solutions of (15) and (16). It is also possible to extract a weakly convergent sub-sequence
in L2(0, T ), still denoted (εn)n∈N. From Lemma 1, one knows that the Hamiltonian H =
−∆+V with V ∈ W 2,∞ generates a C0-semigroup of bounded linear operators on the Banach
space X = H2. Therefore, with µ ∈ W 2,∞ the conditions of Lemma 5 are fulfilled and we

obtain the strong convergences ψn n→+∞−→ ψ and χn n→+∞−→ χ in C([0, T ];H2). Thus, for

all t ∈ (0, T ),

∫

R3

ψn(t) µχn(t) dx
n→+∞−→

∫

R3

ψ(t) µχ(t) dx. The sequence (εn(t))n∈N
then

strongly converges in L∞(0, T ) and the result follows.

4.2 Analyticity of J

The implicit formulation of the derivative can be iteratively carried on in order to prove the
analyticity of J .

Lemma 7 Let ψ be the solution of (15) corresponding to ε. The functional

ϑ : L2(0, T ) → L∞(0, T ;H2) ∩W 1,∞(0, T ;L2)

ε 7→ ψ,

is analytic.

Proof: Let ε, ε′ ∈ L2(0, T ) be such that ‖ε′‖L1(0,T ) ≤ 1

4‖µ‖L∞

and the sequence

(ψℓ)ℓ∈N ∈ (L∞(0, T ;H2))N defined recursively by ψ0 = ϑ(ε) and for ℓ > 0:

{
i∂tψ

ℓ(x, t) − [H − µ(x)ε(t)]ψℓ(x, t) = −µ(x)ε′(t)ψℓ−1(x, t)
ψℓ(x, 0) = 0.

(22)

The existence of ψℓ is consequence of Lemma 2. Thanks to (6) applied with ψ = ψℓ−1 and
ψ′ = ψℓ, one has for ℓ ≥ 1 and t ∈ [0, T ]:

‖ψℓ(t)‖L2 ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖ψℓ−1‖L∞(0,T ;L2) ≤ 2ℓ‖µ‖ℓ
L∞‖ε′‖ℓ

L1(0,T ). (23)

Given N > 0, we obtain by summing (22) from ℓ = 0 to N :






i∂t

(
N∑

ℓ=0

ψℓ(x, t)

)
− [H − µ(x)

(
ε(t) + ε′(t)

)
]

(
N∑

ℓ=0

ψℓ(x, t)

)
= µ(x)ε′(t)ψN (x, t)

N∑

ℓ=0

ψℓ(x, 0) = ψ0(x).

(24)

On the other hand, one has:

i∂tϑ(ε + ε′) − [H − µ(x)(ε(t) + ε′(t))]ϑ(ε + ε′) = 0. (25)

Subtracting (24) and (25) and using estimates (6) with ψ = −ψN , ψ′ =
∑N

ℓ=0 ψ
ℓ(x, t)−ϑ(ε+

ε′), ε = ε+ ε′ and (23), we get:

∥∥∥∥∥ϑ(ε + ε′)(t) −
N∑

ℓ=0

ψℓ(t)

∥∥∥∥∥
L2

≤ 2N‖µ‖N
L∞‖ε′‖N

L1(0,T ) ≤ 2−N
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and the functional ϑ reads now: ϑ(ε+ ε′) =

∞∑

ℓ=0

ψℓ in L2(0, T ). Since ε′ 7→ ψℓ is ℓ-linear, the

theorem follows.

The next lemma follows immediately from this result.

Lemma 8 The cost functional J is analytic on L2(0, T ).

4.3 About the Hessian operator of J

Let us now investigate some properties of the second order derivative of J . Though we
express it as an implicit function of its argument ε, some results can be obtained from the
next lemma.

Lemma 9 Let ψ and χ be the solutions of (15) and (16). The functional γ : ε 7→ Im〈χ|µ|ψ〉
is differentiable on L2(0, T ) and one has:

Dγ(ε)[ε′] = Im〈χ′|µ|ψ〉 + Im〈χ|µ|ψ′〉, (26)

where ψ′ and χ′ are the solutions of (5) and (17). Moreover, for all ε ∈ L2(0, T ), Dγ(ε) is
compact on L2(0, T ).

Proof: Let ε ∈ L2(0, T ) and ψ and χ the corresponding solutions of (15) and (16). As
in the proof of Lemma 4, the key-point is the differentiability of the functional ϑ, defined in
Lemma 7 on L2(0, T ). Actually, Dϑ(ε)[ε′] = ψ′, where ψ′ is the solution of (5). The main
explanations can be read in [4]. Repeating this argument for ε 7→ χ, we obtain that γ is
differentiable and we get (26).

Let us now prove the compactness of this operator. Let (ε′n)n∈N be a bounded sequence
in L2(0, T ) and let (ψ′n)n∈N and (χ′n)n∈N be the corresponding solutions of (5) and (17).
As ψ′n ∈ L∞(0, T ;H2) ∩W 1,∞(0, T ;L2) (see the proof of Lemma 2), we have that ψ′n ∈
C([0, T ];L2) and ∂tψ

′n ∈ L2(0, T ;L2). By means of the continuity of:

L2(0, T ) → C([0, T ];L2) and L2(0, T ) → L2(0, T ;L2)
ε′ 7→ ψ′ ε′ 7→ ∂tψ

′ (27)

there exist ψ′∞ such that, up to extraction, ψ′n ⇀ ψ′∞ ∈ L2(0, T ;L2) and

∂tψ
′n ⇀ ∂tψ

′∞ ∈ L2(0, T ;L2). (28)

Since ψ′n(0) = 0, we have ψ′n(t) =

∫ t

0

∂tψ
′n(s)ds and (28) implies that for all t ∈ [0, T ],

(‖ψ′n(t)‖L2)n∈N is uniformly bounded. Moreover, for all t, t′ ∈ [0, T ], t ≤ t′, we have:

‖ψ′n(t′) − ψ′n(t)‖L2 ≤
∫ t′

t

‖∂tψ
′n(s)‖L2ds ≤

√
t′ − t‖∂tψ

′n‖L2(0,T ;L2).

Combining this with (28), we find that (ψ′n)n∈N is an equicontinuous sequence in C([0, T ], L2).
We conclude by applying Ascoli’s theorem to the family {Im〈χ|µ|ψ′n〉, n ∈ N} of the space
C([0, T ]). Similar arguments apply for {Im〈χ′n|µ|ψ〉, n ∈ N}, and the results follows.

Thanks to the previous lemma, J is twice differentiable and its Hessian operator reads:

HJ (ε) : ε′ 7→ −2
(
αε′ +Dγ(ε)[ε′]

)
.

In the sequel, a criterion ensuring that the Hessian operator of J is invertible will be useful.
The next lemma provides it.
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Lemma 10 Suppose that: α > 6T ‖µ‖2
L∞‖O‖∗. Then the operator HJ(ε) is invertible on

L2(0, T ).

Proof: We keep the notation of Lemma 9. The Cauchy-Schwarz inequality, combined
with (6) and (19) yields:

‖Dγ(ε)[ε′]‖L∞(0,T ) ≤ ‖µ‖L∞

(
‖χ′‖L∞(0,T ;L2) + ‖O‖∗‖ψ′‖L∞(0,T ;L2)

)

≤ 6
√
T‖µ‖2

L∞‖O‖∗‖ε′‖L2(0,T ).

Finally, thanks to the assumption of the lemma, one has

sup
{ε′,‖ε′‖L2(0,T )=1}

(
1

α
‖Dγ(ε)[ε′]‖L2(0,T )

)
< 1,

which implies that I +
1

α
Dγ(ε) is invertible and the result follows.

5  Lojasiewicz inequality for the cost functional J

Several convergence results of dynamical systems have been proved thanks to the  Lojasiewicz
inequality recalled here. In order to tackle the problem of the convergence of the optimizing
sequence presented in the next section, we have to extend this inequality to the case of a
compact set in an infinite dimensional space. The basic result considered in this section is
the following (cf [17, 18]):

Theorem 1 Let N be an integer and Γ : R
N → R be an analytic function in a neighborhood

of a point a ∈ RN . Then there exists σ > 0 and θ ∈]0, 1
2 ] such that

∀x ∈ R
N , ‖x− a‖ < σ, ‖∇Γ(x)‖ ≥ |Γ(x) − Γ(a)|1−θ, (29)

where ‖.‖ is a given norm on RN .

The real number θ is a  Lojasiewicz exponent of a. Following the work [15] of M. A. Jen-
doubi (which simplifies the theorem of  Lojasiewicz-Simon [28]), the latter theorem can be
generalized to the case of infinite dimension.

Lemma 11 Given ε ∈ L2(0, T ), there exists σ′ > 0, κ > 0 and θ′ ∈]0, 1
2 ] such that:

∀ε′ ∈ L2(0, T ), ‖ε′ − ε‖L2(0,T ) ≤ σ′, ‖∇J(ε′)‖L2(0,T ) ≥ κ|J(ε′) − J(ε)|1−θ′

.

We give the proof of this lemma in the appendix. A more precise result can be obtained
if the Hessian operator under consideration is invertible at point a (see e.g, [13]). Indeed,
one can then show that 1/2 is a  Lojasiewicz exponent of a. We will use this improvement
in Section 8 since Lemma 10 provides actually an expected sufficient condition. The next
lemma is a global version of the previous one.

Lemma 12 Let C̃J be a connected component of CJ in L2(0, T ). We denote by l the value

of J(ε) for all ε ∈ C̃J and we set J̃(ε) = l − J(ε). There exist σ̃ > 0, κ̃ > 0 and θ̃ ∈]0, 1
2 ]

such that:

∀ε ∈ L2(0, T ), d2(ε, C̃J ) < σ̃, ‖∇J(ε)‖L2(0,T ) ≥ κ̃|J̃(ε)|1−θ̃, (30)

where d2 is the distance associated to the L2(0, T )-norm.
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Proof: Lemma 11 ensures that for each point a in C̃J there exist three real numbers σa,
θa and κa such that:

∀ε ∈ R
N , ‖ε− a‖L2(0,T ) < σa ‖∇J(ε)‖L2(0,T ) ≥ κa|J̃(ε)|1−θa .

The compactness of C̃J , guaranteed by Lemma 6, allows us to extract from
{
B(a, σa

2 ), a ∈ C̃J

}

a finite family A =
{
B(ai,

σai

2 )
}

i∈F
, where F is a finite set of indexes, such that C̃J ⊂ A.

We then define σ̃, κ̃ and θ̃ ∈]0, 1/2] as the respective lower bounds of
{σai

2

}
i∈F

, {κai
}i∈F

and {θai
}i∈F and the result follows.

6 Optimizing sequence

We have now gathered all the necessary results to present and analyze the optimizing se-
quence.

6.1 Definition of the sequence

Following the approach sketched in the introduction, Y. Maday and G. Turinici have defined
an optimizing sequence (εk)k∈N for the cost functional J as follows [20] :

Consider (δ, η) ∈]0, 2[×]0, 2[, ε0 ∈ L∞(0, T ), ε̃0 ∈ L∞(0, T ), ψ0 and χ0 the corresponding
solutions of (15) and (16) according to Lemma 1. The functions εk and ε̃k are computed by
solving iteratively:

{
i∂tψ

k(x, t) =
(
H(x) − εk(t)µ(x)

)
ψk(x, t)

ψk(x, 0) = ψ0(x)
(31)

εk(t) = (1 − δ)ε̃k−1(t) − δ

α
Im〈χk−1(t)|µ|ψk(t)〉 (32)

{
i∂tχ

k(x, t) =
(
H(x) − ε̃k(t)µ(x)

)
χk(x, t)

χk(x, T ) = Oψk(x, T )
(33)

ε̃k(t) = (1 − η)εk(t) − η

α
Im〈χk(t)|µ|ψk(t)〉. (34)

Existence and uniqueness of solutions ψk and χk of the above equations result from an easy
adaptation of Lemma 3, as for the proof of εk, ε̃k ∈ L2(0, T ) for all k ∈ N.

Remark 2 : Note that this choice of optimizing sequence is not canonical. There exists
other ways to guarantee that the condition (1) is fulfilled (see, e.g. [30]). However, this
formulation includes many monotonic algorithms, e.g. the one by Krotov (presented in [29])
or by W. Zhu and H. Rabitz [34] which are often used in the numerical simulations.

6.2 Properties of the sequence

We present here two results about the sequence (εk)k∈N. The proofs can be found in [19, 20].
These results state that (εk)k∈N defined by (31) − (34) is bounded in L∞(0, T ) and that the
corresponding sequence

(
J(εk)

)
k∈N

increases monotonically.

Lemma 13 Given an initial field ε0 ∈ L∞(0, T ), let us define M by:

M = max

(
‖ε0‖L∞(0,T ),max

(
1,

δ

2 − δ
,

η

2 − η

) ‖O‖∗‖µ‖L∞

α

)
.
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The sequences (εk)k∈N and (ε̃k)k∈N satisfy:

∀k ∈ N, ‖εk‖L∞(0,T ) ≤M, ‖ε̃k‖L∞(0,T ) ≤M.

Lemma 14 The sequence (εk)k∈N defined by (31)−−(34) ensures the monotonic convergence
of the cost functional J in the sense that:

J(εk+1) − J(εk) = 〈ψk+1(T ) − ψk(T )|O|ψk+1(T ) − ψk(T )〉

+

(
2

η
− 1

)∥∥εk+1 − ε̃k
∥∥2

L2(0,T )
+

(
2

δ
− 1

)∥∥ε̃k − εk
∥∥2

L2(0,T )
, (35)

and there exists lε0 such that lim
k→+∞

J(εk) = lε0 .

In order to study the convergence of (εk)k∈N, we will need to estimate the gradient of J at
each point εk. Such an estimate is obtained in the next lemma.

Lemma 15 There exists λ > 0, depending on µ, O, α, δ, η and T , such that:

‖∇J(εk)‖L1(0,T ) ≤ λ
(
‖εk − ε̃k−1‖L2(0,T ) + ‖ε̃k−1 − εk−1‖L2(0,T )

)
. (36)

Proof: Thanks to (20), we have:

∇J(εk)(t) = −2
(
αεk(t) + Im〈χk−1(t)|µ|ψk(t)〉 + Im〈χεk

(t) − χk−1(t)|µ|ψk(t)〉
)

= −2

(
α

(
1 − 1

δ

)(
εk(t) − ε̃k−1(t)

)
+ Im〈χεk

(t) − χk−1(t)|µ|ψk(t)〉
)

(37)

where χεk

is the solution of (16) with ψ = ψk and ε = εk.

Next, χεk −χk−1 is the solution of equation (17) corresponding to ε = εk, ε′ = ε̃k−1− εk and
χ = χk−1. The associated estimate (18) then gives:

‖χεk

(t) − χk−1(t)‖L2 ≤ 2‖µ‖L∞‖εk − ε̃k−1‖L1(0,T )‖O‖∗ + ‖O(ψk(T ) − ψk−1(T ))‖L2

≤ 4‖µ‖L∞‖O‖∗(‖εk − ε̃k−1‖L1(0,T ) + ‖ε̃k−1 − εk−1‖L1(0,T )). (38)

Combining (37) and (38), we obtain (36) with λ = 2
√
T

(
4T ‖O‖∗‖µ‖2

L∞ + α

(
1 − 1

δ

))
.

6.3 Limit points of the sequence

We now present some result about the limit points of (εk)k∈N. These results give first hints
about the relationship between these limit points and the set CJ of the critical points of the
cost functional J . Thus, we obtain a first case of convergence.

Lemma 16 Let (εkn)n∈N be a weakly convergent sub-sequence of (εk)k∈N in L2(0, T ). Then
(εkn)n∈N converges in L∞(0, T ) towards a critical point of the cost functional J .

Proof: Let (εkn)n∈N be a weakly convergent sub-sequence of (εk)k∈N in L2(0, T ) and let
us consider ℓ ∈ N. Equation (35) ensures that (εkn+ℓ)n∈N also converges weakly (and has the
same limit as (εkn)n∈N). Thanks to Lemma 5, the sequences

(
χkn+ℓ

)
n∈N

and
(
ψkn+ℓ

)
n∈N

converge strongly in the space C([0, T ];L2). Thus, we obtain by bilinearity the strong con-
vergence of both sequences

(〈
χkn |µ|ψkn

〉)
n∈N

and
(〈
χkn |µ|ψkn+1

〉)
n∈N

in L∞(0, T ).
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According to (32) and (34), (εkn)n∈N also reads:

εkn+1 = (1 − δ)(1 − η)︸ ︷︷ ︸
ν

εkn + ukn
,

where |ν| < 1 and where ukn
(t) = − (1 − δ)η

α
Im
〈
χkn(t)|µ|ψkn (t)

〉
− δ

α
Im
〈
χkn(t)|µ|ψkn+1(t)

〉

strongly converges in L∞(0, T ). Note again that given ℓ ∈ N, (ukn+ℓ)n∈N also converges in
L∞(0, T ) (towards the same limit). For all k ∈ N, the absolute value of uk(t) can be estimated
by:

|uk(t)| ≤ m =
4‖µ‖L∞‖O‖∗

α
.

Let us prove that (εkn )n∈N is Cauchy in L∞(0, T ). Consider e > 0. There exists n1 > 0 be
such that

2m

∞∑

j1

|ν|j ≤ e

4
. (39)

Since the sequence (ukn−ℓ)n∈N is Cauchy for all ℓ with 0 ≤ ℓ ≤ n1, we have:

∃n2 > 0/ ∀s > n2, ∀q ≥ 0, ‖uks+q−ℓ − uks−ℓ‖L∞(0,T ) ≤
e

4n1
. (40)

Let n be an integer fulfilling the conditions:

∀p ≥ 0, |νkn+p − νkn | ≤ e

4‖ε0‖L∞(0,T )
, kn > n1, n > n2. (41)

Let p be a positive integer. Since we have, for all n ∈ N∗, εkn = νknε0 +

kn−1∑

j=0

νjukn−j−1 we

obtain

εkn+p − εkn = (νkn+p − νkn)ε0 +

kn+p−1∑

j=kn

νjukn+p−j−1

+

kn−1∑

j1

νj(ukn+p−j−1 − ukn−j−1) +

n1−1∑

j=0

νj(ukn+p−j−1 − ukn−j−1).

(42)

Thank to (39) and the two first conditions of (41):

∥∥(νkn+p − νkn )ε0
∥∥

L∞(0,T )
≤ e

4
,

∥∥∥∥∥∥

kn+p−1∑

j=kn

νjukn+p−j−1

∥∥∥∥∥∥
L∞(0,T )

≤
∞∑

j=kn

∥∥νjukn+p−j−1

∥∥
L∞(0,T )

≤ m
∞∑

j=kn

|ν|j ≤ e

4
.

According to the condition (39), the third term of (42) can be estimated by:
∥∥∥∥∥∥

kn−1∑

j1

νj(ukn+p−j−1 − ukn−j−1)

∥∥∥∥∥∥
L∞(0,T )

≤ 2m
∞∑

j1

|ν|j ≤ e

4
.

Lastly, |ν| < 1, the third condition of (41) and the Cauchy property (40) allows us to estimate
the last term of (42):
∥∥∥∥∥∥

n1−1∑

j=0

νj(ukn+p−j−1 − ukn−j−1)

∥∥∥∥∥∥
L∞(0,T )

≤
n1−1∑

j=0

∥∥ukn+p−j−1 − ukn−j−1

∥∥
L∞(0,T )

≤ e

4
.
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We have thus proved that for all e > 0, if n is large enough then, for every p > 0,

‖εkn+p − εkn‖L∞(0,T ) ≤ e,

which proves that (εkn)n∈N is Cauchy in L∞(0, T ).
We denote by ε the limit of (εkn)n∈N. Thanks to (35), (ε̃kn)n∈N also converges towards

ε. Passing through the limit in (31) − (34), we then deduce that ε belongs to CJ , according
to definition (21).

Let us denote by Cε0 ⊂ CJ the set of the limit points of (εkn)n∈N. As stated in Remark
1, for α > 6T ‖µ‖2

L∞‖O‖∗, CJ , and consequently Cε0 , are reduced to one point. By means of
Lemma 13, the convergence of the sequence (εk)k∈N is then guaranteed in this case.

Remark 3 : In addition, the uniqueness of the critical point implies that the limit in this
case is necessarily an extremum of J .

In order to obtain the convergence for all α > 0, we need to study more precisely the asymp-
totic behavior of the sequence (εk)k∈N in the neighborhood of Cε0 . A standard argument of
compactness applied to Cε0 enables us to obtain the following result.

Lemma 17 Let denote by d∞ the distance corresponding to the L∞(0, T ) norm. One has:

d∞(εk, Cε0 ) → 0. (43)

Remark 4 : By means of the monotonicity property, we find that J = lε0 on the set Cε0

(with lε0 = limk→+∞ J(εk)). It is then possible to apply Lemma 12 with C̃J = Cε0 since the

assumption that C̃J is connected is only necessary to ensure that J is constant on this set.
It can however be proved that Cε0 is connected (see [25]).

7 Convergence of the sequence

It is now possible to prove the convergence of the sequence (εk)k∈N by a Cauchy argument.

Theorem 2 Suppose that ε0 ∈ L∞(0, T ). The sequence (εk)k∈N defined by (31) − (34) is
convergent in L2(0, T ).

Proof: We still denote by lε0 the value of J on Cε0 and by J̃ the shifted cost functional
J − lε0 . Suppose first that ∀k ∈ N, J̃(εk) 6= 0. By (43), there exists k0 such that (30) holds

(with C̃J = Cε0 ) for all εk with k ≥ k0. Consider an integer k ≥ k0. We have:

((
J̃(εk)

)θ̃ −
(
J̃(εk+1)

)θ̃
)

≥ θ̃

(J̃(εk+1))1−θ̃

(
J(εk+1) − J(εk)

)
(44)

≥ κ̃θ̃

‖∇J(εk+1)‖L1(0,T )

((2

δ
− 1
)
‖εk+1 − ε̃k‖2

L2(0,T )

+
(2

η
− 1
)
‖ε̃k − εk‖2

L2(0,T )

)
(45)

≥ κ̃θ̃a(δ,η)

λ

(
‖εk+1 − ε̃k‖L2(0,T ) +‖ε̃k − εk‖L2(0,T )

)
(46)

≥ κ̃θ̃a(δ,η)

λ
‖εk+1 − εk‖L2(0,T ),
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where a(δ,η) =
1

max(δ, η)
− 1

2
. The inequality (44) comes from the concavity of s 7→ sθ̃,

whereas (45) is a consequence of (30) and (35). Inequality (46) follows from (36).

Since

((
J̃(εk)

)θ̃
)

k∈N

is a Cauchy sequence (as a monotonic sequence bounded by (2‖O‖∗)θ̃),

we obtain that (εk)k∈N is also a Cauchy sequence.

If there exists k1 such that J̃(εk1) = 0, the monotonicity of the algorithm implies that

J(εk1) = J(εk1+1) = J(εk1+2) = ...

and by (35) the sequence (εk)k∈N is constant for k ≥ k1.

Remark 5 : Thanks to the definition of the sequence (εk)k∈N and to the regularity of the
solutions ψ and χ of the appropriate Schrödinger equations (see lemmas 1 to 3), we can easily
prove by induction that if ε0 ∈W 1,∞(0, T ), then for all k ∈ N, εk ∈W 1,∞(0, T ).

8 Rate of convergence

The rate of convergence can be now evaluated by a second use of the  Lojasiewicz inequality.
The result is summarized in the next theorem.

Theorem 3 Let us denote by ε∞, the limit of (εk)k∈N defined by (31) − (32) and θ̃, κ̃ the
real numbers appearing in (30), where Cε0 = {ε∞}.

If θ̃ <
1

2
, then there exists c > 0 such that ‖εk − ε∞‖L2(0,T ) ≤ ck

− θ̃

1−2θ̃ .

If θ̃ =
1

2
, then there exist c′ and τ such that:

‖εk − ε∞‖L2(0,T ) ≤ c′e−τk. (47)

Proof: As in the proof of Theorem 2, let be k0, an integer such that

∀ℓ ≥ k0 ‖∇J(εℓ)‖L1(0,T ) ≥ κ̃|J̃(εℓ)|1−θ̃. (48)

Let us fix k ≥ k0 and introduce ∆k defined by:

∆k =

∞∑

ℓ=k

‖εℓ+1 − ε̃ℓ‖L2(0,T ) + ‖ε̃ℓ − εℓ‖L2(0,T ).

With no loss of generality, we may assume that ∆k > 0 for all k ≥ k0. Summing (46) between
k and +∞, we obtain:

(
J̃(εk)

)θ̃ ≥ κ̃θ̃a(δ,η)

λ
∆k.

This estimate, combined with (48), with ℓ = k yields:

‖∇J(εk)‖L1(0,T ) ≥ κ̃
( κ̃θ̃a(δ,η)

λ
∆k
) 1−θ̃

θ̃
.

From Lemma 15, we obtain:

λ(∆k−1 − ∆k) ≥ κ̃
( κ̃θ̃a(δ,η)

λ
∆k
) 1−θ̃

θ̃
,
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which may be written as follows:

∆k−1 − ∆k

(∆k)β
≥ υ, (49)

with β =
1 − θ̃

θ̃
and υ = κ̃

λ

(
κ̃θ̃a(δ,η)

λ

) 1−θ̃

θ̃
. Suppose now that θ̃ =

1

2
,i.e., β = 1. The equation

(49) then becomes:

(1 + υ)k0∆k0
( 1

1 + υ

)k ≥ ∆k,

and (47) is proved with c′ = (1 + υ)k0∆k0 and τ = ln(1 + υ).

Suppose now that θ̃ < 1
2 . Let be r ∈]0, 1[, and suppose first that:

(∆k)β ≥ r(∆k−1)β .

Since 1 − β < 0, the function s 7→ s1−β is concave and we have:

(∆k)1−β − (∆k−1)1−β ≥ (β − 1)
∆k−1 − ∆k

(∆k−1)β
≥ (β − 1)r

∆k−1 − ∆k

(∆k)β
≥ (β − 1)rυ.

In the other case:

(∆k)1−β − (∆k−1)1−β ≥ (∆k)1−β − (r
1
β ∆k)1−β = (1 − r

1−β
β )(∆k)1−β ≥ (1− r

1−β
β )(∆k0 )1−β .

Thus, in any case, there exists υ′ > 0 independent of k, such that:

(∆k)1−β − (∆k−1)1−β ≥ υ′. (50)

Consider now k′ > k, the inequality (50) implies that for a small enough c, one have:

∆k′ ≤
(
υ′(k′ − k) + (∆k)2−

1

θ̃

)− θ̃

1−2θ̃ ≤ ck
′− θ̃

1−2θ̃ ,

and the result follows.

Remark 6 : Thanks to Lemma 10, we have thus obtained that if α > 6T ‖µ‖2
L∞‖O‖∗ the

convergence of the sequence is at least linear.
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Appendix: Proof of Lemma 11

Consider ε ∈ L2(0, T ) and J defined by (14). For reason of simplicity, we suppose that
J(ε) = 0, ∇J(ε) = 0.
Thanks to Lemma 9, the operator HJ(ε) is a Fredholm operator. The Fredholm alternative
states then that either HJ(ε) is bijective or KerHJ(ε) = span(ϕ1, ..., ϕm), with m > 0. Let
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us denote by Π, the orthogonal projection on KerHJ(ε) (with Π = 0 if KerHJ(ε) = 0). The
operator L = Π +HJ (ε) is then bijective on L2(0, T ).
We are now in the position to apply the local inverse mapping theorem to L = Π + ∇J
(analytic version, see [33], Corollary 4.37, p.172), that asserts there exist V and V ′ two
neighborhoods of 0 in L2(0, T ) and K : V ′ → V an analytic mapping such that:

∀ε′ ∈ V, K(L(ε′)) = ε′, ∀ε′′ ∈ V ′, L(K(ε′′)) = ε′′.

Since L and K are C∞, there exist C and C′ such that:

∀ε1, ε2 ∈ V, ‖L(ε2) − L(ε1)‖L2(0,T ) ≤ C‖ε2 − ε1‖L2(0,T )

∀ε′1, ε′2 ∈ V ′, ‖K(ε′2) −K(ε′1)‖L2(0,T ) ≤ C′‖ε′2 − ε′1‖L2(0,T ).

Consider now ε′ ∈ V ∩ V ′. For ζ ∈ Rm such that
∑m

j=1 ζjϕj ∈ V , let us define Γ : ζ 7→
J
(
K(
∑m

j=1 ζjϕj)
)
, and ξ ∈ Rm such that Πε′ =

∑m
j=1 ξjϕj . Let us first estimate ∇Γ(ξ).

Using Πε′ ∈ V ′, we obtain:

|∇Γ(ξ)| ≤ C′′‖∇J
(
K(Πε′)

)
‖L2(0,T ) = C′′‖∇J(ε′) + ∇J

(
K(Πε′)

)
−∇J(ε′)‖L2(0,T )

≤ C′′
(
‖∇J(ε′)‖L2(0,T ) + C‖K(Πε′) − ε′‖L2(0,T )

)

= C′′
(
‖∇J(ε′)‖L2(0,T ) + C‖K(Πε′) −K

(
Πε′ + ∇J(ε′)

)
‖L2(0,T )

)

≤ c‖∇J(ε′)‖L2(0,T ), (51)

where c = C′′(1 + CC′). On the other hand, one has:

|J(ε′) − Γ(ξ)| = |J(ε′) − J
(
K(Πε′)

)
| =

∣∣∣∣
∫ 1

0

d

ds
J
(
ε′ + s

(
K(Πε′) − ε′

))
ds

∣∣∣∣

=

∣∣∣∣
∫ 1

0

(
∇J
(
ε′ + s

(
K(Πε′) − ε′

))
,K(Πε′) − ε′

)
ds

∣∣∣∣

≤ ‖K(Πε′) − ε′)‖L2(0,T )

∫ 1

0

‖∇J(ε′)‖L2(0,T ) + Cs‖K(Πε′) − ε′‖L2(0,T )ds

= ‖K(Πε′) − ε′)‖L2(0,T )

(
‖∇J(ε′)‖L2(0,T ) +

C

2
‖K(Πε′) − ε′‖L2(0,T )

)

≤ c′‖∇J(ε′)‖2
L2(0,T ), (52)

where c′ = C′(1 + CC′

2 ). By diminishing V , the  Lojasiewicz inequality (29) applied to the
analytic functional Γ states that there exist θ ∈]0, 1/2], σ > 0 such that:

|∇Γ(ξ)| ≥ |Γ(ξ)|1−θ = |J(ε′) − Γ(ξ) − J(ε′)|1−θ

≥ 1

2
|J(ε′)|1−θ − 1

2
|J(ε′) − Γ(ξ)|1−θ.

Combining (51) and (52), we obtain:

c‖∇J(ε′)‖L2(0,T ) ≥ 1

2
|J(ε′)|1−θ − c′‖∇J(ε′)‖2(1−θ)

L2(0,T ),

and the result follows.
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