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Abstract

We consider a deconvolution model for 3D periodic flows. We show the
existence of a global attractor for the model.
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1 Introduction

This note is concerned by the deconvolution model of order N introduced in [6]
(model (2.7) below) for 3D periodic flows. This model takes inspiration in the class
of the so called α-models (see in [2] and [4] and references inside) and also in the
class of ADM models (see in [7]). We are interested by the question of the existence
of a global attractor for this model.

The question of attractors has already been considered for the alpha model (see [1]),
corresponding to the case N = 0. We prove in this work the existence of an attractor
for each N (see Theorem 3.1).

In order to make the paper self contained, we describe carrefully how is constructed
the deconvolution model. Next, we recall basic notions on the attractors, notions
that can be founded in the book of R. Temam (see [8]). Finally we prove the
existence of the attractor. The question of its dimension is under progress.

2 The Deconvolution model

2.1 Function Spaces

for s ∈ IR, let us define the space function

(2.1) Hs =
{
w =

∑
k ŵeik·x, ∇ · w = 0, ŵ(0) = 0,

∑
k |k|

2s|ŵ(k, t)|2 < ∞
}

.
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We define the Hs norms by

(2.2) ||w||2s =
∑

k

|k|2s|ŵ(k, t)|2,

where of course ||w||20 = ||w||2. It can be shown that when s is an integer, ||w||2s =
||∇sw||2 (see [3]).

We denote by PL The Helmholtz-Leray orthogonal projection of (L2)3 onto H0 and
by A the Stokes operator defined by A = −PL△ on D(A) = H0 ∩ (H2)3. We note
that in the space-periodic case Aw = −△w for all w ∈ D(A).
The operator A−1 is a sef-adjoint positive definite compact operator from Hs onto
Hs, for s = 1 and s = 2 (see [5]). We denote λ1 the smallest eigenvalue of A.
We introduce the trilinear form b defined by

(2.3) b(u,v,w) =
∑

i,j

∫

Ω

ui∂ivjwjdx.

wherever the integrals make sense. Note that b(u,w,w) = 0 when ∇ · u = 0.

2.2 The Filter and the deconvolution process

Let w ∈ H0 and w ∈ H1 be the unique solution to the following Stokes problem
with periodic boundary conditions:

(2.4) −δ2△w + w + ∇r = w in R
3, ∇ · w = 0,

∫

Ω

w = 0.

We denote the filtering operation by G so that w = Gw. Writing w(x, t) =
∑

k ŵ(k, t)e−ik·x, it is easily seen that ∇r = 0 and w(x, t) =
∑

k

ŵ(k, t)

1 + δ2|k|2
e−ik·x.

Then writing w = G(w), we see that in the corresponding spaces of the type Hs,

the transfer function of G, denoted by Ĝ, is the function Ĝ(k) = 1

1+δ2|k|2
, and we

also can write on the Hs type spaces

(2.5) −δ2△w + w = w in R
3, ∇ · w = 0,

∫

Ω

w = 0.

The procedure of deconvolution by the Van Citter approximation is described in [6].
This yields the operator DNw =

∑N
n=0

(I − G)nw.

Definition 2.1 The truncation operator HN : Hs → Hs is defined by HNw :=
DNw = (DN ◦ G)w. �

Note that, for any s > 0 we have the following proprieties (see [6]) :

(2.6) ‖HNw‖s 6 ‖w‖s , ‖HNw‖s+2
6 C(δ, N) ‖w‖s .
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2.3 The model

Let u0 ∈ H0, f ∈ H−1. For δ > 0, let the averaging be defined by (2.4). The
problem we consider is the following: for a fixed T > 0, find (w, q)

(2.7)






w ∈ L2([0, T ],H1) ∩ L∞([0, T ],H0), ∂tw ∈ L2([0, T ],H−1)
q ∈ L2([0, T ], L2

per,0),

∂tw + (HN(w) · ∇)w− ν△w + ∇q = HN(f) in D′([0, T ] × IR3),
w(x, 0) = HN(u0) = w0.

where L2
per,0 denotes the scalar fields in L2

loc(IR
3), 2π-periodic with zero mean value.

We prove in [6] the following result.

Theorem 2.1 Problem (2.7) admits a unique solution (w, q), w ∈ L∞([0, T ],H1)∩
L2([0, T ],H2), and the following energy equality holds:

(2.8)
1

2
‖w(t)‖2 + ν

∫ t

0

∫

Ω

|∇w|2dxdt′ =
1

2
‖HN(u0)‖

2 +

∫ t

0

∫

Ω

HN(f).w dxdt′. �

3 Main result

3.1 Recall of basic notions about attractors

We denote by w(t, ·) = S(t)(w0) the (unique) solution of system (2.7) at time t. We
recall the definitions of a global attractor and an absorbing set (see in [8]).

Definition 3.1 We say that A ⊂ H0 is a global attractor for the dynamical system
(2.7) if and only if

(P1) A is compact in the space H0,

(P2) ∀ t ∈ IR, S(t)(A) ⊂ A,

(P3) For every bounded subset B ⊂ H0, ρ(S(t)(B),A) goes to zero when t goes to
infinity, where ρ(S(t)(B),A) = supv∈B infu∈A ||u − v||. �

Definition 3.2 1. A set A ⊂ H0 is an absorbing set if and only if for every bounded
subset B ⊂ H0 there exists t1 > 0 such that for all t ≥ t1 one has S(t)(B) ⊂ A.
2. We say that the semi group S(t) is uniformly compact if and only if for every

bounded subset B ⊂ H0 there exists t2 = t2(B) such that
⋃

t≥t2

S(t)(B) is compact.

3. We denote by ω(A) the set ω(A) =
⋂

s≥0

⋃

t≥s

S(t)(A). �

Proposition 3.1 Assume that there exists an absorbing bounded set A and that
the semi group S(t) is uniformly compact, then A = ω(A) is the global attractor for
the dynamical system defined by S(t).

see the proof in [8]).
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3.2 Existence of a global attractor

We are now in order to state and prove the main result of this note.

Theorem 3.1 The system (2.7) has a global attractor. �

Proof. Thanks to Proposition 3.1, it remains to prove that system (2.7) has an
absorbing set and that S(t) is uniformly compact, in the sense of definition 3.2. Both
things are derived from basic estimates that we detail in the following.

Absorbing set in H0 : We take the inner product of the first quation of system
(2.7) with w to obtain

(3.1)
1

2

d

dt
‖w‖2 + b(HN(w),w,w) + ν||w||21 = (HN(f),w).

Observing that b(HN(w),w,w) = 0 due to ∇·HN(w) = 0, applying Young inequal-

ity, Poincare inequality ||w|| 6 λ
− 1

2

1 ||w||1 and using (2.6) there remains

(3.2)
d

dt
‖w‖2 + νλ1||w||2 6

1

νλ1

‖f‖2
.

So, noting ρ0 = 1

νλ1

‖f‖ and applying Gronwall lema we obtain

(3.3) ‖w‖2
6 ‖w0‖

2
e−νλ1t + ρ2

0(1 − e−νλ1t).

Considering w0 included in a ball B(0, R) and choosing ρ′
0 > ρ0, the previous in-

equality implies that, for t > T0,

(3.4) ‖w(t)‖2
< ρ′

0

2
, with T0 =

1

νλ1

ln
R2

ρ′
0

2 − ρ0
2
.

Since each bounded set of H0 is included in a ball B(0, R), one deduces that B(0, ρ′
0)

is an absorbing set in H0.

More, as an alternative of (3.2) we may obtain

(3.5)
d

dt
‖w‖2 + ν||w||21 6

1

νλ1

‖f‖2
.

Integrating between t and t + r, we observe than, for u0 ∈ B(0, R), ρ′
0 > ρ0 and

t > T0

(
with T0 = 1

νλ1

ln R2

ρ′
0

2−ρ0
2

)
:

(3.6)

∫ t+r

t

‖w(s)‖2

1
ds 6

r

ν2λ1

‖f‖2 +
ρ′

0

2

ν
.

Absorbing set in H1: We take now the inner product of the first equation of
system (2.7) with Aw to obtain

(3.7)
1

2

d

dt
‖w‖2

1
+ b(HN(w),w, Aw) + ν||Aw||2 = (HN(f), Aw),
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leading to

(3.8)
1

2

d

dt
‖w‖2

1
+ +ν||Aw||2 6

1

ν
‖HN(f)‖2 +

ν

4
‖Aw‖2 + |b(HN(w),w, Aw)|,

The trilinear form b satisfies the folowing inequality (see in [6]) :

(3.9) |b(u,v,w)| 6 c′ ‖u‖1/4 ‖u‖3/4

1
‖v‖1/4

1
‖Av‖3/4 ‖w‖ .

Therefore, one has

(3.10) |b(HN(w),w, Aw)| 6 c′ ‖HN (w)‖1/4 ‖HN(w)‖3/4

1
‖w‖1/4

1
‖Aw‖7/4

.

Using (2.6) we have ‖HN(w)‖
1

6 ‖HN(w)‖
2

6 C(δ, N) ‖w‖ and using (2.6) :

(3.11) |b(HN(w),w, Aw)| 6 C ′(δ, N) ‖w‖ ‖w‖1/4

1
‖Aw‖7/4

.

By Young inequality we obtain

(3.12) |b(HN(w),w, Aw)| 6
ν

4
‖Aw‖2 +

C1(δ, N)

2
‖w‖8 ‖w‖2

1
,

thus

(3.13)
d

dt
‖w‖2

1
+ ν||Aw||2 6

2

ν
‖HN(f)‖2 + C1(δ, N) ‖w‖8 ‖w‖2

1

We now use a Gronwall type proposition (see the proof in [8]):

Proposition 3.2 Assume that y, g and h are positive, localy integrable functions
on ]t0, +∞[, and that for t > t0,

dy

dt
6 gy + h,

∫ t+r

t

y(s)ds 6 k1,

∫ t+r

t

g(s)ds, 6 k2,

∫ t+r

t

h(s)ds 6 k3,

where r, k1, k2, k3 are four positive constants, then

y(t + r) 6

(
k1

r
+ k3

)
ek2 , ∀t > t0. �

We can now finish the proof. Thanks to (3.4) and (3.6), using this lemma with
y = ‖w‖2

1
, g = C1(δ, N) ‖w‖8 and h = 2

ν
‖HN(f)‖2, we obtain,

(3.14) ‖w(t)‖2

1
6

(
k1

r
+ k3

)
ek2, ∀t > T0 + r,

with k1 = r
ν2λ1

‖f‖2 + 1

ν
ρ′

0

2, k2 = C1(δ, N)ρ′
0

8, k3 = 2r
ν
‖f‖2.

Thus, after a time T1 = T1 (‖w0‖ , ‖f‖ , ν), w is included in a ball or radius R =
R (‖f‖ , ν, δ, N). One deduces that there exists an absorbing set in H1.

Let B be a bounded set in H1. Estimate (3.14) implies that
⋃

t≥T0+r

S(t)B is a bounded

set in H1 wich is compactly imbeded in H0, so S(t) is uniformly compact. Estimate
(3.14) also implies the existence of an absorbing bonded set since k1, k2 and k3 are
independant of w0. Thanks to (3.1), this achieves the proof of the theorem. �
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