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Abstract

For the scalar wave equation in periodic structures, we establish rigorously the emer-
gence of a spectral bandgap as a frequency interval of exponentially small transmission
of energy through a slab of the crystal when the thickness of the slab tends to infinity.
We extend the result to slabs that contain a planar defect for frequencies that do not
coincide with guided mode frequencies for the defect. For one-dimensional crystals, we
prove that the transmission approaches a nonzero value at guided mode frequencies
and give an explicit formula for the transmission. The main analytical tool in the
multidimensional case is the Calderón boundary integral projectors for the Helmholtz
equation.
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1 Introduction

The subject of this work is a rigorous study of the attenuation of linear scalar waves as
they travel through a thick slab of a lossless periodic medium at frequencies for which
propagation is prohibited. It is known that certain periodic media prohibit the propagation
of waves in certain frequency intervals, known as spectral gaps or “bandgaps”. Thus, if a
steady harmonic plane wave is incident upon the left side of the slab, it is expected that
one will observe spatial attenuation of the field across the slab, resulting in low transmission
of energy to the right side. The presence of defects in the structure, however, may lead
to resonance at certain frequencies, leading to the transmission of a significant amount of
energy.
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Our investigations pertain to acoustic waves in three-dimensional periodic structures,
and also to polarized electromagnetic waves in the two-dimensional reduction, in which the
material properties are constant in one direction. We analyze the problem using a partial
Floquet-Bloch transform, which decomposes harmonic fields into fields that are pseudo-
periodic in the directions parallel to the slab. Thus our problem has as parameters the
frequency and the two-dimensional Bloch wave vector parallel to the slab. The governing
equation is

(∆ + ω2ε(x))u(x) = 0,

in which ω is the normalized frequency.
These are the main ideas:

(i) Perfect periodic media filling all of space can exhibit gaps in their acoustic and electro-
magnetic spectra, that is, frequency intervals for which wave propagation is prohibited.
It has been proved rigorously that there exist periodic structures (other than one-
dimensional structures) that admit spectral gaps [7].

(ii) If a periodic structure is truncated to a slab of finite width in one dimension, remaining
periodic in the other directions, a spectral gap is manifest as a frequency interval in
which the amount of energy of a plane wave, incident on one side of the slab, that is
transmitted to the other side is very small. As the the thickness of the slab increases,
the spectral gap of the infinite structure emerges as an interval of zero transmission.
This has been demonstrated rigorously for one-dimensional structures in Ref. [8] and
numerically for higher dimensions in many works, such as Ref. [15].

(iii) Suppose a planar defect is introduced into the untruncated periodic medium. This
means that the medium is modified within a finite interval in one direction but pe-
riodicity is retained in the other directions (as two half-spaces of a crystal separated
by a wall of air). This can cause the emergence of guided modes at frequencies in a
spectral gap for the perfect structure. These are fields that are essentially localized to
the defect, decaying exponentially with the distance from the defect. Existence of these
modes was proved in Ref. [10] in a more general (not necessarily periodic) setting than
ours; their mathematical and numerical treatment in the periodic setting, including
dispersion relations, is given in Ref. [2].

(iv) When a periodic structure with a planar defect is truncated parallel to the defect,
transmission resonances emerge at the frequencies of the guided modes for the untrun-
cated defective structure. These are spikes in the graph of the transmitted energy as
a function of frequency, centered about the frequencies of the guided modes. They
become sharper as the thickness of the slab increases, and the transmission tends to
zero at neighboring frequencies. Detailed numerical investigations of these resonances
are performed in Ref. [15].

The purpose of this work is to establish rigorously points (ii) and (iv) for lossless media.
We prove exponential decay to zero of the transmission through a slab for frequencies in a
spectral gap as the (integral) number of periods across the slab increases to infinity. We
also prove this exponential decay for slabs with planar defects, away from guided-mode
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frequencies for the untruncated defective structure, as discussed in point (iv). As suggested
also in point (iv), the transmission at a guided mode frequency should converge to a nonzero
number. We are able to establish this rigorously only for one-dimensional structures, in which
explicit calculations using transfer matrices can be carried out. We find that the transmission
at waveguide frequencies exponentially approaches a percentage strictly greater than 0 as
the thickness of the slab grows, and that this is not necessarily 100%. The difficulty in
constructing a proof for multidimensional crystals is the lack of precise knowledge of the
rate of decay of the Green functions for the periodic medium in a spectral gap.

Intimately related to anomalous transmission of plane wave source fields near a guided
mode frequency for a slab with a planar defect is the resonant scattering of the field inside
the defect. These scattering states approximate the bound state when the slab becomes very
thick. This bears resemblance to the related phenomenon in which a bound state localized
inside a bounded defect in a periodic medium is approximated by extended (Bloch) states
in a structure whose period consists of N2 periods of the original structure, with a defect
in the middle. As a technique to compute eigenvalues of the defect, this is known as the
“supercell” method; exponential spectral convergence as N tends to infinity was proved in
Ref. [14].

Our aim is different from that of Ref. [14]: we are interested in the scattering states
in their own right, in particular the transmission coefficient, a quantity that does not have
an analog in the supercell problem. Although it is clear that transmission resonance is
intimately related to the perturbation of a bound state by truncation of a periodic structure
to a finite slab, we cannot yet give a satisfactory description of the mechanism. The direct
calculations possible in one-dimensional structures do not seem to provide enlightenment.
This is a very subtle point that may be best approached by trying to relate the resonances
to the poles of a resolvent function as in Ref. [12] or [13].

We make a number of assumptions:

(a) Positivity of the material constants;

(b) The periodic structure can be truncated by a periodic surface such that, in a small
vicinity of the surface, the slab is homogeneous;

(c) Nonresonance assumption: that there exist no modes residing on the surface of the
semi-infinite periodic structure.

Assumption (b) enables us to use the classical tools of potential theory, and more es-
pecially the jump relations for the single and double layer potentials (Section 2.3). This
includes crystals consisting of a matrix with periodic inclusions of a contrasting material.
The nonresonance assumption (c), discussed later on (cf. Remark 2.10), is reasonable in the
context of the problem of scattering by the slab.

The paper is organized as follows:

i. Section 2 lays down the foundations of the Calderón boundary-integral projectors that
form the main tool in proving the theorems.

ii. In Section 3, we derive properties of the Green function for the slab structure and use
them to prove the exponential decay of transmission for gap frequencies as the number
of periods of the slab tends to infinity.
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iii. This result is extended in to slabs with a planar defect in Section 4 for gap frequencies
that do not coincide with frequencies of guided modes of the defect.

iv. The connection between guided defect modes and transmission anomalies is established
in Section 5 for one-dimensional structures. An exact formula for the transmission is
obtained.

2 Boundary data and the Calderón projectors

Given an orthonormal system of coordinates (Ox1, Ox2, Ox3), consider a three-dimensional
periodic structure characterized by a material parameter εper(x) = εper(x1, x2, x3) in L∞(R3),
that is uniformly bounded from above and below,

ε+ > εper(x) > ε− > 0,

and has period 1 in all three variables,

εper (x1 + 1, x2, x3) = εper (x1, x2 + 1, x3) = εper (x1, x2, x3 + 1) = εper(x) ∀x ∈ R3.

Denote by S the strip
S = R× (0, 1)× (0, 1),

and let x be decomposed into variables x1 ∈ R and x′ = (x2, x3) ∈ (0, 1)2:

x = (x1, x2, x3) = (x1, x
′).

Throughout the paper, we assume that the frequency ω is in an interval J = [ω1, ω2] contained
in a spectral gap for the infinite periodic structure. This is to ensure that ω is bounded away
from the spectrum.

We also assume that εper(x) is constant in a neighborhood of the graph of a certain smooth
function x1 = f(x2, x3), periodic in x2 and x3, whose intersection with S we denote by Γ0.
For simplicity of notation, we take f(x2, x3) = 0, although all of the analysis, particularly
involving the Calderón boundary integral projectors, is valid for an arbitrary smooth periodic
function (Fig. 2.1).

2.1 Green kernels

Let Gper(ω;x, y) denote the Green function of the operator ∆ + ω2εper in R3. Since ω is
supposed to be in a gap, Gper(ω;x, y) decays exponentially with |x − y| (see Ref. [6]). For
θ ∈ (0, 2π)2, we define the pseudo-periodic Green function Gper(ω, θ;x, y) as the partial
Floquet transform[12, 16, 3] of Gper(ω;x, y) in the y2 and y3 directions:

Gper(ω, θ;x, y) =
∑
n∈Z2

Gper(ω;x, y + (0, n))e−in·θ. (2.1)
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Here, (0, n) refers to the vector (0, n1, n2), where n = (n1, n2). Using the properties of Gper,
one can verify that (

∆y + ω2εper(y)
)
Gper(ω, θ;x, y) =

∑
n∈Z2

δ(x1,x′+n)(y)ein·θ, (2.2)

Gper(ω, θ;x, y + (0, n)) = ein·θGper(ω, θ;x, y), (2.3)

|Gper(ω, θ;x, y)| → 0 as |x1 − y1| → 0 . (2.4)

The pseudo-periodicity condition (2.3) shows the main advantage of using the Green function
Gper(ω, θ;x, y): it allows us to study the scattering problem by the photonic slab in the strip
S = R × (0, 1)2 instead of the whole space. For each integer M > 0, let us then define the
following subsets of S:

ΩM = {x = (x1, x2, x3) ∈ S; |x1| < M},
Ωc
M = {x = (x1, x2, x3) ∈ S; |x1| > M},

and the vertical boundary (for all M ∈ R):

ΓM = {x = (x1, x2, x3) ∈ S; x1 = M}.

ΩM

Γ-M : x = -M1
Γ

M : x = M1

x = 0
2

x = 1
2

ΩM

cΩM

c

Figure 1: Reference strip S = R× (0, 1)2, projected to the x1x2-plane

To study the periodic slab, we also need to define the pseudo-periodic outgoing Green
function G0(ω, θ;x, y) of the homogeneous medium with constant material parameter ε(x) =
ε0. More precisely, let P = P(ω, θ) denote the finite set of “propagating Fourier harmonics”:

P =
{
m ∈ Z2 | β2

m := ω2ε0 − |2πm+ θ|2 > 0
}
, (2.5)

and assume that βm 6= 0 for all m ∈ Z2. In the context of the slab, the outgoing radiation
condition is given by the well-known Rayleigh principle, stating that an outgoing field can
be decomposed into modes propagating towards infinity and evanesecent (exponentially de-
creasing) modes. More precisely, with the convention that βm > 0 for m ∈ P , we have the
following definition.

Definition 2.1. Given M > 0, let v be a solution of

(∆ + ω2ε0)v(y) = 0
v(y1, y

′ + n) = ein·θv(y1, y
′)

}
, |y1| > M.
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Then, v is outgoing as y1 → ±∞ if and only if there exist complex coefficients A±m, m ∈ P,
such that

lim
y1→±∞

∣∣∣∣∣v(y)−
∑
m∈P

A±me
±iβmy1ei(2πm+θ)·y′

∣∣∣∣∣ = 0. (2.6)

Let

G0(ω;x, y) = − 1

4π

1

|y − x|
eik|y−x|, (2.7)

where k =
√
ε0 ω, be the outgoing Green function of the operator ∆ + ω2ε0 in R3. For

θ ∈ (0, 2π)2, we define the pseudo-periodic Green functionG0(ω, θ;x, y) as the partial Floquet
transform G0(ω;x, y) in y′,

G0(ω, θ;x, y) =
∑
n∈Z2

G0(ω;x, y + (0, n))e−in·θ, (2.8)

and we can once again check that G0(ω, θ;x, y) satisfies for all x ∈ S:

(∆y + ω2ε0)G0(ω, θ;x, y) =
∑
n∈Z2

δ(x1,x′+n)(y)ein·θ (2.9)

G0(ω, θ;x, y + (0, n)) = ein·θG0(ω, θ;x, y), (2.10)

G0(ω, θ;x, ·) is outgoing as y1 → ±∞ (in the sense of Definition 2.1). (2.11)

When no confusion is possible, we will writeG0(x, y) (resp. Gper(x, y)) instead ofG0(ω, θ;x, y)
(resp. Gper(ω, θ;x, y)). We collect some of the useful properties of the Green functions in
the following Proposition.

Proposition 2.2 (Properties of the Green functions). Let G denote either of the Green
functions G0 or Gper. Then G satisfies the following properties (n ∈ Z2):

G(ω, θ;x+ (0, n), y + (0, n)) = G(ω, θ;x, y), (translation) (2.12)

G(ω, θ;x+ (0, n), y) = e−in·θG(ω, θ;x, y), (pseudo-periodicity in x) (2.13)

G(ω, θ;x, y + (0, n)) = ein·θG(ω, θ;x, y), (pseudo-periodicity in y) (2.14)

G(ω, θ;x, y) = G(ω,−θ; y, x), (symmetry) (2.15)

G(ω, θ;x, y) +
1

4π

1

|x− y|
is continuous in y at y = x. (singularity) (2.16)

If [ω1, ω2] is contained in a gap for εper, then there exist constants C1, C2 > 0 such that, for
all ω ∈ [ω1, ω2],

|Gper(ω, θ;x, y)| ≤ C1 e
−C2|x1−y1|

|∇Gper(ω, θ;x, y)| ≤ C1 e
−C2|x1−y1| for |x1 − y1| sufficiently large. (2.17)

From (2.15) and the defining properties (2.9) and (2.2), it follows that for y ∈ R3,

(∆x + ω2ε0)G0(ω, θ;x, y) =
∑
n∈Z

δ(y1,y2+n)(x)e−in·θ, (2.18)

(∆x + ω2εper(x))Gper(ω, θ;x, y) =
∑
n∈Z

δ(y1,y2+n)(x)e−in·θ. (2.19)
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Proof. The translation property follows from the definition of the pseudo-periodic Green
functions through the Floquet transform (see (2.1) and (2.8)).

The pseudo-periodicity in the second spatial variable follows from (2.3). Its counterpart
in the first spatial variable is a consequence of the pseudo-periodicity in the second one and
the translation property. The symmetry property (2.15) is proved by integration by parts:
Let G denote either G0 or Gper and ε either ε0 or εper, and let x and y lie within the strip
S = R× (0, 1)2. Then we can write that for all M > 0 such that x, y ∈ ΩM :

G(ω,−θ; y, x)−G(ω, θ;x, y) =

∫
ΩM

[δx(z)G(ω,−θ; y, z)− δy(z)G(ω, θ;x, z)] dV (z)

=

∫
ΩM

{[
(∆z + ω2ε(z))G(ω, θ;x, z)

]
G(ω,−θ; y, z)

−
[
(∆z + ω2ε(z))G(ω,−θ; y, z)

]
G(ω, θ;x, z)

}
dV (z)

=

∫
∂ΩM

{[
∂n(z)G(ω, θ;x, z)

]
G(ω,−θ; y, z)

−
[
∂n(z)G(ω,−θ; y, z)

]
G(ω, θ;x, z)

}
dA(z)

= 0.

The integral over the top and bottom parts of ∂ΩM vanishes due to the pseudo-periodicity
of the Green function. Since the integral is independent of M , one lets M tend to infinity,
and a simple calculation using the outgoing condition (2.11) for G0 or the decay condition
for Gper shows that the integral over each of the sides vanishes separately. One now uses the
pseudo-periodicity in both spatial variables to extend the result to x and y not necessarily
in S.

The singular behavior (2.16) of Gper is derived in Lemma 2 of Ref. [2]. The exponential
decay property (2.17) follows from the exponential decay of the single-source Green function
of a periodic operator in a spectral gap and the definition of Gper through the Floquet
transform (see Lemma 4 of Ref. [2]).

2.2 Functional spaces

We introduce the following function spaces.

Definition 2.3. Let θ ∈ (0, 2π)2 and Ω be open subset of S.

• C∞,θ(R3) denotes the set of all functions v ∈ C∞(R3) satisfying the following conditions:
− Supp(u) ⊆ {x ∈ R3 | |x1| < ρ} for some ρ > 0,
− u is pseudo-periodic : u(x+ (0, n)) = ein·θu(x).

• C∞,θ(Ω) consists of the restrictions to Ω of the functions of C∞,θ(R3).

• H1,θ(Ω) denotes the closure of C∞,θ(Ω) in H1(Ω).

• H1,θ
loc (Ω) denotes the set of functions u such that χu ∈ H1,θ(Ω), for all χ ∈ C∞(Ω).

Define then the following spaces of functions (called L-spaces in the sequel):

L0
M+ = {u ∈ H1,θ

loc ({x1 > M}) : (∆ + ω2ε0)u = 0, u is outgoing as x1 →∞}, (2.20)

L0
M− = {u ∈ H1,θ

loc ({x1 < M}) : (∆ + ω2ε0)u = 0, u is outgoing as x1 → −∞},(2.21)

L0
Ωc

M
= {u ∈ H1,θ

loc (Ωc
M) : (∆ + ω2ε0)u = 0, u is outgoing as |x1| → ∞}, (2.22)
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Lper
M+ = {u ∈ H1,θ

loc ({x1 > M}) : (∆x + ω2εper(x))u = 0, u→ 0 as x1 →∞}, (2.23)

Lper
M− = {u ∈ H1,θ

loc ({x1 < M}) : (∆x + ω2εper(x))u = 0, u→ 0 as x1 → −∞}, (2.24)

Lper
ΩM

= {u ∈ H1,θ(ΩM) : (∆x + ω2εper(x))u = 0}, (2.25)

Lper
Ωc

M
= {u ∈ H1,θ

loc (Ωc
M) : (∆x + ω2εper(x))u = 0, u→ 0 as |x1| → ∞}. (2.26)

The L-spaces have well-defined traces on ΓM that are of class H
1
2 and normal derivatives

that are of class H−
1
2 (see for example Lemma 3.1 of Ref. [5]). Thus we define the space

HM = H
1
2 (ΓM)⊕H−

1
2 (ΓM),

and the spaces of the corresponding Cauchy data of the above L spaces are

B0
M+ =

{
ξ =

[
u|ΓM
∂nu|ΓM

]
∈ HM ; u ∈ L0

M+

}
,

B0
M− =

{
ξ =

[
u|ΓM
∂nu|ΓM

]
∈ HM ; u ∈ L0

M−

}
,

B0
Ωc

M
=

{
ξ =

[
u|Γ−M∪ΓM

∂nu|Γ−M∪ΓM

]
∈ H−M ⊕HM ; u ∈ L0

Ωc
M

}
= B0

−M− ⊕ B0
M+ ,

Bper
M+ =

{
ξ =

[
u|ΓM
∂nu|ΓM

]
∈ HM ; u ∈ Lper

M+

}
,

Bper
M− =

{
ξ =

[
u|ΓM
∂nu|ΓM

]
∈ HM ; u ∈ Lper

M−

}
,

Bper
ΩM

=

{
ξ =

[
u|Γ−M∪ΓM

∂nu|Γ−M∪ΓM

]
∈ H−M ⊕HM ; u ∈ Lper

ΩM

}
,

Bper
Ωc

M
=

{
ξ =

[
u|Γ−M∪ΓM

∂nu|Γ−M∪ΓM

]
∈ H−M ⊕HM ; u ∈ Lper

Ωc
M

}
= Bper

−M− ⊕ B
per
M+ .

2.3 Integral operators

Given a distribution φ on ΓM , we define the single-layer potentials(
S̃0
Mφ
)

(x) =

∫
ΓM

G0(ω, θ; y, x)φ(y) dA(y), (2.27)(
S̃per
M φ

)
(x) =

∫
ΓM

Gper(ω, θ; y, x)φ(y) dA(y), (2.28)

and the double-layer potentials(
K̃0
Mφ
)

(x) =

∫
ΓM

∂n(y)G
0(ω, θ; y, x)φ(y) dA(y), (2.29)(

K̃per
M φ

)
(x) =

∫
ΓM

∂n(y)G
per(ω, θ; y, x)φ(y) dA(y), (2.30)

where n denotes here the unit normal to ΓM directed towards the right: ∂n =
∂

∂x1

.
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A form of the usual Green theorem allows us to represent a function u in any of the
spaces L as a combination of the single- and double-layer potentials applied to the boundary
data of u:

Lemma 2.4 (Integral representation formula). Let u ∈ L0
M+ or u ∈ L0

M−. Then

u(x) = sgn (M − x1)
[
(K̃0

Mu|ΓM )(x)− S̃0
M ∂nu|ΓM )(x)

]
.

Similarly, let u ∈ Lper
M+ or u ∈ Lper

M−. Then

u(x) = sgn (M − x1)
[
(K̃per

M u|ΓM )(x)− (S̃per
M ∂nu|ΓM )(x)

]
.

Proof. The proof is accomplished in the standard way using integration by parts. For u ∈
L0
M+ , for example, one integrates over the part of the strip with M < x1 < M ′. As in

the proof of Lemma 2.2, the integral over the top and bottom parts of the boundary of S
vanish, as does the integral over ΓM ′ as M ′ tends to infinity, thanks to the outgoing radiation
condition.

Remark 2.5. Observe that the representation formula involves integrals over ΓM alone, even
for values of x exterior to ΩM . This is accomplished by choosing Green functions that are
pseudoperiodic and outgoing (for the homogeneous material) or decaying (for the periodic
material). In short, the Green function should possess the boundary behavior (including
behavior at infinity) of the functions that are represented by the formula. See, for example,
similar representation formulas for outgoing fields exterior to a bounded obstacle in Refs. [4]
and [11], and for fields that are pseudoperiodic in all directions, as equation (2.13) in Ref. [1].

Next, we introduce the boundary-integral operators that give the boundary data on ΓM
for the single- and double-layer potentials. Given a regular function φ defined on ΓM , we set
for x ∈ ΓM (

S0
Mφ
)

(x) =

∫
ΓM

G0(ω, θ; y, x)φ(y) dA(y), (2.31)

(
K0
Mφ
)

(x) =

∫
ΓM

∂n(y)G
0(ω, θ; y, x)φ(y) dA(y), (2.32)

(
K ′0Mφ

)
(x) =

∫
ΓM

∂n(x)G
0(ω, θ; y, x)φ(y) dA(y), (2.33)(

D0
Mφ
)

(x) = ∂n(K̃0
Mφ)(x). (2.34)

The corresponding operators for the periodic medium, Sper
M , Kper

M , K ′per
M , and Dper

M , are defined
by replacing G0 with Gper.

Lemma 2.6 (Boundary data of potentials). Let ξ = (ξ, η)t ∈ HM . Then the potentials S̃0
Mη

and K̃0
Mξ (resp. S̃per

M η and K̃per
M ξ) belong to L0

M+ (resp. Lper
M+) for x1 > M and to L0

M−

(resp. Lper
M−) for x1 < M and(

K̃0
Mξ
)
|ΓM =

(
K0
M ± 1

2
I
)
ξ,

(
S̃0
Mη
)
|ΓM = S0

Mη,

∂n

(
K̃0
Mξ
)
|ΓM = D0

Mξ, ∂n

(
S̃0
Mη
)
|ΓM =

(
K ′0M ∓ 1

2
I
)
η,
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in which the upper sign holds if x1 →M from the left and the lower sign if x1 →M from the
right. The analogous formulas hold for the boundary values of the periodic potentials S̃per

M η

and K̃per
M ξ.

Proof. The above trace formulas essentially follow from the fact that the singularity of the
Green kernels G0 and Gper behave as 1/|x−y| as in the free space case (see (2.16)). Therefore,
the proof is a direct adaptation of the classical jump conditions from potential theory (for
more details see for instance Ref. [4] for the case of homogeneous media and Lemma 3.8 of
Ref. [5] for the case of transmission problems).

The following theory regarding boundary data and the Calderón boundary integral pro-
jectors (see Ref. [11]) is justified by suitable modifications of the exposition of Ref. [5],
Section 3.

We define the following singular integral operators in HM in matrix form with respect to
this decomposition:

C0
M =

[
K0
M −S0

M

D0
M −K ′0M

]
, Cper

M =

[
Kper
M −Sper

M

Dper
M −K ′per

M

]
: HM → HM . (2.35)

In addition, we will make use of two regular integral operators that couple the boundary
data HM and H−M :

C−+ : HM → H−M , C+− : H−M → HM ,

C−+
M

[
ξ

η

]
(x) =

[
K̃per
M −S̃per

M

∂n(x)K̃
per
M −∂n(x)S̃

per
M

][
ξ

η

]
(x) for x ∈ Γ−M ,

C+−
M

[
ξ

η

]
(x) =

[
K̃per
M −S̃per

M

∂n(x)K̃
per
M −∂n(x)S̃

per
M

][
ξ

η

]
(x) for x ∈ ΓM .

In these operators, the integration is performed at a distance from the point of influence x,
and we can write them in integral form:

C−+
M

[
ξ

η

]
(x) =


∫

ΓM

(
∂n(y)G

per(x, y)ξ(y)−Gper(x, y)η(y)
)

dA(y)∫
ΓM

(
∂n(x)∂n(y)G

per(x, y)ξ(y)− ∂n(x)G
per(x, y)η(y)

)
dA(y)

 , x ∈ Γ−M ,

(2.36)

C+−
M

[
ξ

η

]
(x) =


∫

Γ−M

(
∂n(y)G

per(x, y)ξ(y)−Gper(x, y)η(y)
)
ds(y)∫

Γ−M

(
∂n(x)∂n(y)G

per(x, y)ξ(y)− ∂n(x)G
per(x, y)η(y)

)
ds(y)

 , x ∈ ΓM .

(2.37)
In terms of these operators, we define two operators on H−M ⊕HM :

LM :=

[
−Cper
−M C−+

M

−C+−
M Cper

M

]
: H−M ⊕HM → H−M ⊕HM , (2.38)

RM :=

[
−C0
−M 0

0 C0
M

]
: H−M ⊕HM → H−M ⊕HM . (2.39)
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Remark 2.7. Let us emphasize that the operator LM is nothing but the counterpart of the
operator Cper

M when the domain under consideration is no longer one-sided (i.e. of the form
{x1 < M} or {x1 > M}) but two-sided (i.e. of the form {−M < x1 < M}).

We collect in the next Theorem some useful properties satisfied by the above operators.

Theorem 2.8 (Calderón projectors).

i. The operators
C0
M : HM → HM Cper

M : HM → HM

are uniformly bounded with respect to the integer M .

ii. There exists d1 > 0 and d2 > 0 such that the operators

C−+
M : HM → H−M C+−

M : H−M → HM ,

satisfy, for M sufficiently large,∥∥C−+
M

∥∥
L(HM ,H−M )

+
∥∥C−+

M

∥∥
L(HM ,H−M )

< d1e
−d2M .

iii. The operators 1
2
I ± C0

M (resp. 1
2
I ± Cper

M ) are complementary projections with images
B0
M∓ (resp. Bper

M∓):

B0
M± = Ran

(
1

2
I ∓ C0

M

)
= Null

(
1

2
I ± C0

M

)
,

Bper
M± = Ran

(
1

2
I ∓ Cper

M

)
= Null

(
1

2
I ± Cper

M

)
.

iv. The operator 1
2
I+RM is a projection with image B0

−M+⊕B0
M−, and its complementary

projection 1
2
I −RM has image B0

Ωc
M

= B0
−M− ⊕ B0

M+:

B0
−M+ ⊕ B0

M− = Ran

(
1

2
I +RM

)
= Null

(
1

2
I −RM

)
,

B0
Ωc

M
= Ran

(
1

2
I −RM

)
= Null

(
1

2
I +RM

)
.

v. The operator 1
2
I+LM is a projection with image Bper

ΩM
, and its complementary projection

1
2
I − LM has image Bper

Ωc
M

= Bper
−M− ⊕ B

per
M+:

Bper
ΩM

= Ran

(
1

2
I + LM

)
= Null

(
1

2
I − LM

)
Bper

Ωc
M

= Ran

(
1

2
I − LM

)
= Null

(
1

2
I + LM

)
.

11



Proof. i. The boundedness of the integral operators C0
M and Cper

M is straightforward, since
the singularities of their kernels is as 1/|x− y| (for more details, see for instance Lemma 3.9
of Ref. [5]). The fact that the bounds are uniform with respect to M is a direct consequence
of the translation property (2.12) satisfied by G0 and Gper.

ii. The exponential decay of the norms of C−+
M and C+−

M follows from the decay property
of the Green function Gper (see (2.17)).

iii. To prove, for example, that 1
2
I + C0

M is a projection onto B0
M− , we observe first that

1
2
I + C0

M has image in B0
M− . Indeed, for all [ξ, η]t ∈ HM , the potential u = K̃0

Mξ − S̃0
Mη in

L0
M− has, by Lemma 2.6, boundary data equal to

(1
2
I + C0

M)

[
ξ

η

]
=

[
u|ΓM
∂nu|ΓM

]
∈ B0

M− .

Second, if [ξ, η]t ∈ B0
M− , then [ξ, η] = [u|ΓM , ∂nu|ΓM ] for some u ∈ L0

M− , and the integral
representation formula of Lemma 2.4 together with Lemma 2.6 give us that

(1
2
I + C0

M)

[
ξ

η

]
=

[
ξ

η

]
.

These two observations prove that 1
2
I + C0

M is a projection onto B0
M− . The proofs for the

other three operators are analogous.
iv. The projection properties concerning 1

2
I ± RM follow immediately from those of

1
2
I ± C0

M .
v. That 1

2
I + LM is a projection onto Bper

ΩM
is proved using a combination of potentials

produced by data on Γ−M and ΓM arising from the modified representation formula for u ∈
Lper

ΩM
:

u(x) =
[
(K̃per

M u|ΓM )(x)− (S̃per
M ∂nu|ΓM )(x)

]
−
[
(K̃per
−Mu|Γ−M )(x)− (S̃per

−M ∂nu|Γ−M )(x)
]
. (2.40)

The images of their complements are obtained similarly.

We shall assume the following nonresonance condition for the periodic structure in the
half plane:

Condition 2.9 (Nonresonance condition). For each integer M and ω ∈ [ω1, ω2], the following
pairs have only the trivial solution:{

(1
2
I − C0

M)ξ = 0
(1

2
I + Cper

M )ξ = 0
,

{
(1

2
I + C0

M)ξ = 0
(1

2
I − Cper

M )ξ = 0
. (2.41)

By the translation property of the Green functions, this condition is equivalent to the simpler
condition that {

(1
2
I − C0

0)ξ = 0
(1

2
I + Cper

0 )ξ = 0
,

{
(1

2
I + C0

0)ξ = 0
(1

2
I − Cper

0 )ξ = 0
.
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Remark 2.10. The Nonresonance Condition, which is needed to prove the existence of a
unique outgoing Green function for the slab structure, has a physical meaning. We give
a short discussion, excluding the details. According to Theorem 2.8, the first pair in the
Condition characterizes boundary data ξ on ΓM of a Helmholtz field decaying into the periodic
medium to the right of ΓM and decaying into the homogeneous medium to the left. The second
pair characterizes boundary data ξ on ΓM of a Helmholtz field decaying into the periodic
medium to the left of ΓM and decaying into the homogeneous medium to the right. Such
fields are “surface waves” at the interface of the periodic and homogeneous media. Now,
the existence of a unique Green function for the slab structure extending from −M to M is
tantamount to the nonexistence of guided modes in that structure. As M →∞, with ω in a
spectral gap, a guided mode of the slab becomes concentrated at the left and right surfaces of
the slab, thus being approximated by a pair of surface waves. Therefore, the Nonresonance
Condition effectively excludes guided modes of the slab in the limit of infinite thickness.
Surface waves satisfy dispersion relations relating their wavenumber κ and frequency ω, which
give ω as complex functions of κ when G0 admits propagating Fourier harmonics, as is always
the case in the scattering problem. A real pair (κ, ω) will admit a surface wave only at special
values when the dispersion relation meets the real subspace of C2. Furthermore, results by
Iantchenko[9] show that, at least for one-dimensional crystals, guided modes of a thick slab
occur only for frequencies in a propagation band, rendering the Condition superfluous. One
should keep in mind that we are referring here to guided modes of the perfect (without defect)
crystal slab. The guided modes of a planar defect introduced later occur in a spectral gap.

Lemma 2.11. The operator
C0
M − C

per
M : HM → HM

is compact. Given f ∈ B0
M− and g ∈ Bper

M+, respectively f ∈ B0
M+ and g ∈ Bper

M−, the
nonresonance condition implies that the pairs{

(1
2
I + C0

M)ξ = f
(1

2
I − Cper

M )ξ = g
,

{
(1

2
I − C0

M)ξ = f
(1

2
I + Cper

M )ξ = g
, (2.42)

are equivalent, respectively, to

(I + C0
M − C

per
M )ξ = f + g, (I − C0

M + Cper
M )ξ = f + g (2.43)

and that the latter have unique solutions for all integers M and ω ∈ [ω1, ω2]. Finally, the
operators I + C0

M − C
per
M and I − C0

M + Cper
M are bounded from below uniformly for integers

M and ω ∈ [ω1, ω2].

Proof. The compactness of C0
M − C

per
M is due to the cancellation of the leading singularities

in the Green function. We refer to the discussion on page 331 of Ref. [13]. The equivalence
statement is essentially Theorems 4.3 and 4.4 in Ref. [13]. The first equation in (2.43) (the
second is proved similarly) implies

(1
2
I + C0

M)ξ = f + h,
(1

2
I − Cper

M )ξ = g − h,

13



for some h. Since f ∈ B0
M− = Ran(1

2
I + C0

M) and g ∈ Bper
M+ = Ran(1

2
I − Cper

M ), the above
relations imply that

h ∈ Ran(1
2
I + C0

M) ∩ Ran(1
2
I − Cper

M ) = Null(1
2
I − C0

M) ∩ Null(1
2
I + Cper

M ), (2.44)

which, by the first pair of the nonresonance condition, implies that h = 0. This proves the
equivalence.

We see that the nullspace of I +C0
M −C

per
M is trivial by setting f and g equal to zero and

using the equivalence just proved and the first pair of the nonresonance condition.
Since C0

M − Cper
M is compact, I + C0

M − Cper
M is surjective whenever if and only if it is

injective, and we conclude that (I +C0
M −C

per
M )ξ = f + g has a unique solution ξ. Since this

is true for all M and ω ∈ [ω1, ω2], the compactness and translation properties of C0
M −C

per
M ,

as well as continuity in ω, imply that I +C0
M −C

per
M has a lower bound that is uniform over

integers M and ω ∈ [ω1, ω2].

3 Fields in a thick PC slab

x = 0
2

x = 1
2

ΩM
x = -M1 x = M1

Figure 2: Thick PC slab.

We consider the problem of transmission of plane waves scattered by a thick photonic
crystal slab characterized by the dielectric permittivity

εper
M (x) =

{
εper(x), |x1| ≤M,
ε0, |x1| > M.

We take the source field to be a plane wave incident on the slab from the left. The incident
field has a wave number in the x1-direction given by some βn for n ∈ P (see equation (2.5)).
The associated scattering problem can be formulated as follows:

Problem 3.1 (Scattering by a perfect slab). Given an incident field

uinc(x) = eiηn̄x1ei(2πm̄+θ)·x′ , m̄ ∈ P ,

find a function u that satisfies the following conditions:

(∆ + ω2εper
M (x))u(x) = 0, (3.1.a)

u(x+ (0, n)) = ein·θu(x), (3.1.b)

u− uinc is outgoing as x1 → ±∞. (3.1.c)
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The outgoing radiation condition (3.1.c) is to be understood in the sense of Definition 2.1.
We begin our analysis of the transmission problem in a thick photonic crystal slab with

a study of the outgoing pseudo-periodic Green function Gper
M (ω, θ;x, y) for the slab structure.

By definition, Gper
M satisfies

(∆y + ω2εper
M (y))Gper

M (ω, θ;x, y) =
∑
n∈Z

δ(x1,x′+n)(y)ein·θ, (3.2.a)

Gper
M (ω, θ;x, y + (0, n)) = ein·θGper(ω, θ;x, y), (3.2.b)

Gper
M (ω, θ;x, ·) is outgoing as y1 → ±∞. (3.2.c)

Lemma 3.2. For all x /∈ Γ−M ∪ ΓM , set

ξx =

[
ξ−x
ξ+
x

]
= Cauchy data on Γ−M ∪ ΓM of Gper

M (x, ·).

Then, we have:

i. For |x1| < M : 
(

1

2
I +RM

)
ξx = 0,(

1

2
I − LM

)
ξx = γx,

(3.3)

where

γx =

[
γ−x
γ+
x

]
= Cauchy data on Γ−M ∪ ΓM of Gper(x, ·).

ii. for |x1| > M : 
(

1

2
I − LM

)
ξx = 0,(

1

2
I +RM

)
ξx = γ0

x,
(3.4)

where we have set

γ0
x =


[
γ0,−
x

0

]
for x1 < −M,[

0

γ0,+
x

]
for x1 > M.

and where

[
γ0,−
x

γ0,+
x

]
= Cauchy data on Γ−M ∪ ΓM of G0(x, ·).

Proof.
i. Since for |x1| < M we have Gper

M (x, ·) ∈ L0
Ωc

M
, it follows that

ξx ∈ B0
Ωc

M
= Null

(
1

2
I +RM

)
.
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To show the second relation, let us introduce the function

g(x, ·) = Gper
M (x, ·)−Gper(x, ·)

Then, we clearly have g(x, ·) ∈ Lper
ΩM

. Thus, if we denote by ηx = ξx − γx the Cauchy data
of g(x, ·), we have

ηx ∈ B
per
ΩM

= Null

(
1

2
I − LM

)
.

On the other hand, Gper(x, ·) ∈ Lper
Ωc

M
yields

γx ∈ B
per
Ωc

M
= Ran

(
1

2
I − LM

)
.

Consequently (
1

2
I − LM

)
ξx =

(
1

2
I − LM

)
(ηx + γx) = γx.

ii. Since |x1| > M , we have Gper
M (x, ·) ∈ Lper

ΩM
and thus

ξx ∈ B
per
ΩM

= Null

(
1

2
I − LM

)
.

To prove the last relation, we first note that

(
1

2
I +RM

)
ξx =


(

1

2
− C0

−M

)
ξ−x(

1

2
+ C0

M

)
ξ+
x

 . (3.5)

Let us assume that x1 > M , the proof being exactly similar for x1 < −M . Then, we have
Gper
M (x, ·) ∈ L0

−M− and consequently ξ−x ∈ B0
−M− , or equivalently by Theorem 2.8,(

1

2
I − C0

−M

)
ξ−x = 0. (3.6)

On the other hand, if we set

g0(x, ·) = Gper
M (x, ·)−G0(x, ·)

then it can be easily checked that g0(x, ·) ∈ L0
M+ and thus, if we denote by η0,+

x = ξ+
x −γ0,+

x

the Cauchy data of g0(x, ·) on ΓM , there holds

η0,+
x ∈ B0

M+ = Null

(
1

2
I + C0

M

)
.

But since G0(x, ·) ∈ L0
M− , we have on the other hand that

γ0,+
x ∈ B0

M− = Ran

(
1

2
I + C0

M

)
.

Therefore, we have(
1

2
I + C0

M

)
ξ+
x =

(
1

2
I + C0

M

)(
η0,+
x + γ0,+

x

)
= γ0,+

x . (3.7)

The claimed result follows then from relations (3.5),(3.6) and (3.7).
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Corollary 3.3. Let the Nonresonance Condition be satisfied. With the notation of Lemma
3.2, the pairs of equations (3.3) and (3.4) satisfied by the Cauchy data ξx of Gper

M are respec-
tively equivalent to the two single equations:

(I +RM − LM)ξx = γx for |x1| < M, (3.8)

and
(I +RM − LM)ξx = γ0

x for |x1| > M. (3.9)

If M is sufficiently large, then equation (3.8) has a unique solution that is the boundary data
on Γ−M ∪ ΓM of a solution Gper

M (ω, θ;x, ·) of equations (3.2).

Proof. Let us detail the proof for |x1| < M . To show that the pair in (3.3) is equivalent to
(3.8), assume that ξx satisifies (3.8). Then,

h :=

(
1

2
I +RM

)
ξx ∈ Ran

(
1

2
I +RM

)
∩ Ran

(
1

2
I − LM

)
,

which also reads, by Theorem 2.8,

h =

[
h−

h+

]
∈
(
B0
−M+ ⊕ B0

M−

)
∩ Bper

Ωc
M
.

The above relation is equivalent to

h− ∈ B0
−M+ ∩ Bper

−M− h+ ∈ B0
M− ∩ B

per
M+

and thus, by the Nonresonance Condition, we have h− = h+ = 0, and we have proved
equivalence of (3.3) and (3.8).

To prove that (3.8) has a unique solution, we write the operator in matrix form with
respect to the decomposition H−M ⊕HM :

I +RM − LM =

[
I + Cper

−M − C0
−M −C−+

M

C+−
M I − Cper

M + C0
M

]
.

From Lemma 2.11, we know that the operators on the diagonal are bounded uniformly from
below for integers M and ω ∈ [ω1, ω2]. From the integral expressions (2.36) and (2.37),
we see that, for |M | sufficiently large, the off-diagonal operators are small enough so that
I + RM − LM is also uniformly bounded from below, and thus equation (3.8) has a unique
solution, which is nothing but the Cauchy boundary data on Γ−M ∪ΓM of the Green function
Gper
M (ω, θ;x, ·).

Theorem 3.4 (Green function of a PC slab). Let the Nonresonance Condition be satisfied.

i. Let M0 > 0 be fixed. There exist numbers c1 > 0 and c2 > 0 such that, for M > M0

sufficiently large,

|Gper
M (x, y)−Gper(x, y)| < c1e

−c2M , |x1| < M0, |y1| < M,

|Gper
M (x, y)| < c1e

−c2|y0−x|, |x1| < M0,

where y0 = min(|y1|,M)sgn (y1).
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ii. There exist numbers d1 > 0 and d2 > 0 such that, if M is sufficiently large, |x1| > M ,
|y1| > M , and x1y1 < 0, then

|Gper
M (ω, θ;x, y)| < d1e

−d2M .

Proof. To prove part (i), let M0 be given, with |x1| < M0. Then ‖γ‖ < A1e
A2|M−M0|. For

M sufficiently large, the operator I + RM − LM is bounded from below, say by δ, and we
have δ‖ξ‖ < ‖γ‖. Using the representation (2.40) applied to the boundary data ξ − γ, we
obtain the exponential estimates for gx and thus also for Gper

M .
For part (ii), since x1 < −M (the case x1 > M is handled similarly), we must solve[

I + Cper
−M − C0

−M −C−+
M

C+−
M I − Cper

M + C0
M

][
ξ−

ξ+

]
=

[
γ−

0

]
. (3.10)

Since I+RM −LM is bounded below by δ, we obtain (by first using [ξ−, 0]t and then [0, ξ+]t

in place of ξ = [ξ−, ξ+]t in (3.10))

δ‖ξ−‖ < ‖γ−‖ and δ‖ξ+‖ < ‖(I − C
per
M + C0

M)ξ+‖.

By using the representation formulas (2.36) and (2.37), we see that there are constants a1

and a2 such that
‖C±M‖ < a1e

−a2M .

These estimates together with the second equation in the system (3.10) yield

δ‖ξ+‖ ≤ ‖(I − C
per
M + C0

M)ξ+‖ ≤ ‖C+−
M ‖‖ξ−‖ < a1e

−a2M‖γ−‖/δ,

from which we obtain a bound on the trace ξ+, of Gper
M on Γ+,

‖ξ+‖ < c1e
−c2M‖γ−‖/(δ2),

which then yields the result through the representation formula from Lemma 2.4.

Theorem 3.5 (Transmission). There exist constants c1 > 0 and c2 > 0 such that, for M
sufficiently large, the scattering Problem 3.1 has a unique solution u, and

|u(x)| < c1e
−c2M for x1 > M .

Proof. Let m be a fixed number such that m < −M . We introduce the function space

L∗m+
= {u ∈ H1

loc({x1 > m}) :
(
∆ + ω2εper

M (x)
)
u = 0, u is outgoing}

with boundary data on Γm

B∗m+ =

{[
ξ
η

]
∈ Hm : ∃u ∈ L∗m+

with ξ = u|Γm , η = ∂nu|Γm
}
.

One can define single- and double-layer potentials S̃∗m, etc., using the Green function Gper
M

that are analogous to those defined for G0 and Gper in equations (2.27)–(2.30) and a repre-
sentation formula for u ∈ L∗m+

as in Lemma 2.4, as well as the boundary integral operators
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S∗m analogous to (2.31–2.34). The singular integral operator C∗m is then defined in Hm, anal-
ogously to (2.35). Ultimately, we obtain the complementary Calderón projectors 1

2
I ± C∗m,

whose properties are proved similarly to those of C0
m. In particular, the nullspace of 1

2
I+C∗m

is equal to B∗m+ , and we recall from Theorem 2.8 that 1
2
I−C0

m has nullspace B0
m− and image

B0
m+ .

For a function u that solves Problem 3.1, let

ξ =

[
u|Γm
∂nu|Γm

]
, γ =

[
uinc|Γm
∂nu

inc|Γm

]
.

Since uinc ∈ L0
m+ , we have γ ∈ B0

m+ . We conclude that u solves Problem 3.1 if and only if ξ
solves the pair

(1
2
I + C∗m)ξ = 0,

(1
2
I − C0

m)ξ = γ.
(3.11)

As before, we find that pair is equivalent to the sum of the two equations

(I + C∗m − C0
m)ξ = γ (3.12)

if there exists only the trivial solution to the pair

(1
2
I − C∗m)f = 0,

(1
2
I + C0

m)f = 0.

To see that this is indeed the case, we observe that the nullspace of 1
2
I −C∗m coincides with

that of 1
2
I −C0

m, namely B0
m− , and that the nullspace of 1

2
I +C0

m is B0
m+ . A vector f that is

in both of these spaces is equal to the trace on Γm of a solution of ∆u + ω2ε0u = 0 that is
outgoing (in both directions), which means that u and therefore f must vanish. Thus (3.11)
is equivalent to (3.12).

We have, as before, that C∗m−C0
m is compact, and we observe as follows that there exists

a unique solution ξ: A solution g to the homogeneous equation (I + C∗m − C0
m)g = 0 is the

boundary data of an outgoing solution to ∆u + ω2εper
M u = 0, which must be zero by the

Nonresonance Assumption. Finally, we apply a representation theorem analogous to that
of Lemma 2.4, using Gper

M , to the unique solution ξ of (3.11), and the estimate in (iii) of
Theorem 3.4 yields the result.

4 Scattering by a defective slab

We now investigate the scattering of plane waves by a defective PC slab described by the
dielectric permittivity

εdef
M =

{
εper
M + q for x ∈ Ω0 := Ωm

εper
M for x /∈ Ω0.

We seek then a θ-pseudoperiodic solution of the Helmholtz equation(
∆ + ωεdef

M (x)
)
utot
M (x) = 0
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Figure 3: Defective slab.

such that the scattered field utot
M − uinc is outgoing. It is convenient to view the scattering

process in two steps. First the incident field uinc is scattered by the perfect slab and and we
obtain the total field u from Problem 3.1. We then use this field u as a source field for the
defective slab and denote it by vinc

M . It is scattered by the defect in the slab, producing a
total field utot

M and outgoing scattered field vsc
M :

utot
M = vinc

M + vsc
M .

Problem 4.1 (Scattering by a defective slab). Given the solution vinc
M = u (for M suffi-

ciently large) of the scattering Problem 3.1, find a function utot
M that satisfies the following

conditions:

(∆ + ωεdef
M (x))utot

M (x) = 0, (4.1.a)

utot
M (x+ (0, n)) = ein·θutot

M (x), (4.1.b)

utot
M − vinc

M is outgoing. (4.1.c)

We can similarly state the problem of a bound state supported by the defect in the slab
by removing incident field and demanding that the solution of the Helmholtz equation be
decaying.

Problem 4.2 (Bound state). Find a function ψ that satisfies the following conditions:

(∆ + ωεdef
M (x))ψ(x) = 0, (4.2.a)

ψ(x+ (0, n)) = ein·θψ(x), (4.2.b)

ψ → 0 as |x1| → ∞. (4.2.c)

The decaying condition is technically equivalent in this case to the outgoing condition ex-
pressed by (2.11). Indeed, if a function ψ satisfies Problem 4.2 with the decay condition
replaced with the outgoing condition, then it follows by conservation of energy, or integra-
tion by parts, that all the coefficients in (2.11) for ψ are equal to zero, so that ψ is indeed
decays exponentially and is therefore square integrable over one period of the defective slab
structure.

We reformulate the scattering and bound state problems as a (stationary) Lippman-
Schwinger integral equation posed in the domain Ω0, in which the defect is localized. The
Helmholtz equation is first rewritten as an equation for the scattered field vsc

M :(
∆vsc

M + ω2εper
M vsc

M

)
= ω2qvsc

M + fM , fM = ω2qvinc
M ,

20



then we use the Green function Gper
M for the perfect slab to write an integral equation for vsc

M

restricted to Ω0:

vsc
M(x) = ω2

∫
Ω0

Gper
M (ω, θ; y, x)[q(y)vsc

M(y) + fM ] dy, x ∈ Ω0. (4.3)

Similarly, a solution of Problem 4.2 satisfies the homogeneous Lippman-Schwinger equation

ψ(x) = ω2

∫
Ω0

Gper
M (ω, θ; y, x) q(y)ψ(y) dy, x ∈ Ω0. (4.4)

It is straightforward to verify the equivalence of the differential and integral forms of the
scattering and bound-state problems:

Lemma 4.3. Let utot
M solve Problem 4.1. Then the scattered field vsc

M = utot
M − vinc

M satisfies
equation 4.3. Conversely, if vsc

M satisfies 4.3 (in Ω0), then the extension of this field to the
plane

vsc
M(x) = ω2

∫
Ω0

Gper
M (ω, θ; y, x)[q(y)vsc

M(y) + fM ] dy, x ∈ R2,

is a solution of Problem 4.1.
A solution ψ of Problem 4.2 satisfies equation 4.4. Conversely, if ψ satisfies 4.4 (in Ω0),

then the extension of this field to the plane

ψ(x) = ω2

∫
Ω0

Gper
M (ω, θ; y, x) q(y)ψ(y) dy, x ∈ R2,

is a solution of Problem 4.2.

Let Ĝper
M denote the integral operator in Ω0 with kernel Gper

M in (4.3), so that the Lippman-
Schwinger equation (4.3) takes the form

vsc
M(x)− ω2 Ĝper

M (q vsc
M)(x) = FM(x), FM = ω2 Ĝper

M (q vinc
M ). (4.5)

Let us consider a gap frequency ω for which the defective structure admits no bound state.
This is equivalent to assuming that the operator I − ω2 Ĝper

M q · has a trivial nullspace. Since

Ĝper
M is compact, I − ω2 Ĝper

M q · is bounded from below. Moreover, since, by Lemma 3.5,
vinc
M decays exponentially in M in the domain Ω0, we find that vsc

M decays exponentially on
Ω0. We can then conclude that, away from bound-state frequencies for the infinite defective
structure, the transmission of plane waves through a defective slab decays exponentially as
the width of the slab tends to infinity. We state this in the following theorem:

Theorem 4.4. Suppose that Problem 4.2 has no solution for ω. Then Problem 4.2 has a
unique solution utot

M and there exist constants c1 > 0 and c2 > 0 such that, for integers M
sufficiently large,

|utot
M (x)| < c1e

−c2M for x1 > M.
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5 The one-dimensional problem and resonance.

For one-dimensional periodic structures, that is, those that have invariant properties in all
spatial directions except for, say, the x1-direction, the simple form of the transfer matrix
allows us to compute the transmission through a thick slab exactly. In fact, even for a
structure with a (one-dimensional) defect, the calculations reveal the resonant behavior of
the transmission at characteristic frequencies of the infinite defective structure. We find
that, at resonant parameters, the transmission approaches a positive number which is not in
general 1, as the width M of the slab tends to infinity.

We begin with the Helmholtz equation

∇· 1
µ
∇u+ ω2ε u = 0, (5.1)

considered in the distributional sense, in which ε and µ are positive functions of x1 alone:{
ε(x) = εper(x1),
µ(x) = µper(x1),

for m ≤ |x1| ≤M

and
ε(x) = µ(x) = 1, otherwise.

Both εper and µper are bounded functions of x1 alone, with period 1. The periodic slab
extends from −M to M , and the defect, consisting of the same medium as that to the left
and right of the slab, extends from −m to m. We think of M as being very large compared
to m. We shall take both M and m to be integers in the subsequent calculations.

We consider solutions to the Helmholtz equation that are pseudoperiodic in the other
spatial variables x′ = (x2, x3); in fact, because of the invariance of the structure in these two
variables, we may restrict our attention to separable solutions:

u = φ(x1)eiκx′ .

The ordinary differential equation for φ is(
1
µ
φ′
)′

+
(
ω2ε− 1

µ
|κ|2
)
φ = 0. (5.2)

Observe that the Cauchy data [φ(x1), µ−1φ′(x1)]t of a solution φ to (5.2) is continuous, even
if µ is not.

5.1 Preliminary results: the transfer matrices

Outside the slab and in the defect, using ε = µ = 1, we see that φ satisfies

φ′′ +$2φ = 0, for |x1| < m and |x1| > M (5.3)

in which we assume that $2 := ω2 − |κ|2 > 0. In addition, we assume that ω is in a gap for
the one-dimensional problem (5.2) in the variable x1 for the given wave vector κ parallel to
the slab. This means that the matrix Q1 that transfers the Cauchy data [φ(x1), µ−1φ′(x1)]t
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of a solution φ(x1) to (5.2) in the periodic slab from an integer point x1 = n to the point
x1 = n + 1 has two real eigenvalues λ1 = ek and λ2 = e−k or λ1 = −ek and λ2 = −e−k
for some k > 0. To see this, we observe that Q1 is equal to the generalized Wronskian
matrix Q(x1) of two real solutions ψ1(x1) and ψ2(x1) of (5.2), evaluated at x1 = 1, for which
[ψ1(0), µ−1ψ′1(0)] = [1, 0] and [ψ2(0), µ−1ψ′2(0)] = [0, 1]:

Q1 = Q(1) =

 ψ1(1) ψ2(1)

µ−1ψ′1(1) µ−1ψ′2(1)

 .
From (5.2), we find that the Wronskian W is constant:

W (x1) = constant.

Thus we learn that the determinant of the real matrix Q1 is unity. This means that the
product of its eigenvalues is 1 and that they are either conjugate unitary numbers (indicating
that $ is in a propagation band for κ) or reciprocal real numbers (indicating that $ is in a
gap for κ). We assume that the latter case holds, and therefore we can take the eigenvalues
to be λ1 = ek and λ2 = e−k or λ1 = −ek and λ2 = −e−k for some real k > 0.

Let corresponding eigenvectors be given by [1, α1]t and [1,−α2]t, to which correspond
an exponentially increasing eigensolution φ1(x1) = ψ1(x1) + α1ψ2(x1) and an exponentially
decreasing eigensolution φ2(x1) = ψ1(x1)− α2ψ2(x1) of (5.2) satisfying:[

φ1(n)
µ−1φ′1(n)

]
= (λ1)n

[
1
α1

] [
φ2(n)

µ−1φ′2(n)

]
= (λ2)n

[
1
−α2

]
.

The general solution of (5.2) inside the slab then has the form φ(x1) = A1φ1(x1) +
A2φ2(x1), and the general solution outside the slab has the form ψ(x1) = A1e

i$x1 +A2e
−i$x1 .

Let us break the calculations down into several steps.
The matrix Ck(n) taking the coefficients in the expression φ(x1) = A1φ1(x1) + A2φ2(x1)

to the Cauchy data [φ(x1), µ−1φ′(x1)]t at integer values x1 = n, and its inverse, are

Ck(n) = (±1)n

[
ekn e−kn

α1e
kn −α2e

−kn

]
, Ck(n)−1 =

(±1)n

α1 + α2

[
α2e

−kn e−kn

α1e
kn −ekn

]
.

where the factor (±1)n depends on whether the eigenvalues of Q1 are positive or negative.
The matrix Ci$(x1) taking the coefficients in the expression ψ(x1) = A1e

i$x1 +A2e
−i$x1

to the Cauchy data of ψ at x1, and its inverse, are

Ci$(x1) =

[
ei$x1 e−i$x1

i$ei$x1 −i$e−i$x1

]
, Ci$(x1)−1 =

1

2i$

[
i$e−i$x1 e−i$x1

i$ei$x1 −ei$x1

]
.

The matrix taking coefficients in the expression A1e
i$x1 + A2e

−i$x1 to those in B1φ1(x1) +
B2φ2(x1), assuming equality of their Cauchy data (value and derivative) at integer values
x1 = n, is

Ti$,k(n) = Ck(n)−1Ci$(n) =
(±1)n

α1 + α2

[
(α2 + i$)e−(k−i$)n (α2 − i$)e−(k+i$)n

(α1 − i$)e(k+i$)n (α1 + i$)e(k−i$)n

]
,
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and the matrix taking coefficients in the expression B1φ1(x1)+B2φ2(x1) to those in A1e
i$x1 +

A2e
−i$x1 at integer values n of x1 is

Tk,i$(n) = Ci$(n)−1Ck(n) =
(±1)n

2i$

[
(α1 + i$)e(k−i$)n −(α2 − i$)e−(k+i$)n

−(α1 − i$)e(k+i$)n (α2 + i$)e−(k−i$)n

]
.

Set now

r1 + ir2 = r = (α1 + i$)(α2 + i$), s1 + is2 = s = (α1 − i$)(α2 + i$). (5.4)

Notice that, if α1 = α2, then s2 = 0 so that

s = s̄ = s1 = |s| = α2 +$2. (when α1 = α2 = α)

With the above notation, we have then the following result.

Lemma 5.1. The transfer matrix for the coefficients in A1e
i$x1+A2e

−i$x1 across a slab of the
photonic crystal from x1 = n1 to x2 = n2 and that of the coefficients in A1φ1(x1) +A2φ2(x1)
across a “slab” of vacuum from n1 to n2 are respectively given by the relations

Tk,i$(n2)Ti$,k(n1) =
(±1)(n1+n2)

i$(α1 + α2)

[
e−iΘ[r1 sinh Ξ + ir2 cosh Ξ] e−iΘ(s1 − is2) sinh Ξ

−eiΘ(s1 + is2) sinh Ξ eiΘ[−r1 sinh Ξ + ir2 cosh Ξ]

]

Ti$,k(n2)Tk,i$(n1) =
(±1)(n1+n2)

ω(α1 + α2)

[
e−Ξ[r1 sin Θ + r2 cos Θ] −e−k(n2+n1)(α2

2 + ω2) sin Θ

ek(n2+n1)(α1
2 + ω2) sin Θ eΞ[−r1 sin Θ + r2 cos Θ]

]
where we have set

Θ = $(n2 − n1), Ξ = k(n2 − n1).

5.2 Application to resonant transmission

Bound states of a defect

Let us first compute the eigenvalues for an infinite periodic structure with a defect extending
from −m to m. A bound state (or guided mode when considering the x′-dependence) occurs
when a solution with only a growing (as x1 increases) component to the left of the defect
has only a decaying component to the right thereof, and this occurs when the 11-entry of
Ti$,k(m)Tk,i$(−m) vanishes, or when

r1 sin 2$m+ r2 cos 2$m = 0 . (Resonance Condition)

Transmission through a slab

A solution φ to (5.2) has the following behavior to the left and right of the slab:

φ(x1) = aei$x1 + ce−i$x1 , x1 < −M,
φ(x1) = dei$x1 + be−i$x1 , x1 > M.
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The transfer matrix (tij) takes the coefficients on the left to those on the right, and the
scattering matrix (sij) takes the coefficients of the incoming fields to those of the outgoing
fields: [

t11 t12

t21 t22

] [
a

c

]
=

[
d

b

]
,

[
s11 s12

s21 s22

] [
a

b

]
=

[
c

d

]
.

These matrices are related by[
t11 t12

t21 t22

]
=

1

s12

[
− detS s22

−s11 1

]
,

[
s11 s12

s21 s22

]
=

1

t22

[
−t21 1

detT t12

]
.

Let us take the transmission T through a slab to be equal to the square of the magnitude
of c assuming that the incoming field from the left is zero (a = 0) and that from the right
is 1 (b = 1). This is just T = |s12|2 = |t22|−2. Therefore the transmission through a
slab extending from −M to M without a defect is the square inverse of the 22-entry of
Tk,i$(M)Ti$,k(−M),

T −1 = |t22|2 = r2
1 sinh22kM + r2

2 cosh22kM,

from which we see that the transmission tends exponentially to zero as M →∞.

Transmission through a slab with a defect

Let us now place a defect extending from −m to m within the finite slab. The transfer
matrix of coefficients for this structure is

Tk,i$(M)Ti$,k(m)Tk,i$(−m)Ti$,k(−M) =
1

i$2(α1 + α2)2
× e−2i$M [(ir2

2 cos Θ + r2
1 sin Θ) cosh Ξ + r1r2e

iΘ sinh Ξ− |r|2 sin Θ]

−s [r2 cos Θ sinh Ξ + r1 sin Θ cosh Ξ− r1 sin Θ]

s̄ [r2 cos Θ sinh Ξ + r1 sin Θ cosh Ξ− r1 sin Θ]

e2i$M [(ir2
2 cos Θ− r2

1 sin Θ) cosh Ξ− r1r2e
−iΘ sinh Ξ + |r|2 sin Θ]

 , (5.5)

in which Θ and Ξ are now redefined as

Θ = 2$m, Ξ = 2k(M −m).

Let us take a look at the transmission coefficient T = |t22|−2 for this matrix. We compute
that

r4
2T −1 = r4

2|t22|2

= (r2
2 cos Θ cosh Ξ + r1r2 sin Θ sinh Ξ)2 + (−r2

1 sin Θ cosh Ξ− r1r2 cos Θ sinh Ξ + |r|2 sin Θ)2

= (r4
1 sin2Θ + r4

2 cos2Θ) cosh2 Ξ + (r1r2)2 sinh2Ξ + 2r1r2|r|2 cos Θ sin Θ cosh Ξ sinh Ξ +

− 2r1|r|2 sin Θ(r1 sin Θ cosh Ξ + r2 cos Θ sinh Ξ) + |r|4 sin2Θ .
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The first three terms contribute a multiple of e2Ξ, and if this multiple is nonzero, then it will
dominate the behavior of r4

2|t22|2 as M →∞. We compute this part of the expression:

r4
2T −1 = r4

2|t22|2 = |r|2(r1 sin 2$m+ r2 cos 2$m)2e4k(M−m) +O(e2k(M−m)) .

This implies that the transmission tends exponentially to zero if the resonance condition
is not satisfied. At resonant parameters for the infinite slab, we make the substitution
r1 sin 2$m = −r2 cos 2$m, or the other way around, and find that not even the e2k(M−m)

terms remain:

r4
2T −1 = r4

2 cos2Θ(cosh Ξ− sinh Ξ)2 + r4
1 sin2Θ(cosh Ξ− sinh Ξ)2+

+ 2|r|2 sin2Θ r2
1(− cosh Ξ + sinh Ξ) + r2

2|r|2,

which implies the exponential convergence

T → r2
2

|r|2
=

$2(α1 + α2)2

(α1
2 +$2)(α2

2 +$2)
≤ 1 as M →∞. (at resonance)

We see that the transmission converges to a positive value (assuming r2 = $(α1 + α2) 6= 0),
which is 1 if and only if r1 = 0, or α1α2 −$2 = 0:

T → 1 at resonance if and only if α1α2 = $2.
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