
HAL Id: hal-00271567
https://hal.science/hal-00271567

Submitted on 26 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Discovery of Functional Dependencies and
Armstrong Relations

Stéphane Lopes, Jean-Marc Petit, Lotfi Lakhal

To cite this version:
Stéphane Lopes, Jean-Marc Petit, Lotfi Lakhal. Efficient Discovery of Functional Dependencies and
Armstrong Relations. 7th International Conference on Extending Database Technology (EDBT 2000),
Mar 2000, Constance, Germany. pp.350-364, �10.1007/3-540-46439-5_24�. �hal-00271567�

https://hal.science/hal-00271567
https://hal.archives-ouvertes.fr

Efficient Discovery of Functional Dependencies and
Armstrong Relations

Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal

Laboratoire LIMOS, Université Blaise Pascal - Clermont-Ferrand II
Campus Universitaire des Cézeaux

24 avenue des Landais
63177 Aubière cedex, France

e-mail : {slopes,jmpetit,llakhal}@libd2.univ-bpclermont.fr

Abstract. In this paper, we propose a new efficient algorithm called Dep-Miner for discov-
ering minimal non-trivial functional dependencies from large databases. Based on theoretical
foundations, our approach combines the discovery of functional dependencies along with the
construction of real-world Armstrong relations (without additional execution time). These
relations are small Armstrong relations taking their values in the initial relation. Discovering
both minimal functional dependencies and real-world Armstrong relations facilitate the tasks
of database administrators when maintaining and analyzing existing databases. We evaluate
Dep-Miner performances by using a new benchmark database. Experimental results show
both the efficiency of our approach compared to the best current algorithm (i.e. Tane), and
the usefulness of real-world Armstrong relations.

1 Introduction and motivation

Functional dependencies, introduced in [Cod71], are by far the most common integrity constraints
in the real world [MR94b, LL99]. They are very important when designing or analyzing relational
databases.

When a functional dependency, denoted by X → A, holds in a relation, knowing the value
of the attribute set X allows to determine the value of the attribute A. Discovering functional
dependencies hidden in a database has been addressed by various approaches, among which we
quote [MR86, SF93, MR94a, HKPT98].

Armstrong relations, introduced in [Fag82b], are closely related to functional dependencies: such
relations exactly satisfy a set of functional dependencies. They can show both the existence and the
nonexistence of functional dependencies for a given relation [Fag82a, MR86, MR94a]. Algorithms
for computing Armstrong relations from functional dependencies are given in [BDFS84, MR86,
DLM92, CL98]. In this paper, we introduce the concept of real-world Armstrong relations. Such
relations are small Armstrong relations only populated with values actual from the initial relation.
According to our knowledge, there is neither efficient algorithms for generating Armstrong relations
from a given relation, nor experimental evaluations of their size.

Discovering both minimal functional dependencies and real-world Armstrong relations could
greatly facilitate the tasks of database administrators (dba) when maintaining existing databases
and reorganizing their schemas. We call such a reorganization logical tuning: for instance, the dba
could assess relevance of discovered functional dependencies by using small relations sampling the

initial relations, and once these dependencies are proved to be useful, he can perform relation
normalization. The motivation behind normalization is to remove the problems that are caused by
the update anomalies and redundancies [MR94b, LL99].

For addressing the problem of discovering minimal non-trivial functional dependencies, a the-
oretical framework is proposed in [MR94a, MR94b]. The underlying approach is based on the
concept of agree set [BDFS84]. This set groups all the attributes having the very same values for
given couple of tuples. From agree sets, maximal sets1 are derived, and from maximal sets, all
minimal non-trivial functional dependencies can be generated.

In this paper, we propose a new efficient algorithm called Dep-Miner for discovering agree sets,
maximal sets, left-hand sides (lhs) of minimal non-trivial functional dependencies and real-world
Armstrong relations. Our approach is defined under the assumption of limited main memory re-
sources and its feasibility does not depend on the volume of handled data. Since database accesses
are only performed during the computation of agree sets, Dep-Miner takes in input a small repre-
sentation of a relation, called stripped partition databases derived from [CKS86, Spy87, HKPT98].
From them, new characterizations of agree sets are given. These characterizations show that
stripped partition databases are informationaly equivalent to relations in our context and provide
efficient algorithms for discovering agree sets from large relations. From agree sets, a characteri-
zation of maximal sets is introduced. Then, a levelwise algorithm2 is proposed for computing the
lhs of minimal non-trivial functional dependencies. It is based on the characterization of lhs as
the set of minimal transversals of a simple hypergraph [MR94a, MR94b]. An existence condition
for real-world Armstrong relation is given as well as the algorithm for generating such a relation.

Evaluations of Dep-Miner performances are achieved by using a new benchmark database. Ex-
perimental results show both the efficiency of the approach compared to the best current algorithm
(i.e. Tane [HKPT98]), and the usefulness of real-world Armstrong relations. Indeed, we observed
that these relations were very small sizes and thus form a good sampling of the initial relation.
Thus, they can be used in an efficient way for aiding the dba when performing logical tuning of
databases.

Paper organization. In section 2, some definitions and results in relational database theory are
presented. Our approach is detailed in section 3 and two versions of the algorithm Dep-Miner are
presented. In section 4, we explain how to achieve Armstrong relations with the algorithms Dep-
Miner. Section 5 details experimental results and section 6 concludes the paper by giving further
research work.

2 Basic definitions

This section is devoted to setting the groundwork of our approach. It briefly resumes definitions and
results from relational database theory, which are relevant in our context [MR94b, AHV95, LL99].

Let R be a finite set of attributes. For each attribute A ∈ R, the set of all its possible values is
called domain of A and denoted by Dom(A). A tuple over R is a mapping t : R →

⋃
A∈R Dom(A),

where t(A) ∈ Dom(A)∀A ∈ R. A relation is a set of tuples. We say that r is a relation over R and

1 Also called intersection generators in [BDFS84] or meet-irreductible sets in [GL90].
2 This kind of algorithm has been extensively used in data mining [AS94, PBTL99, MT97].

2

R is the relation schema of r. If X ⊆ R and t is a tuple, we denote by t[X] the restriction of t to
X.

A functional dependency over R is an expression X → A where X ⊆ R and A ∈ R. The
functional dependency X → A holds in a relation r (denoted by r |= X → A) if and only if
∀ti, tj ∈ r, ti[X] = tj [X] ⇒ ti[A] = tj [A]. A functional dependency X → A is minimal if A is not
functionally dependent on any proper subset of X. The functional dependency X → A is trivial
if A ∈ X. We denote by dep(r) the set of all functional dependencies that hold in r: dep(r) =
{X → A/X ∪ A ⊆ R, r |= X → A}. Let F and G be two sets of functional dependencies, F is
a cover of G if F |= G (this notation means that each dependency f ∈ G holds in any relation
satisfying all the dependencies in F) and G |= F .

Let F be a set of functional dependencies over R. The closure of X with respect to F , denoted
by X+

F , is the set of attributes A ∈ R such that X → A can be derived from F : X+
F = {A ∈

R/F |= X → A}. A set X ⊆ R is closed if and only if X+
F = X. We denote by CL(F) the family

of closed sets induced by F and GEN(F) the single minimal subfamily of generators in CL(F)
such that each member of CL(F) can be expressed as an intersection of sets in GEN(F).

For complementing previous definitions, agree sets, maximal sets and left-hand side sets are
introduced.

Let ti and tj be tuples and X an attribute set. The tuples ti and tj agree on X if ti[X] = tj [X].
The agree set of ti and tj is defined as follows: ag(ti, tj) = {A ∈ R/ti[A] = tj [A]}. If r is a relation,
ag(r) = {ag(ti, tj)/ti, tj ∈ r, ti ̸= tj}.

A maximal set is an attribute set X which, for some attribute A, is the largest possible set not
determining A. We denote by max(dep(r), A) the set of maximal sets for A w.r.t. dep(r):
max(dep(r), A) = {X ⊆ R/r ⊭ X → A and ∀Y ⊆ R,X ⊂ Y, r |= Y → A}; and
MAX(dep(r)) =

⋃
A∈R max(dep(r), A).

[BDFS84] states that, given a set F of functional dependencies and a relation r, r is an Arm-
strong relation for F if and only if GEN(F) ⊆ ag(r) ⊆ CL(F).

Moreover, in [MR86, MR94b], a result relating maximal sets and intersection generators is
given: MAX(F) = GEN(F). In this paper, we consider functional dependencies that hold in the
relation r i.e. F is equivalent to dep(r).

From maximal sets, functional dependencies can be inferred as follows [MR94a]:
The set of left-hand sides of functional dependencies w.r.t. dep(r) and an attribute A is denoted

by lhs(dep(r), A): lhs(dep(r), A) = {X ⊆ R/r |= X → A and ∀X ′ ⊂ X, r ⊭ X ′ → A}. The set
{X → A/X ∈ lhs(dep(r), A), A ∈ R} is a cover of dep(r).

For finding left-hand sides of functional dependencies from maximal sets, the notion of hyper-
graph is to be introduced. A collection H of subsets of R is a simple hypergraph if ∀X ∈ H, X ̸= ∅
and (X,Y ∈ H and X ⊆ Y ⇒ X = Y) [Ber76]. Elements of H are called the edges of the hy-
pergraph and elements of R are the vertices of the hypergraph. The collection cmax(dep(r), A) of
complements of maximal sets max(dep(r), A) is a simple hypergraph. A transversal T of H is a
subset of R intersecting all the edges of H, i.e. T ∩ E ̸= ∅,∀E ∈ H. A minimal transversal of H
is a transversal T such that it does not exist a transversal T ′, T ′ ⊂ T . The collection of minimal
transversals of H is denoted by Tr(H). Minimal transversals of simple hypergraph are related to
left-hand sides of functional dependencies: Tr(cmax(dep(r), A)) = lhs(dep(r), A).

3

3 Dep-Miner algorithm

Our approach is depicted in figure 1: from the initial relation, a stripped partition database is
extracted; using such partitions, agree sets are computed; and thus, maximal sets are generated.
On the one hand, they are used to build Armstrong relations. On the other hand, deriving their
complements is straightforward and then left-hand sides of functional dependencies are computed.
Let us notice that approaches presented in [MR86, KMRS92, MR94a, MR94b] fit in this general
framework without necessarily covering all the presented steps. Moreover, for computing agree
sets, they operate by loading the dealt data in main memory without a special emphasis on the
computation of agree sets. Algorithm 1 (see below) presents the different steps of Dep-Miner.

Stripped partition

database

Agree sets
 Disagree

sets

Maximal

sets

Complements

of maximal

sets

Real-world

Armstrong

relation

Minimal

functional

dependencies

Complement / R

Complement / R

Relation

Fig. 1. General framework

Algorithm 1 Dep-Miner: combined discovery of minimal functional dependencies and real-world
Armstrong relations
Input: a relation r
Output: minimal functional dependencies and real-world Armstrong relation for r
1: AGREE_SET: computes agree sets from r
2: CMAX_SET: derives complements of maximal sets from agree sets
3: LEFT_HAND_SIDE: computes left-hand sides of functional dependencies from complements of max-

imal sets
4: FD_OUTPUT: outputs functional dependencies
5: ARMSTRONG_RELATION: builds real-world Armstrong relation from maximal sets and R

4

3.1 Finding agree sets

A naive algorithm for computing agree sets in a relation r works as follows: for each couple of
tuples (ti, tj) in r, compute ag(ti, tj) as defined in the previous section. If p is the number of
tuples in the relation and n is the number of attributes, the time complexity of this algorithm is
in O(np2). When p is large, the algorithm becomes impractical due to the number of couples (plus
the overhead due to the cost of ag(ti, tj)).

We propose a new approach to compute agree sets which aims to decrease the number of
candidate couples. For meeting such needs, we reduce the initial relation using the concept of
stripped partition database and new characterizations of agree sets are proposed in order to minimize
the number of couples. Furthermore, an interesting aspect would be to avoid the cost of ag(ti, tj).

From stripped partition databases, two algorithms are proposed:

– the former implements the new approach to compute agree sets;
– the latter provides an optimization of the previous algorithm which is more efficient when

handling large relations.

Stripped partition databases. The fundamental idea underlying our approach is to provide a
reduced representation of a relation. This can be achieved using the notion of partitions [CKS86,
Spy87, HKPT98].

Partitions. Two tuples ti and tj are equivalent with respect to a given attribute set X if ti[A] =
tj [A] ∀A ∈ X. The equivalence class of a tuple ti ∈ r with respect to a given set X ⊆ R is defined
by [ti]X = {tj ∈ r/ti[A] = tj [A], ∀A ∈ X}. The set πX = {[t]X/t ∈ r} of equivalence classes is a
partition of r under X. In the sequel, we use a positive integer unique to t as an identifier for each
tuple t.

Example 1. Let us consider the following relation representing the assignment of employees to
departments.

Tuple No. empnum depnum year depname mgr
1 1 1 85 Biochemistry 5
2 1 5 94 Admission 12
3 2 2 92 Computer Sce 2
4 3 2 98 Computer Sce 2
5 4 3 98 Geophysics 2
6 5 1 75 Biochemistry 5
7 6 5 88 Admission 12

For briefness, attributes empnum, depnum, year, depname, mgr are renamed A, B, C, D, E
respectively. The partitions associated to each attribute of this relation are:
πA = {{1, 2}, {3}, {4}, {5}, {6}, {7}}, πB = {{1, 6}, {2, 7}, {3, 4}, {5}}
πC = {{1}, {2}, {3}, {4, 5}, {6}, {7}}, πD = {{1, 6}, {2, 7}, {3, 4}, {5}}
πE = {{1, 6}, {2, 7}, {3, 4, 5}}.

Stripped partitions. Such partitions group equivalence classes having a size greater than one. In
fact, when an equivalence class encompasses a single element, the associated tuple does not share
the values of the considered attribute set with any other tuple in the relation. The stripped partition
for an attribute set X is defined by: π̂X = {c ∈ πX/|c| > 1}

5

Example 2. The following stripped partitions are achieved from partitions of the previous example
by removing equivalence classes of size one:
π̂A = {{1, 2}}, π̂B = {{1, 6}, {2, 7}, {3, 4}}, π̂C = {{4, 5}}
π̂D = {{1, 6}, {2, 7}, {3, 4}}, π̂E = {{1, 6}, {2, 7}, {3, 4, 5}}.

Stripped partition databases. The new representation of a relation is called a stripped partition
database. It encompasses stripped partitions for each attribute. Let r be a relation over R. A
stripped partition database r̂ of r is defined as follows: r̂ =

⋃
A∈R π̂A.

Example 3. The stripped partition database associated to the relation in example 3.2 is: r̂ =
{π̂A, π̂B , π̂C , π̂D, π̂E}.

Computing stripped partition database from a relation is straightforward (it would correspond
to the pre-processing phase in a data mining context).

Characterizing agree sets. We firstly need to define the set MC of maximal equivalence classes
induced by a stripped partition database.

Maximal equivalence classes. Let r̂ be a stripped partition database. The set MC of maximal
equivalence classes of r̂ is defined as follows:
MC = Max⊆{c ∈ π̂A/π̂A ∈ r̂}.

Example 4. Continuing our example, the set of maximal equivalence classes is the following:
MC = {{1, 2}, {1, 6}, {2, 7}, {3, 4, 5}}.

For building agree sets, we only consider couples of tuples belonging to a common equivalence
class of MC (because tuples in two different equivalence classes disagree for each attribute of R).
This results from the lemma 1 which proves the correctness of algorithm 2 presented below.

Lemma 1. Let r be a relation. ag(r) =
⋃

c∈MC ag(c).

Proof. Firstly, c ∈ MC is an equivalence class. Therefore, c is a set of tuples and ag(c) is well
defined.

(⊇) The equivalence class c is a subset of tuples of r. Thus, the inclusion is obvious.
(⊆) Let us consider a set X ∈ ag(r). By definition, ∃ti, tj ∈ r/∀A ∈ X, ti[A] = tj [A]. Therefore,

∀A ∈ X, ti, tj ∈ [ti]A ∈ π̂A. By definition of MC, ∃c ∈ MC/ti, tj ∈ c. Thus, ag(r) ⊆
⋃

c∈MC ag(c).
⊓⊔

The first algorithm. The first proposed algorithm (see below algorithm 2) results from the
lemma 1. It operates as follows: The first step (line 1) computes the maximal equivalence classes
from a stripped partition database. Then, for each maximal equivalence class, all possible couples
of tuples are generated (lines 4 to 9). Corresponding agree sets are then computed (lines 10 to 18):
an attribute is added to the agree set of two tuples if these tuples are in a common equivalence
class in the stripped partition for this attribute. Finally, the set of agree sets is updated (lines 19
to 21).

6

Algorithm 2 AGREE_SET: Computes agree sets from stripped partition databases
Input: the stripped partition database r̂ of a relation r
Output: the agree sets of r: ag(r)
1: MC:= Max⊆{c ∈ π̂A/π̂A ∈ r̂}
2: ag(r) := ∅
3: couples := ∅
4: for all maximal equivalence classes c ∈ MC do
5: for all couple (t, t′) ∈ c do
6: couples := couples ∪ (t, t′)
7: ag(t, t′) := ∅
8: end for
9: end for

10: for all π̂A ∈ r̂ do
11: for all equivalence class c ∈ π̂A do
12: for all (t, t′) ∈ couples do
13: if t ∈ c and t′ ∈ c then
14: ag(t, t′) := ag(t, t′) ∪A
15: end if
16: end for
17: end for
18: end for
19: for all couple (t, t′) ∈ couples do
20: ag(r) := ag(r) ∪ ag(t, t′)
21: end for

Example 5. From the set MC, the generated couples are :
{(1, 2), (1, 6), (2, 7), (3, 4), (3, 5), (4, 5)}.
The algorithm unfolding is illustrated by the following tables in which columns show the processing
of couples for the various equivalence classes. Let us notice that each column stands for an iteration
when building agree sets (loop from lines 11 to 17).

Initialization {1, 2} ∈ π̂A {1, 6} ∈ π̂B {2, 7} ∈ π̂B {3, 4} ∈ π̂B {4, 5} ∈ π̂C {1, 6} ∈ π̂D

ag(1, 2) = ∅ ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A
ag(1, 6) = ∅ ag(1, 6) = ∅ ag(1, 6) = B ag(1, 6) = B ag(1, 6) = B ag(1, 6) = B ag(1, 6) = BD
ag(2, 7) = ∅ ag(2, 7) = ∅ ag(2, 7) = ∅ ag(2, 7) = B ag(2, 7) = B ag(2, 7) = B ag(2, 7) = B
ag(3, 4) = ∅ ag(3, 4) = ∅ ag(3, 4) = ∅ ag(3, 4) = ∅ ag(3, 4) = B ag(3, 4) = B ag(3, 4) = B
ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅
ag(4, 5) = ∅ ag(4, 5) = ∅ ag(4, 5) = ∅ ag(4, 5) = ∅ ag(4, 5) = ∅ ag(4, 5) = C ag(4, 5) = C

{2, 7} ∈ π̂D {3, 4} ∈ π̂D {1, 6} ∈ π̂E {2, 7} ∈ π̂E {3, 4, 5} ∈ π̂E

ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A ag(1, 2) = A
ag(1, 6) = BD ag(1, 6) = BD ag(1, 6) = BDE ag(1, 6) = BDE ag(1, 6) = BDE
ag(2, 7) = BD ag(2, 7) = BD ag(2, 7) = BD ag(2, 7) = BDE ag(2, 7) = BDE
ag(3, 4) = B ag(3, 4) = BD ag(3, 4) = BD ag(3, 4) = BD ag(3, 4) = BDE
ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = ∅ ag(3, 5) = E
ag(4, 5) = C ag(4, 5) = C ag(4, 5) = C ag(4, 5) = C ag(4, 5) = CE

7

The following agree sets are discovered:
ag(1, 2) = A
ag(1, 6) = BDE

ag(2, 7) = BDE
ag(3, 4) = BDE

ag(3, 5) = E
ag(4, 5) = CE

Thus, we obtain ag(r) = {∅, A,BDE,CE,E}.

Compared with the naive algorithm, the number of couples is reduced and the cost of ag(t, t′)
is avoided. However, the proposed algorithm requires storing all couples that can generate agree
sets. Since the number of these couples can be very great, we cannot assume that they always fit
into main memory. The solution used to avoid this problem is computing agree sets as soon as a
fixed number of couples was generated. More precisely, when a threshold (associated to the number
of tuples) is reached, corresponding agree sets are computed from the current set of couples. This
set is then deleted and the process continues by examining the remaining couples.

However, the computation can be time consuming and the algorithm becomes less efficient when
the number of couples is great, i.e. when equivalence classes are large or when they are numerous.
We propose therefore another characterization of agree sets which originates to a new algorithm
more efficient in such a case.

Another characterization of agree sets. The fundamental idea under this new characterization
of agree sets is to preserve, for each tuple, the identifiers of equivalence classes in which the
considered tuple appears. Then, computing the agree set of two tuples can be merely performed
by achieving the intersection of their identifier set, and getting the associated attributes.

Let us assume that π̂A = {π̂A,0, . . . , π̂A,k}. We denote by ec(t) the set of identifiers of equivalence
classes in which the tuple t appears: ec(t) = {(A, i)/A ∈ R and t ∈ π̂A,i}

Example 6. In our example, for attribute E, π̂E = {π̂E,0, π̂E,1, π̂E,2}, where π̂E,0 = {1, 6}, π̂E,1 =
{2, 7}, π̂E,2 = {3, 4, 5}
For the second tuple, the indentifier set is ec(2) = {(A, 0), (B, 1), (D, 1), (E, 1)}

We can now give a characterization of agree sets.

Lemma 2. Let ti and tj be two tuples. ag(ti, tj) = {A ∈ R/∃k s.t. (A, k) ∈ ec(ti) ∩ ec(tj)}.

Proof. Let X be the agree set of tuples ti and tj :
X = ag(ti, tj) ⇔ ti[X] = tj [X] and ∀A ∈ R \X, ti[A] ̸= tj [A] ⇔ ∀B ∈ X, [ti]B = [tj]B and ∀A ∈
R \X, [ti]A ̸= [tj]A ⇔ X = {A ∈ R/[ti]A = [tj]A} ⇔ X = {A ∈ R/∃k s.t. (A, k) ∈ ec(ti) ∩ ec(tj)}

⊓⊔

Example 7. We consider ec(1) = {(A, 0), (B, 0), (D, 0), (E, 0)} and
ec(2) = {(A, 0), (B, 1), (D, 1), (E, 1)}.
Their intersection yields: ec(1) ∩ ec(2) = {(A, 0)}.
The agree set associated with tuples 1 and 2 is ag(1, 2) = A.

The second algorithm. From lemma 2, we propose a second algorithm for exhibiting agree sets
(see below algorithm 3). The first step (lines 2 to 8) states the relationship between tuples and
equivalence classes: for each tuple in the stripped partition database, the equivalence classes in
which the considered tuple appears are preserved (line 5). In the second step (lines 9 to 14), agree
sets are computed: for each couple in maximal equivalence classes, the agree set of the couple is
computed from the relationships previously stated (line 12).

8

Algorithm 3 AGREE_SET 2: Computes agree sets from stripped partition databases
Input: the stripped partition database r̂ of a relation r
Output: the agree sets of r: ag(r)
1: ag(r) := ∅
2: for all π̂A ∈ r̂ do
3: for all equivalence class π̂A,i ∈ π̂A do
4: for all tuple t ∈ π̂A,i do
5: ec(t) := ec(t) ∪ (A, i)
6: end for
7: end for
8: end for
9: MC:= Max⊆{c ∈ π̂A/π̂A ∈ r̂}

10: for all maximal equivalence classes c ∈ MC do
11: for all couple (t, t′) ∈ c do
12: ag(r) := ag(r) ∪ {A ∈ R/∃j s.t. (A, j) ∈ ec(t) ∩ ec(t′)}
13: end for
14: end for

Example 8. The first step of the algorithm gives for each tuple the equivalence classes in which it
appears:
Tuple No. Equivalence classes

1 (A, 0)(B, 0)(D, 0)(E, 0)
2 (A, 0)(B, 1)(D, 1)(E, 1)
3 (B, 2)(D, 2)(E, 2)
4 (B, 2)(C, 0)(D, 2)(E, 2)
5 (C, 0)(E, 2)
6 (B, 0)(D, 0)(E, 0)
7 (B, 1)(D, 1)(E, 1)

Then agree sets are discovered from the following couples of tuples:
(1, 2) : ec(1) ∩ ec(2) = {(A, 0)} ⇒ ag(1, 2) = A
(1, 6) : ec(1) ∩ ec(6) = {(B, 0), (D, 0), (E, 0)} ⇒ ag(1, 6) = BDE
(2, 7) : ec(2) ∩ ec(7) = {(B, 1), (D, 1), (E, 1)} ⇒ ag(2, 7) = BDE
(3, 4) : ec(3) ∩ ec(4) = {(B, 2), (D, 2), (E, 2)} ⇒ ag(3, 4) = BDE
(3, 5) : ec(3) ∩ ec(5) = {(E, 2)} ⇒ ag(3, 5) = E
(4, 5) : ec(4) ∩ ec(5) = {(C, 0), (E, 2)} ⇒ ag(4, 5) = CE

Thus, we obtain ag(r) = {∅, A,BDE,CE,E}.

3.2 Finding maximal sets

For exhibiting maximal sets from agree sets, we introduce a new characterization3 of the set of
maximal sets for the attribute A: max(dep(r), A).

Lemma 3. max(dep(r), A) = Max⊆{X ∈ ag(r)/A /∈ X, X ̸= ∅}.
3 In [MR94a], a similar result is used for yielding complements of maximal sets from complements of agree

sets (disagree sets). However, it is not explicitly stated contrarily to Lemma 3.9

Proof. We have max(dep(r), A) = Max⊆{X ⊆ R/r ⊭ X → A}.
(⊇) Let A ∈ R and X ∈ Max⊆{X ∈ ag(r)/A /∈ X}. Then, ∃ti, tj ∈ r/ti[X] = tj [X] ∧ ti[A] ̸=

tj [A]. Thus, r ⊭ X → A and X is maximal w.r.t. inclusion. We proved that Max⊆{X ∈ ag(r)/A /∈
X} ⊆ max(dep(r), A).

(⊆) Let X ∈ max(dep(r), A). Therefore, r ⊭ X → A and X is maximal w.r.t. inclusion. Then,
A /∈ X and ∃ti, tj ∈ r/ti[X] = tj [X] ∧ ti[A] ̸= tj [A]. Hence, X = ag(ti, tj). We proved by this way
the other part of the lemma: max(dep(r), A) ⊆ Max⊆{X ∈ ag(r)/A /∈ X}. ⊓⊔

As mentioned in section 2, we need to compute complement of maximal sets for achieving left-
hand sides of minimal functional dependencies. Algorithm 4 yields complements of maximal sets
from agree sets. Its correctness results from lemma 3.

Firstly, we compute maximal sets for each attribute in R (lines 1 to 3): for an attribute A
in R, agree sets which do not contain A and which are maximal with respect to inclusion are
added to the set of maximal sets (line 2). Finding the complement of maximal sets (lines 4 to 9)
is straightforward.

Algorithm 4 CMAX_SET: Computes complement of maximal sets
Input: the agree sets over r: ag(r)
Output: complements of maximal sets: CMAX(dep(r))
1: for all attributes A ∈ R do
2: max(dep(r), A) := Max⊆{X ∈ ag(r)/A /∈ X}
3: end for
4: for all attributes A ∈ R do
5: cmax(dep(r), A) := ∅
6: for all X ∈ max(dep(r), A) do
7: cmax(dep(r), A) := cmax(dep(r), A) ∪ (R \X)
8: end for
9: end for

Example 9. When applied to our example, the previous algorithm yields the following results:
max(dep(r), A) = {BDE,CE}
max(dep(r), B) = {A,CE}
max(dep(r), C) = {A,BDE}
max(dep(r), D) = {A,CE}
max(dep(r), E) = {A}

cmax(dep(r), A) = {AC,ABD}
cmax(dep(r), B) = {BCDE,ABD}
cmax(dep(r), C) = {BCDE,AC}
cmax(dep(r), D) = {BCDE,ABD}
cmax(dep(r), E) = {BCDE}

3.3 Finding left-hand side of functional dependencies

Minimal transversals of the simple hypergraph cmax(dep(r), A) provide left-hand sides of minimal
functional dependencies (see section 2). We propose a new levelwise algorithm (see algorithm 5)
for computing minimal transversals of a simple hypergraph. Notations used in this algorithm are
explained in Table 1.

The set Li is initialized with attributes appearing in cmax(dep(r), A). The collection of minimal
transversals is computed (from lines 4 to 9): for each set l in Li, we test if l is a transversal (line 5).

10

Li Candidate sets of size i
LHSi Left-hand sides of minimal functional dependencies of size i

Table 1. Notations for algorithm 5

In this case, l is saved (line 5) in LHSi and removed (line 6) from Li (all supersets of l are non
minimal transversals). Next level is generated (line 7) by adapting the Apriori-gen function [AS94]:

insert into Li

select p.attribute1, p.attribute2, . . . , p.attributei−1, q.attributei−1

from Li−1 p, Li−1 q
where p.attribute1 = q.attribute1, . . . , p.attributei−2 = q.attributei−2, p.attributei−1 < q.attributei−1

for all attributes X ∈ Li do
for all (i-1)-subsets s of X do

if s /∈ Li−1 then
delete X from Li

end if
end for

end for

Algorithm 5 LEFT_HAND_SIDE: Computes left-hand sides of minimal functional dependencies
Input: complements of maximal sets: CMAX(dep(r))
Output: the left-hand side of minimal functional dependencies: lhs(dep(r))
1: for all attributes A ∈ R do
2: i := 1
3: Li := {B/B ∈ X,X ∈ cmax(dep(r), A)}
4: while Li ̸= ∅ do
5: LHSi[A] := {l ∈ Li/l ∩X ̸= ∅, ∀X ∈ cmax(dep(r), A)}
6: Li := Li \ LHSi[A]
7: Li+1 := {l′/|l′| = i+ 1 and ∀l ⊂ l′/|l| = i, l ∈ Li}
8: i := i + 1
9: end while

10: lhs(dep(r), A) :=
⋃

i LHSi[A]
11: end for

Computing minimal transversals of a simple hypergraph is useful when addressing several prob-
lems [EG95]: clause satisfiability, updates in distributed databases, boolean switching theory and
model-based diagnosis.

Example 10. Resuming our example, let us consider the unfolding of the previous algorithm only
considering a single attribute A.

11

For attribute A:

Initialization
L1 = {A,B,C,D}

First iteration
LHS1[A] = {A}
L1 = {B,C,D}
L2 = {BC,BD,CD}

Second iteration
LHS2[A] = {BC,CD}
L2 = {BD}
L3 = ∅

Finally, we obtain the following sets:
lhs(dep(r), A) = {A,BC,CD}
lhs(dep(r), B) = {AC,AE,B,D}
lhs(dep(r), C) = {AB,AD,AE,C}
lhs(dep(r), D) = {AC,AE,B,D}
lhs(dep(r), E) = {B,C,D,E}

Yielding minimal functional dependencies from left-hand sides is then merely performed by
using the algorithm 6.

Algorithm 6 FD_OUTPUT: Outputs minimal non-trivial functional dependencies
Input: the left-hand side of attributes: lhs(dep(r))
Output: minimal non-trivial functional dependencies that hold in r
1: for all attributes A ∈ R do
2: for all X ∈ lhs(dep(r), A)/X ̸= {A} do
3: output X → A
4: end for
5: end for

Example 11. In our illustrating relation, the following functional dependencies hold:
r |= BC → A
r |= CD → A
r |= AC → B
r |= AE → B
r |= D → B

r |= AB → C
r |= AD → C
r |= AE → C
r |= AC → D
r |= AE → D

r |= B → D
r |= B → E
r |= C → E
r |= D → E

4 Generating real-world Armstrong relations

Exhibiting functional dependencies could yield a huge amount of results and taking advantages of
them is far from trivial. Generally, all the functional dependences cannot be taken into account to
normalize the relational schema. In fact, only some inferred functional dependencies are relevant
when modifying the database structure [MR94b]. Two reasons justify that:

– Some functional dependencies could accidentally hold in a relation extension which represents
the state of the data at a given time. There is no guarantee for the validity of these dependencies
in another relation extension.

12

– Functional dependencies can express two things [BK86, MM90]: either an association of at-
tributes which represents relevant information which is interesting to preserve, or just an in-
tegrity constraint between the data.

For making decision of discarding a functional dependency or not, possible alternatives are:

– requesting the dba to make such a decision;
– using clues given by a workload of SQL statement for example by studying duplicate attribute

sequences [LPT99];
– providing some help to the dba for example with a sample of the initial relation.

The next step of our approach fits in the latter trend.
Let us notice that a rather similar issue is also addressed by recent data mining approaches

because discovered knowledge could be so voluminous that it could not be directly used [KMR+94,
BA99, PBTL00]. Nevertheless, we do not provide a comparison between these approaches and ours
because proposed solutions widely differ.

An algorithm to construct an Armstrong relation from maximal sets is proposed in [BDFS84,
MR86]. Let us assume that C = {X0, . . . , Xn} where X0 = R and Xi ∈ MAX(dep(r)). Each
Xi ∈ C is associated with the tuple ti defined as follows:

ti[A] =

{
0 if A ∈ Xi,

i if A /∈ Xi.
(1)

The relation r = {t0, . . . , tn} is an Armstrong relation of size |MAX(dep(r))|+ 1.

Example 12. From our example, the following Armstrong relation can be generated from
MAX(dep(r)) ∪R = {ABCDE,A,BDE,CE}:
empnum depnum year depname mgr

0 0 0 0 0
0 1 1 1 1
2 0 2 0 0
3 3 0 3 0

Under similar assumptions, real-world Arsmtrong relations are built up from an initial relation.
We firstly present what we mean by real-world Armstrong relation:

Informally, a real-world Armstrong relation is an Armstrong relation satisfying the three fol-
lowing properties:

– it is an equivalent representation of the initial relation as regards functional dependencies;
– its values are taken among those of the initial relation;
– its size is often smaller of several orders of magnitude than the size of the initial relation.

Definition 1. Let r be a relation over R. A real-world Armstrong relation r over R is defined as
follows:

1. r is an Armstrong relation satisfying dep(r);
2. |r| = |MAX(dep(r))|+ 1;
3. ∀A ∈ R,∀ti ∈ r, ti[A] ∈ πA(r) where πA(r) is the projection of r on A.

13

The existence of a real-world Armstrong relation depends on the number of distinct values for
each attribute in the relation r: That leads to the following result.

Proposition 1. Let r be a relation over R. A real-world Armstrong relation r over R exists if and
only if ∀A ∈ R, |πA(r)| ≥ |{X ∈ MAX(dep(r))/A /∈ X}|+ 1.

Proof. Obvious. ⊓⊔

This condition means that, in the initial relation, each attribute must necessarily have enough
different values in order to construct real-world Armstrong relations. Under this condition, we can
build them as follows:

Suppose C = {X0, . . . , Xn} where X0 = R and Xi ∈ MAX(dep(r)). For each Xi ∈ C, associate
the tuple ti such that: ∀A ∈ R, πA(r) = {vA0, . . . , vAk}

ti[A] =

{
vA0 if A ∈ Xi,

vAi if A /∈ Xi.
(2)

Example 13. From our example, a real-world Armstrong relation exists since:
|πA(r)| = 6 ≥ |{X ∈ MAX(dep(r))/A /∈ X}|+ 1 = 2
|πB(r)| = 4 ≥ |{X ∈ MAX(dep(r))/B /∈ X}|+ 1 = 2
|πC(r)| = 6 ≥ |{X ∈ MAX(dep(r))/C /∈ X}|+ 1 = 2
|πD(r)| = 4 ≥ |{X ∈ MAX(dep(r))/D /∈ X}|+ 1 = 2
|πE(r)| = 4 ≥ |{X ∈ MAX(dep(r))/E /∈ X}|+ 1 = 1

The following real-world Armstrong relation can be achieved:
empnum depnum year depname mgr

1 1 85 Biochemistry 5
1 5 94 Admission 12
3 1 92 Biochemistry 5
4 2 85 Geophysics 5
Let us underline that such a relation is more informative than the previous one (C.f. example

4.1). As shown in the next section, their sizes can be significantly smaller than the size of the initial
relation.

5 Performances

To test the performances of our algorithms, we performed several experiments on an Intel Pen-
tium II with a CPU clock rate of 350 Mhz, 256 MB of main memory and running Windows NT 4.
We implemented the algorithms using the C++ language and STL (Standard Template Library).
Attribute sets are implemented as bit vectors to provide set operations in constant time. The
DBMS accesses are done by ODBC to remain independent of the DBMS. We used two DBMSs
during the tests: Oracle and MS Access.

Firstly, we give an overview of the Tane algorithm against which we compare the performances
of Dep-Miner. Then, we present the new benchmark database used for the tests and show the
obtained results.

14

5.1 The Tane algorithm

Several algorithms for discovering functional dependencies have been presented [MR86, SF93,
MR94a]. However, the Tane algorithm [HKPT98] is the best current algorithm for the discov-
ery of minimal non-trivial functional dependencies. Moreover, Tane can also provide approximate
functional dependencies. It partitions the set of tuples of a relation according to their attribute
values. Thus it preserves the information about which tuples agree on a set of attributes. To check
if a functional dependency holds, it verifies whether the tuples agree on the right-hand side when-
ever they agree on the left-hand side. The approach is based on a levelwise algorithm [MT97].
Functional dependencies are searched starting with dependencies having small left-hand side (i.e.
from dependencies that are not likely satisfied). It prunes the search space as soon as possible.

The Tane algorithm could be extended for building Armstrong relations. However the adapted
algorithm would be more time consuming than ours because it cannot combine discovery of both
functional dependencies and Armstrong relations. In fact, Armstrong relations are necessarily com-
puted once functional dependencies were exhibited.

However, for a simple hypergraph H, we have Tr(Tr(H)) = H (nihilpotence property) [Ber76].
From this result, the following equality can be deduced: cmax(dep(r), A) = Tr(lhs(dep(r), A)).
This means that from the left-hand sides of functional dependencies, the complements of maximal
sets can be achieved by computing the minimal transversals of the hypergraphs lhs(dep(r), A) for
A in R. From this point, it is easy to compute the maximal sets with the algorithm 5, and then to
build a real-world Armstrong relation by using the algorithm presented in section 4.

For the tests, due to the limitation of the downloadable version of Tane (available at [Tan]) to
relations with less than 32 attributes and the fact that Tane is implemented in C under Linux, we
have implemented our version of Tane (without additional execution time) in order to compare it
with Dep-Miner.

5.2 The benchmark database

We generated synthetic data sets (i.e. relations) in order to control various parameters during the
tests. By this way, the pros and cons for the two algorithms can be studied in more depth. Our
program for creating a populated relation uses parameters shown in table 2.

|R| Number of attributes
|r| Number of tuples
c Rate of identical values

Table 2. Parameters for synthetic data generation

We firstly create a table with |R| attributes in the database and then insert |r| tuples. Each
inserted value depends on the parameter c. It controls the number of identical values in a column
of the table. For example, if c has a value of 50% for an attribute and the number of tuples is 1000,
this means that each value for this attribute is chosen between 500 possible values.

15

5.3 Experiments with synthetic data

In this section, we present experimental results obtained with generated data. Tests were made on
various relations classified in three groups (see pages 17, 18 and 19):

– data sets without constraints;
– data sets with parameter c set to 30%;
– data sets with parameter c fixed to 50%.

For each group, the number of attributes varies from 10 to 60 and the number of tuples from
10,000 to 100,000. The execution times (in seconds) and the number of tuples of generated real-
world Armstrong relations are shown:

– in table 3 and figures 2 and 3 for data sets without constraints;
– in table 4 and figures 4 and 5 for data sets with parameter c fixed to 30%;
– in table 5 and figures 6 and 7 for data sets with parameter c fixed to 50%.

In these tests, we compare two versions of Dep-Miner to Tane. The former (called Dep-Miner)
implements algorithm 2 for computing agree sets. The latter (called Dep-Miner 2) implements
algorithm 3 to perform the very same task.

In the result tables, the symbol ’*’ stands for a null value, i.e. the algorithm does not yield
a result because a memory overload occurs or because the algorithm does not complete in less
than two hours. Such cases are observed only for relations encompassing 100,000 tuples, for both
Dep-Miner and Tane. For Dep-Miner, the reason is the following: when too many couples of tuples
must be handled, computing agree sets requires performing several steps, each of which examining
a given number of tuple couples (C.f. section 3.1). In such cases, Dep-Miner exceeds the fixed time
threshold of two hours.

For Tane, the reason is that our implementation works in memory. Thus, for large relation,
stripped partitions cannot be loaded in main memory.

For discovering functional dependencies, Dep-Miner is faster than Tane in all cases. The differ-
ence grows along with the number of attributes. Dep-Miner 2 is more efficient than Tane when the
number of attributes or the number of tuples are large.

For Armstrong relations, we observe that their size is small compared with the size of the original
relations. Most of the times, the number of tuples in generated real-world Armstrong relations varies
from 1/100 to 1/10, 000 compared with the number of tuples of the original relations. For instance,
let us consider a relation with 20 attributes and 100,000 tuples, the computed Armstrong relation is
provided with the very same attributes but its number of tuples is reduced to 116 (C.f. table 3 (b)).

16

|r|\|R| 10 20 30 40 50 60

10000 Dep-Miner 1.6 2.7 15.7 5.2 7.1 9.3
Dep-Miner 2 2.7 5.5 8.5 12.2 16.4 21.4
TANE 1.7 5.1 10.2 17.8 27.7 39.0

20000 Dep-Miner 3.6 7.3 11.2 16.7 24.4 32.7
Dep-Miner 2 9.9 20.5 32.2 45.5 64.2 82.8
TANE 6.7 21.0 44.6 75.6 121.3 167.0

30000 Dep-Miner 7.3 15.2 23.2 34.7 54.9 71.7
Dep-Miner 2 20.2 42.9 67.5 98.1 146.7 193.3
TANE 14.0 47.9 101.6 181.8 279.3 387.4

50000 Dep-Miner 16.7 36.8 54.7 87.7 160.7 201.0
Dep-Miner 2 47.6 102.3 168.8 235.2 436.2 537.3
TANE 35.9 131.4 267.2 478.1 737.1 1078.0

100000 Dep-Miner 64.6 143.6 * * * *
Dep-Miner 2 138.6 331.9 620.6 893.5 1603.9 1985.8
TANE 152.3 611.2 1425.3 2700.0 * *

(a)

|r|\|R| 10 20 30 40 50 60
10000 10 18 28 35 55 73
20000 9 24 64 67 179 222
30000 18 49 113 116 353 399
50000 26 70 208 194 633 661
100000 38 116 357 246 1047 942

(b)

Table 3. Execution times (in seconds) and sizes of Armstrong relations for data without constraints

0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

Number of tuples

Dep-Miner
Dep-Miner 2

Tane

10 attributs

0

200

400

600

800

1000

1200

1400

1600

1800

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

Number of tuples

Dep-Miner
Dep-Miner 2

Tane

50 attributs

Fig. 2. Execution times (in seconds) for data without constraints

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

N
u
m

b
e
r

o
f
tu

p
le

s
 o

f
re

a
l-
w

o
rl
d

 A
rm

s
tr

o
n
g

 r
e
la

ti
o
n

s

Number of tuples of database relation

10 attributes
20 attributes
30 attributes
40 attributes
50 attributes
60 attributes

Fig. 3. Sizes of Armstrong relations for data without constraints

17

|r|\|R| 10 20 30 40 50 60

10000 Dep-Miner 2.3 4.6 7.0 13.2 23.8 41.5
Dep-Miner 2 5.7 12.1 19.1 29.9 46.3 72.3
TANE 4.2 13.7 28.0 48.6 75.5 106.0

20000 Dep-Miner 4.8 9.4 14.4 24.3 35.9 54.1
Dep-Miner 2 11.6 24.7 38.8 59.8 85.0 117.3
TANE 8.7 28.1 59.0 99.9 151.7 218.1

30000 Dep-Miner 7.2 14.4 21.5 34.9 49.1 76.2
Dep-Miner 2 17.8 37.7 59.5 90.2 128.0 173.8
TANE 13.2 43.2 89.7 155.7 236.1 324.2

50000 Dep-Miner 13.0 24.2 36.8 57.4 78.6 113.8
Dep-Miner 2 30.3 64.1 102.3 152.9 206.1 286.1
TANE 23.2 75.9 158.2 272.3 426.5 607.2

100000 Dep-Miner 25.4 51.7 80.4 133.8 180.2 250.0
Dep-Miner 2 59.5 127.5 208.4 307.2 433.6 616.0
TANE 60.0 210.0 465.6 842.5 1373.2 2057.1

|r|\|R| 10 20 30 40 50 60
10000 11 43 107 177 292 430
20000 12 55 105 197 288 401
30000 12 38 105 194 279 448
50000 18 52 111 194 290 472
100000 11 58 145 266 410 582

Table 4. Execution times (in seconds) and sizes of Armstrong relations for correlated data (30%)

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

Number of tuples

Dep-Miner
Dep-Miner 2

Tane

10 attributs

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

Number of tuples

Dep-Miner
Dep-Miner 2

Tane

50 attributs

Fig. 4. Execution times (in seconds) for correlated data (30 %)

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

N
u
m

b
e
r

o
f
tu

p
le

s
 o

f
re

a
l-
w

o
rl
d

 A
rm

s
tr

o
n
g

 r
e

la
ti
o
n

s

Number of tuples of database relation

10 attributes
20 attributes
30 attributes
40 attributes
50 attributes
60 attributes

Fig. 5. Sizes of Armstrong relations for correlated data (30 %)

18

|r|\|R| 10 20 30 40 50 60

10000 Dep-Miner 3.6 7.2 11.9 42.1 109.7 256.4
Dep-Miner 2 9.0 20.2 33.5 76.7 158.5 336.4
TANE 7.1 24.1 51.2 94.3 153.9 240.0

20000 Dep-Miner 7.3 14.9 23.5 58.8 134.1 284.9
Dep-Miner 2 18.7 41.3 67.5 129.0 236.9 434.3
TANE 14.8 50.2 110.4 186.5 312.5 451.3

30000 Dep-Miner 11.8 22.6 35.3 81.6 152.6 319.5
Dep-Miner 2 28.5 62.5 104.0 191.9 327.6 518.7
TANE 22.9 78.2 167.6 294.4 474.0 680.3

50000 Dep-Miner 18.8 38.2 59.8 121.6 219.8 422.3
Dep-Miner 2 50.3 108.7 176.9 312.8 505.7 837.4
TANE 38.9 132.8 286.5 506.6 812.3 1181.0

100000 Dep-Miner 40.2 86.6 138.8 * * *
Dep-Miner 2 98.3 227.6 341.5 652.0 1001.4 1570.4
TANE 104.4 402.2 942.6 1791.6 2957.0 4566.4

|r|\|R| 10 20 30 40 50 60
10000 30 125 287 512 835 1206
20000 25 130 292 516 839 1210
30000 30 128 294 543 815 1182
50000 33 131 293 551 869 1264
100000 37 150 356 635 974 1400

Table 5. Execution times (in seconds) and sizes of Armstrong relations for correlated data (50%)

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

Number of tuples

Dep-Miner
Dep-Miner 2

Tane

10 attributs

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

Number of tuples

Dep-Miner
Dep-Miner 2

Tane

50 attributs

Fig. 6. Execution times (in seconds) for correlated data (50 %)

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

N
u
m

b
e
r

o
f
tu

p
le

s
 o

f
re

a
l-
w

o
rl
d

 A
rm

s
tr

o
n
g

 r
e

la
ti
o
n

s

Number of tuples of database relation

10 attributes
20 attributes
30 attributes
40 attributes
50 attributes
60 attributes

Fig. 7. Sizes of Armstrong relations for correlated data (50 %)

19

6 Conclusion

In this paper, we propose a new approach intended for a twofold objective:

– discovering minimal non-trivial functional dependencies holding in a given relation;
– achieving a real-world Armstrong relation, which can be seen as a loss-less sample of the initial

relation.

The approach fits in a theoretical framework proposed in [MR86, MR94a, MR94b] for addressing
the very same issue. Nevertheless, it differs from related work because we put the emphasis on the
efficiency of the discovery of functional dependencies and real-world Armstrong relations. In this
context, new solutions are proposed by using techniques originated by data mining. Each step
of the approach is provided with formal foundations ensuring the correctness of the underlying
algorithms.

The main benefit of our twofold discovery approach is that the dba is provided with two differ-
ent representations. On one hand functional dependencies could be used for normalizing existing
relation schemas. On the other hand, real-world Armstrong relations are particularly useful for
better understanding relation schemas, and aiding to select only relevant functional dependencies
among the whole (and possibly voluminous) set of extracted dependencies.

Perspectives for Database Administration. Reducing database administration functions is recog-
nized as being a new challenge in database community. In this context, the aim of the so-called
“plug and play databases” is facilating the database administrator tasks and dealing with informa-
tion discovery [BBC+98]. For example, in the context of the AutoAdmin project [Mic], physical
database design is investigated for tuning index definitions in order to improve performances of
the system [CN98].
In a similar way, existing logical database constraints should be fully understood. Providing the
dba with such a knowledge is particularly critical not only for improving application performances
but also for guaranteeing data consistency. We believe that promising applications of the presented
work fit in such a research direction.

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley,
1995.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In Proceedings of the Twentieth International Conference on Very Large
Databases, Santiago de Chile, Chile, pages 487–499, 1994.

[BA99] Roberto Bayardo and Rakesh Agrawal. Mining the most interesting rules. In Proceedings of
the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, pages 145–154, 1999.

[BBC+98] Philip A. Bernstein, Michael L. Brodie, Stefano Ceri, David J. DeWitt, Michael J. Franklin,
Hector Garcia-Molina, Jim Gray, Gerald Held, Joseph M. Hellerstein, H. V. Jagadish, Michael
Lesk, David Maier, Jeffrey F. Naughton, Hamid Pirahesh, Michael Stonebraker, and Jeffrey D.
Ullman. The Asilomar report on database research. SIGMOD Record, 27(4):74–80, 1998.

[BDFS84] Catriel Beeri, Martin Dowd, Ronald Fagin, and Richard Statman. On the structure of Arm-
strong relations for functional dependencies. Journal of the ACM, 31(1):30–46, 1984.

20

[Ber76] Claude Berge. Graphs and Hypergraphs. North-Holland Mathematical Library 6. American
Elsevier, 2d rev. ed. edition, 1976.

[BK86] Catriel Beeri and Michael Kifer. An integrated approach to logical design of relational database
schemes. ACM Transaction on Database Systems, 11(2):134–158, 1986.

[CKS86] Stavros S. Cosmadakis, Paris C. Kanellakis, and Nicolas Spyratos. Partition semantics for
relations. Journal of Computer and System Sciences, 33(2):203–233, 1986.

[CL98] Ethan Collopy and Mark Levene. Evolving example relations to satisfy functional dependen-
cies. In Proceedings of the International Workshop on Issues and Applications of Database
Technology, pages 440–447, 1998.

[CN98] Surajit Chaudhuri and Vivek R. Narasayya. Autoadmin ’what-if’ index analysis utility. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle,
Washington, USA, pages 367–378, 1998.

[Cod71] E. F. Codd. Further normalization of the data base relational model. Technical Report 909,
IBM Research, 1971.

[DLM92] János Demetrovics, Leonid Libkin, and Ilya B. Muchnik. Functional dependencies in relational
databases: A lattice point of view. Discrete Applied Mathematics, 40:155–185, 1992.

[EG95] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

[Fag82a] Ronald Fagin. Armstrong databases. Technical Report 5, IBM Research Laboratory, 1982.
[Fag82b] Ronald Fagin. Horn clauses and database dependencies. Journal of the ACM, 29(4):952–985,

1982.
[GL90] Georg Gottlob and Leonid Libkin. Investigations on Armstrong relations, dependency infer-

ence, and excluded functional dependencies. Acta Cybernetica, 9(4):385–402, 1990.
[HKPT98] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Efficient discovery of

functional and approximate dependencies using partitions. In Proceedings of the Fourteenth
IEEE International Conference on Data Engineering, pages 392–401, 1998.

[KMR+94] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and A. Inkeri Verkamo.
Finding interesting rules from large sets of discovered association rules. In Proceedings of the
Third International Conference on Information and Knowledge Management, Gaithersburg,
Maryland, pages 401–407, 1994.

[KMRS92] Martti Kantola, Heikki Mannila, Kari-Jouko Räihä, and Harri Siirtola. Discovering func-
tional and inclusion dependencies in relational databases. International Journal of Intelligent
Systems, 7:591–607, 1992.

[LL99] Mark Levene and Georges Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-verlag London Limited, 1999.

[LPT99] Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. Discovery of “interesting” data de-
pendencies from a workload of SQL statements (poster). In Jan Rauch Jan M. Zytkow, editor,
PKDD’99, Prague, Czech Republic, volume 1704, pages 430–435. Springer, 1999.

[Mic] Autoadmin Project, Microsoft research, database group,
http://www.research.microsoft.com/db.

[MM90] V.M. Markowitz and J.A. Makowsky. Identifying extended entity-relationship object struc-
tures in relational schemas. IEEE Transactions on Software Engineering, 16(8):777–790, 1990.

[MR86] Heikki Mannila and Kari-Jouko Räihä. Design by example: An application of Armstrong
relations. Journal of Computer and System Sciences, 33(2):126–141, 1986.

[MR94a] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring functional dependencies from
relations. Data and Knowledge Engineering, 12(1):83–99, 1994.

[MR94b] Heikki Mannila and Kari-Jouko Räihä. The Design of Relational Databases. Addison Wesley,
1994.

[MT97] Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

21

[PBTL99] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of the Seventh International Conference on
Database Theory, Jerusalem, Israël, pages 398–416, 1999.

[PBTL00] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Mining bases for association
rules using galois closed sets (poster). In Proceedings of the Sixteenth IEEE International Con-
ference on Data Engineering, February 29 - March 3, San Diego, CA, USA. IEEE Computer
Society, 2000.

[SF93] Iztok Savnik and Peter A. Flach. Bottom-up induction of functional dependencies from rela-
tions. In Proceedings of the AAAI-93Workshop on Knowledge Discovery in Databases, pages
174–185, 1993.

[Spy87] Nicolas Spyratos. The partition model: A deductive database model. ACM Transaction on
Database Systems, 12(1):1–37, 1987.

[Tan] WWW page http://www.cs.helsinki.fi/research/fdk/datamining/tane.

22

