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Abstract

We derive a posteriori error estimates for singularly perturbed reaction–diffusion problems which
yield a guaranteed upper bound on the discretization error and are fully and easily computable.
Moreover, they are also locally efficient and robust in the sense that they represent local lower
bounds for the actual error, up to a generic constant independent in particular of the reaction
coefficient. We present our results in the framework of the vertex-centered finite volume method
but their nature is general for any conforming method, like the piecewise linear finite element
one. Our estimates are based on a H(div)-conforming reconstruction of the diffusive flux in
the lowest-order Raviart–Thomas space linked with mesh dual to the original simplicial one,
previously introduced by the last author in the pure diffusion case. They also rely on elaborated
Poincaré, Friedrichs, and trace inequalities-based auxiliary estimates designed to cope optimally
with the reaction dominance. In order to bring down the ratio of the estimated and actual overall
energy error as close as possible to the optimal value of one, independently of the size of the
reaction coefficient, we finally develop the ideas of local minimizations of the estimators by local
modifications of the reconstructed diffusive flux. The numerical experiments presented confirm
the guaranteed upper bound, robustness, and excellent efficiency of the derived estimates.
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1 Introduction

We consider in this paper the model reaction–diffusion problem

− ∆p + rp = f in Ω, (1.1a)

p = 0 on ∂Ω, (1.1b)

where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected set),

r ∈ L∞(Ω), r ≥ 0, is a reaction coefficient, and f ∈ L2(Ω) is a source term. We denote respectively
by cr,S and Cr,S the best nonnegative constants such that cr,S ≤ r ≤ Cr,S a.e. on a given subdomain
S of Ω. Our purpose is to derive optimal a posteriori error estimates for vertex-centered finite
volume approximations of problem (1.1a)–(1.1b), with extensions to other conforming methods
like the piecewise linear finite element one.

Averaging a posteriori error estimates like the Zienkiewicz–Zhu [23] one are quite popular for the
purpose of adaptive mesh refinement in boundary value problems simulations but actually do not
give a guaranteed upper bound on the error made in a numerical approximation. More severely, for
problem (1.1a)–(1.1b) in particular, they are not robust in the sense that the ratio of the estimated
and true energy errors blows up for high values of r. The improvement of the equilibrated residual
method to singularly perturbed reaction–diffusion problems by Ainsworth and Babuška [1] does not
have this drawback and yields robust estimates. It also gives a guaranteed upper bound but this
bound is actually not computable, since it is based on a solution of an infinite-dimensional local
problem on each mesh element. Approximations to these problems have to be used in practice,
which rises the question of preservation of the guaranteed upper bound and even of the robustness.
This question, along with a robust extension to anisotropic meshes, is treated by Grosman in [8]. By
introducing suitable finite-dimensional approximations of the local infinite-dimensional problems,
Grosman proves the robustness of the final practical estimate. Moreover, he also shows that these
approximations yield an estimate which is equivalent with the original infinite-dimensional one up
to an unknown constant, independent of the mesh size h and the reaction parameter r. He thus
ensures the reliability of the final discrete version of the equilibrated residual method, the presented
numerical results are excellent, but still the guaranteed upper bound property in the strict sense
is lost, as one can notice it in [8, Table 1]. Moreover, this approach seems rather complicated and
computationally quite expensive, although the evaluation cost remains linear.

Verfürth in [17] derived robust residual a posteriori error estimates for singularly perturbed
reaction–diffusion problems which are explicitly and easily computable. Unfortunately, these es-
timates are not guaranteed in the sense that they contain various undetermined constants; they
are suitable for adaptive mesh refinement but not for the actual error control. An extension of
this result to anisotropic meshes is then given by Kunert [11]. Recently, Repin and Sauter [14] or
Korotov [10] presented estimates which do give a guaranteed upper bound also for problem (1.1a)–
(1.1b). However, for accurate error control, computational amount comparable to that necessary
to the computation of the approximation itself is required and it is quite likely that this amount
will grow for growing coefficient r, which does not match with the term robustness. Coincidently,
no (local) efficiency is proved in these references. Guaranteed and locally computable estimators
for problem (1.1a)–(1.1b) are also arrived at by Vejchodský [16], but, once again, no lower bound
is proved and the estimate is not expected to be robust.

A family of “equilibrated fluxes” estimates was established recently for various numerical meth-
ods in [20, 19, 6, 21]. These estimates are explicitly and easily computable and yield a guaranteed
upper bound together with local efficiency; the estimates of [21] for the pure diffusion case are more-
over completely robust with respect to an inhomogeneous diffusion coefficient. In the conforming
case, these estimates resemble ideas going back to the Prager–Synge equality [13].
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The purpose of this paper is to extend the estimates of [21] to the singularly perturbed reaction–
diffusion problem (1.1a)–(1.1b). We first in Section 3, after giving the necessary preliminaries in
Section 2, present an abstract a posteriori error estimate for conforming (contained in H1

0 (Ω))
approximations to problem (1.1a)–(1.1b). This estimate is shown to be optimal, i.e., equivalent
to the energy error, and gives the basic framework for the further study. We start in Section 4
by presenting the ideas of the diffusive flux reconstruction in the lowest-order Raviart–Thomas
space linked with the mesh dual to the original simplicial one and prove some important Poincaré,
Friedrichs, and trace inequalities-based auxiliary estimates designed to cope optimally with the
reaction dominance. Then the first main result, an a posteriori error estimate which is explicitly
and easily computable and which gives a guaranteed upper bound on the overall energy error,
is stated and proved. We present all these results in the framework of the vertex-centered finite
volume method but their nature is general for any conforming method, like the piecewise linear
finite element one. We finally in Section 5 present our second main result, the local efficiency and
robustness, with respect to reaction (and also diffusion) dominance and also with respect to the
spatial variation of r under the condition that r is piecewise constant on the dual mesh, of the
derived a posteriori error estimates in the finite volume case. We there actually show that our
estimates represent local lower bounds for those of Verfürth [17].

The numerical experiments of Section 6, using the package FreeFem++ [9], where our estimates
are implemented, confirm all the theoretical results. The only element missing for perfection is
that the effectivity index (the ratio of the estimated and actual error) is not as close to the optimal
value of 1 as one would have wished (it ranges between 2 and 6 in the presented results). This
phenomenon has been already observed in the pure diffusion case in [5] and [21]. A remedy to
this has been proposed in these references, consisting in local minimizations of the estimators by
local modifications of the reconstructed diffusive flux. In particular, an (approximate) full local
minimization over the available degrees of freedom has been proposed and studied in [5]. Such a
minimization leads to the solution of a local linear system for each vertex (of size equal to twice
the number of sides sharing the given vertex); although the cost remains linear, the complexity
is indeed slightly increased. The solution of local linear systems was completely avoided by the
simplified minimization approach of [21, Section 7]. We extend in this paper the two approaches to
the singularly perturbed reaction–diffusion problem (1.1a)–(1.1b). It turns out that the completely
explicit simplified local minimization gives almost always the best results, so it can for its simplicity
and efficiency be recommended for practical computations. In particular, with its use, the effectivity
index in the presented results ranges between 1 and 3 for all the meshes from the coarsest to the
finest and from uniformly to adaptively refined and for all values of the reaction coefficient r. We
finally remark that the homogeneous Dirichlet boundary condition is considered only for simplicity
of exposition. For inhomogeneous Dirichlet and Neumann boundary conditions in the present
setting (with r = 0), we refer to [22].

2 Preliminaries

We set up in this section the considered meshes description and all notation and describe the
continuous and discrete problems we shall work with.

2.1 Notation

We shall work in this paper with triangulations Th which for all h > 0 consists of triangles K such
that Ω̄ =

⋃
K∈Th

K and which are conforming, i.e., if K,L ∈ Th,K 6= L, then K ∩ L is either an
empty set or a common face, edge, or vertex of K and L. Let hK denote the diameter of K and
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Th

Dh

Sh

Figure 1: Original simplicial mesh Th, the associated dual mesh Dh, and the fine simplicial mesh Sh

let h := maxK∈Th
hK . We next denote by Eh the set of all sides of Th, by E int

h the set of interior,
by Eext

h the set of exterior, and by EK the set of all the sides of an element K ∈ Th; hσ stands for
the diameter of σ ∈ Eh. Finally, we denote by Vh (V int

h ) the set of all (interior) vertices of Th and
define for V ∈ Vh and σ ∈ Eh, respectively, TV := {L ∈ Th;L ∩ V 6= ∅}, Tσ := {L ∈ Th;σ ∈ EL}.

We shall next consider dual partitions Dh of Ω such that Ω̄ =
⋃

D∈Dh
D and such that each

V ∈ Vh is in exactly one DV ∈ Dh. The notation VD stands inversely for the vertex associated
with a given D ∈ Dh. When d = 2, we construct Dh as follows. For each vertex V , we consider
all the triangles K ∈ TV . Then, the dual volume DV associated to V is the polygon which has
these triangle barycenters and the midpoints of the edges passing trough V as vertices. An example
of such a dual volume is shown in Figure 1. If d = 3, in each tetrahedron, face barycentres are
first connected with face vertices and face edges midpoints. Then small tetrahedra are formed by
the resulting triangles in each face and the tetrahedron barycentre. Finally, the union of all small
tetrahedra sharing a given vertex VD is the dual volume D. We use the notation Fh for all sides of
Dh, F int

h (Fext
h ) for all interior (exterior) sides of Dh, and Dint

h (Dext
h ) to denote the dual volumes

associated with vertices from V int
h (Vext

h ).
Finally, in order to define our a posteriori error estimates, we need a second simplicial trian-

gulation Sh of Ω. This is given by Sh := ∪D∈Dh
SD, where the local triangulation SD of D ∈ Dh

is given as shown in Figure 1 if d = 2 and by the “small” tetrahedra if d = 3. We will use the
notation Gh for all sides of Sh and Gint

h (Gext
h , for all interior (exterior) sides of Sh. Also, we will

note Gint
D all σ ∈ Gint

h contained in the interior of a D ∈ Dh.
Next, for K ∈ Th, n always denotes its exterior normal vector and we employ the notation nσ

for a normal vector of a side σ ∈ Eh, whose orientation is chosen arbitrarily but fixed for interior
sides and coinciding with the exterior normal of Ω for exterior sides. For a function ϕ and a side
σ ∈ E int

h shared by K,L ∈ Th such that nσ points from K to L, we define the jump operator [[·]] by

[[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ . (2.1)

We put [[ϕ]] := 0 for any σ ∈ Eext
h . For σ = σK,L ∈ E int

h , we define the average operator {{·}} by

{{ϕ}} :=
1

2
(ϕ|K)|σ +

1

2
(ϕ|L)|σ, (2.2)

whereas for σ ∈ Eext
h , {{ϕ}} := ϕ|σ. We use the same type of notation also for the meshes Dh and Sh.

In what concerns functional notation, we denote by (·, ·)S the L2-scalar product on S and by ‖·‖S

the associated norm; when S = Ω, the index is dropped off. We denote by |S| the Lebesgue measure
of S, by |σ| the (d − 1)-dimensional Lebesgue measure of σ ⊂ R

d−1, and in particular by |s| the
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length of a segment s. Next, H1(S) is the Sobolev space of functions with square-integrable weak
derivatives and H1

0 (S) is its subspace of functions with traces vanishing on ∂S. Finally, H(div, S)
is the space of functions with square-integrable weak divergences, H(div, S) = {v ∈ L2(S);∇ · v ∈
L2(S)}, and 〈·, ·〉∂S stands for the appropriate duality pairing on ∂S.

2.2 Continuous and discrete problems

For problem (1.1a)–(1.1b), we define a bilinear form B by

B(p, ϕ) := (∇p,∇ϕ) + (r1/2p, r1/2ϕ),

where p, ϕ ∈ H1
0 (Ω), and the associated energy norm by

|||ϕ|||2 := B(ϕ,ϕ). (2.3)

The standard weak formulation for this problem is then to find p ∈ H1
0 (Ω) such that

B(p, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω). (2.4)

For the approximation of problem (1.1a)–(1.1b), we will consider the vertex-centered finite
volume method, also known as the finite volume element or the box method. It reads: find ph ∈ X0

h

such that
− 〈∇ph · n, 1〉∂D + (rph, 1)D = (f, 1)D ∀D ∈ Dint

h , (2.5)

where
X0

h :=
{
ϕh ∈ H1

0 (Ω); ϕh|K ∈ P1(K) ∀K ∈ Th

}

with P1(K) the space of linear polynomials on K ∈ Th. This method for the approximation
of problem (1.1a)–(1.1b) is very closely related to the piecewise linear finite element one, which
consists in finding ph ∈ X0

h such that

B(ph, ϕh) = (f, ϕh) ∀ϕh ∈ X0
h.

In particular, for the considered dual meshes, the discretization of the diffusion term completely
coincides, cf. [21, Lemma 3.8]. Similarly, if f is piecewise constant on Th, the discretization of the
right-hand side again coincides, see [21, Lemma 3.11], whereas the discretization of the reaction
term only differs by a numerical quadrature. We refer to [21] for the relations to other methods
yielding an approximation in the space X0

h.

3 Optimal abstract framework for a posteriori error estimation

In this section, we recall the basic results of [20, 6], giving an optimal abstract framework for a
posteriori error estimation in problem (1.1a)–(1.1b).

3.1 Abstract estimate

The first result is the following abstract upper bound:

Theorem 3.1 (Abstract a posteriori error estimate). Let p be the weak solution of problem (1.1a)–
(1.1b) given by (2.4) and let ph ∈ H1

0 (Ω) be arbitrary. Then

|||p − ph||| ≤ inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t − rph, ϕ) − (∇ph + t,∇ϕ)}. (3.1)
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Proof. We first notice that according to the definition of the energy norm by (2.3),

|||p − ph||| = B

(
p − ph,

p − ph

|||p − ph|||

)
.

Here, as well as in the sequel, we treat the possible occurrence of 0/0 as 0 for the simplicity of
notation. Next, as ϕ := (p − ph)/|||p − ph||| ∈ H1

0 , we have B(p, ϕ) = (f, ϕ) by (2.4). So, for any
t ∈ H(div,Ω), adding and subtracting (t,∇ϕ), we have

|||p − ph||| = (f, ϕ) − B(ph, ϕ)

= (f, ϕ) − (∇ph,∇ϕ) − (rph, ϕ)

= (f, ϕ) − (∇ph + t,∇ϕ) − (rph, ϕ) + (t,∇ϕ)

= (f −∇ · t − rph, ϕ) − (∇ph + t,∇ϕ),

(3.2)

where we have lastly applied the Green theorem yielding (t,∇ϕ) = −(∇ · t, ϕ). As t ∈ H(div,Ω)
was chosen arbitrarily and |||ϕ||| = 1, this concludes the proof.

3.2 Efficiency of the abstract estimate

Concerning the efficiency of the above estimate, we have:

Theorem 3.2 (Global efficiency of the abstract estimate). Let p be the weak solution of problem
(1.1a)–(1.1b) given by (2.4) and let ph ∈ H1

0 (Ω) be arbitrary. Then

inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t − rph, ϕ) − (∇ph + t,∇ϕ)} ≤ |||p − ph|||.

Proof. We add and subtract the term (rp, ϕ), put t = −∇p, and use the fact that p is the weak
solution to obtain

inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t − rph, ϕ) − (∇ph + t,∇ϕ)}

= inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t − rp, ϕ) − (∇ph + t,∇ϕ) + (rp − rph, ϕ)}

≤ sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f + ∆p − rp, ϕ) − (∇ph −∇p,∇ϕ) + (rp − rph, ϕ)}

= sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(∇(p − ph),∇ϕ) + (r(p − ph), ϕ)}.

The proof is concluded by using the Cauchy–Schwarz inequality, the fact that |||ϕ||| = 1, and the
definition of the energy norm (2.3).

4 Guaranteed a posteriori error estimates

We derive here a locally computable version of the abstract a posteriori estimate of the previous
section. The first step is to properly choose a reconstructed diffusive flux th ∈ H(div,Ω) to be used
as t ∈ H(div,Ω) in Theorem 3.1. We next recall the Poincaré, Friedrichs, and trace inequalities
and derive some auxiliary estimates that will turn out later as crucial in order to obtain robustness.
We finally state our guaranteed a posteriori error estimates.
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4.1 Diffusive flux reconstruction

We present here a particular diffusive flux reconstruction th ∈ H(div,Ω) in the vertex-centered
finite volume method (2.5), which will be crucial in our a posteriori error estimates. We define it
in the lowest-order Raviart–Thomas–Nédélec space over the fine simplicial mesh Sh introduced in
Section 2. The space RTN(Sh) is a space of vector functions having on each K ∈ Sh the form
(aK + dKx, bK + dKy)t if d = 2 and (aK + dKx, bK + dKy, cK + dKz)t if d = 3. Note that the
requirement RTN(Sh) ⊂ H(div,Ω) imposes the continuity of the normal trace across all σ ∈ Gint

h

and recall that v · nσ is constant on all σ ∈ Gh and that these side fluxes also represent the
degrees of freedom of RTN(Sh). For more details, we refer to Brezzi and Fortin [3] or Roberts and
Thomas [15].

Let us thus define th ∈ RTN(Sh) by

th · nσ = −{{∇ph · nσ}} ∀σ ∈ Gh, (4.1)

where {{·}} is the average operator defined in Section 2. Note that th · nσ is given directly by
−∇ph · nσ for such σ ∈ Gh where there is no jump in ∇ph, i.e., on all the sides σ ∈ Gh which are
in the interior of some K ∈ Th or at the boundary of Ω. In the other cases, we may think of th

as of a H(div,Ω)-conforming smoothing of −∇ph, which itself is not contained in H(div,Ω). The
following important property holds for th constructed in this way:

Lemma 4.1 (Reconstructed diffusive flux). Let ph ∈ X0
h be given by the vertex-centered finite

volume method (2.5) and let th ∈ RTN(Sh) be given by (4.1). Then

(∇ · th + rph, 1)D = (f, 1)D ∀D ∈ Dint
h .

Proof. The local conservativity of the vertex-centered finite volume method (2.5) and the defini-
tion (4.1) of th imply that

〈th · n, 1〉∂D + (rph, 1)D = (f, 1)D ∀D ∈ Dint
h ,

noticing that {{∇ph · nσ}} = ∇ph · nσ for all σ ⊂ ∂D, since all such sides lie in the interior of some
K ∈ Th, where ∇ph is constant. The assertion of the lemma now follows by the Green theorem.

4.2 Poincaré, Friedrichs, and trace inequalities-based auxiliary estimates

In order to define our estimators, we will need the Poincaré, Friedrichs, and trace inequalities, which
we recall below. We then prove several important auxiliary estimates, designed to cope optimally
with the reaction dominance.

Let D be a polygon or a polyhedron. The Poincaré inequality states that

‖ϕ − ϕD‖2
D ≤ CP,Dh2

D‖∇ϕ‖2
D ∀ϕ ∈ H1(D), (4.2)

where ϕD is the mean of ϕ over D given by ϕD := (ϕ, 1)D/|D| and where the constant CP,D can
for each convex D be evaluated as 1/π2, cf. [12, 2]. To evaluate CP,D for nonconvex elements D
is more complicated but it still can be done, cf. Eymard et al. [7, Lemma 10.2] or Carstensen and
Funken [4, Section 2].

The Friedrichs inequality states that

‖ϕ‖2
D ≤ CF,D,∂Ωh2

D‖∇ϕ‖2
D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D 6= ∅. (4.3)

As long as ∂Ω is such that there exists a vector b ∈ R
d such that for almost all x ∈ D, the first

intersection of Bx and ∂D lies in ∂Ω, where Bx is the straight semi-line defined by the origin x and
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the vector b, CF,D,∂Ω = 1, cf. [18, Remark 5.8]. To evaluate CF,D,∂Ω in the general case is more
complicated but it still can be done, cf. [18, Remark 5.9] or Carstensen and Funken [4, Section 3].

Finally, for a simplex K, the trace inequality states that

‖ϕ‖2
σ ≤ Ct,K,σ(h−1

K ‖ϕ‖2
K + ‖ϕ‖K‖∇ϕ‖K) ∀ϕ ∈ H1(K), (4.4)

cf., e.g., Carstensen and Funken [4, Theorem 4.1]. For the value of Ct,K,σ if d = 2, see Remark 4.3
below.

Lemma 4.2 (Auxiliary estimates on simplices). Let K ∈ Sh, σ ∈ EK , ϕ ∈ H1(K), and ϕK :=
(ϕ, 1)K/|K|. Then

‖ϕ − ϕK‖K ≤ mK |||ϕ|||K (4.5)

with
mK := min

{
C

1/2
P,KhK , c

−1/2
r,K

}
. (4.6)

Moreover,

‖ϕ − ϕK‖σ ≤ C
1/2
t,K,σm̃

1/2
K |||ϕ|||K (4.7)

with

m̃K := min

{(
CP,K + C

1/2
P,K

)
hK , c−1

r,Kh−1
K +

1

2
c
−1/2
r,K

}
. (4.8)

Proof. We begin by the first assertion. As ϕK is the L2 projection of ϕ over the constants, we have

‖ϕ − ϕK‖K ≤ ‖ϕ‖K . (4.9)

Now, using that

‖ϕ‖K =
∥∥∥
r1/2

r1/2
ϕ
∥∥∥

K
≤ c

−1/2
r,K |||ϕ|||K , (4.10)

we obtain ‖ϕ − ϕK‖K ≤ c
−1/2
r,K |||ϕ|||K . On the other hand, from the Poincaré inequality (4.2) and

definition (2.3) of the energy norm, the estimate ‖ϕ−ϕK‖K ≤ C
1/2
P,KhK |||ϕ|||K follows easily, whence

we conclude (4.5).
In order to prove the second assertion, we use the trace inequality (4.4) for ϕ − ϕK . We have

‖ϕ − ϕK‖2
σ ≤ Ct,K,σ(h−1

K ‖ϕ − ϕK‖2
K + ‖ϕ − ϕK‖K‖∇(ϕ − ϕK)‖K)

≤ Ct,K,σ(CP,KhK‖∇ϕ‖2
K + C

1/2
P,KhK‖∇ϕ‖2

K)

≤ Ct,K,σ

(
CP,K + C

1/2
P,K

)
hK |||ϕ|||2K ,

using that ∇ϕK = 0 and employing the Poincaré inequality (4.2) and definition (2.3) of the energy
norm. Similarly,

‖ϕ − ϕK‖2
σ ≤ Ct,K,σ

(
h−1

K ‖ϕ‖2
K + ‖ϕ‖K‖∇ϕ‖K

)

≤ Ct,K,σ

(
c−1
r,Kh−1

K |||ϕ|||2K + c
−1/2
r,K ‖r1/2ϕ‖K‖∇ϕ‖K

)

≤ Ct,K,σ

(
c−1
r,Kh−1

K |||ϕ|||2K +
1

2
c
−1/2
r,K |||ϕ|||2K

)
,

using (4.9), (4.10), the inequality 2ab ≤ a2+b2, and definition (2.3) of the energy norm, whence (4.7)
follows.
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Remark 4.3 (Improved estimate on triangles). In two space dimensions, owing to the form of the
trace inequality

‖ϕ‖2
σ ≤ Ct,K,σ

(
h−1

K ‖ϕ‖2
K +

2

3
‖ϕ‖K‖∇ϕ‖K

)

with

Ct,K,σ =
3

2
|σ|hK |K|−1, (4.11)

which follows from Carstensen and Funken [4, Theorem 4.1], we can actually use the somewhat
sharper bound

m̃K := min

{(
CP,K +

2

3
C

1/2
P,K

)
hK , c−1

r,Kh−1
K +

1

3
c
−1/2
r,K

}
(4.12)

instead of (4.8) in (4.7).

Lemma 4.4 (Auxiliary estimates on dual volumes). Let D ∈ Dh, ϕ ∈ H1(D), and ϕD :=
(ϕ, 1)D/|D|. Then,

‖ϕ − ϕD‖D ≤ mD|||ϕ|||D , D ∈ Dint
h ,

‖ϕ‖D ≤ mD|||ϕ|||D , D ∈ Dext
h ,

where

mD := min
{

C
1/2
P,DhD, c

−1/2
r,D

}
, D ∈ Dint

h , (4.13)

mD := min
{

C
1/2
F,D,∂ΩhD, c

−1/2
r,D

}
, D ∈ Dext

h , (4.14)

with CP,D the constant from the Poincaré inequality (4.2) and CF,D,∂Ω that from the Friedrichs
inequality (4.3).

Proof. The proof of the first statement is analogous to the proof of (4.5) in Lemma 4.2. For

D ∈ Dext
h , we use ‖ϕ‖D ≤ c

−1/2
r,D |||ϕ|||D (cf. (4.10)) and the Friedrichs inequality (4.3) to obtain the

second statement.

4.3 Guaranteed a posteriori error estimates

We define and prove here our a posteriori error estimates in a rather general form motivated by
the diffusive flux reconstruction of Section 4.1:

Theorem 4.5 (Guaranteed a posteriori error estimate). Let p be the weak solution of prob-
lem (1.1a)–(1.1b) given by (2.4) and let ph ∈ H1

0 (Ω) be arbitrary. Let next th ∈ H(div,Ω) be
such that

(∇ · th + rph, 1)D = (f, 1)D ∀D ∈ Dint
h . (4.15)

Define the residual estimator by

ηR,D := mD‖f −∇ · th − rph‖D, D ∈ Dh, (4.16)

where mD is given by (4.13)–(4.14), and the diffusive flux estimator

ηDF,D := min
{
η

(1)
DF,D, η

(2)
DF,D

}
, D ∈ Dh, (4.17)

where
η

(1)
DF,D := ‖∇ph + th‖D
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and

η
(2)
DF,D :=





∑

K∈SD


mK‖∆ph + ∇ · th‖K + m̃

1/2
K

∑

σ∈EK

C
1/2
t,K,σ‖(∇ph + th) · n‖σ




2


1/2

,

with mK given by (4.6), and m̃
1/2
K and C

1/2
t,K,σ respectively by (4.8) and (4.4) (or, more precisely,

by (4.12) and (4.11) if d = 2). Then

|||p − ph||| ≤





∑

D∈Dh

(ηR,D + ηDF,D)2





1/2

. (4.18)

Proof. Putting t = th in (3.2) we have (with ϕ defined in the proof of Theorem 3.1)

|||p − ph||| = (f −∇ · th − rph, ϕ) − (∇ph + th,∇ϕ).

Next, multiplying (4.15) by ϕD := (ϕ, 1)D/|D|, we come to

(f −∇ · th − rph, ϕD)D = 0 ∀D ∈ Dint
h .

Thus
|||p − ph||| =

∑

D∈Dint

h

{(f −∇ · th − rph, ϕ − ϕD)D − (∇ph + th,∇ϕ)D}

+
∑

D∈Dext

h

{(f −∇ · th − rph, ϕ)D − (∇ph + th,∇ϕ)D} .
(4.19)

Using the Cauchy–Schwarz inequality and Lemma 4.4, we have for D ∈ Dint
h

(f −∇ · th − rph, ϕ − ϕD)D ≤ ‖f −∇ · th − rph‖D‖ϕ − ϕD‖D

≤ mD‖f −∇ · th − rph‖D|||ϕ|||D = ηR,D|||ϕ|||D
(4.20)

and for D ∈ Dext
h

(f −∇ · th − rph, ϕ)D ≤ ‖f −∇ · th − rph‖D‖ϕ‖D

≤ mD‖f −∇ · th − rph‖D|||ϕ|||D = ηR,D|||ϕ|||D .
(4.21)

In order to estimate the terms −(∇ph + th,∇ϕ)D, we can use Cauchy–Schwarz inequality and
the definition (2.3) of the energy norm to obtain

− (∇ph + th,∇ϕ)D ≤ ‖∇ph + th‖D‖∇ϕ‖D ≤ η
(1)
DF,D|||ϕ|||D . (4.22)

However, the estimate ‖∇ϕ‖D ≤ |||ϕ|||D is too strong if r ≫ 1 and an a posteriori error estimate

featuring only η
(1)
DF,D would not be robust. We fortunately notice that there is another way of

estimating the terms −(∇ph + th,∇ϕ)D. Using the fact that ∇ϕK = 0 for ϕK := (ϕ, 1)K/|K| for
all K ∈ SD and the Green theorem, we obtain

−(∇ph + th,∇ϕ)D =
∑

K∈SD

−(∇ph + th,∇(ϕ − ϕK))K

=
∑

K∈SD

{−〈(∇ph + th) · n, ϕ − ϕK〉∂K + (∆ph + ∇ · th, ϕ − ϕK)K}.
(4.23)
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We now estimate the terms of the last sum separately. Using the Cauchy–Schwarz inequality
and estimate (4.7) from Lemma 4.2, the first terms of (4.23) can be estimated as

−〈(∇ph + th) · n, ϕ − ϕK〉∂K ≤
∑

σ∈EK

‖(∇ph + th) · n‖σ‖ϕ − ϕK‖σ

≤
∑

σ∈EK

‖(∇ph + th) · n‖σC
1/2
t,K,σm̃

1/2
K |||ϕ|||K .

(4.24)

For the second terms of (4.23), we use the Cauchy–Schwarz inequality and estimate (4.5) from
Lemma 4.2 in order to obtain

(∆ph + ∇ · th, ϕ − ϕK)K ≤ ‖∆ph + ∇ · th‖K‖ϕ − ϕK‖K

≤ ‖∆ph + ∇ · th‖KmK |||ϕ|||K . (4.25)

Putting inequalities (4.24) and (4.25) into (4.23), we obtain

−(∇ph + th,∇ϕ)D ≤

≤
∑

K∈SD


m̃

1/2
K

∑

σ∈EK

C
1/2
t,K,σ‖(∇ph + th) · n‖σ + mK‖∆ph + ∇ · th‖K


 |||ϕ|||K

≤ η
(2)
DF,D|||ϕ|||D ,

(4.26)

employing finally the Cauchy–Schwarz inequality.
Now, using estimates (4.22) and (4.26), we have that

− (∇ph + th,∇ϕ)D ≤ ηDF,D|||ϕ|||D . (4.27)

Hence, (4.19) with (4.20), (4.21), and (4.27), the Cauchy–Schwarz inequality, and the fact that
|||ϕ||| = 1 yield

|||p − ph||| ≤
∑

D∈Dh

(ηR,D + ηDF,D)|||ϕ|||D ≤





∑

D∈Dh

(ηR,D + ηDF,D)2





1/2

.

Remark 4.6 (The estimate for the vertex-centered finite volume method (2.5)). By Lemma 4.1,
th ∈ RTN(Sh) given by (4.1) for the vertex-centered finite volume method (2.5) satisfies (4.15),
whence it can directly be used in Theorem 4.5.

Remark 4.7 (Extensions to other conforming methods). Using the general form of Theorem 4.5,
extension of our a posteriori error estimates to other methods yielding a conforming approxima-
tion ph consists only in finding an appropriate th ∈ H(div,Ω) satisfying (4.15). For the pure
diffusion case, we refer in this respect to [21].

5 Local efficiency and robustness of the a posteriori error esti-

mates

We prove in this section the local efficiency of the a posteriori error estimators of Theorem 4.5 for
the vertex-centered finite volume method (2.5) and in particular their robustness, with respect to
reaction (and also diffusion) dominance and also with respect to the spatial variation of r under
the condition that r is piecewise constant on Dh. We actually show that they represent local lower
bounds for those of Verfürth [17].
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Theorem 5.1 (Local efficiency and robustness of the a posteriori error estimate). Let the functions
f and r be piecewise polynomials on Th of degree m, let p be the weak solution of problem (1.1a)–
(1.1b) given by (2.4), and let ph be its vertex-centered finite volume approximation given by (2.5).
Let next Th be shape-regular, i.e., let minK∈Th

|K|/hd
K ≥ κT for some positive constant κT . Let

finally the a posteriori error estimate be given by Theorem 4.5 with in particular th given by (4.1).
Then, for each D ∈ Dh, there holds

ηDF,D + ηR,D ≤ C|||p − ph|||D , (5.1)

where the constant C depends only on the space dimension d, on the shape regularity parameter κT ,
on the polynomial of degree m of f and r, on the constants CP,D if D ∈ Dint

h , CF,D,∂Ω if D ∈ Dext
h ,

and maxK∈SD
maxσ∈EK∩Gint

D
{Ct,K,σ}, and finally on the local variation of r through Cr,D/cr,D.

Proof. Let D ∈ Dh be fixed. We first note that as −∇ph · nσ = th · nσ for all σ ⊂ ∂D by (4.1)
and by the definition of the average operator, we may change the summation over σ ∈ EK to the

summation over σ ∈ EK ∩ Gint
D in the definition of η

(2)
DF,D. Then using the definition of the residual

and diffusive flux estimators and the triangle inequality, we have

ηDF,D + ηR,D =min
{

η
(1)
DF,D, η

(2)
DF,D

}
+ ηR,D ≤ η

(2)
DF,D + ηR,D

≤





∑

K∈SD


mK‖∆ph + ∇ · th‖K + m̃

1/2
K

∑

σ∈EK∩Gint

D

C
1/2
t,K,σ‖(∇ph + th) · n‖σ




2


1/2

+ mD‖f + ∆ph − rph‖D + mD‖∆ph + ∇ · th‖D.

So, squaring the above estimate and applying the Cauchy–Schwarz inequality, we obtain

C−1
1 (ηDF,D + ηR,D)2 ≤

∑

K∈SD

m2
K‖∆ph + ∇ · th‖

2
K +

∑

K∈SD

m̃K

∑

σ∈EK∩Gint

D

Ct,K,σ‖(∇ph + th) · n‖2
σ+

+ m2
D‖f + ∆ph − rph‖

2
D + m2

D‖∆ph + ∇ · th‖
2
D

for some constant C1 depending only on d and κT .
Noticing that m2

D ≤ C2m
2
K for all K ∈ SD, with a constant C2 which depends only on CP,D if

D ∈ Dint
h , CF,D,∂Ω if D ∈ Dext

h , κT , and Cr,D/cr,D, we have from the last inequality

(ηDF,D + ηR,D)2 ≤C1(1 + C2)
∑

K∈SD

m2
K‖∆ph + ∇ · th‖

2
K

+ C1

∑

K∈SD

m̃K

∑

σ∈EK∩Gint

D

Ct,K,σ‖(∇ph + th) · n‖2
σ

+ C1C2

∑

K∈SD

m2
K‖f + ∆ph − rph‖

2
K .

Recall now that for a simplex K and v ∈ RTN(K), we have the inverse inequality ‖∇ · v‖2
K ≤

C3h
−2
K ‖v‖2

K , with C3 depending only on d and κT , and the estimate (cf., e.g. [6, Lemma 4.11])

‖v‖2
K ≤ C4hK

∑

σ∈EK

‖v · n‖2
σ ,

with C4 again depending only on d and κT . Thus, as ∇ph + th ∈ RTN(K),

‖∆ph + ∇ · th‖
2
K ≤ C3h

−2
K ‖∇ph + th‖

2
K ≤ C3C4h

−1
K

∑

σ∈EK∩Gint

D

‖(∇ph + th) · n‖2
σ ,
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using also again the fact that −∇ph · nσ = th · nσ for all σ ⊂ ∂D. Hence, putting Ct,K :=
maxσ∈EK∩Gint

D
{Ct,K,σ}, we have the estimate

(ηDF,D + ηR,D)2 ≤C1

∑

K∈SD


(

(1 + C2)C3C4m
2
Kh−1

K + Ct,Km̃K

) ∑

σ∈EK∩Gint

D

‖(∇ph + th) · n‖2
σ




+ C1C2

∑

K∈SD

m2
K‖f + ∆ph − rph‖

2
K .

Let us now recall that by definition (4.1) of th, we have

(∇ph + th)|K · nσ = (∇ph · nσ)|K − {{∇ph · nσ}} =
1

2
nσ · n[[∇ph · nσ]]

if σ ∈ EK ∩ Gint
D , where nσ · n = ±1 is used for sign alternation. Thus, we infer, for a constant C5

only depending on the constants C1–C4, maxK∈SD
Ct,K , d, and κT ,

(ηDF,D + ηR,D)2 ≤ C5

∑

K∈SD


m2

K‖f + ∆ph − rph‖
2
K + (m2

Kh−1
K + m̃K)

∑

σ∈EK∩Gint

D

‖[[∇ph · n]]‖2
σ


 .

We now show that m2
Kh−1

K + m̃K ≤ C6mK with some constant C6 only dependent on CP,K

(recall that CP,K = 1/π2 as simplices are convex). Firstly, m2
Kh−1

K ≤ C
1/2
P,KmK is obvious noticing

that this statement is equivalent to mK ≤ C
1/2
P,KhK , which follows from the definition (4.6) of mK .

Secondly, employing also this bound, we have

m̃K ≤ min
{(

CP,K + C
1/2
P,K

)
hK , c−1

r,Kh−1
K

}
+ min

{(
CP,K + C

1/2
P,K

)
hK ,

1

2
c
−1/2
r,K

}

≤
(
1 + C

−1/2
P,K

)
min

{
CP,KhK , c−1

r,Kh−1
K

}
+

(
1 + C

1/2
P,K

)
min

{
C

1/2
P,KhK , c

−1/2
r,K

}

=
(
1 + C

−1/2
P,K

)
m2

Kh−1
K +

(
1 + C

1/2
P,K

)
mK

≤ 2
(
1 + C

1/2
P,K

)
mK ,

whence the assertion follows. Combining the previous bounds, we thus have

(ηDF,D + ηR,D)2 ≤ C7

∑

K∈SD


m2

K‖f + ∆ph − rph‖
2
K + mK

∑

σ∈EK∩Gint

D

‖[[∇ph · n]]‖2
σ


 ,

for a constant C7 depending only on C5 and C6. We now finally note from this estimate that our
estimators represent a local lower bound for the residual a posteriori error estimators of Verfürth [17,
Proposition 4.1] (for the case of r constant and on the mesh Sh instead of the mesh Th). Hence, in
order to show their fully robust local efficiency, it is sufficient to use the results of this reference.
In particular, applying the bubble function estimates (4.13) and (4.16) from this reference to a
simplex K ∈ SD and its side σ ∈ Gint

D for r constant and f piecewise linear, we get

mK‖f + ∆ph − rph‖K ≤ C|||p − ph|||K ,

m
1/2
K ‖[[∇ph · n]]‖σ ≤ C|||p − ph|||Sσ

(recall that Sσ are the two simplices sharing σ ∈ Gint
D ), whence (5.1) follows. Finally, one can

extend this result to general piecewise polynomial f and r, which gives the final dependencies of
the constant C of (5.1) indicated in the announcement of the theorem.
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Figure 2: Comparison of the different estimators for the original jump estimate (4.18) with th given
by (4.1) (left) and for the minimization estimate (C.1) (right) in dependence on r

6 Numerical experiments

We present in this section a series of numerical experiments which confirm the theoretical results
of the paper. The a posteriori error estimate of Theorem 4.5 with the reconstructed diffusive flux
th given by (4.1) gives a guaranteed upper bound on the overall energy error but the effectivity
index is never close to the optimal value of one in our tests. For this reason, we also present results
employing a local minimization procedure, consisting in modifications of the flux th in the interior
of each D ∈ Dh. This procedure is in detail described in the appendix below.

We perform our numerical experiments for problem (1.1a) with Ω = (0, 1) × (0, 1), a constant
reaction coefficient r, and f = 0. We prescribe the Dirichlet boundary condition by the exact
solution

p(x, y) = e−r1/2x + e−r1/2y,

as in [8]. This solution exhibits a boundary layer along the coordinate axes for high values of r. In
order to carry out the tests, we have implemented our estimates into the FreeFem++ [9] package
and all the results presented have been computed using FreeFem++. Finally, we shall in this
section term estimate (4.18) of Theorem 4.5 with th given by (4.1) as the jump estimate, as this
reconstructed diffusive flux th leads to estimators of the form ‖(∇ph + th) · n‖σ = ‖[[∇ph · n]]‖σ/2,
and estimate (C.1) following from the local minimization strategy described in Appendix C below
as the minimization estimate. We however note that in the majority of cases, it is the simple
choice (B.1) which gives the minimum, so that very similar results may be presented with (B.1)
instead of (C.1).

We first in the left part of Figure 2 show the different estimators of the original jump esti-
mate (4.18) with th given by (4.1) on a fixed uniformly refined mesh with 512 elements in depen-
dence on the reaction coefficient r, which we let vary between 10−6 and 106. We remark that the
highest contribution is always given by the residual estimate ηR := {

∑
D∈Dh

η2
R,D}

1

2 , whereas the

contributions of the diffusive flux estimates η
(i)
DF := {

∑
D∈Dh

(η
(i)
DF,D)2}

1

2 are smaller. Note also that

although the estimate η
(1)
DF gives smaller values for moderate values of r, it gets eventually outper-

formed by the estimate η
(2)
DF. We next in Figure 3 present, for two different (uniformly refined)

grids, the corresponding effectivity indices. We can clearly see that they are bounded uniformly
with respect to r which demonstrates the full robustness of our estimates. Unfortunately, in partic-
ular for smaller values of r, they are not too close to the optimal value of 1. This is the reason for
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Figure 3: Effectivity indices for the original jump estimate (4.18) with th given by (4.1) and for
the minimization estimate (C.1) in dependence on r for two different (uniformly refined) meshes

the introduction of a local minimization procedure which we have devised in [5] and [21, Section 7]
in the pure diffusion case and which we adapt to the present case in the appendix below. The
results using the minimization estimate (C.1) are then presented in the right part of Figure 2 and
in Figure 3. We can see that for moderate values of r, the residual estimate has been decreased
under the diffusive flux ones and consequently the effectivity index gets close to the optimal value
of 1. In what follows, we present the results only for the minimization estimate (C.1).

Apart from overall error control, a posteriori error estimates are a key element for adaptive
mesh refinement. We exploit for this purpose the capabilities of FreeFem++. We mark an element
for refinement if the estimator exceeded 50% of the maximal element estimators but we recall
that FreeFem++ actually generates a completely new mesh on the basis of this criterion and this
new mesh is thus not a simple refinement of the previous one. In the adaptive refinement case,
the elements marked for refinement were selected using the original jump estimators (4.18) with
th given by (4.1). This approach seems to give better numerical results (better error decreasing
with the number of elements) and is in coincidence with our theoretical results, since we prove the
local efficiency for these original estimators in Theorem 5.1. We firstly plot, in the left parts of
Figures 4 and 5, respectively, the estimated and actual errors against the number of elements in both
uniformly and adaptively refined meshes for r = 1 and r = 106. In the first case, the solution posses
no singularity, so the adaptive approach only leads to a slight improvement of the error attained for
a given number of unknowns on coarse meshes, whereas this tendency is reversed for fine meshes. In
the second case with a singular solution, the adaptive approach leads to an important improvement
of the error attained for a given number of unknowns. The effectivity indices are then shown in the
right parts of Figures 4 and 5, respectively. In the first case, they improve considerably with the
mesh refinement and especially in the adaptive refinement mode they get very close to the optimal
value of 1, whereas in the second one they are rather stable around the value of 2.4. Finally, to
further promote the usability of our estimates for adaptive mesh refinement, we present in Figure 6
the excellently matching predicted and actual error distribution and the corresponding adaptively
refined mesh as given by the jump estimator for r = 106.
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Figure 4: Estimated and actual error against the number of elements in uniformly/adaptively re-
fined meshes (left) and corresponding effectivity indices (right) of the minimization estimator (C.1),
r = 1
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http://www.freefem.org/ff++, 2007.

[10] Korotov, S. Two-sided a posteriori error estimates for linear elliptic problems with mixed
boundary conditions. Appl. Math. 52, 3 (2007), 235–249.

17

http://www.freefem.org/ff++


[11] Kunert, G. Robust a posteriori error estimation for a singularly perturbed reaction-diffusion
equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15, 1-4 (2001), 237–259
(2002). A posteriori error estimation and adaptive computational methods.

[12] Payne, L. E., and Weinberger, H. F. An optimal Poincaré inequality for convex domains.
Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960).

[13] Prager, W., and Synge, J. L. Approximations in elasticity based on the concept of function
space. Quart. Appl. Math. 5 (1947), 241–269.

[14] Repin, S., and Sauter, S. Functional a posteriori estimates for the reaction-diffusion
problem. C. R. Math. Acad. Sci. Paris 343, 5 (2006), 349–354.

[15] Roberts, J. E., and Thomas, J.-M. Mixed and hybrid methods. In Handbook of Numerical
Analysis, Vol. II. North-Holland, Amsterdam, 1991, pp. 523–639.
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[19] Vohraĺık, M. Residual flux-based a posteriori error estimates for finite volume discretizations
of inhomogeneous, anisotropic, and convection-dominated problems. Submitted to Numer.
Math., 2006.
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Appendix: Improvements by local minimization

In Sections 4 and 5, we have shown that a choice of th ∈ H(div,Ω) in Theorem 4.5 for the vertex-
centered finite volume method (2.5) leading to a guaranteed upper bound, local efficiency, and
robustness is given by (4.1). However, it is not apparent at all whether this choice leads to the best
upper bound. In particular, by closer investigation, it turns out that whereas in mixed finite element
or discontinuous Galerkin (finite volume) methods, the residual estimator represents a higher-order
term, as in these methods one has (with an appropriate th) (∇ · th + rph, 1)K = (f, 1)K for all
K ∈ Th, it is not the case here, as (4.15) is only true on a set of elements SD of each interior
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dual volume D and not on each element K ∈ SD. The numerical experiments for th given by (4.1)
presented in Section 6 indeed show that the residual estimators ηR,D represent a major contribution
to the estimate.

A natural idea in order to decrease the estimate is to try to choose another th ∈ H(div,Ω)
satisfying (4.15). Notice now that th ∈ RTN(Sh) given by (4.1) only for such σ ∈ Gh which are at
the boundary of some D ∈ Dint

h satisfies th ∈ H(div,Ω) and (4.15) and we can choose any value for
the other edges. In particular, we can choose values that minimize the estimate. Moreover, as the
estimator is build locally on each dual volume, we can perform this optimization process locally on
each dual volume.

We describe in this appendix two ways of a local minimization. In the pure diffusion case, the
first one was devised in [5] and consists in true local minimization for the given degrees of freedom,
leading to a small linear system solution for each vertex. The second, simplified one, was proposed
in [21, Section 7] and avoids any local linear system solution. We adapt them here to the reaction–
diffusion case; our exposition will be given in two space dimensions but a similar development can
be done in three space dimensions. For the sake of simplicity, we assume henceforth that f and r
are piecewise constant on Th.

A A full local minimization strategy

We outline here the generalization of the “full minimization strategy” of [5] to the reaction–diffusion
case.

A.1 Notation and previous results

Let D ∈ Dh be the dual volume corresponding to a vertex VD as in Figure 7; D is decomposed into
a subdivision SD of n subtriangles K0, . . . ,Kn−1, numbered in the counter-clockwise direction. On
each subtriangle Ki, the vertex 0 is the center of the volume D, the other vertices are numbered
in the counter-clockwise direction, and we call σi

j the edge opposite to the vertex j and nσi
j

the

exterior normal vector of the edge σi
j. Let next ψi

j , j = 0, 1, 2, be the basis function of RTN(Ki)

corresponding to the vertex j, i.e., ψi
j = 1

d|Ki|
(x− V i

j ), where V i
j is vertex j of the triangle Ki. On

Ki, th can consequently be written as th|Ki = αi
0ψ

i
0 + αi

1ψ
i
1 + αi

2ψ
i
2.

The values of the external fluxes over ∂D are prescribed by (4.1) in the same way as before:
for any dual volume D ∈ Dh, αi

0 = −|σi
0|∇ph · nσi

0

, i = 0, . . . , n − 1; if D ∈ Dext
h , then in addition

α0
2 = −|σ0

2 |∇ph ·nσ0

2

and αn−1
1 = −|σn−1

1 |∇ph ·nσn−1

1

. The internal fluxes, given by the coefficients

αi
1 and αi

2, have to first fulfill the continuity of the normal trace across the edges, which imposes

• if D ∈ Dint
h ,

αi
1 + αi+1

2 = 0, i = 0, . . . , n − 1 with αn
2 = α0

2; (A.1)

• if D ∈ Dext
h ,

αi
1 + αi+1

2 = 0, i = 0, . . . , n − 2. (A.2)

Therefore, there are n degrees of freedom X = (α0, . . . , αn−1)t if D ∈ Dint
h and n − 1 degrees of

freedom X = (α0, . . . , αn−2)t if D ∈ Dext
h left and these can be chosen in order to minimize the

estimator; from now on, the local estimator ηD(X) = ηDF,D(X) + ηR,D(X) will be considered as a
function of them. Later on, we will also employ the notation ηD(th) = ηDF,D(th) + ηR,D(th).
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Figure 7: Dual volume and its subdivision SD. Left: interior dual volume; right: boundary dual
volume

It has been in particular shown in [5, Section 3] that the square of the first diffusive flux

estimator η
(1)
DF,D on a dual volume D ∈ Dh is a quadratic form with respect to X of the form

(
η

(1)
DF,D

)2
(X) = a

(1)
DF −

(
B

(1)
DF

)t
X +

1

2
Xt

A
(1)
DFX; (A.3)

we refer to this reference for the precise form of the entries. Similarly, by a slight modification of
the approach of this reference, one can derive that

η2
R,D(X) = aR − Bt

RX +
1

2
Xt

ARX. (A.4)

We now accomplish a similar task for the diffusive flux estimator η
(2)
DF,D.

A.2 Diffusive flux estimator η
(2)
DF,D

By the definition, the square of the second diffusive flux estimator η
(2)
DF,D on a dual volume D ∈ Dh

is not a quadratic form with respect to the degrees of freedom X as the other ones. As our purpose
is to improve the estimator without increasing too much the computational cost, we choose not to

minimize
(
η

(2)
DF,D

)2
directly, but an upper bound instead: we have

(
η

(2)
DF,D

)2
≤ 2

∑

K∈SD

(
m2

K ||∇ · th||
2
K + 2m̃K

(
Ct,K,σ1

‖(∇ph + th) · n‖2
σ1

+Ct,K,σ2
‖(∇ph + th) · n‖2

σ2

))
,

using the inequality (a + b)2 ≤ 2(a2 + b2) and the fact that on the edge σ0 of each subtriangle K,

th is prescribed such that (∇ph + th)|K · nσ0
= 0. We denote by

(
η

(3)
DF,D

)2
this upper bound and

study it separately for interior and exterior dual volumes.
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A.2.1 Interior dual volumes

Let D ∈ Dint
h and SD = {K0, . . . ,Kn−1} be its subtriangulation. Using the definition of ψi

j

and (A.1), we have

th|K0
= 1

d|K0|

(
α0

0(x − V 0
0 ) + α0(x− V 0

1 ) − αn−1(x − V 0
2 )

)
,

th|Ki = 1
d|Ki|

(
αi

0(x − V i
0 ) + αi(x− V i

1 ) − αi−1(x − V i
2 )

)
, i = 1, . . . , n − 1

(A.5)

and consequently

‖∇ · th‖
2
K0

= 1
|K0|

(α0
0 + α0 − αn−1)2,

‖∇ · th‖
2
Ki

= 1
|Ki|

(αi
0 + αi − αi−1)2, i = 1, . . . , n − 1.

Using (A.5) and the fact that the normal components of the basis functions ψi
j are constant over

the edges, we have

‖(∇ph + th) · nσi
1

‖2
σi
1

= |σi
1|

(
∇ph · nσi

1

+ 1
|σi

1
|
αi

)2
, i = 0, . . . , n − 1,

‖(∇ph + th) · nσ0

2

‖2
σ0

2

= |σ0
2 |

(
∇ph · nσ0

2

− 1
|σ0

2
|
αn−1

)2
,

‖(∇ph + th) · nσi
2

‖2
σi
2

= |σi
2|

(
∇ph · nσi

2

− 1
|σi

2
|
αi−1

)2
, i = 1, . . . , n − 1.

Therefore, we find that
(
η

(3)
DF,D

)2
is a quadratic form with respect to X = (α0, . . . , αn−1)t:

(
η

(3)
DF,D

)2
(X) = a

(3)
DF −

(
B

(3)
DF

)t
X +

1

2
Xt

A
(3)
DFX, (A.6)

where a
(3)
DF =

∑n−1
i=0 Ei

0 and

B
(3)
DF = −




E0
1 + E1

2
...

En−1
1 + E0

2


 , A

(3)
DF =




2(E0
4 + E1

5) E1
3 E0

3

E1
3

. . .
. . .

. . .
. . .

. . .
. . .

. . . En−1
3

E0
3 En−1

3 2(En−1
4 + E0

5)




.

Here

Ei
0 = 2m2

Ki

(αi
0
)2

|Ki|
+ 4m̃Ki(Ct,Ki,σi

1

|σi
1|(∇ph · nσi

1

)2 + Ct,Ki,σi
2

|σi
2|(∇ph · nσi

2

)2),

Ei
1 = 4m2

Ki

αi
0

|Ki|
+ 8Ct,Ki,σi

1

m̃Ki∇ph · nσi
1

,

Ei
2 = −4m2

Ki

αi
0

|Ki|
− 8Ct,Ki,σi

2

m̃Ki∇ph · nσi
2

,

Ei
3 = −4

m2

Ki
|Ki|

,

Ei
4 = 2

m2

Ki
|Ki|

+ 4
C

t,Ki,σi
1

m̃Ki

|σi
1
|

,

Ei
5 = 2

m2

Ki
|Ki|

+ 4
C

t,Ki,σi
1

m̃Ki

|σi
2
|

.
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A.2.2 Boundary dual volumes

Let D ∈ Dext
h be a boundary dual volume. In the general case n > 2, using the conditions (A.2),

we find that
(
η

(3)
DF,D

)2
is a quadratic form of the form (A.6), where a

(3)
DF = Ẽ0

0 +
∑n−3

i=1 Ei
0 + Ẽn−2

0

and

B
(3)
DF = −




Ẽ0
1 + E1

2

E1
1 + E2

2
...

En−3
1 + En−2

2

Ẽn−2
1




, A
(3)
DF =




2(E0
4 + E1

5) E1
3

E1
3

. . .
. . .

. . .
. . .

. . .
. . . 2(En−3

4 + En−2
5 ) En−2

3

En−2
3 2Ẽn−2

4




.

Here Ei
0, Ei

1, Ei
2, Ei

3, Ei
4, Ei

5, i = 0, . . . , n − 2 are defined as for interior dual volumes, and we
introduce

Ẽ0
0 = E0

0 − E0
2α0

2 + E0
5(α0

2)
2,

Ẽ0
1 = E0

1 − E0
3α0

2,

Ẽn−2
0 = En−2

0 + En−1
0 + En−1

1 αn−1
1 + En−1

4 (αn−1
1 )2,

Ẽn−2
1 = En−2

1 + En−1
2 + En−1

3 αn−1
1 ,

Ẽn−2
4 = En−2

4 + En−1
5 .

In the limit case n = 2, we find (A.6) with the scalar entries

a
(3)
DF = E0

4 + E1
5 ,

B
(3)
DF = E0

1 + E1
2 − E0

3α0
2 + E1

3α1
1,

A
(3)
DF = E0

0 + E1
1α0

1 − E0
2α0

2 + E0
5(α0

2)
2 + E1

4(α1
1)

2.

A.3 Minimization

Given a dual volume D ∈ Dh, we would like to find the vector of degrees of freedom X0 such
that ηD(X0) = minX ηD(X) in order to improve the estimator. However, as we want to make this
improvement with a computational cost as small as possible, we choose not to minimize directly

ηD, but rather quadratic forms; precisely, we minimize η2
R,D + min

{(
η

(1)
DF,D

)2
,
(
η

(3)
DF,D

)2
}

, i.e,

min

{
min
X

{
η2
R,D(X) +

(
η

(1)
DF,D

)2
(X)

}
,min

X

{
η2
R,D(X) +

(
η

(3)
DF,D

)2
(X)

}}
.

Using definitions (A.3), (A.4), and (A.6), this amounts to find the minima of two quadratic forms:

X1 = argminX

(
a(1) −

(
B(1)

)t
X +

1

2
Xt

A
(1)X

)
,

where a(1) = aR + a
(1)
DF, B(1) = BR + B

(1)
DF, and A

(1) = AR + A
(1)
DF, and

X2 = argminX

(
a(3) −

(
B(3)

)t
X +

1

2
Xt

A
(3)X

)
,

where a(3) = aR + a
(3)
DF, B(3) = BR + B

(3)
DF, and A

(3) = AR + A
(3)
DF.
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The matrices AR and A
(1)
DF are positive, and so is A

(1); it is also definite: one can easily prove

that Xt
ARX and Xt

A
(1)
DFX cannot be zero at the same time except if X = 0. Thus, finding X1 is

reduced to computing the unique solution of the linear system A
(1)X = B(1). This is also true for

X2. Then we define the local estimator as

ηmin,full
D := min {ηD(X1), ηD(X2), ηD(th)} . (A.7)

Here th is given by (4.1) and we include the term ηD(th) for the sake of security, as, having
minimized the quadratic forms, we are not sure to have found the minimum. Once again, we stress
that this minimization process is local and the size of the matrices is small: it corresponds to
the number of subtriangles of the dual volume, which is generally of the order of 10. Thus, the
computational cost of the estimator does not increase excessively and remains linear.

B A simplified local minimization strategy

We generalize here one part of the “simplified minimization strategy” of [21, Section 7] to the
reaction–diffusion case.

Let D ∈ Dh be fixed. We construct tD ∈ RTN(SD) given by (4.1) only for such σ ∈ Gh

contained in D which are at the boundary of some E ∈ Dint
h and such that (∇·tD+rph, 1)K = (f, 1)K

for all K ∈ SD. Note that as (∇ · tD + rph, 1)D = (f, 1)D when D ∈ Dint
h , this can be done without

any (local) linear system solution by choosing the flux over one interior side and a sequential
construction as

∑
K∈SD

(f, 1)K = (f, 1)D. If D ∈ Dext
h , this argument is then replaced by the fact

that we are free to choose the fluxes over the exterior sides. We thus can define a local estimator

ηmin,loc
D := min {ηD(tD), ηD(th)} , (B.1)

where th is given by (4.1). We remark that in [21, Section 7], a parameter α such that ηD(αth+(1−
α)tD) was (approximately) minimal was searched in addition and the value ηD(αth + (1 − α)tD)
was included in the above minimum. We do not perform here such an additional minimization
since the above extremely simple choice already works very well.

C A minimization strategy used in the numerical experiments

In the numerical experiments of this paper, we finally use the minimization estimate of the form

|||p − ph||| ≤





∑

D∈Dh

(ηmin
D )2





1/2

, ηmin
D := min

{
ηmin,full

D , ηmin,loc
D

}
, (C.1)

where ηmin,full
D is given by (A.7) and ηmin,loc

D by (B.1). As however noted in the text, in the majority
of the cases, it is the simple choice (B.1) which gives the minimum.
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