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Algebraic and analytic reconstruction methods for dynamic tomography.

L. Desbat, S. Rit, R. Clackdoyle, C. Mennessier, E. Promayon and S. Ntalampeki

Abstract— In this work, we discuss algebraic and analytic
approaches for dynamic tomography. We present a framework
of dynamic tomography for both algebraic and analytic ap-
proaches. We finally present numerical experiments.

I. INTRODUCTION

Dynamic tomography is a very active area [1], [2]. Move-
ments or deformations of the patient must be taken into
account in nuclear medicine, such as SPECT or PET because
of long measurement time, but also in CT for fast moving
organs such as the heart. Generally, patient movements or
deformations occur in 3D. In this work we consider dynamic
3D Cone Beam tomography. We present both algebraic and
analytic aproaches to compensate for the patient deformation
during the reconstruction.

A. 3D cone beam notations

Let f : R3 → R be the 3D attenuation distribution to be
reconstructed from projections (x-ray, SPECT or PET). In
this work, we consider mainly the 3D cone beam transform

gD(t, ~ζ)def=Df(t, ~ζ)def=Dtf(~ζ)def=
∫ +∞

0

f
(
~a(t) + l~ζ

)
dl,

(1)
where ~ζ ∈ S2 is a unit vector in R3 (S2 is the unit
sphere in R3), ~a(t) ∈ R3 is the x-ray source position at
time t ∈ T ⊂ R, t is then also the source trajectory
parameter in R3, see Fig. 1. Dtf(~ζ), at fixed t, is assumed
to be acquired in a negligible time, ∀~ζ ∈ S2. The function
f is assumed to have a compact support and ~a(t) has a
strictly positive distance to the support of f . This transform
appears in 3D x-ray tomography (reconstruction from 2D x-
ray projections or multiline CT) with applications in cardiac
CT or radiotherapy.

3D cone beam tomography problem is the reconstruction
of f from gD. These last years, new developments have been
proposed to solve analytically, exactly, and efficiently this
problem, in particular for the helical source trajectory, but
also for more general trajectory (see for exemple [3], [4],
[5], [6], [7], [8]).
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Fig. 1. Cone Beam geometry parameters

B. Deformation model

In dynamic tomography, the attenuation f to be recon-
structed is also a function of t. In our approach, we consider
a time dependent deformation of the space as in [9], [10].
We introduce a time dependent deformation model ~Γt and we
assume that, for t ∈ T , ~Γt are known bijective appropriately
smooth functions on R3 whose inverse are smooth too. We
assume that the attenuation at point ~x ∈ R3 at time t can
be written in the form f~Γt

(~x) = f
(
~Γt (~x)

)
, where f is the

attenuation reference point (for example, at t = 0). So ~Γt

simply transforms the position ~x at time t to its position
~Γt(~x) at the reference time (t = 0).

The problem under consideration is the reconstruction of
f , or equivalently of f~Γt

, from cone-beam measurements
Df~Γt

, see (1), for known deformation functions ~Γt, t ∈ T .
Our objective is to apply efficient accurate deformation
corrections in the reconstruction algorithms.

C. Dynamic reconstruction approaches

General patient deformations can be nowadays compen-
sated only by algebraic reconstruction approaches. Iterative
reconstruction requires an adequate projector able to perform
the attenuation sum (1) based on a discrete representation of
f at the reference time. This is done in the static case by
computing the intersection of the straight acquisition lines
with basis functions, e.g. voxels. In the dynamic case, the
projector must compensate for the motion. If ~Γt preserves
the rectitude of acquisition lines, i.e. if it transforms a set of
convergent aquisition lines at time t into a set of convergent
lines at the reference time, this can be done as in the static
case along the virtual transformed lines. In particular, if the
patient motion is globally rigid, this amounts to using virtual
source and detector positions and applying the reconstruction
algorithm as in the static case [11], [12], [13] or to deform
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data prior to reconstruction [14], [15]. These approaches
can be generalized to deformations transforming the set of
acquisition lines of each cone beam projection into other sets
of concurent lines [9], [10], [16]. Thus, analytic approaches
essentially allow for the compensation of deformations in
subclasses of those presented in section I-B. With this
approach, deformations leaving globally invariant the cone
beam geometry acquisition can be compensated. When this
is not the case, iterative reconstruction is still feasible but
the intersection of the straight acquisition line with f~Γt

(~x)
should take into account the translation and the deformation
of the basis functions. Moreover, in 3D interventional image
reconstruction from x-ray projections, the source trajectory
is very often a circle [17], [18] for which exact analytic
inversion does not apply whereas algebraic approaches are
well defined. When a high contrast object like coronary
arteries is being reconstructed, the deformation can be ig-
nored [19], [20]. Otherwise, one has to find a way to deform
the basis functions. For example, spherical basis functions
can be deformed in ellipoids as a first approximation [21],
[22].

In the next section, we present a dynamic tomography
algebraic method framework. In section III, we present an
analytic approach for dynamic tomography. Then, we present
some numerical experiments in section IV.

II. ALGEBRAIC DYNAMIC RECONSTRUCTION

In algebraic approch, we assume that the unknown func-
tion f can decomposed into a finite linear combination of
given independent functions, such as voxel indicator func-
tions. Let (ej)j∈J be a set of basis functions ej : R3 → R, J
being a finite set of index such as J = {1, . . . , nJ}, nJ ∈ N
denoting the number of elements #(J) of the set J (multi
index sets are also very often used in multi dimension space).
For example, ej can be the indicator function of the voxel
number j in the reconstruction region. We assume that

f(~x) =
∑

j∈J

fjej(~x), (2)

where fj ∈ R, j ∈ J . We also assume that the acquisition
can be modeled by

di =
∫

Ω

hi(~x)f(~x)d~x, i ∈ I. (3)

where (di)i∈I is the real vector of acquired data. In 2D
tomography, hi(~x) could be the dirac on a line δ(~x · ~θi− si)
where ~θi is the direction of the projection and si ∈ R is the
signed distance of the line to the center. In 3D hi(~x) could be
the dirac on the x-ray line but it could also be the indicator of
the conical region joining a point source ~ai and a detector
or some smooth response function obtained by calibration
of the X-ray, PET or SPECT system. In nuclear imaging, hi

can also model more physics such as attenuation, etc. The
number of data nI is finite.

In static tomography, the algebraic aproach yields a linear
system to be solved

di =
∫

Ω

hi(~x)f(~x)d~x =
∫

Ω

hi(~x)
∑

j∈J

fjej(~x)d~x

=
∑

j∈J

(∫

Ω

hi(~x)ej(~x)d~x

)
fj (4)

We have to solve the linear system d = Af where d =
(di)i=1,...,nI is the known vector of data, f = (fj)j=1,...,nJ

is the unknown vector of coefficients of f to be identified
and the matrix entry Ai,j is Ai,j =

∫
Ω

hi(~x)ej(~x)d~x. The
matrix is generally sparse because both hi and ej functions
have a limited support in the domain Ω ⊂ R3. Thus iterative
methods are used to solve the linear system.

In dynamic tomography

dt,i =
∫

Ω

hi(~x)f
(
~Γt (~x)

)
d~x

=
∑

j∈J

(∫

Ω

hi(~x)ej

(
~Γt (~x)

)
d~x

)
fj (5)

Let us now assume that the functions ej

(
~Γt (~x)

)
can be

decomposed (or approximated) into a finite linear combi-
nation of given independent functions (bk)k∈K , K being a
finite index (or multi-index) set, more precisely

ej

(
~Γt (~x)

)
=

∑

k∈K

Γtk,j
bk(~x). (6)

then (6) introduced in (5) yields

dt,i =
∑

j∈J

(∫

Ω

hi(~x)
∑

k∈K

Γtk,j
bk(~x)d~x

)
fj

=
∑

j∈J

(∑

k∈K

Bi,kΓtk,j

)
fj (7)

where B is the algebraic matrix for the basis function
(bk)k∈K

Bi,k =
∫

Ω

hi(~x)bk(~x)d~x. (8)

In 3D CB tomography, i is usually a multi-index: at least
one index, say i1, is related to the source position on its
trajectory, and an other index (or multi-index) i2 is related
to the detector pixel position in space at the source position
i1 or equivalently the direction of the ray from the source
position at t(i1) (usually, in 3D CB, i2 is a multi-index of two
values because the direction space S2 is a two dimensional
set). Thus t is a function of i1 (the time depends on the
source position), thus dt,i is dt(i1),i2 , where i = (i1, i2),
i1 ∈ I1, i2 ∈ I2, I = I1 × I2 and

dt(i1),i2 = Df~Γt(i1)

(
t(i1), ~ζ(i2)

)

=
∑

j∈J

(∑

k∈K

B(i1,i2),kΓt(i1)k,j

)
fj (9)

Thus,
di1 = Bi1Γt(i1)f , i1 = 1, . . . , nI1 (10)

ha
l-0

02
71

43
6,

 v
er

si
on

 1
 - 

9 
Ap

r 2
00

8



where the nI1 matrices Bi1 are nI2 × nK (nI1 sets of nI2

lines of a classical ART matrix B corresponding to each
i1 source position, i1 = 1, . . . , nI1) and the matrices Γt(i1)

are nK × nJ matrices coding the deformations by ~Γt(i1)

of the basis functions ej into the basis fuctions bk, for each
considered time t(i1), i1 = 1, . . . , nI1 . With this formulation,
an algebraic matrix for dynamic tomography differs from the
classical algebraic method only by the introduction of the
matrices Γt(i1). Just as for classical tomography, iterative
methods are used for solving the linear system (10) and
the matrices B and Γt(i1), i1 = 1, . . . , nI1 are generally not
stored but computed during the iterations.

III. ANALYTIC DYNAMIC RECONSTRUCTION
We recall briefly in this section a class of 3D deformations

which can be analytically compensated in 3D Cone Beam
reconstruction, see [23] and [16], [10] for 2D fan-beam
dynamic tomography. In order to stay in the framework of 3D
CB reconstruction, we consider the deformations ~Γt which
transform the set of convergent acquisition lines at time t
into an other set of convergent lines at the reference time,
i.e. we consider deformations that globally preserve the CB
acquisition geometry. The deformation ~Γt : R3 → R3 pre-
serves the CB aquisition geometry globally if it transforms
the source point ~a(t) ∈ R3 at time t into a virtual source
point ~Γt (~a(t)) at the reference time (e.g. t = 0 as we
assumed) and if any half line from ~a(t) is transformed into a
virtual half line from the virtual source ~Γt (~a(t)), see Fig. 2.
Let us use the spherical coordinates (l, ~ζ) ∈ R+ × S2 of
~x− ~a(t), i.e., ~x = ~a(t) + l~ζ. The half line from ~a(t) in the
direction ~ζ is denoted by ~a(t) +R+~ζ. Assume ~x belongs to
~a(t)+R+~ζ. ~Γt leaves the CB geometry globally invariant if
∀t ∈ T,∀~ζ ∈ S2,

~Γt

(
~a(t) + R+~ζ

)
= ~Γt (~a(t)) + R+~ΓS2,t(~ζ), (11)

where ~ΓS2,t S2 −→ S2 is a diffeomorphism (bi-regular
bijection) on the unit sphere which associates to a direction
~ζ at t a direction ~ΓS2,t(~ζ) at the reference time. More pre-
cisely, the following deformation leaves the 3D CB geometry
globally invariant:

~Γt (~x) = ~Γt

(
~a(t) + l~ζ

)
= ~Γt (~a(t)) + Γt,~ζ(l)~ΓS2,t(~ζ),

(12)
where Γt,~ζ is a bi-regular bijective function on R+ such that
Γt,~ζ(0) = 0. In the following Γt,~ζ is linear in order to stay
in the framework of the 3D CB transform (more complex
bijections would yield a non constant Jacobian in (16) which
would lead to generalized CB transforms for which we do
not have inversion formulas). Thus let Γt,~ζ(l) = ct,~ζ l with
ct,~ζ > 0 being both a function of t but also of ~ζ. We then
can write (12) as:

~Γt (~x) = ~Γt (~a(t)) + ct,~ζ l
~ΓS2,t(~ζ) (13)

Now, let ~v(t)def=~Γt (~a(t)) − ~a(t). We can decompose ~Γt

of (13) into:
~Γt = ~T~v(t) ◦ ~∆t, (14)

x2

x3

~ζ

~x

x1

l

x2

x1

x3~Γt ~Γt(~x)

~Γ
S2,t

(~ζ)

~Γt(~a(t))

~v(t)

~a(t)~a(t)

c
t,~ζ

l

Fig. 2. Deformation ~Γt preserving the 3D CB geometry globally

where ~T~v(t) is the translation of vector ~v(t) (~T~v(t)(~x) =
~v(t) + ~x) and

~∆t (~x) = ~a(t) + ct,~ζ l
~ΓS2,t(~ζ). (15)

We then remark that the deformation ~∆t can be analytically
compensated directly within each 3D projection at fixed t:

Dtf~∆t
(~ζ) =

∫ +∞

0

f
(
~a(t) + ct,~ζ l

~ΓS2,t(~ζ)
)

dl

=
1

ct,~ζ

Dtf(~ΓS2,t(~ζ)). (16)

Thus, from (16) we have

Dtf(~ζ) = ct,~Γ−1
S2,t

(~ζ)Dtf~∆t
(~Γ−1

S2,t(~ζ)). (17)

Combining now (14) and (17) we have

Dtf~T~v(t)
(~ζ) = ct,~Γ−1

S2,t
(~ζ)Dtf~T~v(t)◦~∆t

(~Γ−1
S2,t(~ζ)). (18)

The deformation ~∆t can thus be very simply compensated
within the projection Dtf~T~v(t)◦~∆t

, i.e. within Dtf~Γt
, in order

to compute Dtf~T~v(t)
. Afterwards the translation ~T~v(t) can

be simply compensated: instead of reconstructing f from
the 3D CB acquisition on the real trajectory ~a(t), t ∈ T ⊂
R, we have to perform the reconstruction from the virtual
trajectory ~Γt(~a(t)) = ~a(t) + ~v(t), t ∈ T ⊂ R. Indeed, from
the definition (1)

Dtf~T~v(t)
(~ζ) =

∫ +∞

0

f
(
~a(t) + ~v(t) + l~ζ

)
dl

=
∫ +∞

0

f
(
~Γt (~a(t)) + l~ζ

)
dl. (19)

Thus, the Tuy-Grangeat stable reconstruction conditions [24],
[25] at a point ~x will be read on the virtual trajectory
~Γt(~a(t)), just as the possibility to use modern 3D CB
reconstruction algorithms [26], [7], [27].

IV. NUMERICAL EXPERIMENTS

A realistic digital phantom of the thorax was used to
evaluate the behavior of different reconstruction methods
in the presence of respiratory motion. Lung radiotherapy
optimization is a typical application for this study. The
phantom was obtained from a 4D CT image acquired on
a scanner synchronised with a respiratory signal [28]. One
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of its ten 3D CT images was chosen to represent f . Nine
dense motion vector fields were computed by deformable
registration between each 3D CT image and the reference.
From them, continuous trajectories for each voxel of f were
obtained by supposing that the motion is linear between
two consecutive respiratory instants. A set of cone-beam
projections gD were computed using a projector taking into
account this motion model and the geometry of an existing
cone-beam CT scanner. Fig. 3 allows the comparison of the
reference CT image with different reconstructions.

Motion artifacts, such as blur and streaks, are clearly
visible, both with Feldkamp’s analytic method [29] and
with Simultaneous Algebraic Reconstruction Technique
(SART) [30], which suppose that the patient remained static
during the acquisition. The motion does not globally preserve
the cone-beam geometry as described in part III, that is why
only a heuristic motion compensation during the backpro-
jection step of Feldkamp’s algorithm was feasible [31]. The
blur is reduced but streaks are still visible, particularly on the
axial slice, because the compensation is not exact. Finally,
motion compensated SART with the projector used for the
computation of the cone-beam projections fully eliminate the
motion artifacts.

V. CONCLUSIONS AND FUTURE WORKS
We have presented a framework for both analytic and

algebraic method in dynamic tomography with known time
dependent deformations of the space. We have provided
numerical experiments showing that algebraic methods can
compensate the respiratory motion in 4D CT from acquisition
during lung radiotherapy applications. In future works, we
will compare analytic and algebraic approaches on this
application.
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Fig. 3. Coronal and axial slices of the reconstruction results on the realistic digital phantom of the thorax. Feldkamp and SART methods do not take
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SART is identical to the SART method with the projector taking into account the motion.
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