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Abstract

Answering a question of Smale, we prove that the space of C1 diffeomor-
phisms of a compact manifold contains a residual subset of diffeomorphisms
whose centralizers are trivial.
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1 Introduction

1.1 The centralizer problem, and its solution in Diff1(M)

It is a basic fact from linear algebra that any two commuting matrices in GL(n,C)
can be simultaneously triangularized. The reason why is that if A commutes with
B, then A preserves the generalized eigenspaces of B, and vice versa. Hence the
relation AB = BA is quite special among matrices, and one might not expect it to
be satisfied very often. In fact, it’s not hard to see that the generic pair of matrices A
and B generate a free group; any relation in A and B defines a nontrivial subvariety
in the space of pairs of matrices, so the set of pairs of matrices that satisfy no relation
is residual: it contains a countable intersection of open-dense subsets. On the other
hand, the generic n×nmatrix is diagonalizable and commutes with an n-dimensional
space of matrices. That is, a residual set of matrices have large centralizer.

Consider the same sort of questions, this time for the group of C1 diffeomor-
phisms Diff1(M) of a compact manifold M . If f and g are diffeomorphisms satis-
fying fg = gf , then g preserves the set of orbits of f , as well as all of the smooth
and topological dynamical invariants of f , and vice versa. Also in analogy to the
matrix case, an easy transversality argument (written in [G, Proposition 4.5] for
circle homeomorphisms), shows that for a generic (f1, . . . , fp) ∈ (Diffr(M))p with
p ≥ 2 and r ≥ 0, the group 〈f1, . . . , fp〉 is free. In contrast with the matrix case,
however, the generic C1 diffeomorphism cannot have a large centralizer. This is the
content of this paper. Our main result is:

Main Theorem. Let M be any closed, connected smooth manifold. There is a
residual subset R ⊂ Diff1(M) such that for any f ∈ R, and any g ∈ Diff1(M), if
fg = gf , then g = fn, for some n ∈ Z.

This theorem1 gives an affirmative answer in the C1 topology to the following
question, posed by S. Smale. We fix a closed manifold M and consider the space
Diffr(M) of Cr diffeomorphisms of M , endowed with the Cr topology. The central-
izer of f ∈ Diffr(M) is defined as

Zr(f) := {g ∈ Diffr(M) : fg = gf}.

Clearly Zr(f) always contains the cyclic group 〈f〉 of all the powers of f . We say
that f has trivial centralizer if Zr(f) = 〈f〉. Smale asked the following:

Question 1 ([Sm1, Sm2]). Consider the set of Cr diffeomorphisms of a compact
manifold M with trivial centralizer.

1. Is this set dense in Diffr(M)?

2. Is it residual in Diffr(M)? That is, does it contain a dense Gδ?

3. Does it contain an open and dense subset of Diffr(M)?

1This result has been announced in [BCW2].
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For the case r = 1 we now have a complete answer to this question. The theorem
above shows that for any compact manifold M , there is a residual subset of Diff1(M)
consisting of diffeomorphisms with trivial centralizer, giving an affirmative answer
to the second (and hence the first) part of Question 1. Recently, with G. Vago, we
have also shown:

Theorem. [BCVW] For any compact manifold M , the set of C1 diffeomorphisms
with trivial centralizer does not contain any open and dense subset.

This result gives a negative answer to the third part of Question 1; on any
compact manifold, [BCVW] exhibits a family of C∞ diffeomorphisms with large
centralizer that is C1 dense in a nonempty open subset of Diff1(M).

The history of Question 1 goes back to the work of N. Kopell [Ko], who gave
a complete answer for r ≥ 2 and the circle M = S1: the set of diffeomorphisms
with trivial centralizer contains an open and dense subset of Diffr(S1). For r ≥ 2
on higher dimensional manifolds, there are partial results with additional dynamical
assumptions, such as hyperbolicity [PY1, PY2, Fi] and partial hyperbolicity [Bu1].
In the C1 setting, Togawa proved that generic Axiom A diffeomorphisms have trivial
centralizer. In an earlier work [BCW1], we showed that for dim(M) ≥ 2, the C1

generic conservative (volume-preserving or symplectic) diffeomorphism has trivial
centralizer in Diff1(M). A more complete list of previous results can be found in
[BCW1].

1.2 The algebraic structure and the topology of Diff1(M)

These results suggest that the topology of the set of diffeomorphisms with trivial
centralizer is complicated and motivate the following questions.

Question 2. 1. Consider the set of diffeomorphisms whose centralizer is trivial.
What is its interior?

2. Is it a Borel set? (See [FRW] for a negative answer to this question in the
measurable context.)

3. The set {(f, g) ∈ Diff1(M) × Diff1(M) : fg = gf} is closed. What is its local
topology? For example, is it locally connected?

Beyond just proving the genericity of diffeomorphisms with trivial centralizer, we
find a precise collection of dynamical properties of f that imply that Z1(f) = 〈f〉.
As an illustration of what we mean by this, consider the Baumslag-Solitar relation
gfg−1 = fn, where n > 1 is a fixed integer. Notice that if this relation holds for
some g, then the periodic points of f cannot be hyperbolic. This implies that for
the C1 generic f , there is no diffeomorphism g satisfying gfg−1 = fn. In this work,
we consider the relation gfg−1 = f . The dynamical properties of f that forbid this
relation for g /∈ 〈f〉 are the Large Derivative (LD) and Unbounded Distortion (UD)
properties (described in greater detail in the subsequent sections).

Hence the Main Theorem illustrates the existence of links between the dynamics
of a diffeomorphism and its algebraic properties as a element of the group Diff1(M).
In that direction, it seems natural to propose the following (perhaps naive) general-
izations of Question 1.
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Question 3. 1. Consider G = 〈a1, . . . , ak | r1, . . . , rm〉 a finitely presented group
where {ai} is a generating set and ri are relations. How large is the set
of diffeomorphisms f ∈ Diffr(M) such that there is an injective morphism
ρ : G→ Diffr(M) with ρ(a1) = f? The Main Theorem implies that this set is
meagre if G is abelian (or even nilpotent).

2. Does there exist a diffeomorphism f ∈ Diffr(M) such that, for every g ∈
Diffr(M), the group generated by f and g is either 〈f〉 if g ∈ 〈f〉 or the free
product 〈f〉 ∗ 〈g〉 ?

3. Even more, does there exist a diffeomorphism f ∈ Diffr(M) such that, for
every finitely generated group G ∈ Diffr(M) with f ∈ G, there is a subgroup
H ⊂ G such that G = 〈f〉 ∗H ?

4. If the answer to either of the two previous items is “yes”, then how large are
the corresponding sets of diffeomorphisms with these properties?

1.3 On C1-generic diffeomorphisms

Our interest in Question 1 comes also from another motivation. The study of the
dynamics of diffeomorphisms from the perspective of the C1-topology has made
substantial progress in the last decade, renewing hope for a reasonable description of
C1-generic dynamical systems. The elementary question on centralizers considered
here presents a natural challenge for testing the strength of the new tools.

Our result certainly uses these newer results on C1-generic dynamics, in par-
ticular those related to Pugh’s closing lemma, Hayashi’s connecting lemma, the
extensions of these techniques incorporating Conley theory, and the concept of topo-
logical tower introduced in [BC]. Even so, the Main Theorem is far from a direct
consequence of these results; in this subsection, we focus on the new techniques and
tools we have developed in the process of answering Question 1.

Our proof of the Main Theorem goes back to the property which is at the heart
of most perturbation results specific to the C1-topology.

1.3.1 A special property of the C1-topology

If we focus on a very small neighborhood of an orbit segment under a differentiable
map, the dynamics will appear to be linear around each point; thus locally, iterating
a diffeomorphism consists in multiplying invertible linear maps.

On the other hand, the C1-topology is the unique smooth topology that is in-
variant under (homothetical) rescaling. More precisely, consider a perturbation f ◦g
of a diffeomorphism f , where g is a diffeomorphism supported in a ball B(x, r) and
C1-close to the identity. The C1-size of the perturbation does not increase if we
replace g by its conjugate hλgh

−1
λ where hλ is the homothety of ratio λ < 1. The

new perturbation is now supported on the ball B(x, rλ). When λ goes to 0, we just
see a perturbation of the linear map Dxf .

This shows that local C1-perturbation results are closely related to perturbations
of linear cocycles. This connection is quite specific to the C1-topology: this type
of renormalization of a perturbation causes its C2-size to increase proportionally to
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the inverse of the radius of its support. The rescaling invariance property of the C1

topology is shared with the Lipschitz topology; however, bi-Lipschitz homeomor-
phisms do not look like linear maps at small scales.

This special property of the C1-topology was first used in the proof of Pugh’s
closing lemma, and perhaps the deepest part of the proof consists in understanding
perturbations of a linear cocycle. Pugh introduced the fundamental, simple idea
that, if we would like to perform a large perturbation in a neighborhood of a point
x, we can spread this perturbation along the orbit of x and obtain the same result,
but by C1-small perturbations supported in the neighborhood of an orbit segment.
The difficulty in this idea is that, if one performs a small perturbation of f in a very
small neighborhood of the point f i(x), the effect of this perturbation when observed
from a small neighborhood of x is deformed by a conjugacy under the linear map
Df i; this deformation is easy to understand if Df i is an isometry or a conformal
map, but it has no reason in general to be so.

Our result is based on Propositions 5.2 and 6.6, which both produce a per-
turbation of a linear cocycle supported in the iterates of a cube Q. The aim of
Proposition 5.2 is to perturb the derivative Df in order to obtain a large norm
‖Dfn‖ or ‖Df−n‖, for a given n and for every orbit that meets a given subcube
δQ ⊂ Q; the aim of Proposition 6.6 is to obtain a large variation of the jacobian
detDfn, for some integer n and for all the points of a given subcube θQ ⊂ Q. The
first type of perturbation is connected to the Large Derivative (LD) property, and
the second, to the Unbounded Distortion (UD) property.

The main novelty of these two elementary perturbation results is that, in con-
trast to the case of the closing lemma, whose aim is to perturb a single orbit, our
perturbation lemmas will be used to perturb all the orbits of a given compact set. To
perturb all orbits in a compact set, we first cover the set with open cubes, and then
carry out the perturbation cube-by-cube, using different orbit segments for adjacent
cubes. For this reason, we need to control the effect of the perturbation associated
to a given cube on the orbits through all of its neighboring cubes.

To obtain this control, for each cube in the cover, we perform a perturbation
along the iterates of the cubes until we obtain the desired effect on the derivative,
and then we use more iterates of the cube to “remove the perturbation.” By this
method, we ensure that the long-term effect of the perturbation on the orbit will be
as small as possible in the case of Proposition 6.6, and indeed completely removed in
the case of Proposition 5.2. In the latter case, we speak of tidy perturbations. These
perturbations, which are doing “nothing or almost nothing,” are our main tools.

1.3.2 Perturbing the derivative without changing the topological dy-
namics

In the proof of the Main Theorem, we show that every diffeomorphism f can be
C1-perturbed in order to obtain simultaneously the (UD)- and (LD)-properties,
which together imply the triviality of the centralizer. However, unlike the (UD)-
property, the (LD)-property is not a generic property: to get both properties to
hold simultaneously, we have to perform a perturbation that produces the (LD)-
property while preserving the (UD)-property.
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Our solution consists in changing the derivative of f without changing its topolog-
ical dynamics. The only context in which an arbitrary perturbation of the derivative
of f will not alter its dynamics is one where f is structurally stable. Here f is not
assumed to have any kind of stability property, and yet we can realize a substantial
effect on the derivative by a perturbation preserving the topological dynamics. For
example, starting with an irrational rotation of the torus T

d, we can obtain, via
an arbitrarily C1-small perturbation, a diffeomorphism g, conjugate to the original
rotation, with the property:

lim
n→∞

inf
x∈Td

sup
y∈orbg(x)

‖Dgn(y)‖ + ‖Dg−n(y)‖ = ∞.

Let us state our result (this is a weak version of Theorem B below):

Theorem. Let f be a diffeomorphism whose periodic orbits are all hyperbolic. Then
any C1-neighborhood of f contains a diffeomorphism g such that

• g is conjugate to f via a homeomorphism.

• g has the large derivative property: for every K > 0 there exists nK such that,
for every n ≥ nK and any non-periodic point x:

sup
y∈orbg(x)

{‖Dgn(y)‖, ‖Dg−n(y)‖} > K.

As far as we know, this result is the first perturbation lemma which produces
a perturbation of the derivative inside the topological conjugacy class of a given
diffeomorphism (with the unique hypothesis that all periodic orbits are hyperbolic,
which is generic in any topology). In the proof, we construct the perturbation g of
f as a limit of tidy perturbations gn of f which are smoothly conjugate to f . As we
think that tidy perturbations will used in further works, we present them in some
detail.

1.3.3 Tidy perturbations

Let f be a diffeomorphism and let U be an open set such that the first iterates U ,
f(U), . . . , fn(U) are pairwise disjoint, for some n > 0. Consider a perturbation
g of f with support in V =

⋃n−1
0 f i(U) that has no effect at all on the orbits

crossing V : that is, for every x ∈ U , fn(x) = gn(x). In our proof of Theorem B,
we construct such perturbations, using the first iterates U , f(U), . . . , f i(U), for
some i ∈ {0, . . . , n − 2}, for perturbing f and getting the desired effect on the
derivative, and using the remaining iterates f i+1(U),. . . ,fn−1(U) for removing the
perturbation, bringing the g-orbits of the points x ∈ U back onto their f -orbits. The
diffeomorphism g is smoothly conjugate to f via some diffeomorphism that is the
identity map outside

⋃n−1
0 f i(U). Such a perturbation is called a tidy perturbation.

Tidy perturbations require open sets that are disjoint from many of their iter-
ates. To get properties to hold on all non-periodic points, we use such open sets that
also cover all the orbits of f , up to finitely many periodic points of low period. Such
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open sets, called topological towers, were constructed in [BC] for the proof of a con-
necting lemma for pseudo-orbits. In Section 3.4, we further refine the construction
of topological towers; in particular, we prove that it is always possible to construct
topological towers disjoint from any compact set with the wandering orbit property.
The wandering orbit property is a weak form of wandering behavior, satisfied, for
example, by nonperiodic points and compact subsets of the wandering set.

In the proof of Theorem B, we construct an infinite sequence (gi), where gi is a
tidy perturbation of gi−1, with support in the disjoint ni first iterates of some open
set Ui. We show that, if the diameters of the Ui decrease quickly enough, then the
conjugating diffeomorphisms converge in the C0-topology to a homeomorphism con-
jugating the limit diffeomorphism g to f . With a weaker decay to 0 of the diameters
of the Ui, it may happen that the conjugating diffeomorphisms converge uniformly
to some continuous noninvertible map. In that case, the limit diffeomorphism g is
merely semiconjugate to f . This kind of technique has already been used, for in-
stance by M. Rees [R], who constructed homeomorphisms of the torus with positive
entropy and semiconjugate to an irrational rotation.

Controlling the effect of successive general perturbations is very hard. For tidy
perturbations it is easier to manage the effect of a successive sequence of them,
since each of them has no effect on the dynamics. However this advantage leads to
some limitations on the effect we can hope for, in particular on the derivative. We
conjecture for instance that it is not possible to change the Lyapunov exponents:

Conjecture 1.1. Let g = hfh−1 be a limit of tidy perturbations gi = hifh
−1
i of f ,

where the hi converge to h. Then given any ergodic invariant measure µ of f , the
Lyapunov exponents of the measure h∗(µ) for g are the same as those of µ for f .

To obtain the (LD)-property, we create some oscillations in the size of the deriva-
tive along orbits. It seems natural to ask if, on the other hand, one could erase
oscillations of the derivative. Let us formalize a question:

Question 4. Let f be a diffeomorphism and assume that Λ is a minimal invariant
compact set of f that is uniquely ergodic with invariant measure µ. Assume that
all the Lyapunov exponents of µ vanish. Does there exist g = hfh−1, a limit of
tidy perturbations of f , such that the norm of Dgn and of Dg−n remain bounded on
h(Λ)?

Such minimal uniquely ergodic sets appear in the C1 generic setting (among the
dynamics exhibited by [BD]).

In this paper, starting with a diffeomorphism f without the (LD)-property, we
build a perturbation g = hfh−1 as a limit of tidy perturbations and such that g
satisfies the (LD)-property. Then the linear cocycles Df over f and Dg over g are
not conjugate by a continuous linear cocycle over h.

Question 5. Is there a measurable linear cocycle over h conjugating Dg to Df?

1.4 Local and global: the structure of the proof of the Main The-
orem

The proof of the Main Theorem breaks into two parts, a “local” one and a “global”
one. This is also the general structure of the proofs of the main results in [Ko, PY1,
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PY2, To1, To2, Bu2]:

• The local part proves that for the generic f , if g commutes with f , then g = fα

on an open and dense subset W ⊂ M , where α : W → Z is a locally constant
function.

This step consists in “individualizing” a dense collection of orbits of f , arrang-
ing that the behavior of the diffeomorphism in a neighborhood of one orbit
is different from the behavior in a neighborhood of any other. Hence g must
preserve each of these orbits, which allows us to obtain the function α on these
orbits.

This individualization of orbits happens whenever a property of unbounded
distortion (UD) holds between certain orbits of f , a property which we describe
precisely in the next section. Theorem A shows that the (UD) property holds
for a residual set of f .

• The global part consists in proving that for generic f , α is constant. We show
that it is enough to verify that the function α is bounded. This would be the
case if the derivative Dfn were to take large values on each orbit of f , for
each large n: the bound on Dg would then forbid α from taking arbitrarily
large values. Notice that this property is global in nature: we require large
derivative of fn on each orbit, for each large n.

Because it holds for every large n, this large derivative (LD) property is not
generic, although we prove that it is dense. This lack of genericity affects
the structure of our proof: it is not possible to obtain both (UD) and (LD)
properties just by intersecting two residual sets. Theorem B shows that among
the diffeomorphisms satisfying (UD), the property (LD) is dense. This allows
us to conclude that the set of diffeomorphisms with trivial centralizer is C1-
dense.

There is some subtlety in how we obtain a residual subset from a dense subset.
Unfortunately we don’t know if the set of diffeomorphisms with trivial centralizer
form a Gδ, i.e., a countable intersection of open sets. For this reason, we consider
centralizers defined inside of the larger space of bi-Lipschitz homeomorphisms, and
we use the compactness properties of this space. The conclusion is that if a C1-
dense set of diffeomorphisms has trivial centralizer inside of the space of bi-Lipschitz
homeomorphisms, then this property holds on a C1 residual set.

1.5 Perturbations for obtaining the (LD) and (UD) properties

To complete the proof of the Main Theorem, it remains to prove Theorems A and
B. Both of these results split in two parts.

• The first part is a local perturbation tool, which changes the derivative of f in
a very small neighborhood of a point, the neighborhood being chosen so small
that f resembles a linear map on many iterates of this neighborhood.
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• In the second part, we perform the perturbations provided by the first part at
different places in such a way that the derivative of every (wandering or non-
periodic) orbit will be changed in the desirable way. For the (UD) property
on the wandering set, the existence of open sets disjoint from all its iterates
are very helpful, allowing us to spread the perturbation out over time. For
the (LD) property, we need to control every non-periodic orbit. The existence
of topological towers with very large return time, constructed in [BC], are the
main tool, allowing us again to spread the perturbations out over a long time
interval.
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2 The local and global strategies

In the remaining six sections, we prove the Main Theorem, following the outline in
the Introduction. In this section, we reduce the proof to two results, Theorems A
and B, that together give a dense set of diffeomorphisms with the (UD) and (LD)
properties.

2.1 Background on C1-generic dynamics

The space Diff1(M) is a Baire space in the C1 topology. A residual subset of a Baire
space is one that contains a countable intersection of open-dense sets; the Baire
category theorem implies that a residual set is dense. We say that a property holds
for the C1-generic diffeomorphism if it holds on a residual subset of Diff1(M).

For example, the Kupka-Smale Theorem asserts (in part) that for a C1-generic
diffeomorphism f , the periodic orbits of f are all hyperbolic. It is easy to verify
that, furthermore, the C1-generic diffeomorphism f has the following property: if
x, y are periodic points of f with period m and n respectively, and if their orbits are
distinct, then the set of eigenvalues of Dfm(x) and of Dfn(y) are disjoint. If this
property holds, we say that the periodic orbits of f have distinct eigenvalues.

Associated to any homeomorphism f of a compact metric space X are several
canonically-defined, invariant compact subsets that contain the points in X that are
recurrent, to varying degrees, under f . Here we will use three of these sets, which are
the closure of the periodic orbits, denoted here by Per(f), the nonwandering set Ω(f),
and the chain recurrent set CR(f). By the canonical nature of their construction,
the sets Per(f), Ω(f) and CR(f) are all preserved by any homeomorphism g that
commutes with f .
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We recall their definitions. The nonwandering set Ω(f) is the set of all points x
such that every neighborhood U of x meets some iterate of U :

U ∩
⋃

k>0

fk(U) 6= ∅.

The chain recurrent set CR(f) is the set of chain recurrent points defined as
follows. Given ε > 0, we say that a point x is ε-recurrent, and write x ∼ε x, if there
exists an ε-pseudo-orbit, that is a sequence of points x0, x1, . . . , xk, k ≥ 1 satisfying
d(f(xi), xi+1) < ε, for i = 0, . . . , k − 1, such that x0 = xk = x. Then x is chain
recurrent if x ∼ε x, for all ε > 0. Conley theory implies that the complement of
CR(f) is the union of sets of the form U \ f(U) where U is an open set which is
attracting: f(U) ⊂ U . The chain-recurrent set is partitioned into compact invariant
sets called the chain-recurrence classes: two points x, y ∈ CR(f) belong to the same
class if one can join x to y and y to x by ε-pseudo-orbits for every ε > 0.

It is not difficult to see that for any f , the inclusions Per(f) ⊆ Ω(f) ⊆ CR(f)
hold; there exist examples where the inclusions are strict. For C1 generic diffeomor-
phisms f , however, all three sets coincide; Per(f) = Ω(f) is a consequence of Pugh’s
closing lemma [Pu], and Ω(f) = CR(f) was shown much more recently in [BC].

We have additional links between Ω(f) and the periodic points in the case it has
non-empty interior:

Theorem ([BC]). For any diffeomorphism f in a residual subset of Diff1(M), any
connected component O of the interior of Ω(f) is contained in the closure of the
stable manifold of a periodic point p ∈ O.

Conceptually, this result means that for C1 generic f , the interior of Ω(f) and
the wandering set M \ Ω(f) share certain nonrecurrent features. While points in
the interior of Ω(f) all have nonwandering dynamics, if one instead considers the
restriction of f to a stable manifold of a periodic orbit W s(p) \ O(p), the dynamics
are no longer recurrent; in the induced topology on the submanifold W s(p) \ O(p),
every point has a wandering neighborhood V whose iterates are all disjoint from V .
Furthermore, the sufficiently large future iterates of such a wandering neighborhood
are contained in a neighborhood of the periodic orbit. While the forward dynamics
on the wandering set are not similarly “localized” as they are on a stable manifold,
they still share this first feature: on the wandering set, every point has a wandering
neighborhood (this time the neighborhood is in the topology on M).

Thus, the results in [BC] imply that for the C1 generic f , we have the following
picture: there is an f -invariant open and dense subset W of M , consisting of the
union of the interior of Ω(f) and the complement of Ω(f), and densely in W the
dynamics of f can be decomposed into components with “wandering strata.” We
exploit this fact in our local strategy, outlined in the next section.

2.2 Conditions for the local strategy: the unbounded distortion
(UD) properties

In the local strategy, we control the dynamics of the C1 generic f on the open
and dense set W = Int(Ω(f)) ∪ (M \ Ω(f)). We describe here the main analytic
properties we use to control these dynamics.
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We say that diffeomorphism f satisfies the unbounded distortion property on the
wandering set (UDM\Ω) if there exists a dense subset X ⊂ M \ Ω(f) such that, for
any K > 0, any x ∈ X and any y ∈ M \ Ω(f) not in the orbit of x, there exists
n ≥ 1 such that:

| log |detDfn(x)| − log |detDfn(y)|| > K.

A diffeomorphism f satisfies the unbounded distortion property on the stable
manifolds (UDs) if for any hyperbolic periodic orbit O, there exists a dense subset
X ⊂ W s(O) such that, for any K > 0, any x ∈ X and any y ∈ W s(O) not in the
orbit of x, there exists n ≥ 1 such that:

| log |detDfn|W s(O)(x)| − log |detDfn|W s(O)(y)|| > K.

Our first main perturbation result is:

Theorem A (Unbounded distortion). The diffeomorphisms in a residual subset
of Diff1(M) satisfy the (UDM\Ω) and the (UDs) properties.

A variation of an argument due to Togawa [To1, To2] detailed in [BCW1] shows
the (UDs) property holds for a C1-generic diffeomorphism. To prove Theorem A, we
are thus left to prove that the (UDM\Ω) property holds for a C1-generic diffeomor-
phism. This property is significantly more difficult to establish C1-generically than
the (UDs) property. The reason is that points on the stable manifold of a periodic
point all have the same future dynamics, and these dynamics are “constant” for
all large iterates: in a neighborhood of the periodic orbit, the dynamics of f are
effectively linear. In the wandering set, by contrast, the orbits of distinct points can
be completely unrelated after sufficiently many iterates.

Nonetheless, the proofs that the (UDM\Ω) and (UDs) properties are C1 residual
share some essential features, and both rely on the essentially non-recurrent aspects
of the dynamics on both the wandering set and the stable manifolds.

2.3 Condition for the global strategy: the large derivative (LD)
property

Here we describe the analytic condition on the C1-generic f we use to extend the
local conclusion on the centralizer of f to a global conclusion.

A diffeomorphism f satisfies the large derivative property (LD) on a set X if, for
any K > 0, there exists n(K) ≥ 1 such that for any x ∈ X and n ≥ n(K), there
exists j ∈ Z such that:

sup{‖Dfn(f j(x))‖, ‖Df−n(f j+n(x))‖} > K;

more compactly:

lim
n→∞

inf
x∈X

sup
y∈orb(x)

{Dfn(y),Df−n(y)} = ∞.

Rephrased informally, the (LD) property onX means that the derivative Dfn “tends
to ∞” uniformly on all orbits passing through X. We emphasize that the large
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derivative property is a property of the orbits of points in X, and if it holds for X,
it also holds for all iterates of X.

Our second main perturbation result is:

Theorem B (Large derivative). Let f be a diffeomorphism whose periodic or-
bits are hyperbolic. Then, there exists a diffeomorphism g arbitrarily close to f in
Diff1(M) such that the property (LD) is satisfied on M \ Per(f).

Moreover,

• f and g are conjugate via a homeomorphism Φ, i.e. g = ΦfΦ−1;

• for any periodic orbit O of f , the derivatives of f on O and of g on Φ(O) are
conjugate (in particular the periodic orbits of g are hyperbolic);

• if f satisfies the (UDM\Ω) property, then so does g;

• if f satisfies the (UDs) property, then so does g.

As a consequence of Theorems A and B we obtain:

Corollary 2.1. There exists a dense subset D of Diff1(M) such that any f ∈ D
satisfies the following properties:

• the periodic orbits are hyperbolic and have distinct eigenvalues;

• any component O of the interior of Ω(f) contains a periodic point whose stable
manifold is dense in O;

• f has the (UDM\Ω) and the (UDs) properties;

• f has the (LD) property on M \ Per(g).

2.4 Checking that the centralizer is trivial

We now explain why properties (UD) and (LD) together imply that the centralizer
is trivial.

Proposition 2.2. Any diffeomorphism f in the C1-dense subset D ⊂ Diff1(M)
given by Corollary 2.1 has a trivial centralizer Z1(f).

Proof of Proposition 2.2. Consider a diffeomorphism f ∈ D. Let g ∈ Z1(f)
be a diffeomorphism commuting with f , and let K > 0 be a Lipschitz constant for
g and g−1. Let W = Int(Ω(f)) ∪ (M \ Ω(f)) be the f -invariant, open and dense
subset of M whose properties are discussed in Section 2.1.

Our first step is to use the “local hypotheses” (UDM\Ω) and (UDs) to construct a
function α : W → Z that is constant on each connected component of W and satisfies
g = fα. We then use the “global hypothesis” (LD) to show that α is bounded on
W , and therefore extends to a constant function on M .

13



We first contruct α on the wandering set M \ Ω(f). The basic properties of
Lipschitz functions and the relation fng = gfn imply that for any x ∈ M , and any
n ∈ Z, we have

| log det(Dfn(x)) − log det(Dfn(g(x)))| ≤ 2d logK, (1)

where d = dimM . On the other hand, f satisfies the UDM\Ω(f) property, and hence
there exists a dense subset X ⊂ M \ Ω(f), each of whose points has unbounded
distortion with respect to any point in the wandering set not on the same orbit.
That is, for any x ∈ X , and y ∈M \ Ω(f) not on the orbit of x, we have:

lim sup
n→∞

| log |detDfn(x)| − log |detDfn(y)|| = ∞.

Inequality (1) then implies that x and y = g(x) lie on the same orbit, for all x ∈ X ,
hence g(x) = fα(x)(x). Using the continuity of g and the fact that the points in
M \Ω(f) admit wandering neighborhoods whose f -iterates are pairwise disjoint, we
deduce that the map α : X → Z is constant in the neighborhood of any point in
M \Ω(f). Hence the function α extends on M \Ω(f) to a function that is constant
on each connected component of M \ Ω(f). Furthermore, g = fα on M \ Ω(f).

We now define the function α on the interior Int(Ω(f)) of the nonwandering set.
Since the periodic orbits of f ∈ D have distinct eigenvalues and since g preserves the
rate of convergence along the stable manifolds, the diffeomorphism g preserves each
periodic orbit of f . Using the (UDs) condition, one can extend the argument above
for the wandering set to the stable manifolds of each periodic orbit (see also [BCW1,
Lemma 1.2]). We obtain that for any periodic point p, the diffeomorphism g coincides
with a power fα on each connected component of W s(p) \ {p}. For f ∈ D, each
connected component O of the interior of Ω(f) contains a periodic point p whose
stable manifold is dense in O. It follows that g coincides with some power fα of f
on each connected component of the interior of Ω(f).

We have seen that there is a locally constant function α : W → Z such that
g = fα on the f invariant, open and dense subset W ⊂ M . We now turn to the
global strategy. Notice that, since f and g commute, the function α is constant along
the non-periodic orbits of f . Now f ∈ D satisfies the (LD) property. Consequently
there exists N > 0 such that, for every non-periodic point x, and for every n ≥ N
there is a point y = f i(x) such that either ‖Dfn(y)‖ > K or ‖Df−n(y)‖ > K. This
implies that the function |α| is bounded by N : otherwise, α would be greater than
N on the invariant open set W of M . This open set contains a non-periodic point x
and an iterate y = f i(x) such that either ‖Dfα(y)‖ > K or ‖Df−α(y)‖ > K. This
contradicts the fact that g and g−1 are K-Lipschitz.

We have just shown that |α| is bounded by some integer N . Let Per2N be the
set of periodic points of f whose period is less than 2N , and for i ∈ {−N, . . . ,N}
consider the set

Pi = {x ∈M \ Per2N , g(x) = f i(x)}.
This is a closed invariant subset of M \ Per2N . What we proved above implies that
M \ Per2N is the union of the sets Pi, |i| ≤ N . Moreover any two sets Pi, Pj with
i 6= j are disjoint since a point in Pi ∩ Pj would be |i− j| periodic for f .
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If dim(M) ≥ 2, since M is connected and Per2N is finite, the set M \ Per2N is
connected. It follows that only one set Pi is non-empty, implying that g = f i on M .
This concludes the proof in this case.

If dim(M) = 1, one has to use that g is a diffeomorphism and is not only
Lipschitz: this shows that on the two sides of a periodic orbit of f , the map g
coincides with the same iterate of f . This proves again that only one set Pi is
nonempty. �

2.5 From dense to residual: compactness and semicontinuity

The previous results show that the set of diffeomorphisms having a trivial centralizer
is dense in Diff1(M), but this is not enough to conclude the proof of the Main
Theorem. Indeed the dense subset D in Corollary 2.1 is not a residual subset if
dim(M) ≥ 2: in the appendix we exhibit a nonempty open set in which C1-generic
diffeomorphisms do not satisfy the (LD)-property.

Fix a metric structure on M . A homeomorphism f : M → M is K-bi-Lipschitz
if both f and f−1 are Lipschitz, with Lipschitz norm bounded by K. A homeomor-
phism that is K-bi-Lipschitz for some K is called a bi-Lipschitz homeomorphism, or
lipeomorphism. We denote by LipK(M) the set of K-bi-Lipschitz homeomorphisms
of M and by Lip(M) the set of bi-Lipschitz homeomorphisms of M . The Arzèla-
Ascoli theorem implies that LipK(M) is compact in the uniform (C0) topology. Note
that Lip(M) ⊃ Diff1(M). For f ∈ Lip(M), the set ZLip(f) is defined analogously
to the Cr case:

ZLip(f) := {g ∈ Lip(M) : fg = gf}.
In dimension 1, the Main Theorem was a consequence of Togawa’s work [To2].

In higher dimension, the Main Theorem is a direct corollary of:

Theorem 2.3. If dim(M) ≥ 2, the set of diffeomorphisms f with trivial centralizer
ZLip(f) is residual in Diff1(M).

The proof of Theorem 2.3 has two parts.

Proposition 2.4. If dim(M) ≥ 2, any diffeomorphism f in the C1-dense subset
D ⊂ Diff1(M) given by Corollary 2.1 has a trivial centralizer ZLip(f).

The proof of this proposition from Theorems A and B is the same as the proof
of Proposition 2.2 (see also Lemma 1.2 in [BCW1]).

Proposition 2.5. Consider the set T of diffeomorphisms f ∈ Diff1(M) having a
trivial centralizer ZLip(f). Then, if T is dense in Diff1(M), it is also residual.

Remark 2.6. The proof of Proposition 2.5 also holds in the Cr topology r ≥ 2 on
any manifold M on which the Cr-generic diffeomorphism has at least one hyperbolic
periodic orbit (for example, on the circle, or on manifolds of nonzero Euler charac-
teristic). On the other hand, Theorem 2.3 is false for general manifolds in the C2

topology, at least for the circle. In fact, a simple folklore argument (see the proof of
Theorem B in [N]) implies that for any Kupka-Smale diffeomorphism f ∈ Diff2(S1),
the set ZLip(f) is infinite dimensional. It would be interesting to find out what is
true in higher dimensions.
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Proof of Proposition 2.5. For any compact metric space X we denote by K(X)
the set of non-empty compact subsets of X, endowed with the Hausdorff distance
dH . We use the following classical fact.

Proposition. Let B be a Baire space, let X be a compact metric space, and let
h : B → K(X) be an upper-semicontinuous function. Then the set of continuity
points of h is a residual subset of B.

In other words, if h has the property that for all b ∈ B,

bn → b =⇒ lim sup bn =
⋂

n

⋃

i>n

h(bi) ⊆ h(b),

then there is a residual set Rh ⊂ B such that, for all b ∈ Rh,

bn → b =⇒ lim dH(bn, b) = 0.

To prove Proposition 2.5, we note that for a fixed K > 0, the set ZLip(f) ∩
LipK(M) is a closed subset (in the C0 topology) of the compact metric space
LipK(M). This is a simple consequence of the facts that ZLip(f) is defined by
the relation fgf−1g−1 = id, and that composition and inversion are continuous.
Thus there is well-defined map hK from Diff1(M) to K(LipK(M)), sending f to
hK(f) = ZLip(f) ∩ LipK(M). It is easy to see that hK is upper-semicontinuous: if
fn converges to f in Diff1(M) and gn ∈ hK(fn) converges uniformly to g then g
belongs to hK(f).

Let RK ⊂ Diff1(M) be the set of points of continuity of hK ; it is a residual subset
of Diff1(M), by Proposition 2.5. Let RHyp ⊂ Diff1(M) be the set of diffeomorphisms
such that each f ∈ RHyp has at least one hyperbolic periodic orbit (the C1 Closing
Lemma implies that RHyp is residual). Finally, let

R = RHyp ∩
∞⋂

K=1

RK .

Assuming that T is dense in Diff1(M), we claim that the set R is contained in
T , implying that T is residual. To see this, fix f ∈ R, and let fn → f be a sequence
of diffeomorphisms in T converging to f in the C1 topology. Let g ∈ ZLip(M) be
a K-bi-Lipschitz homeomorphism satisfying fg = gf . Since hK is continuous at f ,
there is a sequence gn ∈ ZLip(fn) of K-bi-Lipschitz homeomorphisms with gn → g
in the C0 topology. The fact that fn ∈ T implies that the centralizer ZLip(fn) is
trivial, so there exist integers mn such that gn = fmn .

If the sequence (mn) is bounded, then passing to a subsequence, we obtain that
g = fm, for some integer m. If the sequence (mn) is not bounded, then we obtain a
contradiction as follows. Let x be a hyperbolic periodic point of f , of period p. For
n large, the map fn has a periodic orbit xn of period p, and the derivatives Dfpn(xn)
tend to the derivative Dfp(x). But then | log ‖Dfmn

n ‖| tends to infinity as n → ∞.
This contradicts the fact that the diffeomorphisms fmn

n = gn and f−mn
n = g−1

n are
both K-Lipschitz, concluding the proof. �
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3 Perturbing the derivative without changing the dy-

namics

In order to prove Theorem B, one needs to perturb a diffeomorphism f and change
the dynamical properties of its derivative without changing its topological dynamics:
the resulting diffeomorphism is still conjugate to f . We develop in this section an
important technique for the proof, which we call tidy perturbations of the dynamics.

3.1 Tidy perturbations

Definition 3.1. Let f : M → M be a homeomorphism and let X ⊂ M . We say
that a homeomorphism g is a tidy perturbation of f supported on X if:

1. g(x) = f(x), for all x ∈M \X,

2. if x ∈M \X and fm(x) ∈M \X, for some m ≥ 1, then gm(x) = fm(x);

3. if x ∈M \X and gm(x) ∈M \X, for some m ≥ 1, then gm(x) = fm(x);

4. for all x ∈M , there exists m ∈ Z such that fm(x) ∈M \X;

5. for all x ∈M , there exists m ∈ Z such that gm(x) ∈M \X.

Note that this definition is symmetric in f and g.

Lemma 3.2. If g is a tidy perturbation of f supported on X, then g is conjugate to
f by a homeomorphism ϕ such that ϕ = id on M \ (X ∩ f(X)). Furthermore, if g
and f are diffeomorphisms, then ϕ is a diffeomorphism as well.

Proof. Given f and a tidy perturbation g of f supported on X, we construct a
homeomorphism ϕ as follows. Property 4 of tidy perturbations implies that for each
x ∈ M , there exists an integer mx such that fmx(x) ∈ M \ X . We set ϕ(x) =
g−mxfmx(x).

Then ϕ is well-defined, for suppose that fm1(x) /∈ X and fm2(x) /∈ X , for some
integers m1 < m2. Let y = fm1(x). Then y /∈ X, and fm2−m1(y) = fm2(x) /∈ X.
Property 2 of tidy perturbations implies that gm2−m1(y) = fm2−m1(y); in other
words, g−m1fm1(x) = g−m2fm2(x). Hence the definition of ϕ(x) is independent of
the integer mx. In particular g ◦ ϕ = ϕ ◦ f .

To see that ϕ is continuous, note that for every x ∈M , if fm(x) /∈ X , then there
exists a neighborhood U of of x such that fm(U) ∩X 6= ∅. Hence ϕ = g−m ◦ fm on
U . This implies that ϕ is a local homeomorphism.

Let ϕ− be the local homeomorphism obtained by switching the roles of f and
g. Clearly ϕ− is the inverse of ϕ, so that ϕ is a homeomorphism. If f and g are
diffeomorphisms, it is clear from the construction of ϕ that ϕ is a diffeomorphism.

Properties 1 and 2 of tidy perturbations imply that for any point x ∈M \ (X ∩
f(X)), we have fmx(x) = gmx(x). This gives ϕ = id on M \ (X ∩ f(X)).

Each the tidy perturbations we will consider is supported in the union of suc-
cesive disjoint iterates of an open set. In that case, the characterization of tidy
perturbations is much easier, as explained in the next lemma:
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Lemma 3.3. Let f be a homeomorphism, U ⊂ M an open set, and m ≥ 1 an
integer such that the iterates U, f(U), . . . , fm(U) are pairwise disjoint.

Let g be a homeomorphism such that:

• g = f on the complement of the union X =
⋃m−1
i=0 f i(U), and

• for all x ∈ U , fm(x) = gm(x).

Then g is a tidy perturbation of f supported on X.

Proof. Property 1 of tidy perturbations is immediate; property 4 is as well, since
U, f(U), . . . , fm(U ) are pairwise disjoint.

Let x be a point in M \X whose f -orbit enters and leaves X, and let i > 0 be
its first entry in X; then f i(x) = gi(x) by the first hypothesis on g. The f -orbit
of x leaves X at fm+i(x) = gm+i(x), by the second hypothesis on g. Proceeding
inductively on the successive entrances and exits of the f -orbit of x we get that
gn(x) = fn(x) for every integer n such that fn(x) ∈ M \X, proving Property 2 of
tidy perturbations.

There is a neighborhood V of U such that f = g on V \ U . It follows that
f(U) = g(U). Inductively, we see that gi(U) = f i(U) for i ∈ {1, . . . ,m}. This shows
that the hypotheses of the lemma still are satisfied if we switch the roles of f and
g. This implies Properties 3 and 5 of tidy perturbations.

If g is a small C1-perturbation of f that is a tidy perturbation supported in the
disjoint union

⋃m−1
i=0 f i(U), it is tempting to think that the conjugating diffeomor-

phism ϕ must be C1-close to the identity as well. This is not always the case. The
derivative Dg is a small perturbation of Df but for x ∈ U and i ∈ {1, . . . ,m}, the
maps Df i(x) and Dgi(x) could be very different. There is however a straighforward
a priori bound for Dϕ:

Lemma 3.4. Let f be a diffeomorphism, U ⊂M an open set and m ≥ 1 an integer
such that the iterates U, f(U), . . . , fm(U) are pairwise disjoint. Suppose that g is a
tidy perturbation of f supported on X =

⋃m−1
i=0 f i(U) and that ϕ : M → M is the

diffeomorphism such that g = ϕ ◦ f ◦ ϕ−1 and ϕ = id on M \X.
Then

max{‖Dϕ‖, ‖Dϕ−1‖} ≤ Cm,

where C = sup{‖Dg‖, ‖Dg−1‖, ‖Df‖, ‖Df−1‖}.

Proof. For every x ∈M there exists i ∈ {0, . . . ,m} such that f i(x) /∈ X , so that ϕ
coincides with g−if i and g−i+mf i−m in a neighborhood of x. We conclude by noting
that either 2i or 2(m− i) is less than m. �

3.2 Sequences of tidy perturbations

The aim of this section is to control the effect of infinitely many successive tidy
perturbations gi of a diffeomorphism f and to give a sufficient condition for the
sequence gi to converge to a diffeomorphism g conjugate to f by a homeomorphism.
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Lemma 3.5. Let f be a diffeomorphism and ε,C > 0 be constants such that for
every g with dC1(f, g) < ε, we have ‖Dg‖, ‖Dg−1‖ < C. Consider:

• (Ui)i≥1, a sequence of open subsets of M ,

• (mi)i≥1, a sequence of positive integers,

• (εi)i≥1, a sequence of positive numbers such that
∑
εi < ε,

• (gi)i≥0, a sequence of diffeomorphisms such that g0 = f and for each i ≥ 1,

– the sets Ui, gi−1(Ui), . . . , g
mi

i−1(Ui) are pairwise disjoint,

– gi is a tidy εi-perturbation of gi−1, supported in
⋃mi−1
k=0 gki−1(Ui),

• (ρi)i≥1, a sequence of positive numbers such that gki−1(Ui) has diameter bounded
by ρi, for k ∈ {0, . . . ,mi}.

Denote by ϕi the diffeomorphism such that gi = ϕi ◦ gi−1 ◦ ϕ−1
i and ϕi = id on

M \⋃mi−1
k=1 gki−1(Ui). Let Φi = ϕi ◦ · · · ◦ϕ1 and Mi = Πi

k=1C
mk . If one assumes that

∑

i≥1

ρiMi−1 <∞,

then

1. (gi) converges in the C1 metric to a diffeomorphism g with dC1(f, g) < ε,

2. for all i < j one has dunif (ΦjΦ
−1
i , id) <

∑j
k=i+1 ρk,

3. (Φi) converges uniformly to a homeomorphism Φ satisfying g = ΦfΦ−1.

Remark 3.6. The uniform metric dunif on continuous self-maps onM in part 3 of this
lemma is not complete for the space of homeomorphisms of M ; to avoid confusion,
we denote by dC0 the complete metric defined by:

dC0(f, g) = dunif (f, g) + dunif (f
−1, g−1).

One difficulty in the proof of Lemma 3.5, which explains the role of Mi, is to control
the distances dunif (Φ

−1
i Φj , id).

Proof. The first conclusion is clear. Since ΦjΦ
−1
i = ϕj ◦ · · · ◦ ϕi+1, the second one

is immediate from the hypothesis that ϕi is a tidy perturbation and the fact that
the connected components of the support of ϕi have diameter less than ρi. The
hypothesis

∑
k≥1 ρi <∞ implies that (Φi)i∈N is a Cauchy sequence and converges to

a continuous map Φ satisfying gΦ = Φf . Finally, the a priori bound in Lemma 3.4
implies that ‖DΦ−1

i ‖ < Mi, so that

sup
d(x,y)<ρi

d(Φ−1
i−1(x),Φ

−1
i−1(y)) < ρiMi−1.

But for any x, we have d(x, ϕi(x)) < ρi. So the previous calculation implies
d(Φ−1

i−1(x),Φ
−1
i (x)) < ρiMi−1. By hypothesis,

∑
i≥1 ρiMi−1 < ∞, which implies

that (Φ−1
i )i∈N is a Cauchy sequence in the dunif metric. Hence (Φ−1

i ) converges as
i→ ∞ to the inverse of Φ and so Φ is a homeomorphism. �
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3.3 Topological towers

For each tidy perturbation we construct in this paper, we will use an open set with
many disjoint iterates. The large number of iterates will allow us to spread the
effects of the perturbation out over a large number of steps, effecting a large change
in the derivative with a small perturbation. For these perturbations to have a global
effect, we need to have most orbits in M visit U . The technique of topological
towers, developed in [BC], allows us to choose U to have many disjoint iterates,
while simultaneously guaranteeing that most orbits visit U .

Theorem 3.7 (Topological towers, [BC], Théorème 3.1). For any integer
d ≥ 1, there exists a constant κd > 0 such that for any integer m ≥ 1 and for any
diffeomorphism f of a d-dimensional manifold M , whose periodic orbits of period
less than κd.m are hyperbolic, there exists an open set U and a compact subset D ⊂ U
having the following properties:

• Any point x ∈ M that does not belong to a periodic orbit of period < m has
an iterate f i(x) in the interior of D.

• The sets U, f(U), . . . , fm−1(U) are pairwise disjoint.

Moreover, the connected components of U can be chosen with arbitrarily small di-
ameter.

3.4 Towers avoiding certain sets

In constructing our sequence (gi) of tidy perturbations, we need to ensure that the
effects of the (i+1)st perturbations do not undo the effects of the ith perturbation. In
addition, we aim to produce large derivative without affecting unbounded distortion.
For these reasons, it is desirable to choose the towers in the tidy perturbations to
avoid certain subsets in M . It is not possible to choose a tower avoiding an arbitrary
subset, but it turns out that certain sets with a wandering orbit property can be
avoided. We now define this property.

Definition 3.8. Let N,J ≥ 1 be integers. An (N,J)-wandering cover of a
compact set Z is a finite cover U of Z such that every V ∈ U has N iterates
f j(V ), f j+1(V ), . . . , f j+N−1(V ) with j ∈ {1, . . . , J} that are disjoint from Z.

Definition 3.9. Let f be a homeomorphism and Z ⊂M be a compact set.
Z has the (N,J)-wandering orbit property if it has an (N,J)-wandering cover.
Z has the N -wandering orbit property if it has the (N,J)-wandering orbit prop-

erty for some J ≥ 1.
Z has the wandering orbit property it has the N -wandering orbit property, for

every N ≥ 1.

The next lemma explains that topological towers can be constructed avoiding
any compact set with the wandering orbit property.

Lemma 3.10. Suppose that the periodic orbits of f are all hyperbolic.
For all m1,m2 ≥ 1, and ρ > 0, if Z is any compact set with the m1-wandering

orbit property, then there exists an open set U ⊂M with the following properties:
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1. The diameter of each connected component of U is less than ρ.

2. The iterates U, f(U), . . . , fm1−1(U) are disjoint from the set Z.

3. The iterates U, f(U), . . . , fm1+m2−1(U) are pairwise disjoint.

4. There is a compact set D ⊂ U such that every nonperiodic point x ∈ M has
an iterate in D.

This will be proved at the end of this subsection.

Remark 3.11. • If Z has the (N,J)-wandering orbit property, then for every
ρ > 0, there is an (N,J)-wandering cover all of whose elements have diameter
less than ρ.

• If Z has the (N,J)-wandering orbit property, then so does f(Z).

• More generally, if Z has the (N,J)-wandering orbit property for f , and g =
ΦfΦ−1, then Φ(Z) has the (N,J)-wandering orbit property for g.

Lemma 3.12. 1. If X is any compact set such that the iterates X, f(X), . . . ,
fm+N (X) are pairwise disjoint, then

⋃m−1
i=0 f i(X) has the (N,m)-wandering

orbit property.

2. If x is any point whose period lies in (N + 1,∞], then {x} has the (N, 1)-
wandering orbit property.

3. If x is any nonperiodic point, then {x} has the wandering orbit property.

4. Any compact subset Z ⊂ Ws(orb(p))\orb(p) has the wandering orbit property,
for any hyperbolic periodic point p.

5. Any compact subset of the wandering set M \ Ω(f) of f has the wandering
orbit property.

Proof. 1), 2) and 3) are easy. To prove 4), we consider Z ⊂W s(orb(p))\orb(p), for
some hyperbolic periodic point p. Let N be a neighborhood of the orbit of p that is
disjoint from Z. There exists m > 0 such that fn(Z) ⊂ N for any n ≥ m. Given N ,
there is a covering V of Z such that, for every V ∈ V, the sets fm(V ), . . . , fm+N (V )
are all contained in N . Then V is an (N,m)-wandering cover of Z.

Finally we prove 5). If Z is a compact subset of M \ Ω(f) then every point
z ∈ Z has finitely many returns in Z. So for every N > 0 and every x ∈ Z there
is a neighborhood Ux and an integer jx > 0 such that f jx(Ux), . . . , f

jx+N−1(Ux) are
disjoint from Z. Extracting a finite cover Uxi

and chosing J = maxi jxi
we get an

(N,J)-wandering cover. �

Lemma 3.13. Suppose Z has the (N,J)-wandering orbit property and W has the
(2N + J,K)-wandering orbit property. Then Z ∪ W has the (N,K + 2J + 2N)
wandering orbit property.

If Z has the N -wandering orbit property and W has the wandering orbit property,
then Z ∪W has the N -wandering orbit property.

If Z and W both have the wandering orbit property, then Z∪W has the wandering
orbit property.
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Proof. The second two claims follow from the first. To prove the first, fix a
(N,J)-wandering cover UZ of Z and a (2N + J,K)-wandering cover VW of W with
the property that, for every V ∈ VW and every i ∈ {0, . . . , N + K − 1}, if f i(V )
intersects Z, then f i(V ) is contained in an element of UZ . Let VZ be an (N,J)-
wandering cover of Z such that, for every V ∈ VZ and every i ∈ {0, . . . , N + J − 1},
if f i(V ) intersects W , then f i(V ) is contained in an element of VW . We claim that
VZ ∪ VW is an (N,K + 2J + 2N)-wandering cover of Z ∪W :

• Consider first V ∈ VW . As VW is a (2N + J,K)-wandering cover of W ,
there exists k ∈ {1, . . . ,K} such that fk(V ), . . . , fk+2N+J−1(V ) are disjoint
from W . If fk(V ), . . . , fk+N−1(V ) are disjoint from Z, then they are disjoint
from W ∪ Z which is what we want. Otherwise, there exists V ′ ∈ UZ and
j ∈ {1, . . . , N − 1} such that fk+j(V ) ⊂ V ′. Now there exists i ∈ {1, . . . , J}
such that f i(V ′), . . . , f i+N−1(V ′) are disjoint from Z; let j′ = k + i + j ∈
{1, . . . ,K+J+N−1}. Then fk+i+j(V ), . . . , fk+i+j+N−1(V ) are disjoint from
Z ∪W .

• Now consider V ∈ VZ . As VZ is a (N,J)-wandering cover of W , there ex-
ists j ∈ {1, . . . , J} such that f j(V ), . . . , f j+N−1(V ) are disjoint from Z. If
f j(V ), . . . , fk+N−1(V ) are disjoint from W , then they are also disjoint from
W ∪ Z, which is what we want. Otherwise, there exists V ′ ∈ VW and
i ∈ {1, . . . , N−1} such that f i+j(V ) ⊂ V ′. By the previous case, we know there
exists k ∈ {1, . . . ,K+J = N−1} such that the iterates fk(V ′), . . . , fk+N−1(V ′)
are disjoint from Z ∪W ; hence j′ = i+ j+ k ∈ {1, . . . ,K + 2N + 2J − 1}, and
the iterates f j

′
(V ), . . . , f j

′+N−1(V ) are disjoint from Z ∪W .

�

Proof of Lemma 3.10. Let m1,m2 ≥ 1 and ρ > 0 be given. Let Z be a compact
set with the m1-wandering property, and let U be an (m1, J)-wandering cover of Z.
Let U0 be an open set given by Theorem 3.7 with the following properties:

• for each connected component O of U0 and each j ∈ {0, . . . ,m1 + J − 1}, the
diameter of f j(O) is less than ρ;

• for each component O of U0, if f i(O) ∩ Z 6= ∅, for some i ∈ {0, . . . ,m1 − 1},
then f i(O) is contained in some element of U ;

• the iterates U0, f(U0), . . . , f
2m1+m2+J−1(U0) are pairwise disjoint;

• there is a compact set D0 ⊂ U0 such that every nonperiodic point x ∈ M has
an iterate in D0.

For each component O of U0, either the first m1 iterates O, f(O), . . . , fm1−1(O)
are disjoint from Z, or one of these iterates f i(O) is contained in an element of
U . In the latter case, there exists a j ∈ {1, . . . ,m1 + J − 1} such that the iterates
f j(O), . . . , f j+m1−1(O) are disjoint from Z. In either case, there exists an iterate
f j(O) of O, j ∈ {0, . . . ,m1 + J − 1} of diameter less than ρ, whose first m1 iterates
are disjoint from Z. Selecting one such iterate f j(O) for each component of U0 and
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taking the union of the f j(U0∩O) over all the components O, we obtain our desired
set U . The set D is obtained by intersecting the first 2m1 +m2 +J−1 iterates of D0

with the components of U and taking their union. One hence obtain the conclusions
1, 2 and 4.

The sets of the form f j+k(U0 ∩ O), where the sets f j(U0 ∩ O) define U and
k ∈ {0, . . . ,m1−1}, are pairwise disjoint, since U0 is disjoint from its 2m1+m2+J−1
first iterates. This gives conclusion 3 and ends the proof of the lemma. �

3.5 Linearizing the germ of dynamics along a nonperiodic orbit

In this subsection we present an elementary tool which will be used to construct
perturbations of a diffeomorphism f using perturbations of linear cocycles.

Lift of f by the exponential map. Let M be a compact manifold endowed with
a Riemannian metric. Denote by exp: TM → M the exponential map associated
to this metric, and by R > 0 the radius of injectivity of the exponential map: for
every x ∈M the exponential map at x induces a diffeomorphism expx : Bx(0, R) →
B(x,R) where Bx(0, R) ⊂ TxM and B(x,R) are the balls of radius R centered at
0x ∈ TxM and at x, respectively. It is important for our purposes to notice that the
derivative Dx expx can be identified with the identity map of TxM .

Let f be a diffeomorphism and let C > 1 be a bound for ‖Df‖ and for ‖Df−1‖.
For each vector u ∈ TxM with ‖u‖ < R and d(f(x), f(expx(u))) < R, we define

f̃x(u) = exp−1
f(x)(f(expx(u))).

This formula defines a diffeomorphism f̃ : U → V where

U = {(x, u) ∈ TM | ‖u‖ < R and d(f(x), f(expx(u))) < R}

V = {(x, u) ∈ TM | ‖u‖ < R and d(f−1(x), f−1(expx(u))) < R}.
The sets U and V are neighborhoods of the zero-section of the tangent bundle,
both containing the set of vectors whose norm is bounded by C−1R. We denote by
f̃x : Ux → Vf(x) the induced diffeomorphism on Ux = U ∩ TxM .

For every n ∈ Z we let Un be the domain of definition of f̃n, we let Vn = f̃n(Un)
and we let f̃nx : Ux,n → Vfn(x),n be the induced map on the fibers.

Linearizing coordinates of f̃ along an orbit. The map f̃n defines a germ of
the dynamics in a neighborhood of the zero section. The differential Df is also a
homeomorphism of TM that induces a continuous family of linear diffeomorphisms
on the fibers.

For n ≥ 0, we let ψn = Dfn ◦ f̃−n : Vn → TM and ψx,n : Vx,n → TxM be the
induced maps. We have the following properties:

• For every integer n, the family {ψx,n}x∈M is a compact family of C1 diffeomor-
phisms depending continuously (in the C1-topology) on x. Indeed, {f̃−nx }x∈M
and {Dfnx }x∈M are uniformly continuous families of diffeomorphisms.
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• The derivative of the diffeomorphism ψx,n at the zero vector 0x is the identity
map:

D0x(ψx,n) = IdTxM .

• For every x ∈ M the family of diffeomorphisms {ψfn(x),n}n∈N are lineariz-
ing coordinates along the orbit of x; more precisely, we have the following
commutative diagram:

· · ·
f̃

−→ Tf−1(x)M
f̃

−→ TxM
f̃

−→ . . .
f̃

−→ Tfn(x)M

↓ id ↓ ψf(x),1 ↓ ψfn(x),n

· · ·
Df
−→ Tf−1(x)M

Df
−→ TxM

Df
−→ . . .

Df
−→ Tfn(x)M

.

Perturbations of the linearized dynamics. Given a point x ∈M we consider
the derivative of f along the orbit orbf (x) of x as being a diffeomorphism of the (non-
compact, non-connected) manifold TM |orbf (x) endowed with the Euclidean metric

on the fibers. Now we will consider perturbations of Df in Diff1(TM |orbf (x)) in the

corresponding C1-topology.

Lemma 3.14. Let f be a diffeomorphism of a compact manifold. For every pair
0 < ε̃ < ε and every n > 0 there exists ρ > 0 with the following property.

Consider an open set U whose iterates f i(U), i ∈ {0, . . . , n}, are pairwise
disjoint. Fix a point x ∈ M and assume that U is contained in B(x, ρ); let
Ũ = exp−1

x (U). Then we have the following.

1. For every i ∈ {0, . . . , n}, the map Ψf i(x),i = ψf i(x),i ◦ exp−1
f i(x)

induces a diffeo-

morphism from f i(U) onto Df i(Ũ) such that

max{‖DΨf i(x),i‖, ‖DΨ−1
f i(x),i

‖, |detDΨf i(x),i|, |detDΨ−1
f i(x),i

|} < 2.

2. For every perturbation g̃ of Df with support in
⋃n−1
i=0 Df

i(Ũ) such that
dC1(g̃,Df) < ε̃, let g be the map defined by

• g(y) = f(y) if y /∈ ⋃n−1
i=0 f

i(U)

• g(y) = Ψ−1
f i+1(x),i+1

◦ g̃ ◦ Ψf i(x),i(y) if y ∈ f i(U), i ∈ {0, . . . , n− 1}.

Then the map g : M →M is a diffeomorphism. It is a perturbation of f with
support in

⋃n−1
i=0 f

i(U) such that dC1(g, f) < ε.

3. If furthermore g̃ is a tidy perturbation of Df , then g is a tidy perturbation of
f .

Proof. The unique nontrivial statement in this lemma is the fact that g is an ε
perturbation of f if g̃ is an ε̃ perturbation of Df . The proof of this is a simple
calculation using the facts that:

• the derivative D0x(expx) is an isometry of TxM ,

• the derivative D0xψx,i is the identity for all x and i,

• the family {ψx,i, x ∈ M, 0 ≤ i ≤ n} induces a compact family of C1-
diffeomorphisms on the balls B(0x,

R
Cn ) having 0x as a fixed point.

�
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4 (LD) property: reduction to a perturbation result in

towers

In this section, we show how to reduce the proof of Theorem B to the following
perturbative result. Its proof is deferred to Section 5.

Theorem B’ (Large derivative by perturbation). For any d ≥ 1 and any
C,K, ε > 0, there exists an integer n0 = n0(C,K, ε) ≥ 1 with the following
property. Consider any diffeomorphism f of a d-dimensional manifold M with
‖Df‖, ‖Df−1‖ < C and any n ≥ n0. Let N = 2d+1n. Then there exists
ρ0 = ρ0(n, f,K, ε) > 0 such that,

• for any open set U with diameter < ρ0 and where the iterates U , f(U),. . . ,
fN−1(U ) are pairwise disjoint,

• for any compact set ∆ ⊂ U ,

there exists g ∈ Diff1(M) such that

• the C1 distance from f to g is less than ε;

• g is a tidy perturbation of f with support in U ∪ f(U) ∪ · · · ∪ fN−1(U);

• for any x ∈ ∆ there exists j ∈ {0, . . . , N − n} such that

max{‖Dgn(gj(x))‖, ‖Dg−n(gj+n(x))‖} > K.

4.1 Our shopping list for the proof of Theorem B

Let M be a compact manifold with dimension d. Consider a diffeomorphism f whose
periodic orbits are hyperbolic, a constant ε > 0, a sequence (Ki) that tends to +∞
(for instance Ki = i) and a constant C > 0 that bounds the norms of Dg and Dg−1,
for any diffeomorphism g that is ε-close to f in the C1-distance.

Our perturbation g of f will emerge as the limit of a sequence of perturbations
g0 = f, g1, g2, . . .. Each perturbation gi will satisfy a large derivative property for
an interval of times [ni, ni+1 − 1]. The objects involved at step i in the construction
are:

• gi, the perturbation, and εi, the C1 distance from gi to gi−1.

• [ni, ni+1 − 1], the interval of time for which prescribed large derivative for gi
occur, and Ki, the magnitude of large derivative created for these iterates.

• Ui, an open set such that the iterates gki−1(Ui), k ∈ {0, . . . ,mi} are pairwise
disjoint, where mi = 2d+1(ni + n1 + 1 + · · · + ni+1 − 1). The perturbation
gi of gi−1 is supported in the union of these iterates and is tidy with respect
to their union. Φi is the C1 conjugacy between gi and f such that Φi ◦ Φ−1

i−1

is supported in ∪mi−1
k=1 gki−1(Ui). The integer Mi =

∏i
k=1C

mk bounds the C1

norm of the conjugacy Φi.
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• ρi > 0, an upper bound on the diameter of the first mi iterates of Ui under
gi−1.

• Di, a compact set contained in Ui that meets every aperiodic gi−1-orbit (and
hence also every aperiodic orbit of the tidy perturbation gi).

• ∆i, a compact set with Di ⊂ int∆i ⊂ ∆i ⊂ Ui. Large derivative will occur for
gi in the first mi iterates of ∆i.

• Zi, a compact set, xi, a point, and Ni, an iterate, such that property (UD)
holds for f between xi and points of Zi in time less than Ni.

Some objects in this construction are fixed prior to the iterative construction of
the perturbations, and others are chosen concurrently with the perturbations. Thus
we have two types of choices, a priori and inductive, and they are chosen in roughly
the following order:

• a priori choices: εi, ni, Zi, xi, Ni;

• inductive choices: ρi, Ui, Di, ∆i, gi.

4.2 A priori choices

4.2.1 Choice of εi, ni, mi, Mi

We first describe how to select inductively the positive numbers εi and the integers
ni. We initially choose ε1 < ε/2 and n1 = n0(C, 2K1, ε1), according to Theorem B’.
Now given (εi, ni), we let

εi+1 = min{εi/2,
Ki−1

4niCni−1
} and ni+1 = n0(C, 2Ki+1, εi+1).

With these definitions we have for any ℓ ≥ 1,
∑

k≥ℓ

εk < 2εℓ < ε.

From this it follows that the sequence of perturbations (gi)i∈N such that
dC1(gi−1, gi) < εi and g0 = f will have a limit gi → g as i → ∞ that is a dif-
feomorphism satisfying dC1(f, g) < ε. The bound for εi is justified by the following
lemma which allows us to pass to g the Large Derivative Property satisfied by gi.

Lemma 4.1. Suppose that εi+1 <
Ki−1

4niCni−1 . Then, for any n ≤ ni and any sequences
of matrices A1, . . . , An and B1, . . . , Bn satisfying:

• ‖Ak‖, ‖A−1
k ‖, ‖Bk‖, ‖B−1

k ‖ < C for k ∈ {1, . . . , n},

• ‖Ak −Bk‖, ‖A−1
k −B−1

k ‖ < 4εi+1 for k ∈ {1, . . . , n},

• max{‖An · · ·A1‖, ‖(An · · ·A1)
−1‖} > 2Ki−1,

we have:
max{‖Bn · · ·B1‖, ‖(Bn · · ·B1)

−1‖} > Ki−1.

26



Proof. Without loss of generality we may assume that ‖An . . . A1‖ > 2Ki−1. We
have:

‖An · · ·A1‖ − ‖Bn · · ·B1‖ ≤
n∑

j=1

‖An · · ·Aj+1 · (Aj −Bj) ·Bj−1 · · ·B1‖

≤ 4nεi+1C
n−1 ≤ 4niεi+1C

ni−1

< Ki−1, by our choice of εi.

We obtain the desired conclusion: ‖Bni
· · ·B1‖ > ‖Ani

· · ·A1‖ −Ki−1 > Ki−1. �

4.2.2 Choice of xi, Zi and Ni

Assume f has the unbounded distortion property on the wandering set (UDM\Ω)
and on the stable manifolds (UDs). In this section we choose a countable family of
pairs (xi, Zi) where Zi is a compact set disjoint from the orbit of xi which will be
used for testing the (UDM\Ω) and the (UDs)-properties of the perturbations gi we
will construct.

By definition of the (UDM\Ω)-property there exists a countable and dense subset
XM\Ω ⊂M \ Ω(f) such that, for any K > 0, any x ∈ XM\Ω and any y ∈ M \ Ω(f)
not in the orbit of x, there exists n ≥ 1 such that:

| log |detDfn(x)| − log |detDfn(y)|| > K.

For every x ∈ XM\Ω we choose a countable set Zx of compact subsets of M \ Ωf

disjoint from the orbit of x and covering the complement in M \Ω of the orbit of x.
We define

ZM\Ω = {(x,Z)|x ∈ XM\Ω, Z ∈ Zx}.
By definition of the (UDs)-property, for any hyperbolic periodic orbit O, there

exists a dense countable subset XO ⊂ W s(O) \ O such that, for any K > 0, any
x ∈ XO and any y ∈W s(O) not in the orbit of x, there exists n ≥ 1 such that:

| log |detDfn|W s(O)(x)| − log |detDfn|W s(O)(y)|| > K.

For every x ∈ XO we choose a countable set Zx of compact subsets of W s(O) disjoint
from the orbit of x and covering the complement in W s(O) of the orbit of x. We
define

ZO = {(x,Z)|x ∈ XO, Z ∈ Zx}.
We set

Zs =
⋃

O∈Per(f)

ZO, and Z = ZM\Ω ⊔ Zs the disjoint union of ZM\Ω and Zs.

Since, by hypothesis, the periodic orbits of f are all hyperbolic, the set of periodic
orbits is countable. Consequently Z is a countable set.

For each pair (x,Z) ∈ Z, we will need to verify that our perturbations preserve
countably many conditions of the form

| log |detDgni (x)| − log |detDgni (y)|| > Li, for every y ∈ Φi(Z),
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where Li is a sequence of natural numbers tending to ∞. To this end, we fix an
enumeration {(xi, Zi)}i∈N of the disjoint union

⊔
n∈N Z; each pair (x,Z) ∈ Z appears

infinitely many times as a pair (xik , Zik) in this choice of indexing.
We now fix a sequence of integers Ni as follows:

• If (xi, Zi) ∈ ZM\Ω then we fix Ni such that for every y ∈ Zi there is n ∈
{1, . . . , Ni} with

| log |detDfn(xi)| − log |detDfn(y)|| > Ki + 4d logMi.

• If (xi, Zi) ∈ ZO for some periodic orbit O then we fix Ni such that for every
y ∈ Zi there exists n ∈ {1, . . . , Ni} with

| log |detDfn|W s(O)(xi)| − log |detDfn|W s(O)(y)|| > Ki + 4d logMi.

The Mi appears in these expressions because i will index the ith perturbation in
our construction, and the effects of the previous perturbations on the (UD) property
will be taken into account. The number M2

i bounds the effect of conjugacy by Φi

on the derivative.
We set Yi,0 =

⋃Ni

k=0 f
k(Zi ∪ {xi}). Lemma 3.12 implies that the sets Yi,0 have

the wandering orbit property for f .

4.3 Inductive hypotheses implying Theorem B

We now describe conditions on the inductively-chosen objects that must satisfied
and explain how they imply the conclusion of Theorem B. In a later subsection we
explain how these choices can be made so that the inductive conditions are satisfied.

4.3.1 Conditions on ρi so that (Φi) converges

According to Lemma 3.5, the diffeomorphisms Φi (conjugating gi to f) converge uni-
formly to a homeomorphism Φ (conjugating g to f) provided the following conditions
hold.

ρi < 2−1 min{ρi−1,M
−1
i−1}. (2)

4.3.2 Conditions on ρi preserving prolonged visits to towers

Our perturbation at step i will produce prescribed large derivative for g for orbits
visiting the compact set ∆i. In order to verify that g has the (LD) property, we will
need to know that every nonperiodic orbit for g visits each set ∆i, which imposes
the following condition on the sequence (ρi):

ρi+1 < 2−1 inf
k∈{0,...,mi}

d(gki (Di),M \ gki (∆i)). (3)

The (LD) property on g will be proved in the next subsection by using the
following lemma.
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Lemma 4.2. Assume furthermore that condition (3) holds. Then for every i and
any y ∈M \ Per(g), there exists an integer t such that

gt(y) ∈ ∆i and gti(x) ∈ Di,

where x = Φi ◦ Φ−1(y). For all k ∈ {0, . . . ,mi}, we also have gt+k(y) ∈ gki (∆i).

Proof. Fix j ≥ i. Let y be a non-periodic point for gj and x = Φi ◦ Φ−1
j (y). For

any n, we have gnj (y) = Φj ◦Φ−1
i gni (x). The point x is not periodic for gi, since y is

not periodic for gj and y is the image of x under the conjugacy between gi and gj .
By our hypothesis on Di, there exists t such that gti(x) ∈ Di. The hypothesis (3)

on ρi implies that Φj ◦ Φ−1
i (gki (Di)) ⊂ gki (∆i) for k ∈ {0, . . . , 0, . . . ,mi}, since, by

Lemma 3.5, dunif (Φj ◦ Φ−1
i , id) <

∑j
k=i+1 ρk < 2ρi+1. This implies that gn+k

j (y) ∈
gki (∆i).

Now consider y ∈M that is not periodic for g. Let x = Φi◦Φ−1(y). For every j ≥
i, we set yj = Φj ◦ Φ−1

i (x); observe that yj → y as j → ∞. The previous argument
implies there exists a t such that for every j and every k ∈ {0, . . . , 0, . . . ,mi}, we
have gt+kj (yj) ∈ gki (∆i); compactness of ∆i implies that gt+k(y) ∈ gki (∆i). �

4.3.3 Conditions on ρi, Ui and gi for the (LD) property

The next lemma imposes one more requirement on ρi, Ui and on the derivative Dgi
in order to obtain property (LD).

Lemma 4.3 (Final conditions for (LD)). Suppose further that:

• For every x, y ∈M ,

d(x, y) < 2ρi ⇒ ‖Dgi−1(x) −Dgi−1(y)‖ < εi+1. (4)

• The support of gi+1 is disjoint from the support of gi:

U i−1, . . . , g
mi−1−1
i−1 (U i−1), U i, . . . , g

mi−1
i−1 (U i) are pairwise disjoint. (5)

• For any n ∈ [ni, ni+1 − 1] and x ∈ ∆i, there is j ∈ {0, . . . ,mi − n} such that

max{‖Dgni (gji (x))‖, ‖Dg−ni (gj+ni (x))‖} > 2Ki. (6)

Then g has the large derivative (LD) property.

Proof. Let g be the limit of the gi. Let K be a large positive number and choose i0
such that Ki0 > K. We claim that for every y ∈M \ Per(g), and for every n ≥ ni0,
there exists an integer j > 0 such that

max{‖Dg(gj(y))‖, ‖Dg−n(gj+n(y))‖} > K.

Fix such an n ≥ ni0 , and choose i ≥ i0 such that n ∈ [ni, ni+1 − 1]. Let
y ∈ M \ Per(g). Let x = Φi ◦ Φ−1(y). Note that x ∈ M \ Per(gi), so by our
hypothesis on Di, there exists an integer t such that gti(x) ∈ Di. Lemma 4.2 implies
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that gt(y) ∈ ∆i. Since the (LD) property is a property of orbits, it suffices to assume
that y ∈ ∆i and x = Φi ◦ Φ−1(y) ∈ Di.

Now x ∈ Di ⊂ ∆i implies there exists j ∈ {0, . . . ,mi − n} such that

max{‖Dgni (gji (x))‖, ‖Dg−ni (gj+ni (x))‖} > 2Ki.

For any k ∈ {0, . . . ,mi − 1}, we have

‖Dg(gk(y)) −Dgi(g
k
i (x))‖

≤ ‖Dg(gk(y)) −Dgi+1(g
k(y))‖ + ‖Dgi+1(g

k(y)) −Dgi(g
k
i (x))‖

≤ 2εi+2 + ‖Dgi+1(g
k(y)) −Dgi(g

k(y))‖ + ‖Dgi(gk(y)) −Dgi(g
k
i (x))‖,

where we have used the fact that the C1 distance from g to gi+1 is bounded by∑
k≥i+2 εk < 2εi+2.

We next bound the remaining terms in the inequality. Since gk(y) = Φ ◦
Φ−1
i (gki (x)) and dunif (Φ ◦ Φ−1

i , id) < 2ρi+1, the hypothesis (6) implies that

‖Dgi(gk(y)) −Dgi(g
k
i (x))‖ < εi+2.

By Lemma 4.2, we know that for k ∈ {0, . . . ,mi − 1}, the point gk(y) belongs
to the set gki (∆i). Since the support of gi+1 is disjoint from gki (Ui), which con-
tains gki (∆i), we obtain that gi+1 and gi agree in a neighborhood of gk(y), for
k ∈ {0, . . . ,mi − 1}. From this it follows that ‖Dgi+1(g

k(y)) −Dgi(g
k(y))‖ = 0.

We conclude that

‖Dg(gk(y)) −Dgi(g
k
i (x))‖ ≤ 3εi+2.

But now Lemma 4.1 and the Chain Rule imply that

max{‖Dgn(gj(y))‖, ‖Dg−n(gj+n(y))‖} > Ki.

�

4.3.4 The derivative at the periodic orbits is preserved

Let O be a periodic orbit of f . Note that its image by Φi should be disjoint from
Ui+1, . . . , gi(Ui+1) for i large. In particular, the maps gi+1 and gi coincide in a
neighborhood of the periodic orbit Φi(O). This proves that Φ(O) = Φi(O) and
that Dg coincides with Dgi at points of Φ(O). Since gi and f are conjugate by the
diffeomorphism Φi, we conclude that the derivatives of f on O and of g on Φ(O) are
conjugate.

4.3.5 Conditions on Ui for preserving the (UD) property

We assume here that f satisfies the unbounded distortion (UD) property on the
stable manifolds and on the wandering set, and we consider the sequences (xi), (Zi),
(Ni) and (Yi,0) defined in Subsection 4.2.2. Let

Yi =
Ni⋃

k=0

gki (Φi(Zi ∪ {xi})) = Φi(Yi,0).

30



We introduce the following condition

The sets Ui, . . . , g
mi

i−1(Ui) are disjoint from ∪i−1
k=1 Yk. (7)

Lemma 4.4. If in addition hypothesis (7) is satisfied, then g has the unbounded
distortion properties (UD)M\Ω and (UD)s.

Proof. We prove that g has property (UD)M\Ω; the proof of (UD)s is similar. Recall
the dense set XM\Ω in M \ Ω(f) used to define (xi) and (Zi). Clearly Φ(XM\Ω) is
dense in M \ Ω(g).

Fix x ∈ Φ(XM\Ω) and y ∈M \ Ω(g) that are not on the same orbit. Let K > 0
be some large constant. We claim that there exists i ∈ N such that:

• Φ−1(x) = xi,

• Φ−1(y) ∈ Zi (and we set yi = Φ−1(y)),

• Ki > K.

Such an i exists because Φ−1(y) ∈ M \ (Ω(f) ∪ orbf (x)) and so, by definition of
Zx, there exists Z ∈ Zx containing Φ−1(y). The pair (x,Z) appears as (xi, Zi) for
infinitely many values of i. For i sufficiently large, we have Ki > K, which proves
the claim.

By definition of Ni, there exists n ∈ {1, . . . , Ni} such that

| log |detDfn(xi)| − log |detDfn(yi)|| > Ki + 4d logMi.

Since gi = Φi ◦f ◦Φ−1
i , and ‖DΦi‖ and ‖DΦ−1

i ‖ are both bounded by Mi, we obtain
that

| log |detDgni (Φi(xi))| − log |detDgni (Φi(yi))|| > Ki.

Our assumption on the support of the tidy perturbations implies that for every
j > i, gj is a tidy perturbation of gj−1 whose support is disjoint from the com-
pact set Yi. This implies that gj and gi coincide in a neighborhood of the points
Φi(xi), gi(Φi(xi)), . . . , g

Ni(Φi(xi)) and Φi(yi), gi(Φi(yi)), . . . , g
Ni(Φi(yi)). In partic-

ular:

• Φj(xi) = Φi(xi) and Φj(yi) = Φi(yi). Since the points Φj(xi) and Φj(yi)
converge to x and y when j → ∞, it follows that Φi(xi) = x and Φi(yi) = y.

• Dgni (Φi(xi)) = Dgnj (x) and Dgni (Φi(yi)) = Dgnj (y).

It follows that, for j ≥ i,

| log |detDgnj (x)| − log |detDgnj (y)|| ≥ Ki,

Since Dgnj tends to Dgn as j → ∞, it follows that

| log |detDgn(x)| − log |detDgn(y)|| ≥ Ki > K,

which concludes the proof of the (UDM\Ω) property for g. The proof of the (UDs)
property is completely analogous.

�
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4.4 Satisfying the inductive hypotheses

To finish the proof of Theorem B (assuming Theorem B’), we are left to explain
how to construct inductively ρi, Ui,Di,∆i and gi satisfying the properties stated at
Section 4.1 and properties (2), (3), (4), (5), (6) and (7). For the construction we
require the following extra property:

The sets gji−1(Ui) for j ∈ {0, . . . ,mi +mi+1 − 1} are pairwise disjoint. (8)

In the following we assume that all the objects have been constructed up to
ρi, Ui,Di,∆i, gi, and we will construct ρi+1, Ui+1,Di+1,∆i+1, gi+1.

The constant ρi+1. We choose ρi+1 satisfying:

1. ρi+1 is strictly less than the numbers ρ0(n, gi, 2Ki+1, εi+1) given by Theorem B’
for ni+1 ≤ n < ni+2;

2. ρi+1 < 2−1 min{ρi,M−1
i },

3. ρi+1 < 2−1 infk∈{0,...,mi} d(g
k
i (Di),M \ gki (∆i)).

4. ρi+1 is less than the Lebesgue number associated to Dgi for εi+2, so that, for
every x, y ∈M , if d(x, y) < 2ρi+1, then ‖Dgi(x) −Dgi(y)‖ < εi+2.

In particular conditions (2), (3) and (4) are satisfied by ρi+1.

The sets Ui+1,Di+1,∆i+1. Observe that Yk = Φk(Yk,0) = Φi(Yk,0) for k ≤ i have
the wandering orbit property for gi because Yk,0 have the wandering orbit property

for f . By induction property (8) is satisfied by Ui and implies that the sets gji (Ui)
for j ∈ {0, . . . ,mi + mi+1 − 1} are pairwise disjoint. By Lemma 3.12, the set⋃mi−1
j=0 gji (U i) has the mi+1-wandering orbit property and so Lemma 3.13 implies

that
⋃i
k=0 Yk ∪

⋃mi−1
j=0 gji (U i) has the mi+1-wandering orbit property. Lemma 3.10

gives an open set Ui+1 and a compact set Di+1 ⊂ Ui+1 such that

1. the diameter of each connected component of gji (Ui+1), j ∈ {0, . . . ,mi+1} is
less than ρi+1;

2. the sets gji (Ui+1), j ∈ {0, . . . ,mi+1 − 1}, are disjoint from the sets Yk, k ≤ i,

and from the sets gji (U i), j ∈ {0, . . . ,mi+1 − 1};

3. the sets gji (Ui+1) for j ∈ {0, . . . ,mi+1 +mi+2 − 1} are pairwise disjoint;

4. every nonperiodic point x ∈M has an iterate in Di+1.

In particular, conditions (5), (7) and (8) are satisfied by Ui+1. We next fix some
compact set ∆i+1 ⊂ Ui+1 containing Di+1 in its interior.
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The perturbation gi+1. For each n ∈ {ni+1, . . . , ni+2 − 1}, we will make a tidy
perturbation gn,i+1 producing the large derivative at the nth iterate. Furthermore,
these perturbations will have pairwise disjoint support.

To do this, we partition {0, 1, . . . ,mi+1 − 1} into intervals of the form In =
{αn, . . . , αn+1 − 1}, ni+1 ≤ n < ni+2, where αn = 2d+1(ni+1 + · · · + n− 1). This is
possible since mi+1 = 2d+1(ni+1 + (ni+1 + 1) + · · · + ni+2 − 1).

The sets gji (Ui+1) for j ∈ In are pairwise disjoint and have a diameter less than
ρ0(n, gi, 2Ki+1, εi+1). Hence, we can apply Theorem B’ to obtain a tidy perturbation
gn,i+1 of gi with support in

⋃
j∈In g

j
i (Ui+1) such that dC1(gn,i+1, gi) < εi+1 and for

any x ∈ gαn

i (∆i+1), there exists j ∈ {αn, . . . , αn+1 − n} such that

max{‖Dgnn,i+1(g
j
n,i+1(x))‖, ‖Dg−nn,i+1(g

j+n
n,i+1(x))‖} > 2Ki+1.

We denote by ϕn,i+1 the conjugating diffeomorphism associated to the tidy pertur-

bation gn,i+1, which is the identity outside of
⋃
j∈In g

j
i (Ui+1). Notice that ϕn,i+1 is

also the identity map on gαn

i (Ui+1).
We now define the diffeomorphisms gi+1 and ϕi+1 that coincide respectively with

gi and idM on M \ ⋃mi+1−1
j=0 gji (Ui+1) and with gn,i+1 and ϕn,i+1 on

⋃
j∈In g

j
i (Ui+1),

for n ∈ {ni, . . . , ni+1 − 1}. Using the fact that the tidy perturbations gn,i+1 have
disjoint support, we obtain that gi+1 and ϕi+1 have the following properties:

• gi+1 is a tidy perturbation of gi with support in
⋃mi+1−1
j=0 gji (Ui+1).

• gi+1 is conjugate to gi by ϕi+1.

• ϕi+1 is the identity map on each gαn

i (Ui+1); in particular, if x ∈ ∆i+1 then
gαn

i+1(x) ∈ gαn

i (∆i+1).

• Consequently, for any n ∈ {ni+1, . . . , ni+2 − 1} and any x ∈ ∆i+1, there exists
j ∈ {αn, αn+1 − n} ⊂ {0, . . . ,mi+1 − n} such that

max{‖Dgni+1(g
j
i+1(x))‖, ‖Dg−ni+1(g

j+n
i+1 (x))‖} > 2Ki+1.

The proof of Theorem B assuming Theorem B’ is now complete.

5 Large derivative by perturbation in towers

The aim of this section is to prove Theorem B’, thereby completing the proof of
Theorem B. In the first three subsections we reduce the problem to a linear algebra
result, which is proved in the last section.

5.1 Reduction to cocycles

To any sequence (Ai) in GL(d,R) we associate its linear cocycle as the map f : Z ×
R
d → Z × R

d defined by (i, v) 7→ (i+ 1, Ai(v)). Theorem B’ is a consequence of the
following corresponding result for C1 perturbations of linear cocycles.
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Proposition 5.1. For any d ≥ 1 and any C,K, ε > 0, there exists n1 =
n1(d,C,K, ε) ≥ 1 with the following property.

Consider any sequence (Ai) in GL(d,R) with ‖Ai‖, ‖A−1
i ‖ < C and the associated

linear cocycle f . Consider any integer n ≥ n1 and let N = 2d+1n. Then for any
open set U ⊂ [−1, 1]d and for any compact set ∆ ⊂ U , there exists a diffeomorphism
g of Z × R

d such that:

1. the C1-distance from g to f is bounded by ε;

2. g is a tidy perturbation of f supported on
⋃N−1
i=0 f i({0} × U);

3. for any x ∈ {0} × ∆ there exists j ∈ {0, . . . , N − n} such that

max{‖Dgn(gj(x))‖, ‖Dg−n(gj+n(x))‖} > K.

Proof of Theorem B’ from Proposition 5.1. Fix ε̃ < ε, let K̃ = 4K and set
n0 = n1(d,C, K̃, ε̃), according to Proposition 5.1. Let f be a diffeomorphism of the
d-manifold M with ‖Df‖, ‖Df−1‖ < C and fix n ≥ n0. Let N = 2d+1n. We choose
ρ0 = ρ according to Lemma 3.14 associated to ε̃ < ε and N .

Let us show that ρ0 satisfies the conclusions of Theorem B’. Let U ⊂ M be an
open set with diameter less than ρ0 whose iterates U, f(U), . . . , fN−1(U) are pairwise
disjoint, and let ∆ ⊂ U be compact. Fix a point x0 ∈ U .

Lemma 3.14 asserts that there are diffeomorphisms Ψf i(x0),i : f
i(U) → Tf i(x0)M ,

i ∈ {0, . . . , N−1} which conjugate f to its tangent map: if y ∈ f i(U), i ∈ {0, . . . , N−
1} then

f(y) = Ψ−1
f i+1(x0),i+1

◦Df i(x0)f ◦ Ψf i(x0),i(y).

Moreover,

• the quantities ‖DΨf i(x0),i‖ and ‖DΨ−1
f i(x0),i

‖ are bounded by 2;

• any tidy ε̃-perturbation g̃ of Df with support in
⋃N−1

0 Df i(Ũ ), where Ũ =
Ψx0,0(U), induces a tidy ε-perturbation g of f supported on

⋃N−1
0 f i(U),

through a conjugacy by the diffeomorphisms Ψf i(x0),i.

We apply Proposition 5.1 to the cocycle induced by Df on the tangent bundle
TM |orb(x0) over the orbit of x0, to the images Ũ , ∆̃ of U,∆ by Ψ, and to the integer n

(which is larger than n1). We obtain a (nonlinear) cocycle g̃ : Z×R
d → Z×R

d whose
C1-distance to Df is smaller than ε, which is a tidy perturbation of Df supported in⋃N−1
i=0 Df i(Ũ ) and such that for any x ∈ ∆̃ there exists j ∈ {0, . . . , N −n} satisfying

max{‖Dg̃n(g̃j(x))‖, ‖Dg̃−n(g̃j+n(x))‖} > K̃. (9)

By Lemma 3.14, the cocycle g̃ defines a tidy perturbation g of f supported on⋃N−1
0 f i(U) and such that dC1(f, g) < ε. Consider x ∈ ∆, x̃ = Ψx0,0(x) ∈ ∆̃

and the integer j ∈ {0, . . . , N − n} such that (9) holds. Note that on gj(U) we
have g̃n = Ψfj+n(x0),j+n ◦ g̃n ◦ Ψ−1

fj(x0),j
. Since the derivatives ‖Ψfj+n(x0),j+n‖ and

‖Ψ−1
fj(x0),j‖ are bounded by 2, it follows that

‖Dgn(gj(x))‖ ≥ 1

4
‖Dg̃n(g̃j(x̃))‖,
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‖Dg−n(gj+n(x))‖ ≥ 1

4
‖Dg̃−n(g̃j+n(x̃))‖.

By property (9) above, this gives

max{‖Dgn(gj(x))‖, ‖Dg−n(gj+n(x))‖} > 1

4
K̃ = K.

�

5.2 Reduction to a perturbation result in a cube

We now reduce Proposition 5.1 to the case U is an iterate of the interior of the
standard cube Q = [−1, 1]d and ∆ is an iterate of a smaller closed cube δQ.

Proposition 5.2. For any d ≥ 1, C,K, ε > 0 and δ ∈ (0, 1), there exists an integer
n2 = n2(d,C,K, ε, δ) ≥ 1 with the following property.

Consider any sequence (Ai) in GL(d,R) with ‖Ai‖, ‖A−1
i ‖ < C and the associated

linear cocycle f . Then, for any n ≥ n2 there exists a diffeomorphism g of Z × R
d

such that:

1. the C1-distance from g to f is bounded by ε;

2. g is a tidy perturbation of f supported on
⋃n−1
i=0 f

i({0} ×Q);

3. there exists k ∈ {0, . . . , n} such that for any x ∈ {0} × δQ:

max{‖Dgn(g−k(x))‖, ‖Dg−n(gn−k(x))‖} > K.

Remark 5.3. In Proposition 5.2, the time interval of the perturbation is {0, . . . , n−
1}, and its support is

⋃n−1
i=0 f

i({0} × Q). The time −k ∈ {−n, . . . , 0} where we
see the large derivative property might actually lie outside of the time interval of
the perturbation, and so we cannot compose two such perturbations with disjoint
support without potentially destroying the large derivative property. Hence we
need to consider the effective support of the perturbation, which is the larger set⋃n−1
i=−n f

i({0} × Q) corresponding to the time interval {−n, . . . , n − 1}. Note that
the unique value of i ∈ {−n, . . . , n−1} for which we know that that the intersection
of the effective support of the perturbation with {i} × R

d is a cube is i = 0.

Proof of Proposition 5.1, assuming Proposition 5.2. We first define the
integer n1. Let C,K, ε > 0 be given. Define K0 = K2d+2

, C1 = C.K2
0 , ε2 = ε

K2
0
, and

K1 = K3
0 . We fix δ = 9

10 and set:

n1(d,C,K, ε) = n2(d,C1,K1, ε2, δ).

Now consider (Ai), N , ∆ and U as in the statement of Proposition 5.1. Note
that we may assume that for any j ∈ {0, . . . , N −n}, the product An−1+j · · ·Aj and
its inverse have a norm bounded by K: otherwise, the conclusion of Proposition 5.1
is satisfied for the trivial perturbation g = f and this value of k.

In order to apply Proposition 5.2 we will tile the support of the perturbation.
Recall our Remark 5.3 that for a perturbation supported at times 0, . . . , 2n− 1, the
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tiles we use will have to be cubes “at time n” and not “at time 0”. Thus we will tile
the images {n} × Ũ and {n} × ∆̃ of {0} × U and {0} × ∆ under fn, where

Ũ = An−1 . . . A0(U) and ∆̃ = An−1 . . . A0(∆).

Let a > 0 be such that 2a
δ

√
d is less than the distance between ∆̃ and the complement

of Ũ . We consider a regular tiling of R
d by cubes

Q̃i1,...,id = [−a, a]d + (2i1a, . . . , 2ida), where ij ∈ Z.

We also consider the enlarged cubes

Qi1,...,id =

[
−a
δ
,
a

δ

]d
+ (2i1a, . . . , 2ida).

The cubesQi1,...,id have diameter equal to 2a
δ

√
d. By our choice of a, any cubeQi1,...,id

such that Q̃i1,...,id intersects the compact set ∆ is entirely contained in U . We denote
by Γ the family of the cubes Qi1,...,id such that Q̃i1,...,id ∩ ∆ 6= ∅. Observe that two
cubes Qi1,...,id and Qj1,...,jd are disjoint if and only if there exists ℓ ∈ {1, . . . , , d} with
|iℓ − jℓ| ≥ 2.

Now consider the families {Γµ}µ∈{0,1}d , where Γµ1,...,µd
is the collection of cubes

Qi1,...,id ∈ Γ such that the index iℓ is even if µℓ = 0 and odd if µℓ = 1. This gives
2d families of pairwise disjoint cubes contained in Ũ such that the union of the
corresponding smaller cubes Q̃i1,...,id covers ∆̃. To each (µ1, . . . , µd) ∈ {0, 1}d we
associate the integer ℓ =

∑d
i=1 µi2

i−1 (this formula induces a bijection from {0, 1}d
to {0, . . . , 2d−1}), and for simplicity we will use the notation Γℓ to denote the family
Γµ1,...,µd

. We can thus write our partition Γ = Γ0 ∪ · · · ∪ Γ2d−1.
We will construct a tidy perturbation gQ of f for each cube Q ∈ Γ such that the

supports of the perturbations gQ are pairwise disjoint. The ultimate perturbation
g will be obtained by combining all of these perturbations, setting g to equal gQ
on the support of gQ and to equal f outside the union of the supports. For each
cube Q ∈ Γℓ, for ℓ ∈ {0, . . . , 2d − 1}, the time interval of the perturbation will be
Iℓ = {2nℓ, . . . , 2n(ℓ+ 1) − 1} ⊂ {0, . . . , N − 1} and the support of gQ will be

WQ =
⋃

i∈Iℓ

f i({n} ×Q).

The time intervals Iℓ form a partition of {0, . . . , N − 1} into 2d intervals of length
2n, which implies that WQ∩WQ′ = ∅ for Q ∈ Γℓ, Q

′ ∈ Γℓ′ with ℓ 6= ℓ′. If Q,Q′ ∈ Γℓ,
then the supports are disjoint as well, because Q and Q′ are disjoint.

We will now use Proposition 5.2 to construct the perturbation gQ on WQ. How-
ever there is an issue (as explained in Remark 5.3): the time interval Iℓ has length
2n, as required, but the set f2n(ℓ−1)({n} × Q) is not (in general) a cube (unless
ℓ = 0), and so does not satisfy the hypotheses of the proposition. For this reason,
for Q ∈ Γℓ and the corresponding smaller cube Q̃ ⊂ Q we first consider

ŴQ = f−2nℓ(WQ) =
2n−1⋃

j=0

f j({n} ×Q).
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Proposition 5.2 ensures the existence of a tidy ε2-perturbation ĝQ of f , supported

in
⋃2n−1
i=n f i({n} ×Q) ⊂ ŴQ and of k ∈ {0, . . . , n} such that for every x ∈ {n} × Q̃:

max{‖DĝQn(f−k(x))‖, ‖DĝQ−n(ĝQ
n ◦ fn−k(x))‖} > K1.

We now define
gQ = f2nℓ ◦ ĝQ ◦ f−2nℓ.

Observe that:

• gQ is a tidy perturbation of f supported in
⋃2n(ℓ+1)−1
i=2nℓ+n f i({n} ×Q) ⊂WQ,

• using the bound on the products Aj+n−1 . . . Aj and the choice of ε2, we have:

dC1(gQ, f) ≤ (max{‖Dfn‖, ‖Df−n‖})4ℓdC1(ĝQ, f) ≤ K2d+2
ε2 ≤ ε,

• for every x ∈ {n} × Q̃:

max{‖DgQn(f2nℓ−k(x))‖, ‖DgQ−n(gQ
n ◦ f2nℓ−k(x))‖} > K1

K2d+2 > K. (10)

We finally define g by g = gQ on WQ for Q ∈ Γ and g = f outside the union
of the WQ, Q ∈ Γ. Since the support of the tidy ε-perturbations gQ are disjoint
we get that g is a tidy ε-perturbation of f supported on

⋃N−1
i=0 f i({0} ×U), proving

the two first conclusions of the proposition. Furthermore, since these perturbations
are tidy, for every point x ∈ {0} × R

d and every ℓ ∈ Z we have f2nℓ(x) = g2nℓ(x).
What is more, since the support of the perturbation gQ is confined to the final n
iterates in the time interval In, we have that f2nℓ+n−k(x) = g2nℓ+n−k(x), for any
j ∈ {−n, . . . , 0}.

Consider now a point x ∈ {0} × ∆. We show that there exists a j such that

max{‖Dgn(gj(0, w))‖, ‖Dg−n(gn+j(0, w))‖} > K.

By our choice of cubes Q covering ∆̃, there exists a smaller cube Q̃ such that
fn(x) ∈ {n} × Q̃. The corresponding cube Q belongs to some Γℓ. The argument
above shows that there exists k ∈ {0, . . . ,−n} such that (10) holds for fn(x). Using
the fact that f2nℓ+n−k(x) = g2nℓ+n−k(x), for any k ∈ {0, . . . , n}, we obtain that:

max{‖Dgn(gj(x))‖, ‖Dg−n(gn+j(x))‖} > K,

where j = 2nℓ+ n− k. This gives the last conclusion of the proposition. �

5.3 Reduction to linear perturbations

We first define notation and review some linear algebra. For any element A ∈
GL(d,R) we define the eccentricity of A, denoted by e(A), to be the ratio

sup

{‖A(u)‖
‖A(v)‖ for u, v ∈ R

d, ‖u‖ = ‖v‖ = 1

}
= ‖A‖ · ‖A−1‖.
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Note that e(A) ≥ 1, e(A−1) = e(A), and for any B ∈ GL(d,R), we have ‖ABA−1‖ ≤
e(A)‖B‖. We will also use the conorm notation M(A) = ‖A−1‖−1. We recall the
basic fact from linear algebra that for any A ∈ GL(d,R), there exist orthogonal unit
vectors u and v such that ‖Au‖ = ‖A‖ and ‖Av‖ = M(A).

Proposition 5.2 is a consequence of the following proposition.

Proposition 5.4. For any d ≥ 1 and C,K, η > 0, there exists n3 = n3(d,C,K, η) ≥
1 with the following property.

For any sequence (Ai) in GL(d,R) satisfying ‖Ai‖, ‖A−1
i ‖ < C and n ≥ n3, there

exist H0, . . . ,Hr−1, 0 ≤ r ≤ n
2 , in GL(d,R) and k ∈ {0, . . . , n} such that:

• The product P = A−k+n−1 · · ·A0Hr−1 · · ·H0A−1 · · ·A−k satisfies the estimate
max{‖P‖, ‖P−1‖} > K.

• For 0 ≤ i < r, the map Hi sends the standard cube Q into itself.

• For 0 ≤ i ≤ r, there is the control

(e(An−i−1 · · ·A0) + e(Ai−1 · · ·A0)) .‖Hi − id ‖ < η.

We also state without proof a standard C1 perturbation lemma.

Lemma 5.5. For every d ≥ 1, δ ∈ (0, 1) there exists a neighborhood O of id in
GL(d,R) and for any H ∈ O there exists a diffeomorphism h(H) of R

d such that

• h(H) coincides with the identity map on R
d \Q and with H on δQ.

• The map H 7→ h(H) is C1 in the C1-topology.

Proof of Proposition 5.2 from Proposition 5.4. Lemma 5.5 associates to any
H in a neighborhood O of id in GL(d,R) a diffeomorphism h(H) that satisfies

dC1(h(H), id) ≤ θ‖H − id ‖,

for some uniform constant θ > 0. We then choose η < ε/(Cθ) such that the ball cen-
tered at id and with radius η in GL(d,R) is contained in O. Set n2 = n3(d,C,K, η).

Let (Ai) be any sequence in GL(d,R) satisfying ‖Ai‖, ‖A−1
i ‖ < K and any integer

n ≥ n2. Let us consider the sequence (H0, . . . Hr−1) and the integer 0 ≤ k ≤ n given
by Proposition 5.4. By our assumptions each matrix Hi belongs to O and can be
associated to a diffeomorphism hi = h(Hi) by Lemma 5.5.

We define the cocycle g : Z × R
d → Z × R

d as follows.

g(x) =





f i+1 ◦ hi ◦ f−i(x), on {i} × R
d with 0 ≤ i ≤ r,

fn−i ◦ h−1
i ◦ fn−i−1(x), on {n− i− 1} × R

d with 0 ≤ i ≤ r,

f(x) otherwise.

By construction, g is a tidy perturbation of f supported on
⋃n−1
i=0 f

i({0} ×Q).
On the set {i} × R

d, for 0 ≤ i ≤ r, the C1 distance between f and g is bounded
by

dC1(hi, id) ≤ max{‖Ai‖, ‖A−1
i ‖} · e(Ai−1 · · ·A0) · θ · ‖Hi − id ‖ < Cθη < ε.
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The same estimate holds on {n − i − 1} × R
d. Consequently the distance dC1(f, g)

is bounded by ε.
Since the map hi coincides with Hi on δQ, it maps δQ into itself. For each 0 ≤

i < r, the map g sends the set f i({0}×δQ) into the set f i+1({0}×δQ) and coincides
with (Ai . . . A0)H0(Ai . . . A0)

−1. It follows that on the set g−k({0}×δQ) the map gn

is linear and coincides with the product P = A−k+n−1 · · ·A0Hr−1 · · ·H0A−1 · · ·A−k.
In particular max{‖Dgn(g−k(x)‖, ‖Dg−n(gn−k(x))‖} is larger than K on {0} × δQ.
�

5.4 Huge versus bounded intermediary products

We now come to the proof of Proposition 5.4. Let d ≥ 1, K > 1 and C, η > 0 be
given. We choose e0 > 0 and s ∈ (0, 1) such that

e0 > η−1(K2 + 1)2 and 2e0
s

1 + s
< η.

Next, we choose n3 satisfying

(1 + s)n3/2−1 > K2.

Let us consider (Ai) and n ≥ n3 as in the statement of the proposition. We may
assume that the products A−k+n−1 · · ·Ak and their inverses have a norm bounded
by K, since otherwise the conclusion of Proposition 5.4 holds already. Two cases
are possible.

Huge intermediary products. We first assume that

There exists i0 ∈ {1, . . . , n} such that e(Ai0−1 · · ·A0) > e0.

Decompose the linear map A = Ai0−1Ai0−2 . . . Ai0−n into a product A = EF ,
where E = Ai0−1 . . . A0 and F = A−1 . . . Ai0−n. By assumption we have e(E) > e0,
and M(A) = ‖A−1‖−1 ≥ 1

K .
Let u and v be orthogonal unit vectors in R

d satisfying ‖Eu‖ = ‖E‖ and ‖Ev‖ =
M(E). Then ‖Eu‖ = e(E)‖Ev‖ > e0‖Ev‖.

Since e0η > (K2 + 1)2, we can choose t ∈
(
K2+1
e0

, η
K2+1

)
. Let H ∈ GL(d,R)

be a linear map satisfying H(v) = v + tu and ‖H − id ‖ = t. Let P = EHF . We
claim that the norm of P is greater than K. To show this, we will use the following
elementary fact:

Claim. Let A,P ∈ GL(d,R). Suppose there exists a constant γ > 0 and a nonzero
vector w ∈ R

d such that ‖Pw‖ > γ‖Aw‖. Then ‖P‖ > γM(A).

To apply this lemma, we set w = F−1(v), and calculate:

‖Pw‖ = ‖EHF (F−1(v))‖ = ‖EH(v)‖ = ‖E(v + tu)‖ ≥ t‖E(u)‖ − ‖E(v)‖

> (te0 − 1)‖E(v)‖ = (te0 − 1)‖Aw‖.
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Applying the lemma with γ = te0 − 1, we see that

‖P‖ > (te0 − 1)M(A) ≥ (te0 − 1)

K
> K,

by our lower bound on t.
By setting r = 0 and H0 = H, we obtain the first conclusion of the proposition.

The second one is empty. Since ‖An−1 . . . A0‖ and ‖(An−1 . . . A0)
−1‖ are bounded

by K, we obtain that e(An−1 . . . A0) < K2. As a consequence, we have

(e(An−1 · · ·A0) + 1)‖H0 − id ‖ ≤ (K2 + 1)t < η,

by our upper bound on t. This gives the last conclusion.

Bounded intermediary products. Assume, on the other hand, that

For any i0 ∈ {1, . . . , n} we have e(Ai0−1 · · ·A0) ≤ e0.

Let r = ⌊n2 ⌋ and let H ∈ GL(d,R) be the linear conformal dilation H = (1 +
s)−1I. Since this is a linear contraction, H maps the standard cube Q into itself.
We define Hi = H for any i = 0, . . . , r − 1. Note that

(e(An−i−1 · · ·A0) + e(Ai−1 · · ·A0)).‖Hi − id ‖ ≤ 2e0
s

1 + s
< η,

by our choice of s.
It is straightforward to check that for k = n − r, the product P =

A−k+n−1 · · ·A0Hr−1 · · ·H0A−1 · · ·A−k satisfies

‖P−1‖ ≥ (1 + s)r‖A−k+n−1 · · ·A−k‖ > (1 + s)n3/2−1K−1 > K,

by our choice of n3. The conclusions of the proposition are thus satisfied.

6 (UD) property: reduction to a perturbation result in
a cube

The aim of this section is to provide successive reductions for Theorem A. At the
end we are led to a perturbation result (Proposition 6.6) for cocycles that produces
an arbitrarily large variation of the jacobian along orbits in a cube. Many of the
difficulties we meet in the proof of Theorem A come from the fact that we have not
been able to create a large change in the jacobian of a linear cocycle, inside a cube,
by a tidy perturbation.

6.1 Reduction to a perturbation result in towers

We show that Theorem B follows from a perturbation result that produces arbitrarily
large distortion between a given orbit and the orbit of a wandering compact set.

Proposition 6.1. Consider a diffeomorphism f , a compact ball ∆, an open set U ,
and a point x of M satisfying:
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• f(U) ⊂ U ;

• ∆ ⊂ U \ f(U);

• the orbit of x is disjoint from ∆.

Then for any K, ε > 0 there exists a diffeomorphism g with dC1(f, g) < ε having the
following property: for all y ∈ ∆, there exists n ≥ 1 such that

|log detDgn(x) − log detDgn(y)| > K.

Moreover, f = g on a neighborhood of the chain-recurrent set CR(f).

Proof of Theorem A from Proposition 6.1. Let X ⊂M be a countable dense
set and let K = {∆n} be a countable collection of compact balls in M satisfying:

• diam∆n → 0 as n→ ∞, and

• ⋃
n≥n1

∆n = M for all n1 ≥ 1.

For ∆ ∈ K, define the open subset of Diff1(M):

O∆ = {f ∈ Diff1(M) | ∃ open set U, f(U) ⊂ U,∆ ⊂ U \ f(U)}.

For x ∈ X , define
Ux,∆ = {f ∈ O∆ | orbf (x) ∩ ∆ = ∅}.

Notice that f ∈ Ux,∆ means that there is an open set U such that (∆, U, x) satisfies
the hypotheses of Proposition 6.1.

The set Ux,∆ is not open. The next lemma gives a simple criterion for f to belong
to its interior:

Lemma 6.2. Consider f ∈ Ux,∆ and an open subset U of M with f(U) ⊂ U ,
∆ ⊂ U \ f(U). Assume that the orbit of x meets U \ f(U). Then f belongs to the
interior of Ux,∆: the orbit of x under any diffeomorphism g sufficiently C1-close to
f is disjoint from ∆.

Proof. Consider i ∈ Z such f i(x) ∈ U \ f(U). Such a number i is unique, because
U \ f(U) is the fundamental domain of an attracting region U and hence is disjoint
from all its iterates. Moreover, there is a neighborhood U of f such that every g ∈ U
satisfies:

• g(U ) ⊂ U ,

• ∆ ⊂ U \ g(U),

• gi(x) ∈ U \
(
g(U) ∪ ∆

)
.

This shows that the open neighborhood U of f is contained in Ux,∆. �

In order to obtain a residual set, we must first produce a countable family of
open and dense subsets of Diff1(M). However the sets Ux,∆ are neither open nor
closed. The next lemma shows the way to bypass this difficulty:
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Lemma 6.3. The set Int (Ux,∆) ∪ Int (O∆ \ Ux,∆) is open and dense in O∆.

Proof. The set Int (Ux,∆) ∪ Int (O∆ \ Ux,∆) is open by definition; we just have to
prove its density in O∆.

Fix f ∈ O∆. Then there exists an open set U ⊂ M and an open neighborhood
U ⊂ O∆ of f such that for g ∈ U we have g(U ) ⊂ U and ∆ ⊂ U \ g(U ). Now fix
x ∈ X. We will show that U ∩ (Int (Ux,∆) ∪ Int (O∆ \ Ux,∆)) is dense in U .

Let V ⊂ U be the open subset of diffeomorphisms g such that the orbit orbg(x)
meets U \ g(U ). Any diffeomorphism g ∈ U \ V belongs to Ux,∆: the orbit of x is
disjoint from U \ g(U ), and so is disjoint a fortiori from ∆. Let W0 = U \ V . By
construction, V ∪W0 is open and dense in U , and W0 ⊂ Int (Ux,∆).

Lemma 6.2 asserts that V0 = V ∩Ux,∆ is open. Let W1 = V \V0. Then W1 is an
open set contained in O∆ \Ux,∆ and hence in Int (O∆ \ Ux,∆). Moreover, V0 ∪W1 is
open and dense in V. We have thus shown that V0 ∪W1 ∪W0 is an open and dense
subset of U contained in Int (Ux,∆) ∪ Int (O∆ \ Ux,∆), ending the proof. �

For x ∈ X , ∆ ∈ K and any integer K ∈ N, we define:

Vx,∆,K = {f ∈ Int(Ux,∆) | ∀y ∈ ∆,∃n ≥ 1,

|log detDfn(x) − log detDfn(y)| > K}.
Note that Vx,∆,K is open in Int(Ux,∆). Furthermore Vx,∆,K is dense in Int(Ux,∆), by
Proposition 6.1. If follows that the set

Wx,∆,K = Vx,∆,K ∪ Int (O∆ \ Ux,∆) ∪ Int
(
Diff1(M) \ O∆

)

is open and dense in Diff1(M). Next, we set

G0 =
⋂

Wx,∆,K,

where the intersection is taken over x ∈ X ,∆ ∈ K, and K ∈ N. This set is residual
in Diff1(M). Finally, we take G to be the intersection of G0 with the residual set of
f ∈ Diff1(M) constructed in [BC] where the chain recurrent and nonwandering sets
coincide.

Consider f ∈ G. Fix x ∈ X and y ∈ M \ Ω(f) = M \ CR(f) such that
orb(x)∩orb(y) = ∅. Since y is not chain recurrent, Conley theory implies that there
exists an open set U ⊂ M such that f(U) ⊂ U and y ∈ U \ f(U) (see Section 2.1).
Observe that orb(x) ∩ U \ f(U) contains at most one point; it is distinct from y by
assumption. Thus any compact set ∆ ∈ K containing y and with sufficiently small
diameter satisfies

• ∆ ⊂ U \ f(U),

• orb(x) ∩ ∆ = ∅.
We fix such a compact set ∆ ∈ K. This implies that f ∈ Ux,∆. Since f ∈ G0, the

definition of G0 implies that for every K ∈ N, we have f ∈ Wx,∆,K; since f ∈ Ux,∆,
we must have f ∈ Vx,∆,K. This means that, for every K, we have for some n ≥ 1

|log detDfn(x) − log detDfn(y)| > K.

Hence f satisfies property (UD) on the nonwandering set. �
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6.2 Localization of the perturbation

Here we reduce Proposition 6.1 to the case where ∆ has small diameter.
We use the following notation. If X ⊂M is a compact set and δ > 0 then Uδ(X)

denotes the δ-neighborhood of X: Uδ(X) = {y ∈M | d(y,X) < δ}.

Proposition 6.4. For any d ≥ 1 and C,K, ε > 0, there exists n0 = n0(C,K, ε) with
the following property.

For any diffeomorphism f of a d-dimensional manifold M satisfying
‖Df‖, ‖Df−1‖ < C, there exists ρ0 = ρ0(d,C,K, ε) such that for any η > 0, any
compact set ∆ ⊂M and x ∈M satisfying:

• diam(∆) < ρ0,

• ∆ is disjoint from its first n0 iterates {f i(∆) : 1 ≤ i ≤ n0},

• orb(x) ∩ ∆ = ∅,

there exists a diffeomorphism g ∈ Diff1(M) such that

• dC1(f, g) < ε,

• dC0(f, g) < η,

• for all y ∈ ∆, there exists an integer n ∈ {1, . . . , n0} such that:

|log detDgn(x) − log detDgn(y)| > K.

Moreover, f = g on the complement of Uη(
⋃n0−1
i=0 f i(∆)).

Proof of Proposition 6.1 from Proposition 6.4. Let f , ∆, U , x be as in the
statement of Proposition 6.1 Choose n0 = n0(d,C, 2K, ε) and ρ0 = ρ0(d,C,K, ε)
according to Proposition 6.4. We set N = 2dn0.

Cover ∆ by a finite collection F of compact sets satisfying:

• ∆ ⊂ ⋃
D∈F Int(D) ⊂ U \ f(U), so that for each D ∈ F the iterates

D, f(D), f2(D), . . . are pairwise disjoint;

• orb(x) ∩ ⋃
D∈F D = ∅;

• diam(f i(D)) < ρ0, for all D ∈ F and i ∈ {0, . . . , N};

• F = F0 ∪ · · · ∪ F2d−1, where Fi ∩ Fj = ∅ for i 6= j and the elements of Fj are
pairwise disjoint for each j.

One can obtain F by tiling by arbitrarily small cubes the compact ball ∆.
Let λ > 0 be the Lebesgue number of the cover F . For any η > 0 we define an

increasing sequence (aη(n)) by the inductive formula:

aη(0) = 0; aη(n+ 1) = Caη(n) + η.

Note that for n ≥ 0 fixed, we have aη(n) → 0 as η → 0.
Let η > 0 be small such that:
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• for each D ∈ F and 0 ≤ i < N−1, the η-neighborhood Uη(f
i(D)) is contained

in f i(U)\f i+1(U); in particular the sets Uη(D), . . . , Uη(f
N−1(D)) are pairwise

disjoint;

• the orbit orb(x) is disjoint from the union
⋃
i∈{0,...,N} Uη(f

i(D));

• for each distinct (j,D) and (j′,D′) with j, j′ ∈ {0, . . . , 2d − 1} and D ∈ Fj ,
D′ ∈ Fj′ , we have for all k, k′ ∈ {0, . . . , n0 − 1},

Uη(f
n0j+k(D)) ∩ Uη(fn0j′+k′(D′)) = ∅;

• aη(N) < C−Nλ.

For j ∈ {0, . . . , 2d−1} and D ∈ Fj , the set fn0j(D) and the point fn0j(x) satisfy
the hypotheses of Proposition 6.4. We obtain a perturbation of f supported on the
η-neighborhood of

⋃
k∈{0,...,n0−1} f

n0j+k(D); by our choice of η, any two such pertur-
bations for distinct choices of (j,D) will be disjointly supported. Hence, applying
Proposition 6.4 over all pairs (j,D) with j ∈ {0, . . . , 2d−1} and D ∈ Fj}, we obtain
a perturbation g with the following properties:

1. dC1(f, g) < ε;

2. dC0(f, g) < η;

3. g = f on M \ Uη
(⋃N−1

k=0 f
k(D)

)
;

4. for each j ∈ {0, . . . , 2d−1} and each y ∈ ⋃
D∈Fj

D, there exists n ∈ {1, . . . , n0}
such that:

∣∣∣log detDgn(fn0jx) − log detDgn(fn0jy)
∣∣∣ > 2K. (11)

We now prove the large derivative formula. We fix y ∈ ∆.

Claim. There exist j ∈ {0, . . . , 2d − 1} and D ∈ Fj such that gn0j(y) ∈ fn0j(D).

Proof. Choose D ∈ F such that the ball B(y, λ) is contained in D and fix j ∈
{1, . . . , 2d} such that D ∈ Fj. This implies that B(fk(y), C−kλ) ⊂ fk(D), for all
k ∈ {0, . . . , N − 1}. Note that

d(fk+1(y), gk+1(y)) ≤ d(fk+1(y), f(gk(y))) + d(f(gk(y)), gk+1(y))

≤ Cd(fk(y), gk(y)) + η,

which implies, by Property 2 above and our choice of λ, that for any k ∈ {0, . . . , N−
1} we have:

d(fk(y), gk(y)) ≤ aη(k) < C−Nλ.

We conclude that gn0j(y) ∈ fn0j(D). �
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Since the orbit of x is disjoint from the support of the perturbation, we have
that fn0j(x) = gn0j(x), for all j ∈ {1, . . . , 2d − 1}. From these properties and from
(11), there exist j ∈ {0, . . . , 2d − 1} and n ∈ {1, . . . , n0} such that:

∣∣∣log detDgn(gn0jx) − log detDgn(gn0jy)
∣∣∣ > 2K.

The fact that Dgn+n0j = Dgn ◦Dgn0j implies that one of these two cases holds:

• either
∣∣log detDgn0j(x) − log detDgn0j(y)

∣∣ > K,

• or
∣∣log detDgn+n0j(x) − log detDgn+n0j(y)

∣∣ > K.

In any case, there exists n ∈ {1, . . . , N} such that the required estimate
|log detDgn(x) − log detDgn(y)| > K holds.

By construction the support of the perturbation is contained in a finite number
of iterates of U \ f(U); the iterates of U \ f(U) for f and g hence coincide. This
implies that CR(f) = CR(g). �

6.3 Reduction to cocycles

Proposition 6.4 is a consequence of the following result about cocycles.

Proposition 6.5. For any d ≥ 1 and any C,K, ε > 0, there exists n1 =
n1(d,C,K, ε) ≥ 1 with the following property.

Consider any sequence (Ai) in GL(d,R) with ‖A, ‖, ‖A−1‖ < C and the associ-
ated cocycle f . Then, for any open set U ⊂ R

d, for any compact set ∆ ⊂ U and for
any η > 0, there exists a diffeomorphism g of Z × R

d such that:

• dC1(f, g) < ε,

• dC0(f, g) < η,

• g = f on the complement of
⋃2n1−1
i=0 f i({0} × U),

• for all y ∈ {0} × ∆, there exists n ∈ {1, . . . , n1} such that

|log detDfn(y) − log detDgn(y)| > K.

Proof of Proposition 6.4 from Proposition 6.5. Fix d,C,K, ε > 0, choose
0 < ε̃ < ε, K0 > 2K + 8 log 2 and set n0 = 2n1(d,C,K0, ε̃).

Let f : M →M be a diffeomorphism such that ‖Df‖, ‖Df−1‖ < C and let δ > 0

be the constant associated to f , ε̃, ε, and n0 by Lemma 3.14. Fix ρ0 ∈
(
0, δ2C

−n1

)
.

Consider η, ∆ and x as in the statement of Proposition 6.4. We fix an open
neighborhood U of ∆ such that:

• diam(U) < ρ0; in particular diam(f i(U)) < δ for all i ∈ {0, . . . , n1};

• U is disjoint from its first n0 iterates;

• f i(x) /∈ U for i ∈ {0, . . . , n0}.
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Fix a point z0 ∈ ∆ and let f̃ denote the linear cocycle induced by the derivative Df
along the orbit of z0.

By Lemma 3.14, there are diffeomorphisms Ψi : f
i(U) → Ũi ⊂ Tf i(z0)M for

i ∈ {0, . . . , n1}, which conjugate f to f̃ : for every z ∈ f i(U) we have f̃(Ψi(z)) =
Ψi+1(f(z)). Moreover,

• ‖DΨi‖, ‖DΨ−1
i ‖, |detDΨi| and |detDΨ−1

i | are bounded by 2;

• any ε̃-perturbation g̃ of f̃ with support in
⋃n0−1
i=0 Ũi induces a diffeomorphism g

which is a ε-perturbation of f supported on
⋃n0−1
i=0 f i(U) through a conjugacy

by the diffeomorphisms Ψi.

We denote by Ψ:
⋃n0
i=0 f

i(U) → ⋃n0
i=0 Ũi the diffeomorphism that is equal to Ψi on

f i(U).
We now apply Proposition 6.5 to obtain a ε̃-perturbation g̃ of f̃ supported in⋃n0−1

i=0 Ũi such that for every y ∈ Ψ0(∆) we have:

• dC0(f̃ , g̃) < η
2 ,

• g̃ = f̃ on the complement of
⋃n0−1
i=0 Ũi,

• for all y ∈ Ψ0(∆) there exists n ∈ {1, . . . , n0} such that
∣∣∣log detDf̃n(y) − log detDg̃n(y)

∣∣∣ > K0.

Let g be the corresponding ε-perturbation of f . Since Ψ satisfies ‖DΨ−1‖ ≤ 2, we
obtain that

dC0(f, g) < 2dC0(f̃ , g̃) < η.

Furthermore, for each z ∈ ∆, there exists n ∈ {1, . . . , n0} such that

|log detDfn(z) − log detDgn(z)| > K0 − 4 log 2. (12)

For n ∈ {0, . . . , n0 − 1}, the maps fn and Dfn(z0) are conjugate on ∆ by the
diffeomorphism Ψ. Since ‖detDΨ‖ ∈ [12 , 2], this implies that, for every z ∈ ∆, we
have |log detDfn(z0) − log detDfn(z)| ≤ 2 log 2. If there exists n ∈ {0, . . . , n0 − 1}
such that |log detDfn(z0) − log detDfn(x)| > K + 2 log 2, then we do not perturb
f : in this case, every point z ∈ ∆ satisfies |log detDfn(z) − log detDfn(x)| > K as
required. Hence we may assume that for every n ∈ {0, . . . , n0 − 1} and every z ∈ ∆
we have

|log detDfn(z) − log detDfn(x)| ≤ K + 2 log 2. (13)

Notice that the support of the perturbation g is disjoint from the set
{x, f(x), . . . , fn0(x)}, so that Dfn(x) = Dgn(x) for n ∈ {0, . . . , n0}. Inequality
(12) implies that for every z ∈ ∆ there exists n ∈ {1, . . . n0} such that

∣∣∣∣log
detDgn(x)

detDgn(z)

∣∣∣∣ >

∣∣∣∣log
detDfn(z)

detDgn(z)

∣∣∣∣ −
∣∣∣∣log

detDfn(x)

detDfn(z)

∣∣∣∣
> K0 − 4 log 2 −K − 4 log 2 > K.

This completes the proof of Proposition 6.4, assuming Proposition 6.5. �
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6.4 Reduction to a perturbation result in a cube

We now reduce Proposition 6.5 to the case where U is the interior of a cube Qµ,
which has to be chosen to be very thin along one coordinate, and ∆ is a smaller
cube θQµ.

We thus consider the space R
d as a product R

d−1 × R and denote by (v, z) its
coordinates. For a constant µ > 0, let Eµ be the linear isomorphism of R

d defined
by Eµ(v, z) = (v, µz). The image of the standard cube Q = [−1, 1]d by Eµ will be
denoted by Qµ = [−1, 1]d−1 × [−µ, µ].

Proposition 6.6. For any d ≥ 1, C,K, ε > 0 and θ ∈ (0, 1), there exists n2 =
n2(d,C,K, ε, θ) ≥ 1 and for any η > 0 there exists µ0 = µ0(d,C,K, ε, θ, η) > 0 with
the following property.

Consider any sequence (Ai) in GL(d,R) with ‖Ai‖, ‖A−1
i ‖ < C and the associated

linear cocycle f . Consider any µ ∈ (0, µ0) and j ∈ {0, . . . , 2d−1}. Then there exists
a diffeomorphism g of Z × R

d such that:

• dC1(f, g) < ε;

• g = f on the complement of
⋃2(j+1)n2−1
i=2jn2

f i({0} ×Qµ);

• for all x ∈ {0} × θQµ,

∣∣∣log detDfn2(f2jn2(x)) − log detDgn2(f2jn2(x))
∣∣∣ > K;

• on {0} × R
d, we have:

dunif (id, E
−1
µ f−2(j+1n2)g2(j+1)n2Eµ|

{0}×Rd
) < η.

Proof of Proposition 6.5 from Proposition 6.6. The proof is partly similar
to the proof of Proposition 5.1. Let C,K, ε > 0 be given. We fix θ = 9

10 and set

n1(d,C,K, ε) = 2d+1n2(C, 2K, ε, θ) ≥ 1.

Consider (Ai), ∆, U , η as in the statement of Proposition 6.5. Up to rescaling by
homothety, we may assume that:

C2d+1n12θ−1
√
d < d(∆,Rd \ U), (14)

C2d+1n12θ−1
√
d < η. (15)

Indeed let us consider some a ∈ (0, 1) and the homothety h 1
a

of R
d with ratio

1
a . If g0 is a perturbation of f satisfying the conclusions of Proposition 6.5 for
C,K, ε, h 1

a
(∆), h 1

a
(U) and η

a , then g = hag0h 1
a

is a perturbation of f satisfying the

conclusions of Proposition 6.5 for C,K, ε, ∆, U and η. Hence we may assume that
the estimates (14) and (15) hold by choosing a small enough.

In order to apply Proposition 6.6, we tile the set U . The tiling we use has the
same structure as the tiling used in Proposition 5.1, producing 2d disjoint families
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Figure 1: Tiling of the plane used in (LD) perturbation theorem (left) and (UD)
perturbation theorem (right). The different shadings correspond to the partition
into 2d = 4 families.

of tiles, but the geometry is different (see Figure 1). We first consider the regular
tilings T and T̃ of R

d by the cubes

Qi1,...,id = [−θ−1, θ−1]d + (i1, . . . , id),

Q̃i1,...,id = [−θ−2, θ−2]d + (i1, . . . , id),

respectively, where (i1, . . . , id) ∈ Z
d. Let λ be the Lebesgue number of the cover T

of R
d. We choose η0 > 0 smaller than 2−dλ.
Now fix µ ∈ (0, 1) smaller than µ0(C, 2K, ε, θ, η0) and denote by Tµ and T̃µ the

images of the tilings T and T̃ by Eµ. These are the tilings of R
d by the cubes

Qµ,(i1,...,id) = [−θ−1, θ−1]d−1 × [−θ−1µ, θ−1µ] + (i1, . . . , id−1, µid),

Q̃µ,(i1,...,id) = [−θ−2, θ−2]d−1 × [−θ−2µ, θ−2µ] + (i1, . . . , id−1, µid),

respectively. By our assumption (14), any cube Qµ,(i1,...,id) such that Q̃µ,(i1,...,id)

intersects the compact set ∆ is contained in U . We denote by Γµ the family of
cubes Qµ,(i1,...,id) such that Q̃µ,(i1,...,id) intersects ∆.

We next consider the partition Γµ =
⋃2d−1
ℓ=0 Γµ,ℓ such that for pair of any ele-

ments Q,Q′ in Γµ,ℓ, the enlarged cubes Q̃, Q̃′ are disjoint. (As in Section 5.2 we set
Qµ,(i1,...,id) ∈ Γµ,ℓ if ℓ =

∑d
j=1 αj2

j−1 where αj = 0 if ij is even and αj = 1 if ij is
odd).

For each cube Q ∈ Γµ,ℓ, we also introduce the time interval Iℓ =
{2n2ℓ, . . . , 2n2(ℓ + 1) − 1}. Proposition 6.6 produces a perturbation gQ supported
on the union

WQ =
⋃

i∈Iℓ

f i({0} × Q̃).

The construction of the famillies Γµ,ℓ and of the intervals Iℓ implies that WQ and
WQ′ are disjoint if Q,Q′ ∈ Γµ are distinct. We finally define g by gQ on WQ, for
Q ∈ Γµ,ℓ, and g = f elsewhere. In particular, we have g = f on the complement of⋃n1−1
i=0 f i({0} × U). The perturbation g is supported in a disjoint union of images
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f i({0} × Q̃µ,(i1,...,id)) for i ∈ {0, . . . , 2dn1 − 1} and by (15) satisfies dC0(f, g) < η.
Each perturbation gQ satisfies dC1(gQ, f) < ε, and hence dC1(g, f) < ε holds. It
remains to prove the last part of the conclusion of the proposition.

Claim. For every y ∈ {0} ×∆, there exist ℓ ∈ {0, . . . , 2d − 1} and Q ∈ Γℓ such that
g2n2ℓ
η (y) ∈ f2n2ℓ(Q).

Proof. By definition of λ, the ball B(E−1
µ (y), λ) is contained in some cube Q(i1,...,id).

The cube Q = Qµ,(i1,...,id) = Eµ(Q(i1,...,id)) contains y ∈ ∆ and hence belongs to Γµ,ℓ.

Let ℓ ∈ {0, . . . , 2d − 1} be such that Qµ,(i1,...,id) ∈ Γµ,ℓ.

Since dunif (id, E
−1
µ f−2n2(j+1)g2n2

Q f2n2(j)Eµ) < η0 for each j ∈ {0, . . . , 2d−1}, we
obtain the bound

dunif (id, E
−1
µ f−2n2ℓg2n2ℓEµ) ≤

ℓ−1∑

j=0

dunif (id, E
−1
µ f−2n2(j+1)g2n2f2n2(j)Eµ)

< 2ℓη0 ≤ 2dη0 < λ,

by our choice of η0.
By our estimate above, the point E−1

µ f−2n2ℓg2n2ℓEµ(E
−1
µ (y)) belongs to the ball

B(E−1
µ (y), λ) and hence to Q(i1,...,id). This proves that f2n2ℓ(Q) contains the point

g2n2ℓ(y) as required. �

In order to conclude, we fix a point y ∈ {0} ×∆ and ℓ ∈ {0, . . . , 2d − 1}, Q ∈ Γℓ
such that g2n2ℓ

η (y) ∈ f2n2ℓ(Q). Note that if

| log detDf2n2ℓ(y) − log detDg2n2ℓ(y)| > K,

then the last conclusion of the proposition already holds for y.
Otherwise, since g2n2ℓ(y) belongs to f2n2ℓ(Q), we have

Dg2n2(g2n2ℓ(y)) = Dg2n2
Q (g2n2ℓ(y));

since f is a linear cocycle, we obtain

log detDf2n2(g2n2ℓ(y)) = log detDf2n2(f2n2ℓ(y)).

Thus the property satisfied by gQ implies that

| log detDf2n2(f2n2ℓ(y)) − log detDg2n2(g2n2ℓ(y))| > 2K.

Using the fact that

| log detDf2n2ℓ(y) − log detDg2n2ℓ(y)| ≤ K,

we then obtain that

| log detDf2n2(ℓ+1)(y) − log detDg2n2(ℓ+1)(y)| > K.

This gives again the last conclusion of the proposition and concludes the proof. �

49



7 Almost tidy perturbation in a cube

The aim of this section is to give the proof of Proposition 6.6, which finishes the
proof of Theorem A and hence of the Main Theorem.

This proposition is very close in spirit to the original idea of C. Pugh for the
famous C1-closing lemma. Pugh wanted to perturb the orbit of a point x in a cube
in such a way that it exits the support of the perturbation through the orbit of
another given point y. Pugh noticed that, at each time, one has much more freedom
to perturb the orbits “in the direction of the smallest dimension of the image of
the cube”. As he needed to perform a perturbation in arbitrary directions, a linear
algebra lemma allowed him to choose the pattern of the cube such that each direction
would be at some time the smallest one.

Here we just want to perform a perturbation that modifies the jacobian: hence
we can do it by a perturbation “in an arbitrary direction”. However, in principle
our perturbations have to be tidy, or very close to tidy. For this reason the support
of the perturbation will have length 2n2: we obtain the perturbation of the jacobian
during the first n2 iterates, and then try to remove the perturbation during the last
n2 iterates. For this reason, we need that the smallest dimension of the image of
our cube corresponds to the same direction, all along the time support of the per-
turbation. This is obtained by choosing a pattern of our cubes having one direction
much smaller than the others.

An additional difficulty comes from the fact that we were not able to obtain a
tidy perturbation. After several iterations, the thin edges of the cube could become
strongly sheared above its base; for this reason, it was not possible to remove the
perturbation in a neighborhood of these edges. By choosing the cubes’s height small
enough, we are able to remove the perturbation in a rectified cube which differs
from the sheared one only in a small region (see Figure 2). This “almost tidy
perturbation” turns out to be sufficient for our purposes.

fn

fn

Figure 2: The image of a cube under many iterates of a linear cocycle can be quite
distorted (top). The image of a wafer, on the other hand, stays flat and wafer-like
(bottom).
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7.1 Choice of n2

Given d ≥ 1 and θ ∈ (0, 1), we fix θ0 = θ
1
3 and choose:

• a smooth function ζ : R
d−1 → [0, 1] such that

– ζ(v) = 1 if v ∈ [−θ2
0, θ

2
0]
d−1 and

– ζ(v) = 0 if v ∈ R
d−1 \ [−θ0, θ0]d−1;

• a smooth function ξ : [−1, 1] → R such that:

– ξ(z) = z for z ∈ [−θ2
0, θ

2
0],

– ξ(z) = 0 for z in a neighborhood of [−1, 1] \ [−θ0, θ0], and

– ξ(−z) = −ξ(z).

We denote by X the vector field on [−1, 1] defined by X(z) = ξ(z) ∂∂z and by (Xs)s∈R

the induced flow on [−1, 1]. For every non-trivial closed interval I ⊂ R and any
s, we denote by XI

s the diffeomorphism of I obtained from Xs by considering a
parametrization of I by [−1, 1] with constant derivative.

Remark 7.1. The distance dC1(XI
s , idI) has two parts. The C0 part is proportional

to the length of I. The part that measures the distance between the derivatives does
not depend on I:

max {|D(XI
s ) − 1|, |D(XI

−s) − 1|} = max {|D(Xs) − 1|, |D(X−s) − 1|}.

We fix constants C, ε > 0 and a real number s0 > 0 satisfying
max {|D(Xs0) − 1)|, |D(X−s0) − 1|} < ε

C . We then define the diffeomorphisms
hs = Xs.s0 and hIs = XI

s.s0.
Fix K > 0. Note that the derivative of h−1 on [−θ2

0, θ
2
0] is a constant: it is equal

to e−sε < 1 for some constant sε. We fix n2 ≥ 1 such that

n2sε > K.

7.2 Construction of a perturbation

Consider now a sequence of matrices (Ai)i∈Z in GL(d,R) such that ‖A‖, ‖A−1
i ‖ < C,

and denote by f the associated linear cocycle. Up to a change of coordinates by
isometries on each {i}×R, we may assume that the Ai leave invariant the hyperplane
R
d−1 × {0} and take the form

Ai =




αi1

Bi
...
αid−1

0 . . . 0 bi



.

For i ∈ {0, . . . , 2d+1n2} and µ > 0 we set

Ii =

[
−µ

i−1∏

k=0

bk, µ
i−1∏

k=0

bk

]
.
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We next fix j ∈ {0, . . . , 2d − 1}. For each i ∈ Z, we denote by Hi the diffeomor-
phism of {i} × R

d defined as follows:

• Hi = id if i 6∈ {2jn2, . . . , 2(j + 1)n2 − 1}.

• For i ∈ {2jn2, . . . , 2(j + 1)n2 − 1}, the map Hi coincides with id outside
{i} × Rd−1 × Ii.

• For i ∈ {2jn2, . . . , 2(j + 1)n2 − 1} and (v, z) ∈ R
d−1 × Ii, we set

s(v) = ζ
(
(Bi−1 . . . B0)

−1(v)
)
,

and define
Hi(v, z) = (v, hIi−s(v)(z)) if i < (2j + 1)n2,

Hi(v, z) = (v, hIi+s(v)(z) if i ≥ (2j + 1)n2.

Note that the diffeomorphisms Hi depend on the choice of µ, (Ai) and j.
We define by g the cocycle that coincides with f ◦Hi on {i} ×R

d. It will satisfy
the conclusions of Proposition 6.6, provided µ has been chosen smaller than some
constant µ0 = min{µ1, µ2, µ3, µ4} which will be defined in the following subsections.

7.3 Support of the perturbation: first choice of µ

Let Ci = Pi × Ii where Pi = Bi−1 . . . B0([−1, 1]d−1). Let Qi = Ai−1 . . . A0(Qµ). The
two parallelepipeds Ci and Qi have the same base Pi × {0} in R

d−1 × {0} and the
same height along the coordinate z, but Ci has been rectified.

In these notations g is a perturbation of f with support contained in
⋃2n2−1
i=0 {i+

2jn2} × θ0Ci+2jn2.

Lemma 7.2. Given d,C,K, ε > 0 and θ ∈ (0, 1), there exists µ1 = µ1(d,C,K, ε, θ)
such that, for every µ ∈ (0, µ1), for every sequence (Ai) in GL(d,R) with
‖Ai‖, ‖A−1

i ‖ < C and for every i ∈ {0, . . . , 2d+1n2}, we have:

θ0Ci ⊂ Qi.

In particular the perturbation g defined in Section 7.2 is supported in

2(j+1)n2−1⋃

i=2jn2

f i({0} ×Qµ) =

2(j+1)n2−1⋃

i=2jn2

Qi.

Proof. Choose

µ1 <
(
2d+1n2C

2d+2n2

)−1
(θ−1

0 − 1).

Consider a point (vi, zi) in Ci, and for 0 ≤ k < i, its image (vk, zk) under
(Ai−1 . . . Ak)

−1. We need to show that (v0, z0) belongs to θ−1
0 Qµ.

For the second coordinate, we have z0 = zi
∏i−1
k=0 b

−1
k , and hence z0 belongs to

I0 ⊂ θ−1
0 I0. It remains to control the first coordinate: for each k, it decomposes as
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vk = B−1
k vk+1+wk where wk is the projection on the first coordinate of A−1

k (0, zk+1).
Note that

‖wk‖ ≤ C|Ik+1| ≤ µCk+2 ≤ µCi+1.

Decomposes vk as a sum ṽk + rk where ṽk = (Ai−1 . . . Ak)
−1(vi) belongs to Pk and

rk =
i−1∑

j=k

(Aj−1 . . . Ak)
−1wj .

We thus have
‖rk‖ ≤ (i− k)Ci−k−1 max{wj} ≤ iC2iµ1.

Since v0 belongs to P0 = [−1, 1]d−1 × {0}, it is now enough to show that ‖r0‖ is
smaller than the distance between the complement of θ−1

0 P0 and P0. This distance
is bounded from below by θ−1

0 − 1. Our choice of µ1 now implies that v0 belongs to
θ−1
0 P0, as required. �

7.4 Size of the perturbation: second choice of µ

We check here that the perturbation g is C1-close to f .

Lemma 7.3. Given d,C,K, ε, θ > 0 there exists µ2 = µ2(d,C,K, ε, θ) such that for
any µ ∈ (0, µ2), for any sequence (Ai) in GL(d,R) with ‖Ai‖, ‖A−1

i ‖ < C and for
any j ∈ {0, . . . , 2d − 1}, the diffeomorphisms f and g defined at Section 7.2 satisfy

dC1(g, f) < ε.

Proof. We choose
µ2 <

ε

C2d+2n2s0‖ξ‖‖Dζ‖
.

For all i ∈ {0, . . . , 2d+1n2 − 1}, the quantity ‖DHi(
∂
∂z ) − ∂

∂z‖ is bounded by the
maximum of |Dh1 − 1| and |Dh−1 − 1| and thus is bounded by ε/C, by our choice
of s0. For any unit vector u of R

d−1 × {0} we have

∥∥∥∥DHi

(
∂

∂u

)
− ∂

∂u

∥∥∥∥ ≤ ‖ξ‖‖Dζ‖‖(Bi−1 . . . , B0)
−1‖s0µ

i−1∏

j=0

bi

≤ C2(2d+1n2−1)s0µ‖ξ‖‖Dζ‖.

It follows that for µ < µ2, we have ‖DHi − id ‖ < ε
C , and consequently we obtain

‖Dg −Df‖ < ε.
�
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7.5 Perturbation of the jacobian: third choice of µ

We define the effective support of the perturbation as the set where

| log detDf − log detDg| = | log detDH| = sε.

By construction, this effective support contains
⋃n2−1
i=0 {i + 2jn2} × θ2

0Ci+2jn2. We
now prove that for small µ the orbits of the points in {0} × θQµ under g meet the
effective support; this implies that the perturbation has the expected effect on the
jacobian along these orbits.

Lemma 7.4. Given d,C,K, ε, θ > 0 there exists µ3 = µ3(d,C,K, ε, θ) such that for
any µ ∈ (0, µ2), for any sequence (Ai) in GL(d,R) with ‖Ai‖, ‖A−1

i ‖ < C and for
any j ∈ {0, . . . , 2d − 1}, the perturbation g defined at Section 7.2 satisfies for every
i ∈ {0, . . . n2 − 1}:

gi ({2jn2} × θQ2jn2) ⊂ {i+ 2jn2} × θ2
0Ci+2jn2.

In particular, for every x ∈ {0} × θQµ one has

| log detDfn2(f2jn2(x)) − log detDgn2(f2jn2(x))| = n2sε > K.

Proof. The proof is quite similar to the proof of Lemma 7.2. We choose

µ3 <
(
2d+1n2C

2d+2n2

)−1
(θ−1

0 − 1).

Let (0, v0, z0) be a point in {0} × θQµ, and let (i, vi, zi) be its image under gi. We
will show that (vi, zi) belongs to θ2

0Ci, for every i ∈ {0, . . . , (2j + 1)n2 − 1}.
For the second coordinate, we have zi ≤ z0

∏i−1
k=0 bk, since Hi is the identity, for

i < 2jn2, and shrinks the second coordinate, for i ∈ {2jn2, . . . , (2j + 1)n2 − 1}.
Hence zi belongs to θIi ⊂ θ2

0Ii. It remains to control the first coordinate: Hi has
the form (v, z) 7→ (v, hi(v, z)) and vi decomposes as Bi−1vi−1 + wi where wi is the
projection on the first coordinate of Ai−1(0, hi−1(vi−1, zi−1)). Note that

‖wi‖ ≤ C‖hi−1(vi−1, zi−1)‖ ≤ C|zi−1| ≤ Ciµ3θ.

In particular, vi decomposes as a sum ṽi+ ri, where ṽi = Bi−1 . . . B0(v0) belongs
to θPi and

ri =
i∑

k=1

Ai−1 . . . Akwk.

It follows that ‖ri‖ ≤ iCiµ3θ.
Since vi belongs to θPi, it is now enough to show that ‖ri‖ is smaller than the

distance between the complement of θ2
0Pi and θPi = θ3

0Pi. This distance is bounded
from below by C−iθ(θ−1

0 − 1). Our choice of µ1 now implies that vi belongs to θ2
0Pi,

as required. �
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7.6 Almost tidy perturbation: fourth choice of µ

To finish the proof of Proposition 6.6, we are left to show that, after a rescaling
by the linear map Eµ, the action of the perturbation g on the orbits of f tends
uniformly to the identity as µ→ 0.

Lemma 7.5. Given d,C,K, ε, θ and η > 0 there exists µ4 = µ4(d,C,K, ε, θ, η) such
that for any µ ∈ (0, µ4), for any sequence (Ai) in GL(d,R) with ‖Ai‖, ‖A−1

i ‖ < C
and for any j ∈ {0, . . . , 2d − 1}, the diffeomorphisms f and g defined in Section 7.2
satisfy on {0} × R

d,

dunif

(
id, E−1

µ f−2(j+1)n2g2(j+1)n2Eµ|
{0}×Rd

)
< η.

Proof. First of all, notice that:

• Hi = id if i < 2jn2 or i ≥ 2(j + 1)n2 − 1,

• Hi = (EµAi−1 . . . A0)H
−1(EµAi−1 . . . A0)

−1 for 2jn2 ≤ i < (2j + 1)n2,

• Hi = (EµAi−1 . . . A0)H(EµAi−1 . . . A0)
−1 for (2j + 1)n2 ≤ i < 2(j + 1)n2,

where H is a diffeomorphism of {0} × R
d, and the Ak are matrices, defined by

H(v, z) = (v, hζ(v)(z)),

Ak =




0

Bk
...
0

0 . . . 0 bk



.

In this notation, we can write

E−1
µ f−2(j+1)n2g2(j+1)n2Eµ|

{0}×Rd
= E−1

µ




2(j+1)n2−1∏

i=0

f−iHif
i


Eµ

= Ql(P2n2−1H . . . Pn2H)(Pn2−1H
−1 . . . P0H

−1)Qr,

where

Pi = (A2jn2+i−1 . . . A0)
−1(A

−1
2jn2+iE

−1
µ A2jn2+iEµ)(A2jn2+i−1 . . . A0),

Qr = (A2jn2−1 . . . A0)
−1E−1

µ (A2jn2−1 . . . A0)Eµ, and

Ql = E−1
µ (A2(j+1)n2−1 . . . A0)

−1Eµ(A2(j+1)n2−1 . . . A0).

Note that
E−1
µ AkEµ −→

µ→0
Ak.

This implies that Pi, Qr and Ql tend to Id when µ goes to 0. As a consequence
E−1
µ f−2(j+1)n2g2(j+1)n2Eµ tends uniformly to the identity on {0} × R

d as µ → 0.
This implies the conclusion of the lemma. �
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Appendix: The (LD) property is not generic

The proof of our main theorem would have been much easier if the large derivative
property were a generic property; the aim of this section is to show that, indeed, it
is not a generic property.

Consider the set LD ⊂ Diff1(M) of diffeomorphisms having the (LD)-property.

Remark 7.6. If f is Axiom A, then f ∈ LD. More generally, if the chain recurrent
set CR(f) is a finite union of invariant compact sets, each of them admiting a
dominated splitting, then f ∈ LD: the dominated splitting implies that the vectors
in one bundle are exponentially more expanded than the vectors in the other bundle,
implying that sup{‖Dfn(x)‖, ‖Df−n(x)‖} increases exponentially with n for x ∈
CR(f).

Consider the open set T of tame diffeomorphisms: these are the diffeomorphisms
such that all the diffeomorphisms in a C1-neighborhood have the same finite number
of chain recurrence classes. A consequence of [BDP] and [BC] is that any diffeomor-
phism in an open and dense subset O ⊂ T admits a dominated splitting on each of
its chain recurrence classes. This implies that O is contained in LD.

To find an open set in which LD is not residual, we therefore must look among
the the so-called wild diffeomorphisms, whose chain recurrent set has no dominated
splitting.

Proposition 7.7. For any compact manifold M with dim(M) > 2, there exists a
non-empty open subset UM ⊂ Diff1(M) such that LD ∩ UM is meager.

Let VM be the set of diffeomorphisms f possessing a periodic point x = xf such
that Dfπ(x)(x) = id, where π(x) is the period of x. We denote by UM the interior
of the closure of VM . In [BD], it is shown that UM is nonempty, for every compact
manifold M of dimension at least 3.

Remark 7.8. The least period of xf is not locally bounded in UM . This is because,
for every n > 0, the set of diffeomorphisms whose periodic orbits of period less than
n are hyperbolic is open and dense.

To prove the proposition, it suffices to show that LD ∩ UM is meager.
For every K > 1 and n ∈ N, we consider the set W (K,n) ⊂ Diff1(M) of

diffeomorphisms f such that there exist m > n and two compact balls B0, B1 with
the following properties.

• B1 is contained in the interior of B0;

• fm(B0) is contained in the interior of B0, and B1 is contained in the interior
of fm(B1);

• for every x ∈ B0:

sup{‖Dfm(f j(x))‖, ‖Df−m(f jx)‖, x ∈ Λf and j ≥ 0} < K.

Note that W (K,n) is an open set, for every K and n. Furthermore, for a given
K > 1, the diffeomorphisms in R = ∩n∈NW (K,n) do not satisfy the (LD) property.
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To see this, let f ∈ R, and fix an arbitrary integer n > 0. Consider an integer
m > n and two balls B0, B1 given by the definition of W (K,n). Then the points
in the open set Int(B1) \ f−m(B1) are not periodic, since their entire orbits lie in
B0, and along these orbits, the quantities ‖Dfm‖ and ‖Df−m‖ are bounded by K.
Hence f does not satisfy the (LD) property.

Lemma 7.9. For every K > 1 and every n ∈ N, W (K,n)∩UM is (open and) dense
in UM .

Proof. Consider f0 ∈ UM , and let U ⊂ UM be a neighborhood of f0. There
exists f1 ∈ U and m > n such that f1 has a periodic point x of period m with
Dfm(x) = Id. Then there exist f2 ∈ U , arbitrarily close to f1, and a small ball
D contained in an arbitrarily small neighborhood of x such that fm2 (D) = D, the
restriction of fm2 to D is the identity map, and f i2(D)∩D = ∅ for i ∈ {1, . . . ,m−1}.
Let ∆ =

⋃m
0 f i2(D).

Observe that there is a neighborhood U1 ⊂ U of f2 such that ‖Dfm‖ and ‖Df−m‖
are bounded by 1

2K on ∆. We conclude the proof by noting that there exist f3 ∈ U1

and two compact balls B1 ⊂ Int(B0) ⊂ B0 ⊂ IntD with the desired properties. �

B. Fayad has observed that, for the proof of the Main Theorem, it suffices to
obtain the (LD)-property merely on a dense subset of M . This weaker (LD) con-
dition is not residual either: the proof of the proposition above shows that for the
diffeomorphisms in the residual subset R, the (LD)-property is not satisfied on any
dense subset of M .

We conclude this section by discussing another strange feature of the (LD) prop-
erty: we have proved the density of the set of diffeomorphisms satisfying the large
derivative property and whose periodic orbits are all hyperbolic. On the one hand,
the large derivative property is a uniform property on the non-periodic orbits (in the
definition, the integer n(K) does not depend on the point x). On the other hand,
for the hyperbolic periodic orbits, the norm of the derivative tends exponentially to
infinity. So it is natural to ask if we could also include the periodic orbits in the
definition of (LD)-property. Let us say that f satisfies the strong (LD) property if,
for every K > 1 there exists nK such that for every n ≥ nK and every x ∈ M one
has sup{‖Dfn(f i(x))‖, ‖Df−n(f i(x)‖, i ∈ Z} > K.

Question 6. Does the strong (LD) property hold on a dense subset of Diff1(M)?
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