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We prove that a Hilbert domain which is quasi-isometric to a normed vector space is actually a convex polytope.

Introduction

A Hilbert domain in R m is a metric space (C, d C ), where C is an open bounded convex set in R m and d C is the distance function on C -called the Hilbert metric -defined as follows.

Given two distinct points p and q in C, let a and b be the intersection points of the straight line defined by p and q with ∂C so that p = (1s)a + sb and q = (1t)a + tb with 0 < s < t < 1. Then d C (p, q) := 1 2 ln[a, p, q, b],

where [a, p, q, b]

:= 1 -s s × t 1 -t > 1
is the cross ratio of the 4-tuple of ordered collinear points (a, p, q, b).

We complete the definition by setting d C (p, p) := 0. The metric space (C, d C ) thus obtained is a complete non-compact geodesic metric space whose topology is the one induced by the canonical topology of R m and in which the affine open segments joining two points of the boundary ∂C are geodesics that are isometric to (R, | • |).

For further information about Hilbert geometry, we refer to [START_REF] Busemann | The geometry of geodesics[END_REF][START_REF] Busemann | Projective geometry and projective metrics[END_REF][START_REF] Egloff | Uniform Finsler Hadamard manifolds[END_REF][START_REF] Goldman | Projective geometry on manifolds[END_REF] and the excellent introduction [START_REF] Socié-Méthou | Comportements asymptotiques et rigidités des géométries de Hilbert[END_REF] by Socié-Méthou.

The two fundamental examples of Hilbert domains (C, d C ) in R m correspond to the case when C is an ellipsoid, which gives the Klein model of m-dimensional hyperbolic geometry (see for example [15, first chapter]), and the case when the closure C is a m-simplex for which there exists a norm • C on R m such that (C, d C ) is isometric to the normed vector space (R m , • C ) (see [8, pages 110-113] or [14, pages 22-23]).

Much has been done to study the similarities between Hilbert and hyperbolic geometries (see for example [START_REF] Colbois | Hilbert geometry for strictly convex domains[END_REF], [START_REF] Vernicos | Introduction aux géométries de Hilbert[END_REF] or [START_REF] Benoist | A survey on convex divisible sets[END_REF]), but little literature deals with the question of knowing to what extend a Hilbert geometry is close to that of a normed vector space. So let us mention three results in this latter direction which are relevant for our present work. Recall that a convex polytope in R m (called a convex polygon when m := 2) is the convex hull of a finite set of points whose affine span is the whole space R m .

In light of these three results, it is natural to ask whether the converse of Theorem 1.3 -which generalizes Theorem 1.2 in higher dimensions -holds. In other words, if a Hilbert domain (C, d C ) in R m is quasi-isometric to a normed vector space, what can be said about C? Here, by quasi-isometric we mean the following (see [START_REF] Burago | A course in metric geometry[END_REF]):

Definition 1.1. Given real numbers A 1 and B 0, a metric space (S, d) is said to be (A, B)quasi-isometric to a normed vector space (V, • ) if and only if there exists a map f :

S -→ V such that 1 A d(p, q) -B f (p) -f (q) Ad(p, q) + B
for all p, q ∈ S.

We can now state the result of this paper which asserts that the converse of Theorem 1.3 is actually true:

Theorem 1.4. If a Hilbert domain (C, d C ) in R m is (A, B)-quasi-isometric to a normed vector space (V,
• ) for some real constants A 1 and B 0, then C is the interior of a convex polytope.

Proof of Theorem 1.4

The proof of Theorem 1.4 is based on an idea developed by Förtsch and Karlsson in their paper [START_REF] Förtsch | Hilbert metrics and Minkowski norms[END_REF].

It needs the following fact due to Karlsson and Noskov: Theorem 2.1 ([12], Theorem 5.2). Let (C, d C ) be a Hilbert domain in R m and x, y ∈ ∂C such that [x, y] ⊆ ∂C. Then, given a point p 0 ∈ C, there exists a constant K(p 0 , x, y) > 0 such that for any sequences (x n ) n∈N and (y n ) n∈N in C that converge respectively to x and y in R m one can find an integer n 0 ∈ N for which we have

d C (x n , y n ) d C (x n , p 0 ) + d C (y n , p 0 ) -K(p 0 , x, y)
for all n n 0 . Now, here is the key result which gives the proof of Theorem 1.4: Proposition 2.1. Let (C, d C ) be a Hilbert domain in R m which is (A, B)-quasi-isometric to a normed vector space (V, • ) for some real constants A 1 and B 0. Then, if N = N(A, • ) denotes the maximum number of points in the ball {v ∈ V | v 2A} whose pairwise distances with respect to • are greater than or equal to 1/(2A), and if X ⊆ ∂C is such that [x, y] ⊆ ∂C for all x, y ∈ X with x = y, we have card(X) N.

Proof. Let f : C -→ V such that (2.1) 1 A d C (p, q) -B f (p) -f (q) Ad C (p, q) + B for all p, q ∈ C.
First of all, up to translations, we may assume that 0 ∈ C and f (0) = 0.

Then suppose that there exists a subset X of the boundary ∂C such that [x, y] ⊆ ∂C for all x, y ∈ X with x = y and card(X) N + 1. So, pick N + 1 distinct points x 1 , . . . , x N +1 in X, and for each k ∈ {1, . . . , N + 1}, let

γ k : [0, +∞) -→ C be a geodesic of (C, d C ) that satisfies γ k (0) = 0, lim t→+∞ γ k (t) = x k in R m and d C (0, γ k (t)) = t for all t 0.
This implies that for all integers n 1 and every k ∈ {1, . . . , N + 1}, we have

(2.2) f (γ k (n)) n A + B n
from the second inequality in Equation 2.1 with p := γ k (n) and q := 0. On the other hand, Theorem 2.1 yields the existence of some integer n 0 1 such that

d C (γ i (n), γ j (n)) 2n -K(0, x i , x j )
for all integers n n 0 and every i, j ∈ {1, . . . , N + 1} with i = j, and hence

(2.3) f (γ i (n)) n - f (γ j (n)) n 2 A - 1 n K(0, x i , x j ) A + B
from the first inequality in Equation 2.1 with p := γ i (n) and q := γ j (n). Now, fixing an integer n n 0 + AB + max{K(0, x i , x j ) | i, j ∈ {1, . . . , N + 1}}, we get

f (γ k (n)) n 2A
for all k ∈ {1, . . . , N + 1} by Equation 2.2 together with

f (γ i (n)) n - f (γ j (n)) n 1 2A
for all i, j ∈ {1, . . . , N + 1} with i = j by Equation 2.3. But this contradicts the definition of N = N(A, • ). Therefore, Proposition 2.1 is proved.

Remark. Given v ∈ V such that v = 2A, we have -v = 2A and v -(-v) = 2 v = 4A 1/(2A), which shows that N 2.
The second ingredient we will need for the proof of Theorem 1.4 is the following:

Proposition 2.2. Let C be an open bounded convex set in R 2 .
If there exists a non-empty finite subset Y of the boundary ∂C such that for every x ∈ ∂C one can find y ∈ Y with [x, y] ⊆ ∂C, then the closure C is a convex polygon.

Proof. Assume 0 ∈ C and let us consider the continuous map π : R -→ ∂C which assigns to each θ ∈ R the unique intersection point π(θ) of ∂C with the half-line R * + (cos θ, sin θ). For each pair (x 1 , x 2 ) ∈ ∂C × ∂C, denote by A(x 1 , x 2 ) ⊆ ∂C the arc segment defined by A(x 1 , x 2 ) := π([θ 1 , θ 2 ]), where θ 1 and θ 2 are the unique real numbers such that π(θ 1 ) = x 1 and π(θ 2 ) = x 2 with θ 1 ∈ [0, 2π) and θ 1 θ 2 < θ 1 + 2π.

Before proving Proposition 2.2, notice that adding a point of ∂C to Y does not change Y 's property at all, and therefore we may assume that card(Y ) 2. So, write Y = {x 1 , . . . , x n } with x 1 = π(θ 1 ), . . . , x n = π(θ n ), where θ 1 ∈ [0, 2π) and

θ 1 < • • • < θ n < θ n+1 := θ 1 + 2π, and let x n+1 := π(θ n+1 ) = x 1 .
Fix k ∈ {1, . . . , n} and pick an arbitrary

x ∈ A(x k , x k+1 ) {x k , x k+1 }.
By hypothesis, one can find y ∈ Y with [x, y] ⊆ ∂C. Then the convex set C is contained in one of the two open half-planes in R 2 bounded by the line passing through the points x and y, and hence either Then pick Y ∈ E such that card(Y ) = n, write Y = {x 1 , . . . , x n }, and prove that for every x ∈ ∂C one can find k ∈ {1, . . . , n} such that [x, x k ] ⊆ ∂C. Owing to Proposition 2.2, this will show that C is a convex polygon. So, suppose that there exists x 0 ∈ ∂C satisfying [x 0 , x k ] ⊆ ∂C for all k ∈ {1, . . . , n}, and let us find a contradiction by considering Z := Y ∪ {x 0 }. First, since x 0 = x k for all k ∈ {1, . . . , n} (if not, we would get an index k ∈ {1, . . . , n} such that [x 0 , x k ] = {x 0 } ⊆ ∂C, which is false), we have x 0 ∈ Y. Hence card(Z) = n + 1. Next, since Y ∈ E and [x 0 , x k ] ⊆ ∂C for all k ∈ {1, . . . , n}, we have Z ∈ E. Therefore, the assumption of the existence of x 0 yields a set Z ∈ E whose cardinality is greater than that of Y, which contradicts the very definition of Y.

A(x, y) = [x, y], or A(y, x) = [x, y]. Since x k ∈ A(y, x) and x k+1 ∈ A(x, y), we then have x k ∈ [x, y] or x k+1 ∈ [x, y], which yields A(x k , x) = [x k , x] or A(x, x k+1 ) = [x, x k+1 ]. Conclusion: A(x k , x k+1 ) = S k ∪ S k+1 , where S k := {x ∈ A(x k , x k+1 ) | A(x k , x) = [x k , x]} and S k+1 := {x ∈ A(x k , x k+1 ) | A(x, x k+1 ) = [x, x k+1 ]}.

Conclusion:

C is a convex polygon, and this proves Theorem 1.4.

  Now, the set S k (resp. S k+1 ) satisfies [x k , x] ⊆ S k (resp. [x, x k+1 ] ⊆ S k+1 ) whenever x ∈ S k (resp. x ∈ S k+1 ). So, if we considerα 0 := max{θ ∈ [θ k , θ k+1 ] | A(x k , π(θ)) = [x k , π(θ)]}, we have S k = [x k , π(α 0 )] and S k+1 = [π(α 0 ), x k+1 ]. Hence, A(x k , x k+1 )is the union of the two affine segments [x k , π(α 0 )] and [π(α 0 ), x k+1 ]. Finally, since ∂C = n k=1 A(x k , x k+1 ), this implies that ∂C is the union of 2n affine segments in R 2 , and thus C is a convex polygon. Before proving Theorem 1.4, let us recall the following useful result, where a convex polyhedron in R m is the intersection of a finite number of closed half-spaces: Theorem 2.2 ([13], Theorem 4.7). Let P be a convex set in R m and p ∈ • P . Then P is a convex polyhedron if and only if all its plane sections containing p are convex polyhedra. Proof of Theorem 1.4. Let (C, d C ) be a non-empty Hilbert domain in R m that is (A, B)-quasi-isometric to a normed vector space (V, • ) for some real constants A 1 and B 0. According to Theorem 2.2, it suffices to prove Theorem 1.4 for m := 2 since any plane section of C gives rise to a 2-dimensional Hilbert domain which is also (A, B)-quasi-isometric to (V, • ). So, let m := 2, and consider the set E := {X ⊆ ∂C | [x, y] ⊆ ∂C for all x, y ∈ X with x = y}. It is not empty since {x, y} ∈ E for some x, y ∈ ∂C with x = y (indeed, C is a non-empty open set in R 2 ), which implies together with Proposition 2.1 that n := max{card(X) | X ∈ E} does exist and satisfies 2 n N (recall that N 2).

  If C is an open set in R m whose closure C is a convex polytope, then (C, d C ) is Lipschitz equivalent to Euclidean m-space.
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