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Abstract—A fast algorithm for computing the two-dimensional (2-D) forward and inverse 

modified discrete cosine transform (MDCT and IMDCT) is proposed. The algorithm converts 

the 2-D MDCT and IMDCT with block size M×N into four 2-D discrete cosine transforms 

(DCTs) with block size (M/4)×(N/4). It is based on an algorithm recently presented by Cho [7] 

for the efficient calculation of one-dimensional MDCT and IMDCT. Comparison of the 

computational complexity with the traditional row-column method shows that the proposed 

algorithm reduces significantly the number of arithmetic operations. 
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I. Introduction 

   The forward and inverse modified discrete cosine transform (MDCT and IMDCT) are 

extensively used to realize the analysis/synthesis filter banks of time domain aliasing 

cancellation scheme for subband coding [1]. Such a filter bank is equivalent to the modulated 

lapped transform (MLT) introduced by Malvar [2]. Many fast algorithms have been reported 

in the literature for computing the one-dimensional (1-D) MDCT/IMDCT (or MLT/MLT-1). 

For example, Britanak and Rao [3] proposed an efficient approach for implementing the M-point 

MDCT and IMDCT based on the M/4-point DCT/DST and corresponding M/4-point IDCT/IDST, 

respectively. Lee [4] then suggested an improvement in the computational speed of this algorithm. 

By using a matrix representation, Cheng and Hsu [5] presented various approaches for efficient 

implementation of the MDCT and IMDCT. Recently, Truong et al. [6] developed a fast algorithm 

for computing the M-point MDCT and IMDCT through M/2-point DCT. Among these 

approaches, the algorithms reported in [4], [5] and [6] are probably the most efficient for 

computing the MDCT in terms of the arithmetic complexity. However, the algorithm 

presented by Cho et al in [7], which does not contain recursive structure, seems to achieve a 

good balance between the arithmetic complexity and computational structure. A 

comprehensive list of references on this subject is available in [8] and [9]. The 

two-dimensional (2-D) MDCT/IMDCT (or MLT/MLT-1), belonging to the lapped transforms, 

have a better performance compared to the non-lapped transforms (like the 2-D DCT/IDCT), 

not only because they have higher coding gains, but also they lead to a strong reduction in 

“blocking effects” in image coding [10]. Therefore, the 2-D MDCT/IMDCT have found their 

applications in image coding [11, 12], spectral image analysis [13] and digital image 
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watermarking [14]. 

   During the past decades, many fast algorithms for computing the 1-D and 2-D DCT have 

been proposed [15-43]. A comprehensive survey of DCT algorithms can be found in [44] and 

comments on various fast algorithms for 2-D DCT was given in [45]. For the 1-D case, Lee’s 

algorithm [15] and Hou’s algorithm [16] are probably the most attractive radix-2 algorithms 

for computing the 2m-point DCT. Loeffler et al. [17] presented a fast algorithm for computing 

the 8- and 16-point DCT with minimum computational complexity. Chan and Siu [18] 

presented a mixed radix-3/6 algorithm to realize the DCT of length-M = 2m3n, m, n ≥ 1. Kok 

[19] then suggested a generalized radix-2 algorithm that can be used to compute the 

even-length DCT. Recently, Bi and Yu [20] derived an efficient mixed-radix algorithm for 

computing the DCT of composite sequence length  where p is an odd integer.  mpM 2⋅=

For the 2-D case, fast DCT algorithms can be classified into three categories: indirect 

algorithms, direct algorithms and optimal algorithms based on complexity theory or tensor 

approach. The indirect algorithms calculate the 2-D DCT through other transforms such as 

2-D fast Fourier transform (FFT) [21, 22], 4-D FFT [23], or polynomial transform [24-26]. 

Among them, by using a polynomial transform (PT), Duhamel and Guillemot [24] developed 

the most efficient 2-D DCT algorithm for the block sizes 2m×2m,m ≥ 3. Zeng et al. [26] also 

presented a PT-based multidimensional DCT algorithm, which can be used to compute the 

2-D DCT for the rectangular block sizes 2m×2n, m, n ≥ 2. Tatsaki et al. [23] derived a 

prime-factor DCT algorithm for computing the 2-D DCT of the block size N×N with N ≠ 2m. 

The direct algorithms include the calculation of 2-D DCT through N sets of N-point 1-D DCTs 

plus a post-addition stage [27-31], matrix factorization or recursive computation [32-37], 
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constant geometry algorithm [38,39], and Chebyshev polynomial [40]. Among them, Britanak 

and Rao [36] developed an efficient recursive 2-D DCT algorithm for a rectangular 2m×2n 

block sizes. Bi et al. [37] suggested an algorithm that supports transform sizes , 

where p and q are odd integers. Note that the algorithms reported in [28]-[30] and [35] require 

the same number of multiplications and similar number of additions as that of the algorithm 

presented in [24] for computing the 2

nm qp 22 ⋅×⋅

m×2m-point DCT, but they have more regular 

computational structures compared to [24]. The optimal algorithms based on complexity 

theory or tensor approach [41-43] are mainly proposed to reach the minimum multiplicative 

complexity. For example, by using the 1-D DCT-based tensor approach, Feig and Winograd 

[41] obtained the lower bound of the multiplicative complexity which is 2m(2m+1-m-2) for the 

2m×2m block sizes DCT. That is to say, the lower bounds of the multiplicative complexity for 

8×8- and 16×16-point DCT are 88 and 416, respectively. As noted in [45], by combining 

Loteffler’s 1-D DCT algorithm [17] with Cho’s 2-D DCT algorithm [28], the multiplications 

needed for the 8×8- and 16×16-point DCT are 88 and 496, respectively. Recently, by using 

the shifted Fourier transform-based tensor approach, Grigoryan and Agaian [43] proposed an 

approach in which 84 and 460 multiplications are required for computing the 8×8- and 

16×16-point DCTs, respectively. By utilizing the distributed arithmetic (DA) structure of the 

2-D DCT, Pan [46] reported that only 64 multiplications are required for the computation of 

8×8-point DCT. Although many algorithms have been reported to reduce the arithmetic 

complexity of 2-D DCT, to the authors’ knowledge, little attention has been paid on the fast 

computation of 2-D MDCT/IMDCT. Frantzeskakis and Karathanasis [47] developed a 

time-recursive approach for real-time computation of the 2-D MLT. In most cases, the 2-D 
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MDCT/IMDCT are calculated with the row-column method [11-14], which requires evaluating 

M sets of N-point MDCTs/IMDCTs and N sets of M-point MDCTs/IMDCTs for an M×N-point 

2-D MDCT/IMDCT. As noted in [24], the true 2-D techniques are more efficient than the 

row-column approach. Therefore, proper 2-D algorithms need to be developed. 

In this paper, the 1-D MDCT/IMDCT algorithm presented in [7] is extended to two 

dimensions to obtain a new 2-D MDCT/IMDCT algorithm. In section II, a simple variation of 

the algorithm in [7] is described. The algorithm is then generalized to 2-D in Section III. The 

computational complexity of the method is analyzed and compared to the row-column method 

in Section IV. Section V concludes the work. 

 

II. 1-D MDCT/IMDCT algorithm 

Let  denote a windowed input data sequence. The unnormalized 1-D 

forward and inverse MDCT are respectively defined as [1] 
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where M is assumed to be divisible by 4, i.e., M = 4p. 

In this section, we briefly describe the algorithm proposed in [7]. Using the following 

permutations introduced in [4] and [7] 
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Equations (1) and (2) can be rewritten as 
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The above equations show that the forward and inverse MDCT can be realized by the same 

DCT-IV algorithm. 

Equation (5) can further be computed as follows. 
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with the initial conditions X(0) = A(0) and X(M/2 – 1) = –B(M/4). 

 

III. 2-D MDCT/IMDCT algorithm 

The corresponding 2-D MDCT and IMDCT are respectively defined by 
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where M and N are both assumed to be divisible by 4. 

Step 1: Mapping M×N-point forward and inverse MDCT to (M/2)×(N/2)-point DCT-IV. 
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Eq. (11) becomes 
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Equation (12) can be written as 

[ ] [ ].1,0 ,1,0                                                                           

,)12)(12(
2

cos)12)(12(
2

cos),(),(
12/

0

12/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ ++= ∑ ∑

−

=

−

=

NnMm

ln
N

km
M

lkXnmy
M

k

N

l

ππ
        (16) 

Note that 

[ ] [ .12/,0 ,12/,0                                                                
),1,1()1,(),1(),(

−∈−∈ ]
−−−−=−−−=−−−=

NnMm
nNmMynNmynmMynmy

             (17) 

Therefore, only [ ] [ ]12/,0 ,12/,0 ),,( −∈−∈ NnMmnmy  needs to calculate. Equations (14) 

and (16) show that the 2-D forward and inverse MDCT can be realized by the same 2-D DCT-IV 

algorithm. 

Step 2: Decomposing (M/2)×(N/2)-point DCT-IV into four (M/4)×(N/4)-point DCTs. 

Instead of computing (14) directly, we propose in this subsection an algorithm suitable 

for fast computation. 
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A. Computation of C(k, l) and D(k, l). 
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1) Computation of C1(k, l) and C2(k, l). 
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Using (7), we can easily get 
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  2) Computation of C(k, l) and D(k, l). 

Substituting (27) and (29) into (18), we obtain 
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For the computation of D(k, l), we have 
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By using (8), we have 

,)12(2cos)12(2sin),(),(
14/

0

14/

0
∑ ∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +=

M

m

N

n
u ln

N
km

M
nmvlkD ππ

                   (33) 

where 

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−= )12(

2
cos),12/()12(

2
sin),(),( m

M
nmMum

M
nmunmvu

ππ
.       (34) 

Equation (33) can be rewritten as 

[ ] [ ].14/,0,14/,0                                                                  

,)12(2cos)12(2cos),()1(,
4

14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ − ∑ ∑

−

=

−

=

NlMk

ln
N

km
M

nmvlkMD
M

m

N

n
u

m ππ
          (35) 

B. Computation of and . ),( lkC′ ),( lkD′

  1) Computation of and),(1 lkC′ ),(2 lkC′ . 

By proceeding in a similar way as for and , we obtain ),(1 lkC ),(2 lkC

∑∑
−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ +=′

12/

0

14/

0
1 )14)(12(

2
cos),()12(2sin

2
1),(

M

m

N

n

km
M

nmvln
N

lkC ππ
,             (36) 

,)14)(12(
2

cos),()12(2sin
2
1),(

12/

0

14/

0
2 ∑∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +=′

M

m

N

n

km
M

nmvln
N

lkC ππ
            (37) 

where 

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−= )12(

2
cos)12/,()12(

2
sin),(),( n

N
nNmwn

N
nmwnmv ππ

.         (38) 

  2) Computation of and),( lkC ′ ),( lkD′ . 

By proceeding in a similar way as for and , we have ),( lkC ),( lkD

,)12(2sin)12(2cos),(),(
14/

0

14/

0
∑ ∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +=′

M

m

N

n
v ln

N
km

M
nmulkC ππ

                   (39) 

,)12(2sin)12(2sin),(),(
14/

0

14/

0
∑ ∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +=′

M

m

N

n
v ln

N
km

M
nmvlkD ππ

                    (40) 

where 
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⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ += )12(

2
sin),12/()12(

2
cos),(),( m

M
nmMvm

M
nmvnmuv

ππ
,       (41) 

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−= )12(

2
cos),12/()12(

2
sin),(),( m

M
nmMvm

M
nmvnmvv

ππ
.      (42) 

Equations (39) and (40) can also be rewritten as 

[ ] [ ].14/,0,14/,0                                                                   

,)12(2cos)12(2cos),()1(
4

,
14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ −′ ∑ ∑

−

=

−

=

NlMk

ln
N

km
M

nmulNkC
M

m

N

n
v

n ππ
         (43) 

[ ] [ .14/,0,14/,0                                                                                

,)12(2cos)12(2cos),()1(
4

,
4

14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ −−′ ∑ ∑

−

=

−

=

+

NlMk

ln
N

km
M

nmvlNkMD
M

m

N

n
v

nm ππ

]
   (44) 

The final outputs of (11) can be obtained by 

].4/,1[],4/,1[),,(),(),(),()12,12(
]14/,0[],4/,1[),,(),(),(),()2,12(
]4/,1[],14/,0[, ),(),(),(),()12,2(
]14/,0[],14/,0[, ),(),(),(),()2,2(

NlMklkDlkClkDlkClkX
NlMklkDlkClkDlkClkX

NlMklkDlkClkDlkClkX
NlMklkDlkClkDlkClkX

∈∈′+′−−=−−
−∈∈′−′+−=−

∈−∈′−′−+=−
−∈−∈′+′++=

   (45) 

For some special values of k and l, equation (45) can be further simplified as 

[
[ ], )4/,()4/,()12/,12(

,)4/,()4/,()12/,2(
),0,()0,( )0,12(

),0,()0,()0,2(

NkDNkCNkX
NkDNkCNkX

kDkCkX
kDkCkX

′−′−=−−

′+′−=−
−=−

+=

]

]

       k ∈ [0, M/4]          (46) 

[
[ ],),4/(),4/()12,12/(

,),4/(),4/( )2,12/(
),,0(),0(  )12,0(

),,0(),0()2,0(

lMDlMDlMX
lMDlMDlMX

lClClX
lClClX

′−−=−−

′+−=−

′−=−

′+=

         l ∈ [0, N/4]          (47) 

and 

.)4/,4/()12/,12/(
,)0,4/()0,12/(
,)4/,0()12/,0(

,)0,0()0,0(

NMDNMX
MDMX

NCNX
CX

′=−−
−=−

′−=−
=

                                     (48) 

 

 11



IV. Computational complexity and comparison analysis 

In this section, we analyze the computational complexity of our proposed 2-D 

MDCT/IMDCT algorithm and compare it with the traditional row-column method. Assuming 

that a butterfly computation is implemented with 3 multiplications and 3 additions, then the 

decomposition costs are given as follows 

1) 3MN/4 additions for w(m, n) in (13). 

2) 3MN/8 multiplications and 3MN/8 additions for (28) and (38).  

3) 3MN/8 multiplications and 3MN/8 additions for (31), (34), (41), and (42). 

4) MN/2–M–N additions for (45)-(48). 

In summary, the computational complexity of the proposed 2-D MDCT algorithm is given by 

4/34 DCT
)4/()4/(

MDCT MNMM NMNM += ×× ,                                       (49) 

NMMNAA NMNM −−+= ×× 24 DCT
)4/()4/(

MDCT .                                   (50) 

For the computation of 2-D IMDCT, the manipulation in (15) is just a process of data shift, 3MN/4 

additions can thus be saved. Fig. 1 shows the block diagram of the proposed 2-D MDCT algorithm 

for the case of M = N = 8. 

 The time-recursive algorithm presented in [47] belonging to the recursive algorithm, is not 

efficient in terms of arithmetic complexity, but its regressive structure provides an efficient 

scheme for the parallel VLSI implementation [9]. For this reason, we compare only our algorithms 

with the traditional row-column method whose computational complexity is given by 

MDCTMDCTMDCT
MNNM NMMMM +=× ,                                              (51) 

MDCTMDCTMDCT
MNNM NAMAA +=× .                                                 (52) 

Note that the above equations are also valid for the 2-D IMDCT. 
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In the following, we only give the comparison results of 2-D MDCT algorithm, since the 

results of 2-D IMDCT algorithm are only different in additions. We first consider the case where 

the data sequence length satisfies M = N = 2m, m ≥ 4. For the proposed algorithm, we convert 

M×N MDCT into four (M/4)×(N/4) DCTs, which are then computed by the fast 2-D DCT 

algorithms presented in [28]-[30] or [35]. For the row-column method, we combine Lee’s 

algorithm [4] or Cheng and Hsu’s algorithm [5] with Kok’s algorithm [19] for the fast 

computation of 1-D MDCT. The comparison result is listed in table I. Note that for 8×8-point 

MDCT, we used the initial values and  [32, 34] in table I. Then, for the 

case M = N , both M and N being multiple of 4, but not power of two, we combine our 2-D 

MDCT algorithm with Tatsaki’s algorithm [23], and compare it with row-column method, 

which uses the algorithm presented in [4] or [5] and Bi’s algorithm [20] for the efficient 

computation of 1-D MDCT. The comparison result is shown in table II. For some image 

compression applications (e.g., [48]), it may require adaptive block sizes in different 

dimensions, so, we also consider the case where M ≠ N. For the case M = 2

2DCT
22 =×M 8DCT

22 =×A

m, N = 2n, m ≥ 3, n 

≥ 4, we combine our 2-D MDCT algorithm with Zeng et al’s algorithm [26]. For the case 

, m ≥ 5, n ≥ 3, we combine our 2-D MDCT algorithm with Bi et al’s 

algorithm [37]. For the row-column method, we still use the algorithm presented in [4] or [5] 

and Bi’s algorithm [20] for the efficient computation of 1-D MDCT. The comparison results 

are shown in table III and table IV, respectively. It can be observed from these tables that the 

proposed 2-D MDCT algorithm significantly reduces the number of arithmetic operations in 

both multiplications and additions compared to the row-column method. Since the block sizes 

8×8- and 16×16-point DCT are commonly used in image compression, we also consider the 

nm qNpM 2,2 ⋅=⋅=
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computational complexity of the 8×8- and 16×16-point MDCT. It can be easily seen from 

table I that our algorithm needs only 56 (or 256) multiplications and 144 (or 776) additions 

for 8×8 (or 16×16)-point DCT. However, if we use the row-column method, 128 (or 640) 

multiplications and 256 (or 1408) additions are required. 

 

V. Conclusions 

A fast algorithm for the computation of 2-D MDCT/IMDCT is presented. It is an extended 

version of an 1-D MDCT/IMDCT algorithm recently introduced by Cho et al. The algorithm 

reduces significantly the number of arithmetic operations compared to the row-column method. 

Therefore, it could find its application in multi-signal and image processing tasks. 
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Fig. 1. The block diagram of the 8×8-point MDCT. 
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 Table I Required number of arithmetic operations for 2-D MDCT with block size M × N, where 
M = N = 2m, m≥3. 

Block 
Size 

Proposed algorithm Row-column method ([4] or [5]) save 
Mul Add Total Mul Add Total 

8×8 
56 144 200 128 256 384 48% 

16×16 
256 776 1032 640 1408 2048 50% 

32×32 
1152 3848 5000 3072 7168 10240 51% 

64×64 
5120 18184 23304 14336 34816 49152 53% 

 
Table II Required number of arithmetic operations for 2-D MDCT with block size M × N, where 
M =N ≠2m. 

Block 
Size 

Proposed algorithm Row-column method ([4] or [5]) save 
Mul Add Total Mul Add Total 

24×24 568 1848 2416 1248 3456 4704 49% 

40×40 
1784 5752 7536 4480 11840 16320 54% 

48×48 
2560 9000 11560 6144 17280 23424 51% 

56×56 
3768 12728 16496 14336 25984 40320 59% 

 
Table III Required number of arithmetic operations for 2-D MDCT with block size M × N, where 
M=2m, N=2n, m≥3, n≥4. 

Block 
Size 

Proposed algorithm Row-column method ([4] or [5]) save 
Mul Add Total Mul Add Total 

8×16 128 348 476 288 608 896 47% 
16×32 576 1776 2352 1408 3200 4608 49% 
32×64 2560 8536 11096 6656 15872 22528 51% 

64×128 
11264 39592 50856 30720 75776 106496 52% 

 
Table IV Required number of arithmetic operations for 2-D MDCT with block size M × N, where 

, p=1, q=3, m≥5, n≥3. nm qNpM 2,2 ⋅=⋅=

Block 
Size 

Proposed algorithm Row-column method ([4] or [5]) save 
Mul Add Total Mul Add Total 

32×24 984 2616 3600 1984 4992 6976 48% 
64×48 4704 12320 17024 9472 24576 34048 50% 
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128×96 
21648 57616 79264 44032 116736 160768 51% 

256×192 
99600 262000 361600 200704 540672 741376 51% 

 
 


