
HAL Id: hal-00271377
https://hal.science/hal-00271377

Submitted on 22 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A fast algorithm for the computation of 2-D forward and
inverse MDCT

Jiasong Wu, Huazhong Shu, Lotfi Senhadji, Limin M. Luo

To cite this version:
Jiasong Wu, Huazhong Shu, Lotfi Senhadji, Limin M. Luo. A fast algorithm for the com-
putation of 2-D forward and inverse MDCT. Signal Processing, 2008, 88 (6), pp.1436-1446.
�10.1016/j.sigpro.2007.12.003�. �hal-00271377�

https://hal.science/hal-00271377
https://hal.archives-ouvertes.fr

A fast algorithm for the computation of 2-D forward and inverse MDCT

J.S. Wua, d, H.Z. Shua, d, L. Senhadjib, c, d, L.M. Luoa, d
aLaboratory of Image Science and Technology, School of Computer Science and

Engineering, Southeast University, 210096, Nanjing, China
bINSERM, U642, Rennes, F-35000, France

cUniversité de Rennes 1, LTSI, Rennes, F-35000, France
dCentre de Recherche en Information Biomédicale Sino-Français (CRIBs)

Information about the corresponding author:
Huazhong Shu, Ph.D
Laboratory of Image Science and Technology
School of Computer Science and Engineering
Southeast University, 210096, Nanjing, China
Tel: 00-86-25-83 79 42 49
Fax: 00-86-25-83 79 26 98
Email: shu.list@seu.edu.cn

Abstract—A fast algorithm for computing the two-dimensional (2-D) forward and inverse

modified discrete cosine transform (MDCT and IMDCT) is proposed. The algorithm converts

the 2-D MDCT and IMDCT with block size M×N into four 2-D discrete cosine transforms

(DCTs) with block size (M/4)×(N/4). It is based on an algorithm recently presented by Cho [7]

for the efficient calculation of one-dimensional MDCT and IMDCT. Comparison of the

computational complexity with the traditional row-column method shows that the proposed

algorithm reduces significantly the number of arithmetic operations.

Keywords—2-D MDCT, 2-D DCT, fast algorithm, image coding

 1

I. Introduction

 The forward and inverse modified discrete cosine transform (MDCT and IMDCT) are

extensively used to realize the analysis/synthesis filter banks of time domain aliasing

cancellation scheme for subband coding [1]. Such a filter bank is equivalent to the modulated

lapped transform (MLT) introduced by Malvar [2]. Many fast algorithms have been reported

in the literature for computing the one-dimensional (1-D) MDCT/IMDCT (or MLT/MLT-1).

For example, Britanak and Rao [3] proposed an efficient approach for implementing the M-point

MDCT and IMDCT based on the M/4-point DCT/DST and corresponding M/4-point IDCT/IDST,

respectively. Lee [4] then suggested an improvement in the computational speed of this algorithm.

By using a matrix representation, Cheng and Hsu [5] presented various approaches for efficient

implementation of the MDCT and IMDCT. Recently, Truong et al. [6] developed a fast algorithm

for computing the M-point MDCT and IMDCT through M/2-point DCT. Among these

approaches, the algorithms reported in [4], [5] and [6] are probably the most efficient for

computing the MDCT in terms of the arithmetic complexity. However, the algorithm

presented by Cho et al in [7], which does not contain recursive structure, seems to achieve a

good balance between the arithmetic complexity and computational structure. A

comprehensive list of references on this subject is available in [8] and [9]. The

two-dimensional (2-D) MDCT/IMDCT (or MLT/MLT-1), belonging to the lapped transforms,

have a better performance compared to the non-lapped transforms (like the 2-D DCT/IDCT),

not only because they have higher coding gains, but also they lead to a strong reduction in

“blocking effects” in image coding [10]. Therefore, the 2-D MDCT/IMDCT have found their

applications in image coding [11, 12], spectral image analysis [13] and digital image

 2

watermarking [14].

 During the past decades, many fast algorithms for computing the 1-D and 2-D DCT have

been proposed [15-43]. A comprehensive survey of DCT algorithms can be found in [44] and

comments on various fast algorithms for 2-D DCT was given in [45]. For the 1-D case, Lee’s

algorithm [15] and Hou’s algorithm [16] are probably the most attractive radix-2 algorithms

for computing the 2m-point DCT. Loeffler et al. [17] presented a fast algorithm for computing

the 8- and 16-point DCT with minimum computational complexity. Chan and Siu [18]

presented a mixed radix-3/6 algorithm to realize the DCT of length-M = 2m3n, m, n ≥ 1. Kok

[19] then suggested a generalized radix-2 algorithm that can be used to compute the

even-length DCT. Recently, Bi and Yu [20] derived an efficient mixed-radix algorithm for

computing the DCT of composite sequence length where p is an odd integer. mpM 2⋅=

For the 2-D case, fast DCT algorithms can be classified into three categories: indirect

algorithms, direct algorithms and optimal algorithms based on complexity theory or tensor

approach. The indirect algorithms calculate the 2-D DCT through other transforms such as

2-D fast Fourier transform (FFT) [21, 22], 4-D FFT [23], or polynomial transform [24-26].

Among them, by using a polynomial transform (PT), Duhamel and Guillemot [24] developed

the most efficient 2-D DCT algorithm for the block sizes 2m×2m,m ≥ 3. Zeng et al. [26] also

presented a PT-based multidimensional DCT algorithm, which can be used to compute the

2-D DCT for the rectangular block sizes 2m×2n, m, n ≥ 2. Tatsaki et al. [23] derived a

prime-factor DCT algorithm for computing the 2-D DCT of the block size N×N with N ≠ 2m.

The direct algorithms include the calculation of 2-D DCT through N sets of N-point 1-D DCTs

plus a post-addition stage [27-31], matrix factorization or recursive computation [32-37],

 3

constant geometry algorithm [38,39], and Chebyshev polynomial [40]. Among them, Britanak

and Rao [36] developed an efficient recursive 2-D DCT algorithm for a rectangular 2m×2n

block sizes. Bi et al. [37] suggested an algorithm that supports transform sizes ,

where p and q are odd integers. Note that the algorithms reported in [28]-[30] and [35] require

the same number of multiplications and similar number of additions as that of the algorithm

presented in [24] for computing the 2

nm qp 22 ⋅×⋅

m×2m-point DCT, but they have more regular

computational structures compared to [24]. The optimal algorithms based on complexity

theory or tensor approach [41-43] are mainly proposed to reach the minimum multiplicative

complexity. For example, by using the 1-D DCT-based tensor approach, Feig and Winograd

[41] obtained the lower bound of the multiplicative complexity which is 2m(2m+1-m-2) for the

2m×2m block sizes DCT. That is to say, the lower bounds of the multiplicative complexity for

8×8- and 16×16-point DCT are 88 and 416, respectively. As noted in [45], by combining

Loteffler’s 1-D DCT algorithm [17] with Cho’s 2-D DCT algorithm [28], the multiplications

needed for the 8×8- and 16×16-point DCT are 88 and 496, respectively. Recently, by using

the shifted Fourier transform-based tensor approach, Grigoryan and Agaian [43] proposed an

approach in which 84 and 460 multiplications are required for computing the 8×8- and

16×16-point DCTs, respectively. By utilizing the distributed arithmetic (DA) structure of the

2-D DCT, Pan [46] reported that only 64 multiplications are required for the computation of

8×8-point DCT. Although many algorithms have been reported to reduce the arithmetic

complexity of 2-D DCT, to the authors’ knowledge, little attention has been paid on the fast

computation of 2-D MDCT/IMDCT. Frantzeskakis and Karathanasis [47] developed a

time-recursive approach for real-time computation of the 2-D MLT. In most cases, the 2-D

 4

MDCT/IMDCT are calculated with the row-column method [11-14], which requires evaluating

M sets of N-point MDCTs/IMDCTs and N sets of M-point MDCTs/IMDCTs for an M×N-point

2-D MDCT/IMDCT. As noted in [24], the true 2-D techniques are more efficient than the

row-column approach. Therefore, proper 2-D algorithms need to be developed.

In this paper, the 1-D MDCT/IMDCT algorithm presented in [7] is extended to two

dimensions to obtain a new 2-D MDCT/IMDCT algorithm. In section II, a simple variation of

the algorithm in [7] is described. The algorithm is then generalized to 2-D in Section III. The

computational complexity of the method is analyzed and compared to the row-column method

in Section IV. Section V concludes the work.

II. 1-D MDCT/IMDCT algorithm

Let denote a windowed input data sequence. The unnormalized 1-D

forward and inverse MDCT are respectively defined as [1]

{ }]1,0[,)(−∈ Mmmx

]12/,0[,)12(
2

12
2

cos)()(
1

0

−∈⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++= ∑

−

=

MkkMm
M

mxkX
M

m

π , (1)

]1,0[,)12(
2

12
2

cos)()(ˆ
12/

0

−∈⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++= ∑

−

=

MmkMm
M

kXmx
M

k

π , (2)

where M is assumed to be divisible by 4, i.e., M = 4p.

In this section, we briefly describe the algorithm proposed in [7]. Using the following

permutations introduced in [4] and [7]

[]
[⎩

⎨
⎧

−∈−−−−
−∈+−−−−

=
,12/,4/),14/3()4/(

14/,0 ,)4/3()14/3(
)(

MMmmMxMmx
MmmMxmMx

mw] (3)

and

 5

[]
[⎩

⎨
⎧

−∈−
−∈+−

=
.1,4/),4/(ˆ

14/,0),4/3(ˆ
)(

MMmMmx
MmmMx

my] (4)

Equations (1) and (2) can be rewritten as

]12/,0[,)12)(12(
2

cos)()(
12/

0

−∈⎥⎦
⎤

⎢⎣
⎡ ++= ∑

−

=

Mkkm
M

mwkX
M

m

π , (5)

]12/,0[,)12)(12(
2

cos)()(
12/

0

−∈⎥⎦
⎤

⎢⎣
⎡ ++= ∑

−

=

Mmkm
M

kXmy
M

k

π . (6)

The above equations show that the forward and inverse MDCT can be realized by the same

DCT-IV algorithm.

Equation (5) can further be computed as follows.

]14/,0[,)12(2cos)(2)12()2()(
14/

0

−∈⎥⎦
⎤

⎢⎣
⎡ +=−+= ∑

−

=

Mkkm
M

mukXkXkA
M

m

π
, (7)

]4/,1[,)12(2sin)(2)12()2()(
14/

0

Mkkm
M

mvkXkXkB
M

m

∈⎥⎦
⎤

⎢⎣
⎡ +=−−= ∑

−

=

π
, (8)

where

[]14/,0,)12(
2

sin)12/()12(
2

cos)()(−∈⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ += Mmm

M
mMwm

M
mwmu ππ

, (9)

[]14/,0,)12(
2

cos)12/()12(
2

sin)()(−∈⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−= Mmm

M
mMwm

M
mwmv ππ

, (10)

with the initial conditions X(0) = A(0) and X(M/2 – 1) = –B(M/4).

III. 2-D MDCT/IMDCT algorithm

The corresponding 2-D MDCT and IMDCT are respectively defined by

[] [],12/,0 ,12/,0

,)12(
2

12
2

cos)12(
2

12
2

cos),(),(
1

0

1

0

−∈−∈

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++= ∑∑

−

=

−

=

NlMk

lNn
N

kMm
M

nmxlkX
M

m

N

n

ππ
 (11)

 6

[] [],1,0 ,1,0

,)12(
2

12
2

cos)12(
2

12
2

cos),(),(ˆ
12/

0

12/

0

−∈−∈

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++= ∑ ∑

−

=

−

=

NnMm

lNn
N

kMm
M

lkXnmx
M

k

N

l

ππ

(12)

where M and N are both assumed to be divisible by 4.

Step 1: Mapping M×N-point forward and inverse MDCT to (M/2)×(N/2)-point DCT-IV.

Letting

),(nmw

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ −∈⎥⎦

⎤
⎢⎣
⎡ −∈⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −−−

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−−⎟

⎠
⎞

⎜
⎝
⎛ −−−−

⎥⎦
⎤

⎢⎣
⎡ −∈⎥⎦

⎤
⎢⎣
⎡ −∈⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ +−+

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−−+⎟

⎠
⎞

⎜
⎝
⎛ −−−−

⎥⎦
⎤

⎢⎣
⎡ −∈⎥⎦

⎤
⎢⎣
⎡ −∈⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −+−

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−++⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−−⎟

⎠
⎞

⎜
⎝
⎛ −−−−

⎥⎦
⎤

⎢⎣
⎡ −∈⎥⎦

⎤
⎢⎣
⎡ −∈⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ +++

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−++⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−−+⎟

⎠
⎞

⎜
⎝
⎛ −−−−

=

,1
2

,
4

,1
2

,
4

 ,
4

,
4

1
4
3,

44
,1

4
31

4
3,1

4
3

1
4

,0,1
2

,
4

 ,
4

3,
4

1
4

3,
44

3,1
4

31
4

3,1
4

3

1
2

,
4

,1
4

,0 ,
4

,
4

3

1
4

3,
4

3
4

,1
4

31
4

3,1
4

3

1
4

,0,1
4

,0 ,
4

3,
4

3

1
4

3,
4

3
4

3,1
4

31
4

3,1
4

3

NNnMMmNnMmx

nNMmxNnmMxnNmMx

NnMMmnNMmx

nNMmxnNmMxnNmMx

NNnMmNnmMx

nNmMxNnmMxnNmMx

NnMmnNmMx

nNmMxnNmMxnNmMx

 (13)

Eq. (11) becomes

[] [.12/,0 ,12/,0

,)12)(12(
2

cos)12)(12(
2

cos),(),(
12/

0

12/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ ++= ∑ ∑

−

=

−

=

NlMk

ln
N

km
M

nmwlkX
M

m

N

n

ππ

]
 (14)

Using a mapping analogous to (4)

[] []
[] [
[] [
[] [⎪

⎪
⎩

⎪
⎪
⎨

⎧

−∈−∈−−
−∈−∈+−−
−∈−∈−+−
−∈−∈++

=

,1,4/,1,4/),4/,4/(ˆ
14/,0,1,4/),4/3,4/(ˆ
1,4/,14/,0),4/,4/3(ˆ

14/,0,14/,0),4/3,4/3(ˆ

),(

NNnMMmNnMmx
NnMMmnNMmx

NNnMmNnmMx
NnMmnNmMx

nmy
]
]
]

 (15)

 7

Equation (12) can be written as

[] [].1,0 ,1,0

,)12)(12(
2

cos)12)(12(
2

cos),(),(
12/

0

12/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ ++= ∑ ∑

−

=

−

=

NnMm

ln
N

km
M

lkXnmy
M

k

N

l

ππ
 (16)

Note that

[] [.12/,0 ,12/,0
),1,1()1,(),1(),(

−∈−∈]
−−−−=−−−=−−−=

NnMm
nNmMynNmynmMynmy

 (17)

Therefore, only [] []12/,0 ,12/,0),,(−∈−∈ NnMmnmy needs to calculate. Equations (14)

and (16) show that the 2-D forward and inverse MDCT can be realized by the same 2-D DCT-IV

algorithm.

Step 2: Decomposing (M/2)×(N/2)-point DCT-IV into four (M/4)×(N/4)-point DCTs.

Instead of computing (14) directly, we propose in this subsection an algorithm suitable

for fast computation.

Letting

),(),(),(21 lkClkClkC += , (18)

),(),(),(21 lkClkClkD −= , (19)

),(),(),(21 lkClkClkC ′+′=′ , (20)

),(),(),(21 lkClkClkD ′−′=′ , (21)

where

 [] [] 2/,0,12/,0 ,)12,2()2,2(
4
1),(1 NlMklkXlkXlkC ∈−∈−+= [] , (22)

[] [2/,0,2/,1 ,)12,12()2,12(
4
1),(2 NlMklkXlkXlkC ∈∈−−+−=] [], (23)

 [] [] 2/,0,12/,0 ,)12,2()2,2(
4
1),(1 NlMklkXlkXlkC ∈−∈−−=′ [] , (24)

[] [2/,0,2/,1 ,)12,12()2,12(
4
1),(2 NlMklkXlkXlkC ∈∈−−−−=′] []. (25)

A. Computation of C(k, l) and D(k, l).

 8

1) Computation of C1(k, l) and C2(k, l).

From (22), we have

.)14)(12(
2

cos

)14)(12(
2

cos),()14)(12(
2

cos
4
1),(

12/

0

12/

0
1

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ −++

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ ++= ∑∑

−

=

−

=

ln
N

ln
N

nmwkm
M

lkC
N

n

M

m

π

ππ

 (26)

Using (7), we can easily get

,)14)(12(
2

cos),()12(2cos
2
1),(

12/

0

14/

0
1 ∑∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ +=

M

m

N

n

km
M

nmuln
N

lkC ππ
 (27)

where

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +=)12(

2
sin)12/,()12(

2
cos),(),(n

N
nNmwn

N
nmwnmu ππ

. (28)

Similarly, we have

∑∑
−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +=

12/

0

14/

0
2)14)(12(

2
cos),()12(2cos

2
1),(

M

m

N

n

km
M

nmuln
N

lkC ππ
. (29)

 2) Computation of C(k, l) and D(k, l).

Substituting (27) and (29) into (18), we obtain

[] [,14/,0,14/,0

,)12(2cos)12(2cos),(),(
14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ += ∑ ∑

−

=

−

=

NlMk

ln
N

km
M

nmulkC
M

m

N

n
u

ππ

]
 (30)

where

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +=)12(

2
sin),12/()12(

2
cos),(),(m

M
nmMum

M
nmunmuu

ππ
. (31)

For the computation of D(k, l), we have

.)14)(12(
2

cos

)14)(12(
2

cos),()12(2cos
2
1),(

12/

0

14/

0

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ −+−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ += ∑∑

−

=

−

=

km
M

km
M

nmuln
N

lkD
M

m

N

n

π

ππ

 (32)

 9

By using (8), we have

,)12(2cos)12(2sin),(),(
14/

0

14/

0
∑ ∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +=

M

m

N

n
u ln

N
km

M
nmvlkD ππ

 (33)

where

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−=)12(

2
cos),12/()12(

2
sin),(),(m

M
nmMum

M
nmunmvu

ππ
. (34)

Equation (33) can be rewritten as

[] [].14/,0,14/,0

,)12(2cos)12(2cos),()1(,
4

14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ − ∑ ∑

−

=

−

=

NlMk

ln
N

km
M

nmvlkMD
M

m

N

n
u

m ππ
 (35)

B. Computation of and .),(lkC′),(lkD′

 1) Computation of and),(1 lkC′),(2 lkC′ .

By proceeding in a similar way as for and , we obtain),(1 lkC),(2 lkC

∑∑
−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ +=′

12/

0

14/

0
1)14)(12(

2
cos),()12(2sin

2
1),(

M

m

N

n

km
M

nmvln
N

lkC ππ
, (36)

,)14)(12(
2

cos),()12(2sin
2
1),(

12/

0

14/

0
2 ∑∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +=′

M

m

N

n

km
M

nmvln
N

lkC ππ
 (37)

where

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−=)12(

2
cos)12/,()12(

2
sin),(),(n

N
nNmwn

N
nmwnmv ππ

. (38)

 2) Computation of and),(lkC ′),(lkD′ .

By proceeding in a similar way as for and , we have),(lkC),(lkD

,)12(2sin)12(2cos),(),(
14/

0

14/

0
∑ ∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +=′

M

m

N

n
v ln

N
km

M
nmulkC ππ

 (39)

,)12(2sin)12(2sin),(),(
14/

0

14/

0
∑ ∑

−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +=′

M

m

N

n
v ln

N
km

M
nmvlkD ππ

 (40)

where

 10

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +=)12(

2
sin),12/()12(

2
cos),(),(m

M
nmMvm

M
nmvnmuv

ππ
, (41)

⎥⎦
⎤

⎢⎣
⎡ +−−+⎥⎦

⎤
⎢⎣
⎡ +−=)12(

2
cos),12/()12(

2
sin),(),(m

M
nmMvm

M
nmvnmvv

ππ
. (42)

Equations (39) and (40) can also be rewritten as

[] [].14/,0,14/,0

,)12(2cos)12(2cos),()1(
4

,
14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ −′ ∑ ∑

−

=

−

=

NlMk

ln
N

km
M

nmulNkC
M

m

N

n
v

n ππ
 (43)

[] [.14/,0,14/,0

,)12(2cos)12(2cos),()1(
4

,
4

14/

0

14/

0

−∈−∈

⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ −−′ ∑ ∑

−

=

−

=

+

NlMk

ln
N

km
M

nmvlNkMD
M

m

N

n
v

nm ππ

]
 (44)

The final outputs of (11) can be obtained by

].4/,1[],4/,1[),,(),(),(),()12,12(
]14/,0[],4/,1[),,(),(),(),()2,12(
]4/,1[],14/,0[,),(),(),(),()12,2(
]14/,0[],14/,0[,),(),(),(),()2,2(

NlMklkDlkClkDlkClkX
NlMklkDlkClkDlkClkX

NlMklkDlkClkDlkClkX
NlMklkDlkClkDlkClkX

∈∈′+′−−=−−
−∈∈′−′+−=−

∈−∈′−′−+=−
−∈−∈′+′++=

 (45)

For some special values of k and l, equation (45) can be further simplified as

[
[],)4/,()4/,()12/,12(

,)4/,()4/,()12/,2(
),0,()0,()0,12(

),0,()0,()0,2(

NkDNkCNkX
NkDNkCNkX

kDkCkX
kDkCkX

′−′−=−−

′+′−=−
−=−

+=

]

]

 k ∈ [0, M/4] (46)

[
[],),4/(),4/()12,12/(

,),4/(),4/()2,12/(
),,0(),0()12,0(

),,0(),0()2,0(

lMDlMDlMX
lMDlMDlMX

lClClX
lClClX

′−−=−−

′+−=−

′−=−

′+=

 l ∈ [0, N/4] (47)

and

.)4/,4/()12/,12/(
,)0,4/()0,12/(
,)4/,0()12/,0(

,)0,0()0,0(

NMDNMX
MDMX

NCNX
CX

′=−−
−=−

′−=−
=

 (48)

 11

IV. Computational complexity and comparison analysis

In this section, we analyze the computational complexity of our proposed 2-D

MDCT/IMDCT algorithm and compare it with the traditional row-column method. Assuming

that a butterfly computation is implemented with 3 multiplications and 3 additions, then the

decomposition costs are given as follows

1) 3MN/4 additions for w(m, n) in (13).

2) 3MN/8 multiplications and 3MN/8 additions for (28) and (38).

3) 3MN/8 multiplications and 3MN/8 additions for (31), (34), (41), and (42).

4) MN/2–M–N additions for (45)-(48).

In summary, the computational complexity of the proposed 2-D MDCT algorithm is given by

4/34 DCT
)4/()4/(

MDCT MNMM NMNM += ×× , (49)

NMMNAA NMNM −−+= ×× 24 DCT
)4/()4/(

MDCT . (50)

For the computation of 2-D IMDCT, the manipulation in (15) is just a process of data shift, 3MN/4

additions can thus be saved. Fig. 1 shows the block diagram of the proposed 2-D MDCT algorithm

for the case of M = N = 8.

 The time-recursive algorithm presented in [47] belonging to the recursive algorithm, is not

efficient in terms of arithmetic complexity, but its regressive structure provides an efficient

scheme for the parallel VLSI implementation [9]. For this reason, we compare only our algorithms

with the traditional row-column method whose computational complexity is given by

MDCTMDCTMDCT
MNNM NMMMM +=× , (51)

MDCTMDCTMDCT
MNNM NAMAA +=× . (52)

Note that the above equations are also valid for the 2-D IMDCT.

 12

In the following, we only give the comparison results of 2-D MDCT algorithm, since the

results of 2-D IMDCT algorithm are only different in additions. We first consider the case where

the data sequence length satisfies M = N = 2m, m ≥ 4. For the proposed algorithm, we convert

M×N MDCT into four (M/4)×(N/4) DCTs, which are then computed by the fast 2-D DCT

algorithms presented in [28]-[30] or [35]. For the row-column method, we combine Lee’s

algorithm [4] or Cheng and Hsu’s algorithm [5] with Kok’s algorithm [19] for the fast

computation of 1-D MDCT. The comparison result is listed in table I. Note that for 8×8-point

MDCT, we used the initial values and [32, 34] in table I. Then, for the

case M = N , both M and N being multiple of 4, but not power of two, we combine our 2-D

MDCT algorithm with Tatsaki’s algorithm [23], and compare it with row-column method,

which uses the algorithm presented in [4] or [5] and Bi’s algorithm [20] for the efficient

computation of 1-D MDCT. The comparison result is shown in table II. For some image

compression applications (e.g., [48]), it may require adaptive block sizes in different

dimensions, so, we also consider the case where M ≠ N. For the case M = 2

2DCT
22 =×M 8DCT

22 =×A

m, N = 2n, m ≥ 3, n

≥ 4, we combine our 2-D MDCT algorithm with Zeng et al’s algorithm [26]. For the case

, m ≥ 5, n ≥ 3, we combine our 2-D MDCT algorithm with Bi et al’s

algorithm [37]. For the row-column method, we still use the algorithm presented in [4] or [5]

and Bi’s algorithm [20] for the efficient computation of 1-D MDCT. The comparison results

are shown in table III and table IV, respectively. It can be observed from these tables that the

proposed 2-D MDCT algorithm significantly reduces the number of arithmetic operations in

both multiplications and additions compared to the row-column method. Since the block sizes

8×8- and 16×16-point DCT are commonly used in image compression, we also consider the

nm qNpM 2,2 ⋅=⋅=

 13

computational complexity of the 8×8- and 16×16-point MDCT. It can be easily seen from

table I that our algorithm needs only 56 (or 256) multiplications and 144 (or 776) additions

for 8×8 (or 16×16)-point DCT. However, if we use the row-column method, 128 (or 640)

multiplications and 256 (or 1408) additions are required.

V. Conclusions

A fast algorithm for the computation of 2-D MDCT/IMDCT is presented. It is an extended

version of an 1-D MDCT/IMDCT algorithm recently introduced by Cho et al. The algorithm

reduces significantly the number of arithmetic operations compared to the row-column method.

Therefore, it could find its application in multi-signal and image processing tasks.

Acknowledgement: This work was supported by National Basic Research Program of China

under grant N0 2003CB716102, Program for Changjiang Scholars and Innovative Research

Team in University, and Program for New Century Excellent Talents in University under

grant N0 NCET-04-0477. It has been carried out in the frame of the CRIBs, a joint

international laboratory associating Southeast University, the University of Rennes 1 and

INSERM, with a grant provided by the French Consulate in Shanghai.

 14

Reference

[1]J.P. Princen, A.W. Johnson, A.B. Bradley, Subband/Transform coding using filter bank

designs based on time domain aliasing cancellation, in: Proc. IEEE ICASSP, Dallas, TX,

April 1987, pp. 2161-2164.

[2]H.S. Malvar, Signal processing with lapped transforms, Artech House, Norwood, MA,

1992.

[3] V. Britanak, K.R. Rao, An efficient implementation of the forward and inverse MDCT in

MPEG audio coding, IEEE Signal Process. Lett. 8(2) (February 2001) 48-51.

[4]S.W. Lee, Improved algorithm for efficient computation of the forward and backward

MDCT in MPEG audio coder, IEEE Trans. Circuits Syst. II⎯Analog Digital Signal Process.

48(10) (October 2001) 990-994.

[5]M.H. Cheng, Y.H. Hsu, Fast IMDCT and MDCT algorithms⎯a matrix approach, IEEE

Trans. Signal Process. 51 (1) (January 2003) 221-229.

[6]T.K. Truong, P.D. Chen, T.C. Cheng, Fast algorithm for computing the forward and inverse

MDCT in MPEG audio coding, Signal Process. 86(5) (May 2006) 1055-1060.

[7]Y.K. Cho, T.H. Song, H.S. Kim, An optimized algorithm for computing the modified discrete

cosine transform and its inverse transform, in: Proc. IEEE TENCON, A 21-24 November 2004,

pp. 626-628.

[8]V. Britanak, K.R. Rao, A new fast algorithm for the unified forward and inverse

MDCT/MDST computation, Signal Process. 82(3) (March 2002) 433-459.

[9]V. Britanak, An efficient computing of oddly stacked MDCT/MDST via evenly stacked

MDCT/MDST and vice versa, Signal Process. 85(7) (July 2005) 1353-1374.

[10]H.S. Malvar, Lapped transforms for efficient transform/subband coding, IEEE Trans.

Acoust., Speech, Signal Process. 38(6) (June 1990) 969-978.

 15

[11]H.S. Hou, S.B. Danahy, D.L. Glackin, The modulated lapped transform: avoiding artifacts in

compressed remote sensing imagery, Acta Astronautica. 40(2-8) (January-April 1997) 429-435.

[12]O. Lashko, Modulated lapped transform: application in image coding and effective

algorithm of its realization, in: Proc. TCSET, Slavsko, Ukraine, February 2002, pp. 243-244.

[13]T. Aach, D. Kunz, A lapped directional transform for spectral image analysis and its

application to restoration and enhancement, Signal Process. 80(11) (November 2000)

2347-2364.

[14]N.C. Tungala, A. Noore, Elimination of visual artifacts in digital image watermarking, in:

Proc. 35th Southeastern Symposium-System Theory, 16-18 March 2003, pp. 64-68.

[15]B.G. Lee, A new algorithm to compute the discrete cosine transform, IEEE Trans.

Acoust., Speech, Signal Process. ASSP-32(6) (December 1984) 1243-1245.

[16]H.S. Hou, A fast recursive algorithm for computing the discrete cosine transform, IEEE

Trans. Acoust. Speech Signal Process. ASSP-35(10) (October 1987) 1455-1461.

[17]C. Loeffler, A. Ligtenberg, G. S. Moschytz, Practical fast 1-D DCT algorithms with 11

multiplications, in: Proc. IEEE ICASSP, 2 February 1989, pp. 988-991.

[18]Y.H Chan, W.C. Siu, Mixed-radix discrete cosine transform, IEEE Trans. Signal Process.

41(11) (November 1993) 3157-3161.

[19]C.W. Kok, Fast algorithm for computing discrete cosine transform, IEEE Trans. Signal

Process. 45(3) (March 1997) 757-760.

[20]G. Bi, L.W. Yu, DCT algorithms for composite sequence lengths, IEEE Trans. Signal

Process. 46(3) (March 1998) 554-562.

[21]J. Makhoul, A fast cosine transform in one and two dimensions, IEEE Trans. Acoust.

 16

Speech Signal Process. ASSP-28(1) (February 1980) 27-34.

[22]N. Ta, Y. Attikiouzel, G. Crebbin, An efficient algorithm for computing two-dimensional

discrete cosine transforms, in: IEEE ISCAS, 1(11-14) June 1991, pp. 396-399.

[23]A. Tatsaki, C. Dre, T. Stouraitis, C. Goutis, Prime-factor DCT algorithms, IEEE Trans.

Signal Process. 43 (3) (March 1995) 772-776.

[24]P. Duhamel, C. Guillemot, Polynomial transform computation of the 2-D DCT, in: Proc.

ICASSP, 3 April 1990, pp. 1515-1518.

[25]J. Prado, P. Duhamel, A polynomial-transform based computation of the 2-D DCT with

minimum multiplicative complexity, in: ICASSP96, Atlanta, GA, May 1996, pp. 1347-1350.

[26]Y. Zeng, G. Bi, A.R. Leyman, New polynomial transform algorithm for multidimensional

DCT, IEEE Trans. Signal Process. 48 (10) (October 2000) 2814-2821.

[27]N.I. Cho, S. U. Lee, A fast 4 × 4 DCT algorithm for the recursive 2-D DCT, IEEE Trans.

Signal Process. 40(9) (September 1992) 2166-2173.

[28]N.I. Cho, S.U. Lee, Fast algorithm and implementation of 2-D discrete cosine transform,

IEEE Trans. Circuits Syst. 38(3) (March 1991) 297-305.

[29]Y.M. Huang, J.L. Wu, A refined fast 2-D discrete cosine transform algorithm, IEEE Trans.

Signal Process. 47(3) (March 1999) 904-907.

[30]Z. S. Wang, Z. Y. He, C. R. Zou, J. D. Z. Chen, A generalized fast algorithm for n-D

discrete cosine transform and its application to motion picture coding, IEEE Trans. Circuits

Syst. II⎯Analog Digital Signal Process. 46(5) (May 1999) 617-627.

[31]P.Z. Lee, G.S. Liu, An efficient algorithm for the 2-D discrete cosine transform, Signal

Process. 55(2) (December 1996) 221-239.

 17

http://portal.acm.org/results.cfm?query=author%3APeiZong%20Lee&querydisp=author%3APeiZong%20Lee&coll=GUIDE&dl=ACM&CFID=4308654&CFTOKEN=86948564

[32]F. A. Kamangar, K.R. Rao, Fast Algorithms for the 2-D Discrete Cosine Transform,

IEEE Trans. Comput. C-31(9) (September 1982) 899-906.

[33]S. C. Chan, K. L. Ho, A new two-dimensional fast cosine transform algorithm, IEEE

Trans. Signal Process. 39(2) (February 1991) 481-485.

[34]P.Z. Lee, F.Y. Huang, Restructured recursive DCT and DST algorithms, IEEE Trans.

Signal Process. 42(7) (July 1994) 1600-1609.

[35]W.H. Fang, N.C. Hu, S.K. Shih, Recursive fast computation of the two-dimensional

discrete cosine transform, IEE Proc., -Vis. Image Signal Process. 146(1) (February 1999)

25-33.

[36]V. Britanak, K.R. Rao, Two-dimensional DCT/DST universal computational structure for

block sizes. IEEE Trans. Signal. Process. 48(11) (November 2000) 3250-3255. nm 22 ×

[37]G. Bi, G. Li, K.K. Ma, T.C. Tan, On the computation of two-dimensional DCT, IEEE

Trans. Signal Process. 48 (4) (April 2000) 1171-1183.

[38]J. Kwak, J. You, One- and two-dimensional constant geometry fast cosine transform

algorithms and architectures, IEEE Trans. Signal Process. 47 (7) (July 1999) 2023-2034.

[39]J. Takala, D. Akopian, J. Astola, J. Saarinen, Constant geometry algorithm for discrete

cosine transform, IEEE Trans. Signal Process. 48(6) (June 2000) 1840-1843.

[40]C. H. Chen, B. D. Liu, J. F. Yang, Direct recursive structures for computing radix-r

two-dimensional DCT/IDCT/DST/IDST, IEEE Trans. Circuits Syst. I⎯Regular Papers. 51(10)

(October 2004) 2017-2030.

[41]E. Feig, S. Winograd, On the multiplicative complexity of discrete cosine transforms,

IEEE Trans. Info. Theory. 38(4) (July 1992) 1387-1391.

 18

[42]X.J. Chen, Q.H. Dai, C.W. Li, A fast algorithm for computing multidimensional DCT on

certain small sizes, IEEE Trans. Signal. Process. 51(1) (January 2003) 213-220.

[43]A.M. Grigoryan, S.S. Agaian, Shifted Fourier transform-based tensor algorithms for the 2-D

DCT, IEEE Trans. Signal Process. 49(9) (September 2001) 2113-2126.

[44]K.R. Rao, P. Yip, Discrete cosine transform: algorithms, advantages, applications,

Academic Press, New York, 1990.

[45]H.R. Wu, Z.H. Man, Comments on “Fast algorithms and implementation of 2-D discrete

cosine transform”, IEEE Trans. Circuits Syst. Video Tech. 8(2) (April 1998) 128-129.

[46]W. Pan, A fast 2-D DCT algorithm via distributed arithmetic optimization, in: ICIP 2000,

Vancouver, BC, 3 September 2000, pp. 114-117.

[47]E. Frantzeskakis, H.C. Karathanasis, On computing the 2-D modulated lapped transform in

real-time [and VLSI implementation], in: Workshop. IEEE VLSI Signal Process., VI October

1993, pp. 361-369.

[48]J. Bracamonte, M. Ansorge, F. Pellandini, Adaptive block-size transform coding for image

compression, in: Proc. IEEE ICASSP, 4 (21-24) April 1997, pp. 2721-2724.

 19

http://icip2000.ece.ubc.ca/

X(3,3)

s2

s2

-1

-1

-1

-1

-1

-1

-

-

-

-

-

-

-

-

-1

-1

-1

-1

-1

-1

-s2

-s2

-s2

-s2

s2

s2

s2

s2

-s1

-s1

-s1

-s1

s1
s1
s1
s1

c2

c2

c2

c2

c2

c2

c2

c2

c1

c1

c1

c1

c1

c1

c1

c1

-
-

-
-

-
-

-
-

s1

s2

-s2

-s1

c2

c2

c1

c1

-s2

-s1

s1
c2

c2

c1

c1

c1

c1

c1

-
-

-
-

-
-

-

-
-

-
-s2

s1

-s1

c2

c2

c1-
-

s1

s2

-s2

-s1

c2

c2

-
-

-
-

x(0,0)

(m,n) (k,l)

(1,1) (0,0)
2× 2

(1,0) (0,1)
 DCT

(0,1) (1,0)

(0,0) (1,1)

x(0,1)
x(0,2)
x(0,3)
x(0,4)
x(0,5)
x(0,6)
x(0,7)
x(1,0)
x(1,1)
x(1,2)
x(1,3)
x(1,4)
x(1,5)
x(1,6)
x(1,7)
x(2,0)
x(2,1)
x(2,2)
x(2,3)
x(2,4)
x(2,5)
x(2,6)
x(2,7)
x(3,0)
x(3,1)
x(3,2)
x(3,3)
x(3,4)
x(3,5)
x(3,6)
x(3,7)
x(4,0)
x(4,1)
x(4,2)
x(4,3)
x(4,4)
x(4,5)
x(4,6)
x(4,7)
x(5,0)
x(5,1)
x(5,2)
x(5,3)
x(5,4)
x(5,5)
x(5,6)
x(5,7)
x(6,0)
x(6,1)
x(6,2)
x(6,3)
x(6,4)
x(6,5)
x(6,6)
x(6,7)
x(7,0)
x(7,1)
x(7,2)
x(7,3)
x(7,4)
x(7,5)
x(7,6)
x(7,7)

(m,n) (k,l)

(0,1) (1,0)
2× 2

(0,0) (1,1)
 DCT

(1,1) (2,0)

(1,0) (2,1)

(m,n) (k,l)

(1,0) (0,1)
2× 2

(1,1) (0,2)
 DCT

(0,0) (1,1)

(0,1) (1,2)

(m,n) (k,l)

(0,0) (1,1)
2× 2

(0,1) (1,2)
 DCT

(1,0) (2,1)

(1,1) (2,2)

X(0,0)

X(0,1)

X(1,0)

X(1,1)

X(2,0)

X(2,1)

X(3,0)

X(3,1)

X(0,2)

X(0,3)

X(1,2)

X(1,3)

X(2,2)

X(2,3)

X(3,2)

.
16
3sin;

16
3cos;

16
sin;

16
cos 2211

ππππ
==== SCSC

Fig. 1. The block diagram of the 8×8-point MDCT.

 20

 Table I Required number of arithmetic operations for 2-D MDCT with block size M × N, where
M = N = 2m, m≥3.

Block
Size

Proposed algorithm Row-column method ([4] or [5]) save
Mul Add Total Mul Add Total

8×8
56 144 200 128 256 384 48%

16×16
256 776 1032 640 1408 2048 50%

32×32
1152 3848 5000 3072 7168 10240 51%

64×64
5120 18184 23304 14336 34816 49152 53%

Table II Required number of arithmetic operations for 2-D MDCT with block size M × N, where
M =N ≠2m.

Block
Size

Proposed algorithm Row-column method ([4] or [5]) save
Mul Add Total Mul Add Total

24×24 568 1848 2416 1248 3456 4704 49%

40×40
1784 5752 7536 4480 11840 16320 54%

48×48
2560 9000 11560 6144 17280 23424 51%

56×56
3768 12728 16496 14336 25984 40320 59%

Table III Required number of arithmetic operations for 2-D MDCT with block size M × N, where
M=2m, N=2n, m≥3, n≥4.

Block
Size

Proposed algorithm Row-column method ([4] or [5]) save
Mul Add Total Mul Add Total

8×16 128 348 476 288 608 896 47%
16×32 576 1776 2352 1408 3200 4608 49%
32×64 2560 8536 11096 6656 15872 22528 51%

64×128
11264 39592 50856 30720 75776 106496 52%

Table IV Required number of arithmetic operations for 2-D MDCT with block size M × N, where

, p=1, q=3, m≥5, n≥3. nm qNpM 2,2 ⋅=⋅=

Block
Size

Proposed algorithm Row-column method ([4] or [5]) save
Mul Add Total Mul Add Total

32×24 984 2616 3600 1984 4992 6976 48%
64×48 4704 12320 17024 9472 24576 34048 50%

 21

 22

128×96
21648 57616 79264 44032 116736 160768 51%

256×192
99600 262000 361600 200704 540672 741376 51%

