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where the supremum runs over all conformal classes [g 0 ] on M and the infimum runs over all metrics g of volume 1 in [g 0 ]. The integral E(g) := M Scal g dv g is the integral of the scalar curvature of g integrated with respect to the volume element of g and is known as the Einstein-Hilbert-functional.

Let n = dim M . We assume that N is obtained from M by surgery of codimension n-k ≥ 3. That is for a given embedding S k ֒→ M , with trivial normal bundle, 0 ≤ k ≤ n -3, we remove a tubular neighborhood U -ǫ(S k ) of this embedding. The resulting manifold has boundary S k × S n-k-1 . This boundary is glued together with the boundary of B k+1 × S n-k-1 , and we thus obtain the closed smooth manifold

N := (M \ U ǫ (S k )) ∪ S k ×S n-k-1 (B k+1 × S n-k-1 ).
Our main result is the existence of a positive constant Λ n depending only on n such that σ(N ) ≥ min{σ(M ), Λ n }.

This formula unifies and generalizes previous results by Gromov-Lawson, Schoen-Yau, Kobayashi, Petean-Yun and allows many conclusions by using bordism theory.

In Section 1.2 we give a detailed description of the background of our result. The construction of a generalization of surgery is recalled in Section 2. Then, in Section 3 the constant Λ n is described and it is proven to be positive. After the proof of some preliminary results on limit spaces in Section 4, we derive a key estimate in Section 5, namely an estimate for the L 2 -norm of solutions of a perturbed Yamabe equation on a special kind of sphere bundle, called W S-bundle. The last section contains the proof of the main theorem, Theorem 1.3. 1.2. Background. We denote by B n (r) the open ball of radius r around 0 in R n and we set B n := B n (1). The unit sphere in R n is denoted by S n-1 . By ξ n we denote the standard flat metric on R n and by σ n-1 the standard metric of constant sectional curvature 1 on S n-1 . We denote the Riemannian manifold (S n-1 , σ n-1 ) by S n-1 .

Let (M, g) be a Riemannian manifold of dimension n. The Yamabe operator, or Conformal Laplacian, acting on smooth functions on M is defined by

L g u = a∆ g u + Scal g u,
where a := 4(n-1) n-2 . Let p := 2n n-2 . Define the functional J g acting on non-zero compactly supported smooth functions on M by J g (u) := M uL g u dv g M u p dv g 2 p .

(1)

If g and g = f 4 n-2 g = f p-2 g are conformal metrics on M , then the corresponding Yamabe operators are related by

L gu = f -n+2 n-2 L g (f u) = f 1-p L g (f u). (2) 
It follows that J g(u) = J g (f u).

(3) For a compact Riemannian manifold (M, g) the conformal Yamabe invariant is defined by µ(M, g) := inf J g (u) ∈ R, where the infimum is taken over all non-zero smooth functions u on M . The same value of µ(M, g) is obtained by taking the infimum over positive smooth functions. From (3) it follows that the invariant µ depends only on the conformal class [g] of g, and the notation µ(M, [g]) = µ(M, g) is also used. For the standard sphere we have µ(S n ) = n(n -1)ω n 2/n , (4) where ω n denotes the volume of S n . This value is a universal upper bound for µ.

Theorem 1.1 ([7, Lemma 3]). The inequality µ(M, g) ≤ µ(S n ) holds for any compact Riemannian manifold (M, g).

For u > 0 the J g -functional is related to the Einstein-Hilbert-functional via

J g (u) = E(u 4/(n-2) g) Vol(M, u 4/(n-2) g) n-2 n , ∀u ∈ C ∞ (M, R + ),
and it follows that µ(M, g) has the alternative characterization µ(M, g) = inf .

Critical points of the functional J g are given by solutions of the Yamabe equation

L g u = µ|u| p-2 u
for some µ ∈ R. If the inequality in Theorem 1.1 is satisfied strictly, that is if µ(M, g) < µ(S n ), then the infimum in the definition of µ(M, g) is attained.

Theorem 1.2 ( [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF][START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]). Let M be connected. If µ(M, g) < µ(S n ) then there exists a smooth positive function u with J g (u) = µ and u L p = 1. This implies that u solves (5) with µ = µ(M, g). The minimizer u is unique if µ ≤ 0.

The inequality µ(M, g) < µ(S n ) was shown by Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] for non-conformally flat, compact manifolds of dimension at least 6. Later Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] could apply the positive mass theorem to obtain this strict inequality for all compact manifolds not conformal to the standard sphere. We thus have a solution of

L g u = µu p-1 , u > 0. ( 5 
)
To explain the geometric meaning of these results we recall a few facts about the Yamabe problem, see for example [START_REF] Lee | The Yamabe problem[END_REF] and [START_REF]Lectures on differential geometry[END_REF]Chapter 5] for more details on this material. The name of Yamabe is associated to the problem, as Yamabe wrote the first article about this subject [START_REF] Yamabe | On a deformation of Riemannian structures on compact manifolds[END_REF].

For a given compact Riemannian manifold (M, g) the Yamabe problem consists of finding a metric of constant scalar curvature in the conformal class of g. The above results yield a minimizer u for J g . Equation ( 5) is equivalent to the fact that the scalar curvature of the metric u 4/(n-2) g is everywhere equal to µ. Thus, the above Theorem, together with µ(M, g) < µ(S n ), resolves the Yamabe problem.

A conformal class [g] on M contains a metric of positive scalar curvature if and only if µ(M, [g]) > 0. If M = M 1 ∐ M 2 is a disjoint union of M 1 and M 2 and if g i is the restriction of g to M i , then

µ(M, [g]) = min {µ(M 1 , [g 1 ]), µ(M 2 , [g 2 ])} if µ(M 1 , [g 1 ]) ≥ 0 or µ(M 2 , [g 2 ]) ≥ 0, and otherwise µ(M, [g]) = -|µ(M 1 , [g 1 ])| n/2 + |µ(M 2 , [g 2 ])| n/2 2/n
.

One now defines the smooth Yamabe invariant as

σ(M ) := sup µ(M, [g]) ≤ n(n -1)ω 2/n n ,
where the supremum is taken over all conformal classes [g] on M . The introduction of this invariant was originally motivated by Yamabe's attempt to find Einstein metrics on a given compact manifold, see [START_REF]Recent progress in geometric partial differential equations[END_REF] and [START_REF]Einstein metrics and the Yamabe problem[END_REF]. Yamabe's idea in the early 1960's was to search for a conformal class [g sup ] that attains the supremum. The minimizer g 0 of E among all unit volume metrics in [g sup ] exists according to Theorem 1.2, and Yamabe hoped that the g 0 obtained with this minimax procedure would be a stationary point of E among all unit volume metrics (without fixed conformal class), which is equivalent to g 0 being an Einstein metric.

Yamabe's approach was very ambitious. If M is a simply connected compact 3-manifold, then an Einstein metric on M is necessarily a round metric on S 3 , hence the 3-dimensional Poincaré conjecture would follow. It turned out, that his approach actually yields an Einstein metric in some special cases. For example, LeBrun [START_REF]Kodaira dimension and the Yamabe problem[END_REF] showed that if a compact 4-dimensional M carries a Kähler-Einstein metric with non-positive scalar curvature, then the supremum is attained by the conformal class of this metric. Moreover, in any maximizing conformal class the minimizer is a Kähler-Einstein metric.

Compact quotients M = Γ\H 3 of 3-dimensional hyperbolic space H 3 yield other examples on which Yamabe's approach yields an Einstein metric. On such quotients the supremum is attained by the hyperbolic metric on M . The proof of this statement uses Perelman's proof of the Geometrization conjecture, see [START_REF] Anderson | Canonical metrics on 3-manifolds and 4-manifolds[END_REF]. In particular, σ(Γ\H 3 ) = -6(v Γ ) 2/3 where v Γ is the volume of Γ\H 3 with respect to the hyperbolic metric.

On a general manifold, Yamabe's approach failed for various reasons. In dimension 3 and 4 obstructions against the existence of Einstein metrics are known today, see for example [START_REF] Lebrun | Four-manifolds without Einstein metrics[END_REF][START_REF]Einstein metrics, complex surfaces, and symplectic 4-manifolds[END_REF]. In many cases the supremum is not attained. R. Schoen and O. Kobayashi started to study the σ-invariant systematically in the late 1980's, [START_REF]Recent progress in geometric partial differential equations[END_REF][START_REF]Variational theory for the total scalar curvature functional for Riemannian metrics and related topics[END_REF][START_REF] Kobayashi | On large scalar curvature[END_REF][START_REF]Scalar curvature of a metric with unit volume[END_REF]. In particular, they determined σ(S n-1 × S 1 ) to be σ(S n ) = n(n -1)ω 2/n n . On S n-1 × S 1 the supremum in the definition of σ is not attained. In order to commemorate Schoen's important contributions in these articles, the σ-invariant is also often called Schoen's σ-constant.

The smooth Yamabe invariant determines the existence of positive scalar curvature metrics. Namely, it follows from above that the smooth Yamabe invariant σ(M ) is positive if and only if the manifold M admits a metric of positive scalar curvature. Thus the value of σ(M ) can be interpreted as a quantitative refinement of the property of admitting a positive scalar curvature metric.

In general calculating the σ-invariant is very difficult. LeBrun [25, Section 5], [START_REF]Kodaira dimension and the Yamabe problem[END_REF] showed that the σ-invariant of a complex algebraic surfaces is negative (resp. zero) if and only if it is of general type (resp. of Kodaira dimension 0 or 1), and the value of σ(M ) can be calculated explicitly in these cases. As already explained above, the σ-invariant can also be calculated for hyperbolic 3-manifolds, they are realized by the hyperbolic metrics.

There are many manifolds admitting a Ricci-flat metric, but no metric of positive scalar curvature, for example tori, K3-surfaces and compact connected 8dimensional manifolds admitting metrics with holonomy Spin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. These conditions imply σ(M ) = 0, and the supremum is attained.

Conversely, Bourguignon showed that if σ(M ) = 0 and if the supremum is attained by a conformal class [g sup ], then E : [g sup ] → R attains its minimum in a Ricci-flat metric g 0 ∈ [g sup ]. Thus Cheeger's splitting principle implies topological restrictions on M in this case. In particular, a compact quotient Γ\N of a non-abelian nilpotent Lie group N does not admit metrics of non-negative scalar curvature, but it admits a sequence of metrics g i with µ(Γ\N, g i ) → 0. Thus Γ\N is an example of a manifold for which σ(Γ\N ) = 0, for which the supremum is not attained.

All the examples mentioned up to here have σ(M ) ≤ 0. Positive smooth Yamabe invariants are even harder to determine. The calculation of non-positive σ(M ) often relies on the formula

| min{σ(M ), 0}| n/2 = inf g M |Scal g | n/2 dv g
where the infimum runs over all metrics on M . This formula does not distinguish between different positive values of σ(M ), and thus it cannot be used in the positive case.

It has been conjectured by Schoen [START_REF]Variational theory for the total scalar curvature functional for Riemannian metrics and related topics[END_REF]Page 10,] that all finite quotients of round spheres satisfy σ(S n /Γ) = (#Γ) -2/n Y (S n ), but this conjecture is only verified for RP 3 [START_REF] Bray | Classification of prime 3-manifolds with Yamabe invariant greater than RP 3[END_REF], namely σ(RP 3 ) = 6(ω 3 /2) 2/3 . The σ-invariant is also known for connected sums of RP 3 :s with S 2 × S 1 :s [START_REF] Akutagawa | 3-manifolds with Yamabe invariant greater than that of RP 3[END_REF], for CP 2 [START_REF] Gursky | Yamabe invariants and Spin c structures[END_REF] and for connected sums of CP 2 with several copies of S 3 × S 1 . With similar methods, it can also be determined for some related manifolds, but for example the value of σ(S 2 × S 2 ) is not known. To the knowledge of the authors there are no manifolds M of dimension n ≥ 5 for which it has been shown that 0 < σ(M ) < σ(S n ), but due to Schoen's conjecture finite quotients of spheres would be examples of such manifolds.

As explicit calculation of the Yamabe invariant is difficult, it is natural to use surgery theory to get estimates for more complicated examples. Several articles study the behavior of the smooth Yamabe invariant under surgery. In [START_REF] Gromov | The classification of simply connected manifolds of positive scalar curvature[END_REF] and [START_REF] Schoen | On the structure of manifolds with positive scalar curvature[END_REF] it is proven that the existence of a positive scalar curvature metric is preserved under surgeries of codimension at least 3. In terms of the σ-invariant this means that if N is obtained from a compact manifold M by surgery of codimension at least 3 and σ(M ) > 0, then σ(N ) > 0.

Later Kobayashi proved in [START_REF]Scalar curvature of a metric with unit volume[END_REF] that if N is obtained from M by 0-dimensional surgery, then σ(N ) ≥ σ(M ). A first consequence is an alternative deduction of σ(S n-1 × S 1 ) = σ(S n ) using the fact that S n-1 × S 1 is obtained from S n by 0dimensional surgery. More generally one sees that σ(S n-1 ×S 1 # • • • #S n-1 ×S 1 ) = σ(S n ) as this connected sum is obtained from S n by 0-dimensional surgeries as well.

Note that it follows from what we said above that the smooth Yamabe invariant of disjoint unions

M = M 1 ∐ M 2 satisfies σ(M ) = min {σ(M 1 ), σ(M 2 )} if σ(M 1 ) ≥ 0 or σ(M 2 ) ≥ 0, and otherwise σ(M ) = -|σ(M 1 )| n/2 + |σ(M 2 )| n/2 2/n . Kobayashi's result then implies σ(M 1 #M 2 ) ≥ σ(M 1 ∐ M 2 )
, and thus yields a lower bound for σ(M 1 #M 2 ) in terms of σ(M 1 ) and σ(M 2 ).

A similar monotonicity formula for the σ-invariant was proved by Petean and Yun in [START_REF] Petean | Surgery and the Yamabe invariant[END_REF]. They prove that σ(N ) ≥ min{σ(M ), 0} if N is obtained from M by surgery of codimension at least 3. See also [START_REF]Einstein metrics and the Yamabe problem[END_REF]Proposition 4.1], [START_REF] Akutagawa | Yamabe metrics on cylindrical manifolds[END_REF] for other approaches to this result. Clearly, this surgery result is particularly interesting in the case σ(M ) ≤ 0, and it has several fruitful applications. In particular, any simply connected compact manifold of dimension at least 5 has σ(M ) ≥ 0, [START_REF] Petean | The Yamabe invariant of simply connected manifolds[END_REF]. This result has been generalized to manifolds with certain types of fundamental group in [START_REF] Botvinnik | The Yamabe invariant for non-simply connected manifolds[END_REF].

Stronger version of the main result.

In the present article we prove a surgery formula which is stronger than the Gromov-Lawson/Schoen-Yau surgery formula, the Kobayashi surgery formula and the Petean-Yun surgery formula described above. Suppose that M 1 and M 2 are compact manifolds of dimension n and that W is a compact manifold of dimension k. Let embeddings W ֒→ M 1 and W ֒→ M 2 be given. We assume further that the normal bundles of these embeddings are trivial. Removing tubular neighborhoods of the images of W in M 1 and M 2 , and gluing together these manifolds along their common boundary, we get a new compact manifold N , the connected sum of M 1 and M 2 along W . Strictly speaking N also depends on the choice of trivialization of the normal bundle. See section 2 for more details.

Surgery is a special case of this construction: if

M 2 = S n , W = S k and if S k ֒→ S n is the standard embedding, then N is obtained from M 1 via k-dimensional surgery along S k ֒→ M 1 . Theorem 1.3. Let M 1 and M 2 be compact manifolds of dimension n. If N is obtained as a connected sum of M 1 and M 2 along a k-dimensional submanifold where k ≤ n -3, then σ(N ) ≥ min {σ(M 1 ∐ M 2 ), Λ n,k }
where Λ n,k is positive, and only depends on n and k. Furthermore Λ n,0 = σ(S n ).

From Theorem 1.1 we know that σ(M ) ≤ σ(S n ) and thus σ(M ∐ S n ) = σ(M ) for all compact M . Hence, we obtain for the special case of surgery the following corollary.

Corollary 1.4. Let M be a compact manifold of dimension n. Assume that N is obtained from M via surgery along a k-dimensional sphere W , k ≤ n -3. We then have σ(N ) ≥ min {σ(M ), Λ n,k }

The constants Λ n,k will be defined in Section 3. In Subsections 3.3 and 3.4 we prove that these constants are positive, and in Subsection 3.5 we prove that Λ n,0 = µ(S n ). However, an explicit calculation of Λ n,k for k > 0 seems very difficult. The main problem consists in calculating the conformal Yamabe invariant of certain Riemannian products, which in general is a hard problem. See [START_REF] Akutagawa | On the Yamabe constant of riemannian products[END_REF] for recent progress on this problem. 1.4. Topological applications. The above surgery result can be combined with standard techniques of bordism theory. Such applications will be the subject of a sequel to this article, and we will only give some typical conclusions as examples here.

The first corollary uses the fact that spin bordism groups and oriented bordism groups are finitely generated together with techniques developed for the proof of the h-cobordism theorem.

Corollary 1.5. For any n ≥ 5 there is a constant C n > 0, depending only on n, such that σ(M ) ∈ {0} ∪ [C n , σ(S n )] for any simply-connected compact manifold M of dimension n.

We now sketch how interesting bordism invariants can be constructed using our main result. This construction will be explained here only for spin manifolds, but similar constructions can also be done for oriented, non-spin manifolds or for nonoriented manifolds.

Fix a finitely presented group Γ, and let BΓ be the classifying space of Γ. We consider pairs (M, f ) where M is a compact spin manifold and where f : M → BΓ is continuous. Two such pairs (M 1 , f 1 ) and (M 2 , f 2 ) are called spin bordant over BΓ if there exists an (n+1)-dimensional spin manifold W with boundary -M 1 ∪M 2 with a map F : W → BΓ such that the restriction of F to the boundary yields f 1 and f 2 . It is implicitly required that the boundary carries the induced orientation and spin structure and -M 1 denotes M 1 with reversed orientation. Being spin bordant over BΓ is an equivalence relation. The equivalence class of (M, f ) under this equivalence relation is denoted by [M, f ] and the set of equivalence classes is called Ω Spin n (BΓ). Disjoint union of manifolds defines a sum on Ω Spin n (BΓ) which turns it into a group.

We say that a pair (M, f ) with f :

M → BΓ is a π 1 -bijective representative of [M, f ] if M is connected and if the induced map f * : π 1 (M ) → Γ is a bijection. Any equivalence class in Ω Spin n (BΓ) has a π 1 -bijective representative. Now we define Λ n := min{Λ n,1 , . . . Λ n,n-3 } > 0, σ(M ) := min{σ(M ), Λ n }. Proposition 1.6. Let n ≥ 5. Let (M 1 , f 1 ) and (M 2 , f 2 ) be compact spin manifolds with maps f i : M i → BΓ. If (M 1 , f 1 ) and (M 2 , f 2 ) are spin bordant over BΓ and if (M 2 , f 2 ) is a π 1 -bijective representative of its class, then σ(M 1 ) ≤ σ(M 2 ).
We define

s Γ : Ω Spin n (BΓ) → R by s Γ ([M, f ]) := sup (M1,f1)∈[M,f ] σ(M 1 ). The proposition states s Γ ([M, f ]) = σ(M ) if (M, f
) is a π 1 -bijective representative of its class. The surgery formula further implies

s Γ [M 1 , f 1 ] + [M 2 , f 2 ] ≥ min s Γ ([M 1 , f 1 ]), s Γ ([M 2 , f 2 ]) if s Γ ([M 1 , f 1 ]) ≥ 0 or s Γ ([M 2 , f 2 
]) ≥ 0, and otherwise

s Γ [M 1 , f 1 ] + [M 2 , f 2 ] ≥ -|s Γ ([M 1 , f 1 ])| n/2 + |s Γ ([M 2 , f 2 ])| n/2 2/n .
We conclude, and obtain the following theorem.

Theorem 1.7. Let t ∈ R, t ≥ 0, n ∈ N, n ≥ 5.
Then the sets

G(t) := {[M, f ] ∈ Ω Spin n (BΓ) | s Γ ([M, f ]) > t} and G(t) := {[M, f ] ∈ Ω Spin n (BΓ) | s Γ ([M, f ]) ≥ t} are subgroups of Ω Spin n (BΓ).
The theorem admits -among other interesting conclusions -the following application. For a positive integer p we write p#M for M # • • • #M where M appears p times. We already know σ(p#M ) ≥ σ(M ) if σ(M ) ≥ 0.

Corollary 1.8. Suppose M is a compact spin manifold of dimension at least 5 with σ(M ) ∈ (0, Λ n ). Let p and q be two relatively prime positive integers. If σ(p#M ) > σ(M ), then σ(q#M ) = σ(M ). If Schoen's conjecture about the σ-invariant of quotients of spheres holds true, then quotients of spheres by large fundamental groups yield examples of manifolds M with σ(M ) ∈ (0, Λ n ).

The determination of manifolds admitting positive scalar curvature metrics, i. e. manifolds with σ(M ) > 0 has led to interesting results and challenging problems in topology [START_REF] Rosenberg | Metrics of positive scalar curvature and connections with surgery[END_REF]. It would be interesting to develop similar topological tools for manifolds with σ(M ) > ǫ for ǫ > 0. As explained above such manifolds form a subgroup on the bordism level. In particular, it would be interesting to find on the bordism level a ring structure on manifolds with σ(M n ) > ǫ n where ǫ n > 0 is a given sequence of positive numbers, generalizing the ring structure on positive scalar curvature bordism classes.

1.5. Comparison to other results. At the end of the section we want to mention some similar constructions in the literature. An analogous surgery formula holds if we replace the Conformal Laplacian by the Dirac operator, see [START_REF] Ammann | Surgery and the spinorial τ -invariant[END_REF] for details and applications. D. Joyce [START_REF] Joyce | Constant scalar curvature metrics on connected sums[END_REF], followed by L. Mazzieri [START_REF] Mazzieri | Generalized connected sum construction for nonzero constant scalar curvature metrics[END_REF][START_REF]Generalized connected sum construction for scalar flat metrics[END_REF], considered a problem tightly related to our result: their goal is to construct a metric on a manifold obtained via a connected sum along a k-dimensional submanifold. For these metrics they construct a solution of the Yamabe equation on the new manifold which is close to solutions of the Yamabe equations on the original pieces. Such a construction was achieved by D. Joyce for k = 0 and by L. Mazzieri for k ∈ {1, . . . , n -3} provided that the embeddings defining the connected sum are isometric. In contrast to our article their solutions on the new manifold are not necessarily minimizers of the volume-normalized Einstein-Hilbert functional.
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The connected sum along a submanifold

In this section we are going to describe how two manifolds are joined along a common submanifold with trivialized normal bundle. Strictly speaking this is a differential topological construction, but since we work with Riemannian manifolds we will make the construction adapted to the Riemannian metrics and use distance neighborhoods defined by the metrics etc.

Let (M 1 , g 1 ) and (M 2 , g 2 ) be complete Riemannian manifolds of dimension n. Let W be a compact manifold of dimension k, where 0

≤ k ≤ n. Let wi : W × R n-k → T M i , i = 1,
2, be smooth embeddings. We assume that wi restricted to W × {0} maps to the zero section of T M i (which we identify with M i ) and thus gives an embedding W → M i . The image of this embedding is denoted by W ′ i . Further we assume that wi restrict to linear isomorphisms {p} × R n-k → N wi(p,0) W ′ i for all p ∈ W i , where N W ′ i denotes the normal bundle of W ′ i defined using g i . We set w i := exp gi • wi . This gives embeddings

w i : W × B n-k (R max ) → M i for some R max > 0 and i = 1, 2. We have W ′ i = w i (W × {0}) and we define the disjoint union (M, g) := (M 1 ∐ M 2 , g 1 ∐ g 2 ),
and

W ′ := W ′ 1 ∐ W ′ 2 . Let r i be the function on M i giving the distance to W ′ i . Then r 1 • w 1 (p, x) = r 2 • w 2 (p, x) = |x| for p ∈ W , x ∈ B n-k (R max ).
Let r be the function on M defined by r(x) := r i (x) for x ∈ M i , i = 1, 2. For 0 < ǫ we set U i (ǫ) := {x ∈ M i : r i (x) < ǫ} and U (ǫ) := U 1 (ǫ) ∪ U 2 (ǫ). For 0 < ǫ < θ we define

N ǫ := (M 1 \ U 1 (ǫ)) ∪ (M 2 \ U 2 (ǫ))/∼, and U N ǫ (θ) := (U (θ) \ U (ǫ))/∼ where ∼ indicates that we identify x ∈ ∂U 1 (ǫ) with w 2 • w -1 1 (x) ∈ ∂U 2 (ǫ). Hence N ǫ = (M \ U (θ)) ∪ U N ǫ (θ)
. We say that N ǫ is obtained from M 1 , M 2 (and w1 , w2 ) by a connected sum along W with parameter ǫ.

The diffeomorphism type of N ǫ is independent of ǫ, hence we will usually write N = N ǫ . However, in situations when dropping the index causes ambiguities we will keep the notation N ǫ . For example the function r : M → [0, ∞) gives a continuous function r ǫ : N ǫ → [ǫ, ∞) whose domain depends on ǫ. It is also going to be important to keep track of the subscript ǫ on U N ǫ (θ) since crucial estimates on solutions of the Yamabe equation will be carried out on this set.

The surgery operation on a manifold is a special case of taking connected sum along a submanifold. Indeed, let M be a compact manifold of dimension n and let

M 1 = M , M 2 = S n , W = S k . Let w 1 : S k × B n-k → M be
an embedding defining a surgery and let w 2 : S k × B n-k → S n be the standard embedding. Since

S n \ w 2 (S k × B n-k ) is diffeomorphic to B k+1 × S n-k-1
we have in this situation that N is obtained from M using surgery on w 1 , see [START_REF] Kosinski | Differential manifolds[END_REF]Section VI,[START_REF] Botvinnik | The Yamabe invariant for non-simply connected manifolds[END_REF].

The constants Λ n,k

In Section 1.2 we defined the conformal Yamabe invariant only for compact manifolds. There are several ways to generalize the conformal Yamabe invariant to non-compact manifolds. In this section we define two such generalizations µ (0) and µ (1) , and also introduce a related quantity called µ (2) . These invariants will be needed to define the constants Λ n,k and to prove their positivity on our model spaces

H k+1 c × S n-k-1 .
The definition of µ (2) comes from a technical difficulty in the proof of Theorem 6.1 and is only relevant in the case k = n -3 ≥ 3, see Remark 3.4.

The manifolds

H k+1 c × S n-k-1 . For c ∈ R we define the metric η k+1 c := e 2ct ξ k + dt 2 on R k × R and we write H k+1 c := (R k × R, η k+1 c ).
This is a model of hyperbolic space of curvature -c 2 . We denote by

G c := η k+1 c + σ n-k-1 the product metric on H k+1 c × S n-k-1 . The scalar curvature of H k+1 c × S n-k-1 is Scal Gc = -k(k + 1)c 2 + (n -k -1)(n -k -2). Proposition 3.1. H k+1 1 × S n-k-1 is conformal to S n \ S k .
Proof. Let S k be embedded in S n ⊂ R n+1 by setting the last n -k coordinates to zero and let s := d(•, S k ) be the intrinsic distance to S k in S n . Then the function sin s is smooth and positive on S n \ S k . The points of maximal distance π/2 to S k lie on an (n -k -1)-sphere, denoted by (S k ) ⊥ . On S n \ (S k ∪ (S k ) ⊥ ) the round metric is

σ n = (cos s) 2 σ k + ds 2 + (sin s) 2 σ n-k-1 .
Substitute s ∈ (0, π/2) by t ∈ (0, ∞) such that sinh t = cot s. Then cosh t = (sin s) -1 and cosh t dt = -(sin s) -2 ds, so σ n is conformal to

(sin s) -2 σ n = (sinh t) 2 σ k + dt 2 + σ n-k-1 .
Here we see that the first two terms give a metric

(sinh t) 2 σ k + dt 2 on S k × (0, ∞). This is just the standard metric on H k+1 1 \ {p 0 } where t = d(•, p 0 ), written in polar normal coordinates. In the case k ≥ 1 it is evident that the conformal diffeomorphism S n \ (S k ∪ (S k ) ⊥ ) → (H k+1 1 \ {p 0 }) × S n-k-1 extends to a conformal diffeomorphism S n \ S k → H k+1 1 × S n-k-1 .
In the case k = 0 we equip s and t with a sign, that is we let s > 0 and t > 0 on one of the components of S n \ (S 0 ∪ (S 0 ) ⊥ ), and s < 0 and t < 0 on the other component. The functions s and t are then smooth on S n \ S 0 and take values s ∈ (-π/2, π/2) and t ∈ R. Then the argument is the same as above.

3.2. Definition of Λ n,k . Let (N, h) be a Riemannian manifold of dimension n. For i = 1, 2 we let Ω (i) (N, h) be the set of non-negative C 2 functions u which solve the Yamabe equation L h u = µu p-1 (6) for some µ = µ(u) ∈ R and satisfy

• u ≡ 0, • u L p (N ) ≤ 1, • u ∈ L ∞ (N ), together with • u ∈ L 2 (N ), for i = 1, or • µ(u) u p-2 L ∞ (N ) ≥ (n-k-2) 2 (n-1) 8(n-2)
, for i = 2.

For i = 1, 2 we set

µ (i) (N, h) := inf u∈Ω (i) (N,h) µ(u).
In particular, if

Ω (i) (N, h) is empty then µ (i) (N, h) = ∞. Definition 3.2. For integers n ≥ 3 and 0 ≤ k ≤ n -3 let Λ (i) n,k := inf c∈[-1,1] µ (i) (H k+1 c × S n-k-1 ) and Λ n,k := min Λ (1) n,k , Λ (2) 
n,k .

Note that the infimum could just as well be taken over c

∈ [0, 1] since H k+1 c × S n-k-1 and H k+1 -c ×S n-k-1 are isometric.
We are going to prove that these constants are positive. Theorem 3.3. For all n ≥ 3 and 0 ≤ k ≤ n -3, we have Λ n,k > 0.

To prove Theorem 3.3 we have to prove that Λ n,k > 0. This is the object of the following two subsections. In the final subsection we prove that

Λ n,0 = µ(S n ) = n(n -1)ω 2/n n . Remark 3.4. Suppose that either k ≤ n -4 or k = n -3 ≤ 2.
With similar methods as in Section 5 one can show that under these dimension restrictions any L p solution of (6) on the model spaces is also L 2 . This implies that Λ

(2) n,k ≥ Λ (1)
n,k in these dimensions, and hence

Λ n,k = Λ (1) n,k . In the case k = n -3 ≥ 4 there are L p -solutions of (6) on H k+1 1 × S n-k-1 which are not L 2 . 3.3. Proof of Λ (1)
n,k > 0. The proof proceeds in several steps. We first introduce a conformal Yamabe invariant for non-compact manifolds and show that it gives a lower bound for µ (1) . We then conclude by studying this conformal invariant.

Let (N, h) be a Riemannian manifold which is not necessarily compact or complete. We define the conformal Yamabe invariant µ (0) of (N, h) following Schoen-Yau [40, Section 2], see also [START_REF] Kim | An obstruction to the conformal compactification of Riemannian manifolds[END_REF], as

µ (0) (N, h) := inf J h (u)
where J h is defined in (1) and the infimum runs over the set of all non-zero compactly supported smooth functions u on N . If h and h are conformal metrics on N it follows from (3) that µ (0) (N, h) = µ (0) (N, h).

Lemma 3.5. Let 0 ≤ k ≤ n -3. Then µ (1) (H k+1 c × S n-k-1 ) ≥ µ (0) (H k+1 c × S n-k-1 )
for all c ∈ R.

Proof. Suppose that u ∈ Ω (1) 

(H k+1 c × S n-k-1 ) is a solution of (6) on H k+1 c × S n-k-1 with µ = µ(u) close to µ (1) (H k+1 c × S n-k-1 ). Let χ α be a cut-off function on H k+1 c
×S n-k-1 depending only on the distance r to a fixed point, such that χ α (r) = 1 for r ≤ α, χ α (r) = 0 for r ≥ α + 2, and |dχ α | ≤ 1. We are going to see that

lim α→∞ J Gc (χ α u) = µ u p-2 L p (H k+1 c ×S n-k-1 ) ≤ µ. (7) 
Integrating by parts and using Equations ( 6) and ( 65) we get

H k+1 c ×S n-k-1 (χ α u)L Gc (χ α u) dv Gc = H k+1 c ×S n-k-1 χ 2 α uL Gc u dv Gc + a H k+1 c ×S n-k-1 |dχ α | 2 u 2 dv Gc = µ H k+1 c ×S n-k-1 χ 2 α u p dv Gc + a Supp(dχα) |dχ α | 2 u 2 dv Gc . Since u ∈ L 2 (H k+1 c × S n-k-1
) and |dχ α | ≤ 1 the last integral goes to zero as α → ∞ and we conclude that

lim α→∞ H k+1 c ×S n-k-1 (χ α u)L Gc (χ α u) dv Gc = µ u p L p (H k+1 c ×S n-k-1 ) .
Going back to the definition of J Gc we easily get [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF], and Lemma 3.5 follows.

We define Λ

(0) n,k := inf c∈[-1,1] µ (0) (H k+1 c × S n-k-1 ).
Then Lemma 3.5 tells us that Λ

(1)

n,k ≥ Λ (0)
n,k , so we are done if we prove that Λ

n,k > 0. To do this we need two lemmas. Lemma 3]. As we do not need this inequality later, we skip the proof. To prove the opposite inequality µ (0) (H k+1 1 × S n-k-1 ) ≥ µ(S n ) we use Proposition 3.1 and the conformal invariance of µ (0) , and we obtain

Lemma 3.6. Let 0 ≤ k ≤ n -3. Then µ (0) (H k+1 1 × S n-k-1 ) = µ(S n ). Proof. The inequality µ (0) (H k+1 1 × S n-k-1 ) ≤ µ(S n ) is completely analogous to [7,
µ (0) (H k+1 1 × S n-k-1 ) = µ (0) (S n \ S k ).
Clearly µ (0) (S n \ S k ) ≥ µ(S n ) as the infimum defining the left hand side runs over a smaller set of functions, see [START_REF]Conformally flat manifolds, Kleinian groups and scalar curvature[END_REF]

, Lemma 2.1]. Lemma 3.7. Let 0 ≤ k ≤ n -2 and 0 < c 0 ≤ c 1 . Then µ (0) (H k+1 c0 × S n-k-1 ) ≥ c 0 c 1 2(n-k-1) n µ (0) (H k+1 c1 × S n-k-1 ).
Proof. Let c > 0. Setting s = ct + ln c we see that

G c = e 2ct ξ k + dt 2 + σ n-k-1 = 1 c 2 e 2s ξ k + ds 2 + σ n-k-1 . Hence G c is conformal to the metric Gc := e 2s ξ k + ds 2 + c 2 σ n-k-1
and by the conformal invariance of µ (0) we get that

µ (0) (H k+1 ci × S n-k-1 ) = µ (0) (R k × R × S n-k-1 , Gci )
for i = 0, 1. In these coordinates we easily compute that Scal Gc 0 ≥ Scal Gc 1 ,

|du| 2 Gc 0 ≥ |du| 2 Gc 1
, and

dv Gc 0 = c0 c1 n-k-1
dv Gc 1 . We conclude that

J Gc 0 (u) ≥ c 0 c 1 2(n-k-1) n J Gc 1 (u)
for all functions u on R k × R × S n-k-1 and Lemma 3.7 follows.

If we set c 1 = 1 and use Lemma 3.6 together with (4) we get the following result.

Corollary 3.8. For c 0 > 0 we have

inf c∈[c0,1] µ (0) (H k+1 c × S n-k-1 ) ≥ n(n -1)ω n 2/n c 0 4/n .
Finally, we are ready to prove that Λ

(0) n,k is positive. Theorem 3.9. Let 0 ≤ k ≤ n -3. Then Λ (0) n,k > 0.
Proof. Choose c 0 > 0 small enough so that Scal Gc 0 > 0. We then have Scal Gc ≥ Scal Gc 0 for all c ∈ [0, c 0 ]. Hence

µ (0) (H k+1 c × S n-k-1 ) ≥ inf H k+1 c ×S n-k-1 a|du| 2 Gc + Scal Gc 0 u 2 dv Gc u 2 L p (H k+1 c ×S n-k-1 )
.

By Hebey [18, Theorem 4.6, page 64], there exists a constant A > 0 such that for all c ∈ [0, c 0 ] and all smooth non-zero functions u compactly supported in

H k+1 c × S n-k-1 we have u 2 L p (H k+1 c ×S n-k-1 ) ≤ A H k+1 c ×S n-k-1 |du| 2 Gc + u 2 dv Gc .
This implies that

µ (0) (H k+1 c × S n-k-1 ) ≥ 1 A min a, Scal Gc 0 > 0 for all c ∈ [0, c 0 ]
, and together with Lemma 3.7 we obtain that inf

c∈[0,1] µ (0) (H k+1 c × S n-k-1 ) > 0. Since H k+1 c × S n-k-1 and H k+1 -c × S n-k-1 are isometric we have Λ (0) n,k = inf c∈[-1,1] µ (0) (H k+1 c × S n-k-1 ) > 0.
This ends the proof of Theorem 3.9.

As an immediate consequence we obtain that Λ

n,k is positive.

Corollary 3.10. Let 0 ≤ k ≤ n -3. Then Λ (1) 
n,k > 0.

Proof of Λ

(2)

n,k > 0. Theorem 3.11. Let 0 ≤ k ≤ n -3. Then Λ (2) 
n,k > 0. Proof. We prove this by contradiction. Assume that there exists a sequence (c i ) of

c i ∈ [-1, 1] for which µ i := µ (2) (H k+1 ci × S n-k-1
) tends to a limit l ≤ 0 as i → ∞. After removing the indices i for which µ i is infinite we get for every i a positive solution

u i ∈ Ω 2 (H k+1 ci × S n-k-1
) of the equation

L Gc i u i = µ i u p-1 i . By definition of Ω (2) (H k+1 ci × S n-k-1 ) we have (n -k -2) 2 (n -1) 8(n -2) ≤ µ i u i p-2 L ∞ , (8) 
which implies that µ i > 0. We conclude that l := lim i µ i = 0. We cannot assume that u i L ∞ is attained but we can choose points

x i ∈ H k+1 ci × S n-k-1 such that u i (x i ) ≥ 1 2 u i L ∞
. Moreover, we can compose the functions u i with isometries so that all the x i are the same point x. From (8) we get

1 2 (n -k -2) 2 (n -1) 8(n -2)µ i 1 p-2 ≤ u i (x).
We define m i := u i (x). Since lim i→∞ µ i = 0 we have lim i→∞ m i = ∞. Restricting to a subsequence we can assume that c :

= lim i c i ∈ [-1, 1] exists. Define gi := m 4 n-2 i G ci . We apply Lemma 4.1 with α = 1/i, (V, γ α ) = H k+1 ci × S n-k-1 , (V, γ 0 ) = H k+1 c × S n-k-1 , q α = x i = x, and b α = m 2 n-2 i
. For r > 0 we obtain diffeomorphisms

Θ i : B n (r) → B Gc i (x, m -2 n-2 i r)
such that the sequence Θ * i (g i ) tends to the flat metric ξ n on B n (r). We let ũi := m -1 i u i . By (2) we then have

L gi ũi = µ i ũp-1 i on B Gc i (x i , m -2 n-2 i r)
and

B Gc i (xi,m -2 n-2 i r) ũp i dv gi = B Gc i (xi,m -2 n-2 i r) u p i dv Gc i ≤ N u p i dv Gc i ≤ 1.
Here we used dv gi = m p i dv Gc i . The last inequality comes from the fact that any function in Ω (2) 

(H k+1 ci × S n-k-1 ) has L p -norm smaller than 1. Since Θ i : (B n (r), Θ * i (g i )) → (B Gc i (x, m -2 n-2 i r), gi )
is an isometry we redefine ũi as ũi • Θ i which gives us solutions of

L Θ * i (gi) ũi = µ i ũp-1 i on B n (r) with B n (r) ũp i dv Θ * i (gi) ≤ 1. Since ũi L ∞ (B n (r)) = ũi (0) = 1 we can apply Lemma 4.2 with V = R n , α = 1/i, g α = Θ * i (g i ),
and u α = ũi (we can apply this lemma since each compact set of R n is contained in some ball B n (r)). This shows that there exists a non-negative C 2 function u on R n which does not vanish identically (since u(0) = 1) and which satisfies

L ξ n u = a∆ ξ n u = μu p-1
where μ = 0. By [START_REF] Evans | Weak convergence methods for nonlinear partial differential equations[END_REF] we further have

B n (r) u p dv ξ n = lim i→0 B Gc i (x,m -2 n-2 i r) u p i dv Gc i ≤ 1
for any r > 0. In particular,

R n u p dv ξ n ≤ 1.
Lemma 4.3 below then implies the contradiction 0 = μ ≥ µ(S n ). This proves that Λ

n,k is positive.

3.5. The constants Λ n,0 . Now we show that Λ n,0 = µ(S n ) = n(n -1)ω 2/n n . The corresponding model spaces H 1 c × S n-1 carry the standard product metric dt 2 + σ n-1 of R × S n-1 , independently of c ∈ [-1, 1]. Thus Λ (i) n,0 = µ (i) (R × S n-1
). Proposition 3.1 yields a conformal diffeomorphism from the cylinder R × S n-1 to S n \ S 0 , the n-sphere with North and South pole removed. Lemma 3.12.

Λ (i) n,0 ≤ µ(S n ) = n(n -1)ω 2/n n for i = 1, 2.
Proof. We use the notation of Proposition 3.1 with k = 0. Then the standard metric on S n is

σ n = (sin s) 2 (dt 2 + σ n-1 ) = (cosh t) -2 (dt 2 + σ n-1 ). It follows that (ω n ) -2/n (cosh t) -2 (dt 2 +σ n-1
) is a (non-complete) metric of volume 1 and scalar curvature n(n -1)

ω 2/n = µ(S n ) on H 1 c × S n-1 = R × S n-1 . This is equivalent to saying that u(t) := ω -n-2 2n n (cosh t) -n-2 2 is a solution of (6) with µ = µ(S n ) and u L p = 1 on H 1 c × S n-1 . Clearly we have u ∈ L 2 , and u L ∞ = ω -n-2 2n n < ∞. Thus u ∈ Ω (1) (H 1 c × S n-1 ). This implies Λ (1) n,0 ≤ n(n -1)ω 2/n n . Further, we have µ(S n ) u p-2 L ∞ = n(n -1) > (n -0 -2) 2 (n -1) 8(n -2) ,
and thus u ∈ Ω (2) (H 1 c × S n-1 ) which implies Λ

(2)

n,0 ≤ n(n -1)ω 2/n n .
Lemma 3.13. Let u ∈ C 2 (R× S n-1 ) be a solution of (6) on R× S n-1 with u L p ≤ 1, u ≡ 0. Then µ ≥ µ(S n ).

Proof. As above σ n = (sin s) 2 (dt 2 + σ n-1 ). If u solves ( 6) with h = dt 2 + σ n-1 then ũ := (sin s) -n-2 2 u solves L σ n ũ = µũ p-1 . Further ũp dv σ n = u p dv h , hence ν := ũ L p (S n \S 0 ,σ n ) ≤ 1. For α > 0 we choose a smooth cut-off function χ α : S n → [0, 1] that is 1 on S n \ U α (S 0 ), with support disjoint from S 0 , and with |dχ| σ n ≤ 2/α. Then using (65) in Appendix C we see that

S n (χ α ũ)L σ n (χ α ũ) dv σ n = µ S n u p χ 2 α dv σ n + a S n |dχ| 2 σ n ũ2 dv σ n .
The first summand tends to µν p as α → 0. By Hölder's inequality the second summand is bounded by 4a

α 2 ũ 2 L p (Uα(S 0 )\S 0 ,σ n ) Vol(U α (S 0 ) \ S 0 , σ n ) 2/n ≤ C ũ 2 L p (Uα(S 0 )\S 0 ,σ n ) → 0 as α → 0. Together with lim α→0 χ α ũ L p (S n \S 0 ,σ n ) = ν we obtain µ(S n ) ≤ J σ n (χ α ũ) → µν p-2 ≤ µ as α → 0.
This lemma obviously implies Λ (i) n,0 ≥ µ(S n ) for i = 1, 2, and thus we have

Λ n,0 = Λ (1) n,0 = Λ (2)
n,0 = µ(S n ). 3.6. Speculation about Λ n,k for k ≥ 1. We want to speculate about two relations that seem likely to us although we have no proof. Conformally, the model spaces H k+1 c × S n-k-1 can be viewed as an interpolation between R k+1 × S n-k-1 (for c = 0) and the sphere S n (for c = 1). Since the sphere has the largest possible value of the conformal Yamabe invariant we could hope that the function c → µ (0) (H k+1 c × S n-k-1 ) is increasing for c ∈ [0, 1], or in particular

µ (0) (R k+1 × S n-k-1 ) ≤ µ (0) (H k+1 c × S n-k-1 ) for all c ∈ [-1, 1]. This would imply Λ n,k = µ (0) (R k+1 × S n-k-1 ).
To formulate the second potential relation we define the following variant of

µ (0) (H k+1 c × S n-k-1 ): µ (0) H k+1 c (H k+1 c × S n-k ) := inf{J Gc (u) | u ∈ C ∞ 0 (H k+1 c )}.
Here J Gc is the functional of H k+1 c × S n-k-1 , but we only evaluate it for functions that are constant along the sphere S n-k-1 . We ask, similarly to the Question formulated in [2, Page 4], whether

µ (0) H k+1 c (H k+1 c × S n-k ) = µ (0) (H k+1 c × S n-k ).
It seems likely to us that the answer is yes, if and only if |c| ≤ 1.

An affirmative answer for |c| ≤ 1 would imply, using a reflection argument, that we can restrict not only to functions that are constant along the sphere, but even to radial functions. Here a radial function is defined as a function of the form u(x, y) = u(d H k+1 c (x)) where d H k+1 c (x) is the distance from x to a fixed point in H k+1 c . The constants Λ n,k could then be calculated numerically. For example we would obtain Λ 4,1 = µ (0) (R 2 × S 2 ) = 59.4 . . . and thus σ(S 2 × S 2 ) ≥ 59.4 . . . , which should be compared to µ(S 4 ) = 61.5 . . . and µ(S 2 × S 2 ) = 50.2 . . .

Limit spaces and limit solutions

In the proofs of the main theorems we will construct limit solutions of the Yamabe equation on certain limit spaces. For this we need the following two lemmas. Lemma 4.1. Let V be an n-dimensional manifold. Let (q α ) be a sequence of points in V which converges to a point q as α → 0. Let (γ α ) be a sequence of metrics defined on a neighborhood O of q which converges to a metric γ 0 in the C 2 (O)-topology. Finally, let (b α ) be a sequence of positive real numbers such that lim α→0 b α = ∞. Then for r > 0 there exists for α small enough a diffeomorphism

Θ α : B n (r) → B γα (q α , b -1 α r) with Θ α (0) = q α such that the metric Θ * α (b 2 α γ α ) tends to the flat metric ξ n in C 2 (B n (r)).
Proof. Denote by exp γα qα : U α → O α the exponential map at the point q α defined with respect to the metric γ α . Here O α is a neighborhood of q α in V and U α is a neighborhood of the origin in R n . We set

Θ α : B n (r) ∋ x → exp γα qα (b -1 α x) ∈ B γα (q α , b -1 α r).
It is easily checked that Θ α is the desired diffeomorphism. Lemma 4.2. Let V be an n-dimensional manifold. Let (g α ) be a sequence of metrics which converges to a metric g in C 2 on all compact sets K ⊂ V as α → 0. Assume that (U α ) is an increasing sequence of subdomains of V such that α U α = V . Let u α ∈ C 2 (U α ) be a sequence of positive functions such that u α L ∞ (Uα) is bounded independently of α. We assume

L gα u α = µ α u p-1 α (9)
where the µ α are numbers tending to μ. Then there exists a non-negative function

u ∈ C 2 (V ), satisfying L g u = μu p-1 (10) 
on V and a subsequence of u α which tends to u in C 1 on each open set Ω ⊂ V with compact closure. In particular

u L ∞ (K) = lim α→0 u α L ∞ (K) , (11) 
and

K u r dv g = lim α→0 K u r α dv gα (12) 
for any compact set K and any r ≥ 1.

Proof. Let K be a compact subset of V and let Ω be an open set with smooth boundary and compact closure in V such that K ⊂ Ω. From equation ( 9) and the boundedness of u α ∞ we see with standard results on elliptic regularity (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) that (u α ) is bounded in the Sobolev space H 2,2n (Ω, g), i.e. all derivatives of u α | Ω up to second order are bounded in L 2n (Ω)). As this Sobolev space embeds compactly into C 1 (Ω), a subsequence of (u α ) converges in C 1 (Ω) to a function u Ω ∈ C 1 (Ω), u Ω ≥ 0, depending on Ω. Let ϕ ∈ C ∞ (Ω) be compactly supported in Ω. Multiplying Equation ( 9) by ϕ and integrating over Ω, we obtain that u Ω satisfies Equation ( 10) weakly on Ω. By standard regularity results u Ω ∈ C 2 (Ω) and satisfies Equation [START_REF] Bray | Classification of prime 3-manifolds with Yamabe invariant greater than RP 3[END_REF]. Now we choose an increasing sequence of compact sets K m such that m K m = V . Using the above arguments and taking successive subsequences it follows that (u α ) converges to functions u m ∈ C 2 (K m ) which solve Equation [START_REF] Bray | Classification of prime 3-manifolds with Yamabe invariant greater than RP 3[END_REF] and satisfy u m ≥ 0 and u m | Km-1 = u m-1 . We define u on V by u = u m on K m . By taking a diagonal subsequence of (u α ) we get that (u α ) tends to u in C 1 on any compact set K ⊂ V . This ends the proof of Lemma 4.2.

The next Lemma is useful when the sequence of metrics in Lemma 4.2 converges to the flat metric ξ n on R n . Lemma 4.3. Let ξ n be the standard flat metric on R n and assume that u

∈ C 2 (R n ), u ≥ 0, u ≡ 0 satisfies L ξ n u = µu p-1 (13) 
for some µ ∈ R. Assume in addition that u ∈ L p (R n ) and that

u L p (R n ) ≤ 1.
Then µ ≥ µ(S n ).

Proof. The map ϕ : R × S n-1 → R n \ {0}, ϕ(t, x) = e t x, is a conformal diffeomorphism with dt 2 + σ n-1 = e -2t ϕ * ξ n .

Thus if u is a solution of (13), then û := e (n-2)t/2 u • ϕ is a solution of L dt 2 +σ n-1 û = µû p-1 and û L p (R×S n-1 ) = u L p (R n ) ≤ 1. The result now follows from Lemma 3.13.

L 2 -estimates on W S-bundles

Manifolds with a certain structure of a double bundle will appear in the proofs of our main results. In this section we derive L 2 -estimates for solutions to a perturbed Yamabe equation on a W S-bundle.

Definition and statement of the result.

Let n ≥ 1 and 0 ≤ k ≤ n -3 be integers. Let W be a closed manifold of dimension k and let I be an interval. By a W S-bundle we will mean the product P := I × W × S n-k-1 equipped with a metric of the form

g WS = dt 2 + e 2ϕ(t) h t + σ n-k-1 (14) 
where h t is a smooth family of metrics on W depending on t ∈ I and ϕ is a function on I. Let π : P → I be the projection onto the first factor and let

F t := π -1 (t) = {t} × W × S n-k-1 .
The metric induced on F t is g t := e 2ϕ(t) h t + σ n-k-1 . Let H t be the mean curvature of F t in P , that is H t ∂ t is the mean curvature vector of F t . The mean curvature is given by the following formula

H t = - k n -1 ϕ ′ (t) -e(h t ) (15) 
with e(h t ) := 1 2 tr ht (∂ t h t ). Clearly, e(h t ) = 0 if t → h t is constant. The derivative of the volume element dv gt of F t is

∂ t dv gt = -(n -1)H t dv gt .
It is straightforward to check that the scalar curvatures of g WS and h t are related by (see Appendix B for details)

Scal gWS = e -2ϕ(t) Scal ht + (n -k -1)(n -k -2) -k(k + 1)ϕ ′ (t) 2 -2kϕ ′′ (t) -(k + 1)ϕ ′ (t)tr(h -1 t ∂ t h t ) + 3 4 tr((h -1 t ∂ t h t ) 2 ) - 1 4 tr(h -1 t ∂ t h t ) 2 -tr ht (∂ 2 t h t ). ( 16 
)
Definition 5.1. We say that condition (A t ) holds if the following assumptions are true:

1.) t → h t is constant, 2.) e -2ϕ(t) inf x∈W Scal ht (x) ≥ -n-k-2 32 a, 3.) |ϕ ′ (t)| ≤ 1, 4.) 0 ≤ -2kϕ ′′ (t) ≤ 1 2 (n -1)(n -k -2) 2 . (A t )
Similarly, we say that condition (B t ) holds if the following assumptions are true:

1.) t → ϕ(t) is constant, 2.) inf x∈Ft Scal gWS (x) ≥ 1 2 Scal σ n-k-1 = 1 2 (n -k -1)(n -k -2), 3.) (n-1) 2 2 e(h t ) 2 + n-1 2 ∂ t e(h t ) ≥ -3 64 (n -k -2). (B t )
Let P be W S-bundle equipped with a metric G which is close to g WS in a sense to be made precise later. Let α, β ∈ R be such that [α, β] ⊂ I. Our goal is to derive an estimate for the distribution of L 2 -norm of a positive solution to the Yamabe equation L G u = µu p-1 . If we write this equation in terms of the metric g WS we get a perturbed version of the Yamabe equation for g WS . We assume that we have a smooth positive solution u of the equation

L gWS u = a∆ gWS u + Scal gWS u = µu p-1 + d * A(du) + Xu + ǫ∂ t u -su (17) 
where s, ǫ ∈ C ∞ (P ), A ∈ End(T * P ), and X ∈ Γ(T P ) are perturbation terms coming from the difference between G and g WS . We assume that the endomorphism A is symmetric and that X and A are vertical, that is dt(X) = 0 and A(dt) = 0.

Theorem 5.2. Assume that P carries a metric g WS of the form [START_REF] Gromov | Structures métriques pour les variétés Riemanniennes[END_REF]. Let α, β ∈ R be such that [α, β] ⊂ I. Assume further that for each t ∈ I either condition (A t ) or condition (B t ) is true. We also assume that u is a positive solution of (17) satisfying

µ u p-2 L ∞ (P ) ≤ (n -k -2) 2 (n -1) 8(n -2) . ( 18 
)
Then there exists c 0 > 0 independent of α, β, and ϕ, such that if

A L ∞ (P ) , X L ∞ (P ) , s L ∞ (P ) , ǫ L ∞ (P ) , e(h t ) L ∞ (P ) ≤ c 0 then π -1 ((α+γ,β-γ)) u 2 dv gWS ≤ 4 u 2 L ∞ n -k -2 (Vol gα (F α ) + Vol g β (F β )) ,
where γ := √ 32 n-k-2 . Note that this theorem only gives information when β -α > 2γ. 

w ′′ (t) ≥ w(t) γ 2 . ( 19 
)
Then

T -T w(t) m dt ≤ γ m (w(T + γ) m + w(-T -γ) m ) ( 20 
)
for all m ≥ 1.

Proof. Assume that w| [-T -γ,T +γ] attains its minimum in t 0 . Since w ′′ ≥ w/γ 2 > 0 we have w ′ (t) > 0 for t ∈ (t 0 , T + γ), and w ′ (t) < 0 for t ∈ (-T -γ, t 0 ). We first study the case when t 0 ∈ (-T, T ). We define W (t) := w(t) + γw ′ (t). As w and w ′ are increasing we get

W (T ) = w(T ) + T +γ T w ′ (T ) dt ≤ w(T ) + T +γ T w ′ (t) dt = w(T + γ). (21) 
From [START_REF]Introduction à l'analyse non-linéaire sur les variétés[END_REF] we see that W ′ (t) ≥ W (t)/γ, or ∂ t ln W (t) ≥ 1/γ. Integrating this relation between t ∈ (t 0 , T ) and T we get

W (t) ≤ e -T -t γ W (T ).
Using that w ≤ W on (t 0 , T ) together with [START_REF] Kim | An obstruction to the conformal compactification of Riemannian manifolds[END_REF] we obtain

w(t) ≤ W (t) ≤ e -T -t γ w(T + γ), and hence w(t) m ≤ e -m T -t γ w(T + γ) m for all t ∈ [t 0 , T ] and m ≥ 1. Integrating this relation over t ∈ [t 0 , T ] we get T t0 w(t) m dt ≤ γ(1 -e -m T -t 0 γ ) m w(T + γ) m ≤ γ m w(T + γ) m . ( 22 
)
Similarly we conclude that

t0 -T w(t) m dt ≤ γ m w(-T -γ) m . ( 23 
)
This proves relation [START_REF] Joyce | Constant scalar curvature metrics on connected sums[END_REF] in this case. In the case that t 0 ≤ -T relation ( 22) remains valid. Using [START_REF] Joyce | Constant scalar curvature metrics on connected sums[END_REF]. We proceed in a similar way using ( 23) in case t 0 ≥ T . This ends the proof of Lemma 5.3.

Proof of Theorem 5.2. The Laplacian ∆ gWS on P is related to the Laplacian ∆ gt on F t through the formula

∆ gWS = ∆ gt -∂ 2 t + (n -1)H t ∂ t , so Ft u∆ gWS u dv gt = Ft u∆ gt u -u(∂ 2 t u) + (n -1)H t u(∂ t u) dv gt = Ft |d vert u| 2 -u(∂ 2 t u) + (n -1)H t u(∂ t u) dv gt .
Together with [START_REF] Gursky | Yamabe invariants and Spin c structures[END_REF] we get

a Ft u∂ 2 t u dv gt = Ft a|d vert u| 2 + a(n -1)H t u∂ t u -d vert u, A(d vert u) -uXu -ǫu∂ t u + (Scal gWS + s)u 2 -µu p dv gt .
In the following we denote by δ(c 0 ) a positive constant which goes to 0 if c 0 tends to 0 and whose convergence depends only on n, µ, and h. We set S t := inf Ft Scal gWS . If we use the inequality 2 |ab| ≤ (a 2 + b 2 ) to simplify the terms involving X and ǫ we obtain

a Ft u∂ 2 t u dv gt ≥ Ft (a -δ(c 0 ))|d vert u| 2 + a(n -1)H t u∂ t u -δ(c 0 )(∂ t u) 2 + (S t -δ(c 0 ))u 2 -µu p dv gt .
If c 0 is small enough so that a -δ(c 0 ) > 0 we conclude that

a Ft u∂ 2 t u -(n -1)H t u(∂ t u) dv gt ≥ (S t -δ(c 0 ))w(t) 2 - Ft δ(c 0 )(∂ t u) 2 + µu p dv gt . (24) 
We define

w(t) := u L 2 (Ft) = Ft u 2 dv gt 1/2
.

Differentiating this we get

2w ′ (t)w(t) = ∂ t Ft u 2 dv gt = Ft 2u(∂ t u) -(n -1)H t u 2 dv gt . ( 25 
)
We now assume that (A t ) holds. Then [START_REF]Metric structures for Riemannian and non-Riemannian spaces[END_REF] tells us that

H t = - k n -1 ϕ ′ (t), so (25) 
becomes

w ′ (t)w(t) = Ft u(∂ t u) dv gt + k 2 ϕ ′ (t)w(t) 2 . ( 26 
)
We differentiate this and obtain

w ′ (t) 2 + w ′′ (t)w(t) = Ft (∂ t u) 2 dv gt + Ft u∂ 2 t u -(n -1)H t u∂ t u dv gt + k 2 ϕ ′′ (t)w(t) 2 + kϕ ′ (t)w ′ (t)w(t).
From [START_REF] Kosinski | Differential manifolds[END_REF] we get

w ′ (t) 2 + w ′′ (t)w(t) ≥ 1 - δ(c 0 ) a Ft (∂ t u) 2 dv gt + 1 a (S t -δ(c 0 )) + k 2 ϕ ′′ (t) w(t) 2 - 1 a Ft µu p dv gt + kϕ ′ (t)w ′ (t)w(t). (27) 
We now use [START_REF]Einstein metrics and the Yamabe problem[END_REF] to get

w(t) 2 Ft (∂ t u) 2 dv gt ≥ Ft u(∂ t u) dv gt 2 = w ′ (t)w(t) - k 2 ϕ ′ (t)w(t) 2 2 , or Ft (∂ t u) 2 dv gt ≥ w ′ (t) - k 2 ϕ ′ (t)w(t) 2 . ( 28 
)
From assumption [START_REF] Hebey | Sobolev spaces on Riemannian manifolds[END_REF] it follows that

µ a Ft u p dv gt ≤ (n -k -2) 2 32 w(t) 2 . ( 29 
)
Inserting ( 28) and ( 29) into ( 27) we obtain

w ′ (t) 2 + w ′′ (t)w(t) ≥ 1 - δ(c 0 ) a w ′ (t) - k 2 ϕ ′ (t)w(t) 2 + 1 a (S t -δ(c 0 )) + k 2 ϕ ′′ (t) w(t) 2 - (n -k -2) 2 32 w(t) 2 + kϕ ′ (t)w ′ (t)w(t),
or after some rearranging,

w ′′ (t)w(t) ≥ - δ(c 0 ) a w ′ (t) - k 2 ϕ ′ (t)w(t) 2 + 1 a (S t -δ(c 0 )) + k 2 ϕ ′′ (t) + k 2 4 ϕ ′ (t) 2 - (n -k -2) 2 32 w(t) 2 . ( 30 
)
Next we estimate the coefficient of w(t) 2 in the last line of [START_REF] Mazzieri | Generalized connected sum construction for nonzero constant scalar curvature metrics[END_REF]. We denote this coefficient by D. Using ( 16) and assumption 1.) of (A t ), which tells us that e(h t ) = 0 we get

D = 1 a e -2ϕ(t) Scal ht -k(k + 1)ϕ ′ (t) 2 -2kϕ ′′ (t) + (n -k -1)(n -k -2) - δ(c 0 ) a + k 2 ϕ ′′ (t) + k 2 4 ϕ ′ (t) 2 - (n -k -2) 2 32 = 1 a e -2ϕ(t) Scal ht + 1 a ((n -k -1)(n -k -2) -δ(c 0 )) + k 2(n -1) ϕ ′′ (t) - k 4(n -1) (n -k -2)ϕ ′ (t) 2 - (n -k -2) 2 32 .
From assumptions 2.) and 3.) of (A t ) we obtain

D ≥ - n -k -2 32 + 1 a ((n -k -1)(n -k -2) -δ(c 0 )) + k 2(n -1) ϕ ′′ (t) - k 4(n -1) (n -k -2) - (n -k -2) 2 32 = 1 4(n -1) (n -1)(n -k -2) 2 + 2kϕ ′′ (t) - n -k -2 32 - (n -k -2) 2 32 - δ(c 0 ) a .
Using 4.) of (A t ) and n -k -2 ≥ 1 we further obtain

D ≥ 1 4(n -1) 1 2 (n -1)(n -k -2) 2 - (n -k -2) 2 32 - (n -k -2) 2 32 - δ(c 0 ) a = (n -k -2) 2 16 - δ(c 0 ) a .
Inserting this in [START_REF] Mazzieri | Generalized connected sum construction for nonzero constant scalar curvature metrics[END_REF] we get

w ′′ (t)w(t) ≥ - δ(c 0 ) a w ′ (t) - k 2 ϕ ′ (t)w(t) 2 + (n -k -2) 2 16 - δ(c 0 ) a w(t) 2 ≥ - 2δ(c 0 ) a w ′ (t) 2 + - 2δ(c 0 ) a k 2 4 ϕ ′ (t) 2 + (n -k -2) 2 16 - δ(c 0 ) a w(t) 2 ,
where we also used the elementary inequality (a -b) 2 ≤ 2a 2 + 2b 2 . Again using assumption 3.) of (A t ) we conclude

w ′′ (t)w(t) ≥ - 2δ(c 0 ) a w ′ (t) 2 + (n -k -2) 2 16 - δ(c 0 ) a 1 + k 2 2 w(t) 2 . (31) 
Fix a small positive number δ. Choose c 0 small so that δ(c 0 ) is also small. Then [START_REF]Generalized connected sum construction for scalar flat metrics[END_REF] tells us that

w ′′ (t)w(t) ≥ (n -k -2) 2 32 w(t) 2 -δw ′ (t) 2 . ( 32 
)
Define v(t) := w(t) 1+ δ . This function satisfies

v ′′ (t) = (1 + δ)w ′′ (t)w(t) δ + δ(1 + δ)w ′ (t) 2 w(t) δ-1 ≥ (1 + δ) (n -k -2) 2 32 w(t) 1+ δ ≥ (n -k -2) 2 32 v(t).
Next we assume that (B t ) holds. Then [START_REF]Metric structures for Riemannian and non-Riemannian spaces[END_REF] becomes

H t = -e(h t ),
and from (25) we get

w ′ (t)w(t) = Ft u(∂ t u) + n -1 2 e(h t )u 2 dv gt . (33) 
Differentiating this we get

w ′ (t) 2 + w ′′ (t)w(t) = Ft (∂ t u) 2 + (n -1)e(h t )u∂ t u + (n -1) 2 2 e(h t ) 2 + n -1 2 ∂ t e(h t ) u 2 dv gt + Ft u∂ 2 t u -(n -1)H t u∂ t u dv gt .
Next we use [START_REF] Kosinski | Differential manifolds[END_REF] followed by assumptions 2.) and 3.) of (B t ) to obtain

w ′ (t) 2 + w ′′ (t)w(t) ≥ Ft (∂ t u) 2 + (n -1)e(h t )u∂ t u + (n -1) 2 2 e(h t ) 2 + n -1 2 ∂ t e(h t ) u 2 - δ(c 0 ) a (∂ t u) 2 - µ a u p dv gt + 1 a (S t -δ(c 0 ))w(t) 2 ≥ Ft 1 - δ(c 0 ) a (∂ t u) 2 + (n -1)e(h t )u∂ t u - µ a u p dv gt + 1 2a (n -k -1)(n -k -2) - 3 64 (n -k -2) - δ(c 0 ) a w(t) 2 .
From (29) we further get

w ′ (t) 2 + w ′′ (t)w(t) ≥ Ft 1 - δ(c 0 ) a (∂ t u) 2 + (n -1)e(h t )u∂ t u dv gt + 1 2a (n -k -1)(n -k -2) - 3 64 (n -k -2) - 1 32 (n -k -2) 2 - δ(c 0 ) a w(t) 2 ≥ Ft 1 - δ(c 0 ) a (∂ t u) 2 + (n -1)e(h t )u∂ t u dv gt + 1 32 (n -k -2)(n -k -3/2) - δ(c 0 ) a w(t) 2 ≥ Ft 1 - δ(c 0 ) a (∂ t u) 2 + (n -1)e(h t )u∂ t u dv gt + 1 32 (n -k -2) 2 + 1 64 - δ(c 0 ) a w(t) 2 . (34) 
We set E t := sup Ft |e(h t )| and use [START_REF] Petean | Surgery and the Yamabe invariant[END_REF] to compute

w(t) 2 Ft (∂ t u) 2 dv gt ≥ Ft u(∂ t u) dv gt 2 = w ′ (t)w(t) - n -1 2 Ft e(h t )u 2 dv gt 2 = (w ′ (t)w(t)) 2 + n -1 2 Ft e(h t )u 2 dv gt 2 -(n -1)w ′ (t)w(t) Ft e(h t )u 2 dv gt ≥ w ′ (t) 2 w(t) 2 - n -1 2 2 E 2 t w(t) 4 -(n -1)|w ′ (t)|w(t) Ft |e(h t )|u 2 dv gt ≥ w ′ (t) 2 w(t) 2 - n -1 2 2 E 2 t w(t) 4 -(n -1)E t |w ′ (t)|w(t) 3 .
Next we divide by w(t) 2 and obtain

Ft (∂ t u) 2 dv gt ≥ w ′ (t) 2 - n -1 2 2 E 2 t w(t) 2 -(n -1)E t |w ′ (t)|w(t) ≥ w ′ (t) 2 - n -1 2 2 E 2 t w(t) 2 - n -1 2 E t w ′ (t) 2 + w(t) 2 = 1 - n -1 2 E t w ′ (t) 2 - n -1 2 E t + n -1 2 2 E 2 t w(t) 2 . (35) 
Also

Ft e(h t )u∂ t u dv gt ≤ Ft |e(h t )u∂ t u| dv gt ≤ E t Ft |u∂ t u| dv gt ≤ 1 2 E t Ft u 2 + (∂ t u) 2 dv gt , so Ft (n -1)e(h t )u∂ t u dv gt ≥ - n -1 2 E t Ft u 2 + (∂ t u) 2 dv gt . (36) 
Fix a small number δ > 0. We insert ( 35) and ( 36) in [START_REF] Petersen | Convergence theorems in Riemannian geometry, Comparison geometry[END_REF] and choose c 0 small enough so that δ(c 0 ) and E t are small. Then we get that w(t) satisfies the same inequality (32) as we obtained under the assumption (A t ). We have showed that in both cases (A t ) and (B t ) the function

v(t) = w(t) 1+ δ satisfies v ′′ (t) ≥ v(t)/γ 2 since
Now we apply Lemma 5.3 to the function ṽ(t) := v(t

+ β+α 2 ) with T = β-α 2 -γ and m = 2 1+ δ . From this we obtain γ m (ṽ(T + γ) m + ṽ(-T -γ) m ) ≥ T -T ṽm dt. (37) 
We further have

T -T ṽm dt = β-α 2 -γ -β-α 2 +γ w (1+ δ) m t + β + α 2 dt
We set s = t + β+α From the definition of w we obtain

T -T ṽm dt = π -1 ((α+γ,β-γ))
u 2 dv gWS .

In addition, we have

(ṽ(T + b) m + ṽ(-T -b) m ) = Fα u 2 dv gα + F β u 2 dv g β ≤ u 2 L ∞ (P ) (Vol gα (F α ) + Vol g β (F β )) .
Choosing δ small we may assume m ≥ √ 2. This together with [START_REF]Recent progress in geometric partial differential equations[END_REF] and γ =

√ 32 n-k-2 gives us π -1 ((α+γ,β-γ)) u 2 dv gWS ≤ 4 u 2 L ∞ n -k -2 (Vol gα (F α ) + Vol g β (F β )) .
This proves Theorem 5.2.

6. Proof of Theorem 1.3

6.1. Stronger version of Theorem 1.3. In this section we prove the following Theorem 6.1. By taking the supremum over all conformal classes Theorem 6.1 implies Theorem 1.3.

Theorem 6.1. Suppose that (M 1 , g 1 ) and (M 2 , g 2 ) are compact Riemannian manifolds of dimension n. Let N be obtained from M 1 , M 2 , by a connected sum along W as described in Section 2. Then there is a family of metrics g θ , θ ∈ (0, θ 0 ) on N satisfying

min {µ(M 1 ∐ M 2 , g 1 ∐ g 2 ), Λ n,k } ≤ lim inf θ→0 µ(N, g θ ) ≤ lim sup θ→0 µ(N, g θ ) ≤ µ(M 1 ∐ M 2 , g 1 ∐ g 2 ).
In the following we define suitable metrics g θ , and then we show that they satisfy these inequalities.

Hierarchy of parameters

R max > R 0 > θ > δ 0 > ǫ > 0
We choose parameters in the order R max , R 0 , θ, δ 0 , A θ . We then set ǫ := e -A θ δ 0 .

This implies |t| = A θ ⇔ r i = δ 0 .

Figure 1. Hierarchy of parameters 6.2. Definition of the metrics g θ . We continue to use the notation of Section 2.

In the following, C denotes a constant which might change its value between lines.

Recall that (M, g) = (M 1 ∐ M 2 , g 1 ∐ g 2 ). For i = 1, 2 we define the metric h i as the restriction of g i to W ′ i = w i (W ×{0}), and we set h

:= h 1 ∐h 2 on W ′ = W ′ 1 ∐W ′ 2 .
As already explained, the normal exponential map of W ′ ⊂ M defines a diffeomorphism

w i : W × B n-k (R max ) → U i (R max ), i = 1, 2, which decomposes U (R max ) = U 1 (R max )∐U 2 (R max ) as a product W ′ ×B n-k (R max ).
In general the Riemannian metric g does not have a corresponding product structure, and we introduce an error term T measuring the difference from the product metric. If r denotes the distance function to W ′ , then the metric g can be written as

g = h + ξ n-k + T = h + dr 2 + r 2 σ n-k-1 + T (38) 
on

U (R max ) \ W ′ ∼ = W ′ × (0, R max ) × S n-k-1 .
Here T is a symmetric (2, 0)-tensor vanishing on W ′ (in the sense of sections of (T * M ⊗ T * M )| W ′ ). We also define the product metric

g ′ := h + ξ n-k = h + dr 2 + r 2 σ n-k-1 , (39) 
on U (R max ) \ W ′ . Thus g = g ′ + T . Since T vanishes on W ′ we have

|T (X, Y )| ≤ Cr|X| g ′ |Y | g ′ (40) 
for any X, Y ∈ T x M where x ∈ U (R max ). Since T is smooth we have

|(∇ U T )(X, Y )| ≤ C|X| g ′ |Y | g ′ |U | g ′ , and 
|(∇ 2 U,V )T (X, Y )| ≤ C|X| g ′ |Y | g ′ |U | g ′ |V | g ′ , for X, Y, U, V ∈ T x M . We define T i := T | Mi for i = 1, 2.
For a fixed R 0 ∈ (0, R max ), R 0 < 1 we choose a smooth positive function F :

M \ W ′ → R such that F (x) = 1, if x ∈ M i \ U i (R max ); r i (x) -1 , if x ∈ U i (R 0 ) \ W ′ .
Next we choose small numbers θ, δ 0 ∈ (0, R 0 ) with θ > δ 0 > 0. Here "small" means that for a given small number θ we choose a number δ 0 = δ 0 (θ) ∈ (0, θ) such that all arguments which need δ 0 to be small will hold, see Figure 1. For any θ > 0 and sufficiently small δ 0 there is A θ ∈ [θ -1 , (δ 0 ) -1 ) and a smooth function f : U (R max ) → R depending only on the coordinate r such that 

f (x) = -ln r(x), if x ∈ U (R max ) \ U (θ); ln A θ , if x ∈ U (δ 0 ), t = ±(ln r -ln ǫ) f -ln θ + ln ǫ ln θ -ln ǫ -ln δ 0 + ln ǫ ln δ 0 -ln ǫ + ln ǫ -ln ǫ ln A θ -ln θ r 1 = θ r 2 = θ r 1 = δ 0 r 1 = ǫ r 2 = ǫ r 2 = δ 0 r 1 = 1 r 2 = 1
L ∞ = d 2 f d 2 (ln r) L ∞ → 0 (41) 
as θ → 0. See Figure 2.

We set ǫ = e -A θ δ 0 . We can and will assume that ǫ < 1.

Let N be obtained from M by a connected sum along W with parameter ǫ, as described in Section 2. In particular, U N ǫ (s) = (U (s) \ U (ǫ)) /∼ for all s ≥ ǫ. On the set U N ǫ (R max ) = (U (R max ) \ U (ǫ)) /∼ we define the variable t by

t := -ln r 1 + ln ǫ, on U 1 (R max ) \ U 1 (ǫ); ln r 2 -ln ǫ, on U 2 (R max ) \ U 2 (ǫ).
Note that t ≤ 0 on U 1 (R max ) \ U 1 (ǫ) and t ≥ 0 on U 2 (R max ) \ U 2 (ǫ), with t = 0 precisely on the common boundary ∂U 1 (ǫ) identified with ∂U 2 (ǫ) in N . It follows that r i = e |t|+ln ǫ = ǫe |t| .

We can assume that t :

U N ǫ (R max ) → R is smooth. Expressed in the variable t we have F (x) = ǫ -1 e -|t| for x ∈ U (R 0 ) \ U N (θ)
, or in other words if |t| + ln ǫ ≤ ln R 0 . Then Equation [START_REF]Variational theory for the total scalar curvature functional for Riemannian metrics and related topics[END_REF] tells us that

F 2 g = ǫ -2 e -2|t| (h + T ) + dt 2 + σ n-k-1
on U (R 0 ) \ U N (θ). If we view f as a function of t, then ). With these choices we define

f (t) = -|t| -ln ǫ, if ln θ -ln ǫ ≤ |t| ≤ ln R max -ln ǫ; ln A θ , if |t| ≤ ln δ 0 -ln ǫ; g i = g g i = F 2 g S n-k-1 has constant length
g θ :=          F 2 g i , on M i \ U i (θ); e 2f (t) (h i + T i ) + dt 2 + σ n-k-1 , on U i (θ) \ U i (δ 0 ); A 2 θ χ(t/A θ )(h 2 + T 2 ) + A 2 θ (1 -χ(t/A θ ))(h 1 + T 1 ) + dt 2 + σ n-k-1 , on U N ǫ (δ 0 ).
On U N (R 0 ) we write g θ as

g θ = e 2f (t) ht + dt 2 + σ n-k-1 + T t ,
where the metric ht is defined by

ht := χ(t/A θ )h 2 + (1 -χ(t/A θ ))h 1 ,
for t ∈ R, and where the error term T t is equal to

T t := e 2f (t) (χ(t/A θ )T 2 + (1 -χ(t/A θ )) T 1 ) .
See also Figure 3. On U N (R 0 ) we also define the metric without error term

g ′ θ := g θ -T t = e 2f (t) ht + dt 2 + σ n-k-1 . (42) 
An upper bound for the error term Tt will be needed in the following. We claim that

|X| g ′ ≤ Ce -f (t) |X| g ′ θ ( 43 
)
for X ∈ T x N , where g ′ is the metric defined by [START_REF] Schoen | On the structure of manifolds with positive scalar curvature[END_REF]. To prove the claim, we decompose X in a radial part, a part parallel to W ′ , and a part parallel to S n-k-1 . This decomposition is orthogonal with respect to both g ′ and g ′ θ . For

X = ∂ ∂t = ±ǫe |t| ∂ ∂r we have that 1 = |X| g ′ θ and |X| g ′ = ǫe |t| ≤ e -f (t) since f (t) ≤ -|t| -ln ǫ. The argument is similar if X is parallel to S n-k-1 . If X is tangent to W ′ , then |X| g = |X| h ≤ C|X| ht ≤ Ce -f (t) |X| g ′ θ ,
and the claim follows. The Relations ( 40) and ( 43) imply

| T t (X, Y )| ≤ Ce 2f (t) |T (X, Y )| ≤ Ce 2f (t) r|X| g ′ |Y | g ′ ≤ Cr|X| g ′ θ |X| g ′ θ
for all X, Y . In other words this means

| T t | g ′ θ ≤ Cr = Cǫe |t| ≤ Ce -f (t) . (44) 
Further, one can calculate that

|∇ T t | g ′ θ ≤ Ce -f (t) , (45) 
and

|∇ 2 T t | g ′ θ ≤ Ce -f (t) . (46) 
Here ∇ denotes the Levi-Civita-connection with respect to g ′ θ . In particular we see with Corollary A.2

|Scal g θ -Scal g ′ θ | ≤ Ce -f (t) . (47) 
6.3. Geometric description of the new metrics. In this subsection we collect some facts about the geometry of F 2 g and g ′ θ introduced in the previous subsection. Most of the results are not needed for the proof of our result, but are useful to understand the underlying geometric concept of the argument. We will thus skip most of the proofs in this subsection.

The first proposition explains the special role of H k+1 × S n-k-1 . Proposition 6.2. Let x i be a sequence of points in M \ W , converging to W . Then the Riemann tensor of F 2 g in x i converges to the Riemann tensor of H k+1 × S n-k-1 . The covariant derivative of the Riemann tensor of F 2 g converges to zero. For any fixed R > 0 these convergences are uniform on balls (with respect to the metric F 2 g) of radius R.

It follows that for any fixed R > 0 the balls (B F 2 g (x i , R), x i , F 2 g) converge to a ball of radius R in H k+1 × S n-k-1 in the C 2,α -topology of Riemannian manifolds with base point. This topology has its origins in Cheeger's finiteness theorem [START_REF] Cheeger | Finiteness theorems for Riemannian manifolds[END_REF] and in the work of Gromov [START_REF] Gromov | Structures métriques pour les variétés Riemanniennes[END_REF], [START_REF]Metric structures for Riemannian and non-Riemannian spaces[END_REF]. The article by Petersen [START_REF] Petersen | Convergence theorems in Riemannian geometry, Comparison geometry[END_REF] is a good introduction to the subject.

In the limit r → 0 (or equivalently t → ∞) the W -component of the metric F 2 g grows exponentially. The motivation for introducing the function f into the definition of g θ is to slow down this exponential growth: the diameter of the Wcomponent with respect to g θ is then bounded by A θ diam(W, g), where diam(W, g) is the diameter of W with respect to g. This slowing down has to be done carefully in order to get nice limit spaces. The properties claimed for f imply the following result. Proposition 6.3. Let θ i be a sequence of positive numbers tending to zero, and let x i ∈ U N ǫ (R max ) be a sequence of points such that the limit c := lim( ∂ ∂t f )(t(x i )) exists. Then the Riemann tensor of g θi in x i converges to the Riemann tensor of H k+1 c × S n-k-1 . The covariant derivative of the Riemann tensor of g θi converges to zero. For any fixed R > 0 these convergences are uniform on balls (with respect to the metric g θi ) of radius R.

From this proposition it follows that the balls (B F 2 g (x i , R), x i , F 2 g) converge to a ball of radius R in H k+1 c × S n-k-1 in the C 2,α -topology of Riemannian manifolds with base point. Thus, we get an explanation why the spaces H k+1 c ×S n-k-1 appear as limit spaces.

The sectional curvature of H k+1 c is -c 2 . Hence the sectional curvatures of the product H k+1 c × S n-k-1 are in the interval [-c 2 , 1]. Using this fact we can prove the following Proposition. Proposition 6.4. The scalar curvatures of g θ and g ′ θ are bounded by a constant independent of θ.

Proof. The metric g ′ θ is the metric of a W S-bundle. Hence ( 16) is valid. We calculate 16) it follows that Scal g ′ θ is bounded. Equation (47) then implies that Scal g θ is bounded.

∂ t ht = (1/A θ )χ ′ (t/A θ )(h 2 -h 1 ) and ∂ 2 t ht = (1/A θ ) 2 χ ′′ (t/A θ )(h 2 -h 1 ). This implies |tr ht ∂ t ht | ≤ C/A θ , |tr( h-1 t ∂ t ht ) 2 | ≤ C/A 2 θ , and |tr ht ∂ 2 t ht | ≤ C/A 2 θ . From (
The geometry close to the gluing of M 1 \ U 1 (ǫ) with M 2 \ U 2 (ǫ) is described by the following simple proposition. Proposition 6.5. Let H be the metric on W × (-1, 1) given by (χ(t)h

2 + (1 - χ(t))h 1 ) + dt 2 . Then (U N (δ 0 ), g ′ θ ) is isometric to (W × (-1, 1) × S n-k-1 , A 2 θ H + σ n-k-1 ).
6.4. Proof of Theorem 6.1. The metrics g θ are defined for small θ > 0 as described above. In order to prove Theorem 6.1 it is sufficient to prove

min {µ(M, g), Λ n,k } ≤ lim i→∞ µ(N, g θi ) ≤ µ(M, g) for any sequence θ i → 0 as i → ∞ for which lim i→∞ µ(N, g θi ) exists. Recall that (M, g) = (M 1 ∐ M 2 , g 1 ∐ g 2 ).
The upper bound on lim i→∞ µ(N, g θi ) is easy to prove. The proof of the lower bound is more complicated, our arguments for this part are inspired by the compactness-concentration principle in analysis, see for example [START_REF] Evans | Weak convergence methods for nonlinear partial differential equations[END_REF].

For each metric g θ we have a solution of the Yamabe equation ( 5). We take a sequence of θ tending to 0. Following the compactness-concentration principle, this sequence of solutions can concentrate in points or converge to a non-trivial solution or do both at the same time. The concentration in points can be used to construct a non-trivial solution on a sphere by blowing up the metrics.

In our situation we may have concentration in a fixed point (subcase I.1) or in a wandering point (subcase I.2), and we may have convergence to a non-trivial solution on the original manifold (subcase II.1.2) or in the attached part (subcases II.1.1 and II.2). In each of these cases we obtain a different lower bound for lim i→∞ µ(N, g θi ): In the subcases I.1 and I.2 the lower bound is µ(S n ), in subcase II.1.2 it is µ(M, g), and in the subcases II.1.1 and II.2 we obtain Λ The cases here are not exclusive. For example it is possible that the solutions may both concentrate in a point and converge to a non-trivial solution on the original manifold.

In our arguments we will often pass to subsequences. To avoid complicated notation we write θ → 0 for a sequence (θ i ) i∈N converging to zero, and we will pass successively to subsequences without changing notation. Similarly lim θ→0 h(θ) should be read as lim i→∞ h(θ i ).

We set µ := µ(M, g) and µ θ := µ(N, g θ ). From Theorem 1.1 we have

µ, µ θ ≤ µ(S n ). (48) 
After passing to a subsequence, the limit

μ := lim θ→0 µ θ ∈ [-∞, µ(S n )]
exists. Let J := J g and J θ := J g θ be defined as in [START_REF] Akutagawa | Yamabe metrics on cylindrical manifolds[END_REF]. We start with the easier part of the argument, namely with μ ≤ µ.

For this let α > 0 be a small number. We choose a smooth cut-off function χ α on M such that χ α = 1 on M \ U (2α), |dχ α | ≤ 2/α, and χ α = 0 on U (α). Let u be a smooth non-zero function such that J(u) ≤ µ + δ where δ is a small positive number. On the support of χ α the metrics g and g θ are conformal since g θ = F 2 g and hence by (3) we have

µ θ ≤ J θ χ α F -n-2 2 u = J(χ α u) for θ < α. It is straightforward to compute that lim α→0 J(χ α u) = J(u) ≤ µ + δ.
From this Relation (49) follows. Now we turn to the more difficult part of the proof, namely the inequality

μ ≥ min {µ, Λ n,k } . (50) 
In the case μ = µ(S n ) this inequality follows trivially from (48). Hence we assume μ < µ(S n ) in the following, which implies µ θ < µ(S n ) if θ is sufficiently small. From Theorem 1.2 we know that there exist positive functions u θ ∈ C 2 (M ) such that

L g θ u θ = µ θ u p-1 θ , (51) 
and

N u p θ dv g θ = 1.
We begin by proving a lemma which yields a bound of the L 2 -norm of u θ in terms of the L ∞ -norm. This result is non-trivial since Vol(N, g θ ) → ∞ as θ → 0. Lemma 6.6. Assume that there exists b > 0 such that

µ θ sup U N (b) u p-2 θ ≤ (n -k -2) 2 (n -1) 8(n -2)
for θ small enough. Then there exist constants c 1 , c 2 > 0 independent of θ such that

N u 2 θ dv g θ ≤ c 1 u θ 2 L ∞ (N ) + c 2
for all sufficiently small θ. In particular, if

u θ L ∞ (N ) is bounded, so is u θ L 2 (N ) .
Proof. Let r ∈ (0, b) be fixed and set P = U (r). Then P is a W S-bundle where, with the notation of Section 5, I = (α, β) with α = -ln r + ln ǫ and β = ln r -ln ǫ.

On P we have two natural metrics: g θ and g WS = g ′ θ = g θ -T t . The metric g WS has exactly the form ( 14) with ϕ = f and h t = ht . Let θ be small enough and let t ∈ (-ln r + ln ǫ, -ln δ 0 + ln ǫ) ∪ (ln δ 0 -ln ǫ, ln r -ln ǫ). Then assumption (A t ) of Theorem 5.2 is true. Now, again if θ is small enough, we have for all t ∈ (-ln δ 0 + ln ǫ, ln δ 0 -ln ǫ) the relation Scal gWS = Scal σ n-k-1 + O(1/A θ ). The error term e( ht ) from (B t ) in this case satisfies

|e( ht )| ≤ tr ht ∂ t ht = tr ht χ ′ (t/A θ ) h 2 -h 1 A θ ≤ C A θ , and 
|∂ t e( ht )| = tr h-1 t (∂ t ht ) h-1 t (∂ t ht ) + tr ht ∂ 2 t ht ≤ C A 2 θ .
Because of 1/A θ ≤ θ condition (B t ) is true. Equation ( 51) is written in the metric g θ . Using the expression of the Laplacian in local coordinates,

∆ g θ u = - i,j (det g θ ) -1/2 ∂ i g ij θ (det g θ ) 1/2 ∂ j u ,
one can check that if we write Equation (51) in the metric g WS we obtain an equation of the form [START_REF] Gursky | Yamabe invariants and Spin c structures[END_REF] with µ = µ θ . Together with (44), ( 45) and (47), one verifies that the error terms satisfy

|A(x)| gWS , |X(x)| gWS , |s(x)| gWS , |ǫ(x)| gWS ≤ Ce -f (t) ,
where | • | gWS denotes the pointwise norm at a point in U N (R 0 ), and where C is a constant independent of θ. In particular for any c 0 > 0, we obtain where P ′ := U N (re -γ ). Now observe that

C := 4 n -k -2 (Vol gα (F α ) + Vol g β (F β ))
does not depend on θ (since F α and F β correspond to the hypersurface r = r). This implies that

P ′ u 2 θ dv gWS ≤ C u θ 2 L ∞ (N )
where C > 0 is independent of θ. Since if r is small enough, we clearly have

dv g θ ≤ 2dv gWS ,
and we obtain that

P ′ u 2 θ dv g θ ≤ c 1 u θ 2 L ∞ (N )
where c 1 := 2C > 0 is independent of θ. Now observe that Vol g θ (N \ P ′ ) is bounded by a constant independent of θ. Using the Hölder inequality we obtain

N u 2 θ dv g θ = P ′ u 2 θ dv g θ + N \P ′ u 2 θ dv g θ ≤ c 1 u θ 2 L ∞ (N ) + Vol g θ (N \ P ′ ) 2 n N \P ′ u p θ dv n-2 n
.

Since u θ L p (N ) = 1, this proves Lemma 6.6 with c 1 as defined above and with c 2 := Vol g θ (N \ P ′ ) 2 n . For small θ, the metric g θ | N \P ′ is independent of θ, and thus c 2 does not depend on θ. Proof. Choose x θ as above. We then have ∆ g θ u θ (x θ ) ≥ 0, which together with (51) gives us Scal g θ (x θ ) u θ L ∞ (N ) ≤ µ θ u θ p-1 L ∞ (N ) . Proposition 6.4 and the previous corollary then imply that µ θ is bounded from below.

In addition, by Theorem 1.1, µ θ is bounded from above by µ(S n ). It follows that μ ∈ R. The rest of the proof is divided into cases.

Case I. lim sup θ→0 u θ L ∞ (N ) = ∞.

As before we set m θ := u θ L ∞ (N ) and we choose x θ ∈ N with u θ (x θ ) = m θ . After taking a subsequence we can assume that lim θ→0 m θ = ∞. We consider two subcases.

Subcase I.1. There exists b > 0 such that x θ ∈ N \ U N (b) for an infinite number of θ.

We recall that N \U N (b) = N ǫ \U N ǫ (b) = M 1 ∐M 2 \U (b). By taking a subsequence we can assume that there exists x ∈ M 1 ∐ M 2 \ U (b) such that lim θ→0 x θ = x. We

The subset U N (b) is diffeomorphic to W × I × S n-k-1 where I is an interval. We identify

x θ = (y θ , t θ , z θ )

where y θ ∈ W , t θ ∈ (-ln R 0 + ln ǫ, -ln ǫ + ln R 0 ), and z θ ∈ S n-k-1 . By taking a subsequence we can assume that y θ , t θ A θ , and z θ converge respectively to y ∈ W , T ∈ [-∞, +∞], and z ∈ S n-k-1 . First we apply Lemma 4.1 with V = W , α = θ, q α = y θ , q = y, γ α = ht θ , γ 0 = hT (we define h-∞ = h 1 and h+∞ = h 2 ), and We will now find the limit of Θ * θ (g θ ) in the C 2 topology. We define c := lim θ→0 f ′ (t θ ). Lemma 6.9. For fixed r, r ′ > 0 the sequence of metrics Θ * θ (g θ ) tends to G c = η k+1 c + σ n-k-1 = e 2cs ξ k + ds 2 + σ n-k-1 in C 2 (B k (r) × [-r ′ , r ′ ] × S n-k-1 ).

As this lemma coincides with [4, = 0.

We now write e 2f (t)h t = e 2f (t) ( htht θ ) + e 2f (t) e 2f (t θ ) e 2f (t θ )h t θ . Using the fact that lim θ→0 htht θ C 2 (B ht θ (y θ ,e -f (t θ ) r)) = 0 uniformly for t ∈ [t θ -r ′ , t θ -r ′ ] we get that the sequence e 2f (t) e 2f (t θ ) (Θ y θ ) * (e 2f (t θ )h t ) tends to e 2cs ξ k in C 2 (B k (r)) where again s = t -t θ ∈ [-r ′ , r ′ ]. Finally, proceeding exactly as we did to get Relation (54), we have that

lim θ→0 Θ * θ ( T t ) = 0 in C 2 (B k (r) × [-r ′ , r ′ ] × S n-k-1
). Going back to (57) this proves Lemma 6.9.

We continue with the proof of Subsubcase II.1.1. As in Subcases I.1 and I.2 we apply Lemma 4.2 with (V, g) = (R k+1 × S n-k-1 , G c ), α = θ, and g α = Θ * θ (g θ ) (we can apply this lemma since any compact subset of R k+1 × S n-k-1 is contained in some B k (r)×[-r ′ , r ′ ]×S n-k-1 ). We obtain a C 2 function u ≥ 0 which is a solution of L Gc u = μu p-1 on R k+1 × S n-k-1 . From ( 12) it follows that R k+1 ×S n-k-1 u p dv Gc ≤ 1.

From [START_REF] Cheeger | Finiteness theorems for Riemannian manifolds[END_REF] it follows that u ∈ L ∞ (R k+1 ×S n-k-1 ). With (56), we see that u(0) ≥ D 0 and thus, u ≡ 0. By (55), we also get that u ∈ L 2 (R k+1 ×S n-k-1 ). By the definition of Λ

n,k we have that μ ≥ Λ

n,k ≥ Λ n,k . This ends the proof of Theorem 6.1 in this subsubcase.

Subsubcase II.1.2. lim b→0 lim sup θ→0 sup U N (b) u θ = 0.

The proof in this subsubcase proceeds in several steps.

Step 1. We prove lim b→0 lim sup θ→0 U N (b) u p θ dv g θ = 0.

Let b > 0. Using (55) we have

U N (b) u p θ dv g θ ≤ A 0 sup U N (b) u p-2 θ
where the constant A 0 is independent of b and θ.

Step 1 follows.

Step 2. We show lim inf b→0 lim inf θ→0 U N (2b)\U N (b) u 2 θ dv g θ = 0. 
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  as lower bounds. Together these cases give the lower bound of Theorem 6.1.

n -k - 2 (

 2 |A(x)| gWS , |X(x)| gWS , |s(x)| gWS , |e( ht )(x)| gWS , |ǫ(x)| gWS ≤ c 0 on U N (θ)for small θ. These estimates allow us to apply Theorem 5.2. By the assumptions of Lemma 6.6, if r ∈ (0, b) is small enough, Assumption (18) of Theorem 5.2 is true. Thus, all hypotheses of Theorem 5.2 hold for α := -ln r + ln ǫ, β := ln r -ln ǫ, and hence Vol gα (F α ) + Vol g β (F β )) .

  ∞ (N ) > 0.Proof. We set m θ := u θ L ∞ (N ) and we choose x θ in N such that u θ (x θ ) = m θ . In order to prove the corollary by contradiction we assume lim θ→0 m θ = 0. Then since µ θ ≤ µ(S n ) the assumption of Lemma 6.6 is satisfied for all b > 0 for which U N (b) is defined. We get the contradiction(c 1 m 2 θ + c 2 ) → 0 as θ → 0. Corollary 6.8. μ = lim θ→0 µ θ > -∞.

×µ θ u p- 2 θ

 2 S n-k-1 . As in Subsubcase II.1.1, u ≡ 0, u ∈ L ∞ (H k+1 c × S n-k-1), andR k+1 ×S n-k-1 u p dv Gc ≤ 1.Moreover, the assumption of Subcase II.2 implies thatμu p-2 (0) = lim θ→0 (x ′′ θ ) ≥ (n -k -2) 2 (n -1) 8(n -2).

  Lemma 4.1] we only sketch the proof.Proof. The intermediate value theorem tells us that|f (t) -f (t θ ) -f ′ (t θ )(t -t θ )| ≤ r ′2 2 max s∈[t θ -r ′ ,t θ +r ′ ] |f ′′ (s)| for all t ∈ [t θ -r ′ , t θ + r ′ ].Because of (41) we also have f ′′ L ∞ → 0 for θ → 0, and hence lim′ (t θ )(t -t θ ) C 0 ([t θ -r ′ ,t θ +r ′ ]) = 0 for r ′ fixed. Further we have d dt f (t) -f (t θ ) -f ′ (t θ )(t -t θ ) = |f ′ (t) -f ′ (t θ )| [t θ -r ′ ,t θ +r ′ ] -f (t θ ) -f ′ (t θ )(t -t θ )) = |f ′′ (t)| → 0 as θ → 0. Together with c = lim θ→0 f ′ (t θ ) we have shown that lim θ→0 f (t) -f (t θ ) -c(t -t θ ) C 2 ([t θ -r ′ ,t θ +r ′ ]) = 0. (t)-f (t θ ) -e c(t-t θ )C 2 ([t θ -r ′ ,t θ +r ′ ])

	as θ → 0, and and finally d 2 dt 2 (f (t) Hence lim θ→0 e f	= ≤ r ′ → 0	t t θ	f ′′ (s) ds max	|f ′′ (s)|

θ→0 f (t) -f (t θ ) -f s∈

(n-k-2) 2 = γ 2 .
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Key words and phrases. Yamabe operator, Yamabe invariant, surgery, positive scalar curvature. n-2 θ g θ ) tends to ξ n = ξ k + ds 2 + ξ n-k-1 on B k (r) × [-r ′′ , r ′′ ] × B n-k-1 (r ′ ). We proceed as in Subcase I.1 to show that μ ≥ µ(S n ) ≥ min{µ, Λ n,k }, which proves Relation (50) in the present subcase. This ends the proof of Theorem 6.1 in Case I.

Case II. There exists a constant C 1 such that u θ L ∞ (N ) ≤ C 1 for all θ.

As in Case I we consider two subcases.

Subcase II.1. There exists b > 0 such that lim inf

By restricting to a subsequence we can assume that

for all θ. Lemma 6.6 tells us that there is a constant A 0 > 0 such that

We split the treatment of Subcase II.1. into two subsubcases.

Subsubcase II.1.1. lim sup b→0 lim sup θ→0 sup U N (b) u θ > 0.

We set D 0 := 1 2 lim sup b→0 lim sup θ→0 sup U N (b) u θ > 0. Then there are sequences (b i ) and (θ i ) of positive numbers converging to 0 such that sup

We prove this step by contradiction and assume that d 0 > 0. Then there exists δ > 0 such that for all b ∈ (0, δ],

For m ∈ N we set

In particular we have lim inf

for all m. Let N 0 ∈ N. For m = m ′ the sets V m and V m ′ are disjoint. Hence we can write

Since N 0 is arbitrary, this contradicts that (u θ ) is bounded in L 2 (N ) and proves

Step 2.

Step 3. Conclusion.

Let d 0 > 0. By Steps 1 and 2 we can find b > 0 such that after passing to a subsequence, we have for all θ close to 0

and

We will use the function χu θ to estimate µ. This function is supported in

Appendix A. Scalar curvature

In this section U denotes an open subset of a manifold and q ∈ U a fixed point.

Proposition A.1. Let g be a Riemannian metric on U and T a symmetric 2tensor such that g := g + T is also a Riemannian metric. Then the scalar curvature Scal g (q) of g in q ∈ U is a smooth function of the Riemann tensor R g (q) of g at q, T (q), ∇ g T (q), and (∇ g ) 2 T (q). Moreover, the operator T → Scal g+T (q) is a quasilinear partial differential operator of second order.

Proof. The proof is straightforward, we will just give a sketch using notation from [START_REF] Ammann | A spinorial analogue of Aubin's inequality[END_REF] which coincides with that of [START_REF]Introduction à l'analyse non-linéaire sur les variétés[END_REF]. We denote the components of the curvature tensors of g and g by

We work in normal coordinates for the metric g centered in q, indices of partial derivatives in coordinates are added and separated with , and covariant ones with respect to g separated with ;. In particular T = T ij dx i dx j ,

At the point q we have gkl,i = T kl;i . As explained in [START_REF] Ammann | A spinorial analogue of Aubin's inequality[END_REF]Formula (13)] we have

at the point q. Hence in that point,

In order to calculate the scalar curvature Scal g(q) of g in q we use the curvature formula as in [START_REF]Introduction à l'analyse non-linéaire sur les variétés[END_REF] and contract twice. We obtain Scal g (q) = gik gjm (g km,ij -gki,mj ) + P (g rm , gij,k ) (64

where P is a polynomial expression in g-1 and ∂g that is cubic in g-1 = grm and quadratic in gij,k . Note that formula (64) holds for an arbitrary metric in arbitrary coordinates. The polynomial P vanishes for T = 0 in normal coordinates for g.

a bounded set of curvature tensors. Then there is an ǫ > 0 and C ∈ R such that for all metrics g on U with

Appendix B. Details for equation [START_REF] Gromov | The classification of simply connected manifolds of positive scalar curvature[END_REF] We compute the scalar curvature of the metric dt 2 + e 2ϕ(t) h t on I × W . This is a generalized cylinder metric as studied in [START_REF] Bär | Generalized cylinders in semi-riemannian and spin geometry[END_REF]. In the following computations we use the notation from [START_REF] Bär | Generalized cylinders in semi-riemannian and spin geometry[END_REF], so g t = e 2ϕ(t) h t and we have ġt = 2ϕ ′ (t)e 2ϕ(t) h t + e 2ϕ(t) ∂ t h t , and gt = (2ϕ ′′ (t) + 4ϕ ′ (t) 2 )e 2ϕ(t) h t + 4ϕ ′ (t)e 2ϕ(t) ∂ t h t + e 2ϕ(t) ∂ 2 t h t . This implies that the shape operator S of the hypersurfaces of constant t is given by

, and

When we add the scalar curvature of σ n-k-1 we get Formula (16) for the scalar curvature of g WS = dt 2 + e 2ϕ(t) h t + σ n-k-1 .

Appendix C. A cut-off formula

Here we state a formula used several times in the article. Assume that u and χ are smooth functions on a Riemannian manifold (N, h), and that χ has compact support. Then