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SMOOTH YAMABE INVARIANT AND SURGERY

BERND AMMANN, MATTIAS DAHL, AND EMMANUEL HUMBERT

Abstract. We prove a surgery formula for the smooth Yamabe invariant σ(M)
of a compact manifold M . Assume that N is obtained from M by surgery of
codimension at least 3. We prove the existence of a positive number Λn,
depending only on the dimension n of M , such that

σ(N) ≥ min{σ(M), Λn}.
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1. Main Result

The smooth Yamabe invariant, also called Schoen’s σ-invariant, of a compact
manifold M is defined as

σ(M) := sup inf

∫

M

Scalg dvg,

where the supremum runs over all conformal classes [g0] on M and the infimum
runs over all metrics g of volume 1 in [g0]. The integral E(g) :=

∫
M

Scalg dvg is the
integral of the scalar curvature of g integrated with respect the volume element of
g and is known as the Einstein-Hilbert-functional.

Let n = dimM . We assume that N is obtained from M by surgery of codimen-
sion k ≥ 3. That is for a given embedding Sk →֒ M , with trivial normal bundle,
0 ≤ k ≤ n−3, we remove a tubular neighborhood of this embedding. The resulting
manifold has boundary Sk × Sn−k−1. This boundary is glued together with the
boundary of Bk+1 × Sn−k−1, and we thus obtain the closed smooth manifold

N := (M \ Uǫ(S
k)) ∪Sk×Sn−k−1 (Bk+1 × Sn−k−1).

Our main result is the existence of a positive constant Λn depending only on n
such that

σ(N) ≥ min{σ(M), Λn}.
This formula unifies and generalizes previous results by Gromov-Lawson, Schoen-
Yau, Kobayashi, Petean-Yun and allows many conclusions by using bordism theory.

In Section 2 we give a detailed description of the background of our result. The
construction of a generalization of surgery is recalled in Section 3. Then, in Section
4 the constant Λn is described and it is proven to be positive. After the proof
of some preliminary results on limit spaces in Section 5, we derive in Section 6 a
key estimate of this article, namely an estimate for the L2-norm of solutions of a
perturbed Yamabe equation on a special kind of sphere bundle, called WS-bundle.
The last section contains the proof of the main theorem, Theorem 2.3.

2. Background

We denote by Bn(r) the open ball of radius r around 0 in Rn and we set Bn :=
Bn(1). The unit sphere in Rn is denoted by Sn−1. By ξn we denote the standard
flat metric on Rn and by σn−1 the standard metric of constant sectional curvature
1 on Sn−1. We denote the Riemannian manifold (Sn−1, σn−1) by Sn−1.

Let (M, g) be a Riemannian manifold of dimension n. The Yamabe operator (or
Conformal Laplacian) acting on smooth functions on M is defined by

Lgu = a∆gu + Scalgu,

where a = 4(n−1)
n−2 . Let p = 2n

n−2 . Define the functional Jg acting on non-zero
compactly supported smooth functions on M by

Jg(u) :=

∫
M uLgu dvg

(∫
M

up dvg
) 2

p

. (1)

If g and g̃ = f
4

n−2 g = fp−2g are conformal metrics on M then the corresponding
Yamabe operators are related by

Lg̃u = f−n+2
n−2 Lg(fu) = f1−pLg(fu). (2)
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It follows that

J g̃(u) = Jg(fu). (3)

For a compact Riemannian manifold (M, g) the conformal Yamabe invariant is
defined by

µ(M, g) := inf Jg(u) ∈ R,

where the infimum is taken over all non-zero smooth functions u on M . The same
value of µ(M, g) is obtained by taking the infimum over positive smooth functions.
From (3) it follows that the invariant µ depends only on the conformal class [g] of
g, and the notation µ(M, [g]) = µ(M, g) is also used. For the standard sphere we
have

µ(Sn) = n(n − 1)ωn
2/n, (4)

where ωn denotes the volume of Sn. This value is a universal upper bound for µ.

Theorem 2.1 ([7, Lemma 3]). The inequality

µ(M, g) ≤ µ(Sn)

holds for any compact Riemannian manifold (M, g).

For u > 0 the Jg-functional is related to the Einstein-Hilbert-functional via

Jg(u) =
E(u4/(n−2)g)

Vol(M, u4/(n−2)g)
n−2

n

, ∀u ∈ C∞(M, R+),

and it follows that µ(M, g) has the alternative characterization

µ(M, g) = inf
g̃∈[g]

E(g̃)

Vol(M, g̃)
n−2

n

.

Critical points of the functional Jg are given by solutions of the Yamabe equation

Lgu = µ|u|p−2u

for some µ ∈ R.
If the inequality in Theorem 2.1 is satisfied strictly, i.e. if µ(M, g) < µ(Sn), then

the infimum in the definition of µ(M, g) is attained.

Theorem 2.2 ([35, 7]). Let M be connected. If µ(M, g) < µ(Sn) then there exists
a smooth positive function u with Jg(u) = µ and ‖u‖Lp = 1. This implies that u
solves (5) with µ = µ(M, g). The minimizer u is unique if µ ≤ 0.

The inequality µ(M, g) < µ(Sn) was shown by Aubin [7] and Schoen [30] for all
compact manifolds not conformal to the standard sphere. We thus have a solution
of

Lgu = µup−1, u > 0. (5)

To explain the geometric meaning of these results we recall a few facts about
the Yamabe problem, see for example [26] for a clear and detailed overview of this
material. For a given compact Riemannian manifold (M, g) the Yamabe problem
consists of finding a metric of constant scalar curvature in the conformal class of g.
The above results yield a minimizer u for Jg. Equation (5) is equivalent to the fact
that the scalar curvature of the metric u4/(n−2)g is everywhere equal to µ. Thus,
the above Theorem, together with µ(M, g) < µ(Sn), resolves the Yamabe problem.
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A conformal class [g] on M contains a metric of positive scalar curvature if and
only if µ(M, [g]) > 0. If M = M1 ∐ M2 is a disjoint union of M1 and M2 and if gi

is the restriction of g to Mi, then

µ(M, [g]) = min {µ(M1, [g1]), µ(M2, [g2])}
if µ(M1, [g1]) ≥ 0 or µ(M2, [g2]) ≥ 0, and otherwise

µ(M, [g]) = −
(
|µ(M1, [g1])|n/2 + |µ(M2, [g2])|n/2

)2/n

.

One now defines the smooth Yamabe invariant as

σ(M) := supµ(M, [g]) ≤ n(n − 1)ω2/n
n ,

where the supremum is taken over all conformal classes [g] on M .
The introduction of this invariant was originally motivated by Yamabe’s attempt

to find Einstein metrics on a given compact manifold, see [31]. Yamabe’s idea in the
early 1960’s was to search for a conformal class [gsup] that attains the supremum.
The minimizer g0 of E among all unit volume metrics in [gsup] exists according to
Theorem 2.2, and Yamabe hoped that the g0 obtained with this minimax procedure
would be a stationary point of E among all unit volume metrics (without fixed
conformal class), which is equivalent to g0 being an Einstein metric.

Yamabe’s approach was very ambitious. If M is a simply connected compact 3-
manifold, then an Einstein metric on M is necessarily a round metric on S3, hence
the 3-dimensional Poincaré conjecture would follow. As it turned out recently, this
idea is successful in some special cases. For example if M = Γ\H3 is a compact
quotient of 3-dimensional hyperbolic space H3, then Yamabe’s minimax procedure
actually yields the hyperbolic Einstein metric on M , i.e. the one with constant
sectional curvature −1, see [6]. In particular, σ(Γ\H3) = −6(vΓ)2/3 where vΓ is the
volume of Γ\H3 with respect to the hyperbolic metric.

On a general manifold, Yamabe’s approach failed for various reasons. In dimen-
sion 3 and 4 obstructions against the existence of Einstein metrics are known today,
see for example [23, 25]. In many cases the supremum is not attained.

R. Schoen and O. Kobayashi started to study the σ-invariant systematically in
the late 1980’s, [31, 32, 20, 21]. In particular, they determined σ(Sn−1 × S1) to

be σ(Sn) = n(n − 1)ω
2/n
n . On Sn−1 × S1 the supremum in the definition of σ is

not attained. In order to commemorate Schoen’s important contributions in these
articles, the σ-invariant is also often called Schoen’s σ-constant.

The smooth Yamabe invariant determines the existence of positive scalar cur-
vature metrics. Namely, it follows from above that the smooth Yamabe invariant
σ(M) is positive if and only if the manifold M admits a metric of positive scalar
curvature. Thus the value of σ(M) can be interpreted as a quantitative refinement
of the property of admitting a positive scalar curvature metric.

In general calculating σ is very difficult. As already explained above, there are 3-
manifolds with known negative σ-invariant, the same holds for some Kähler surfaces
calculated by LeBrun [23, Section 5]. There are many manifolds admitting a Ricci-
flat metric, but no metric of positive scalar curvature, for example tori, K3-surfaces
and compact connected 8-dimensional manifolds admitting metrics with holonomy
Spin(7). These conditions imply σ(M) = 0, and the supremum is attained.

Conversely, Bourguignon showed that if σ(M) = 0 and if the supremum is at-
tained by a conformal class [gsup], then E : [gsup] → R attains its minimum in a
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Ricci-flat metric g0 ∈ [gsup], thus Cheeger’s splitting principle implies restrictions
on M . In particular, a compact quotient Γ\N of a non-abelian nilpotent Lie group
N does not admit metrics of non-negative scalar curvature, but it admits a sequence
of metrics gi with µ(Γ\N, gi) → 0. Thus Γ\N is an example of a manifold for which
σ(Γ\N) = 0, but where the supremum is not attained.

Positive smooth Yamabe invariants are even harder to determine. It is con-
jectured [32, Page 10, lines 6–11] that all finite quotients of round spheres satisfy
σ(Sn/Γ) = (#Γ)−2/nY (Sn), but this conjecture is only verified for RP 3 [10], namely
σ(RP 3) = 6(ω3/2)2/3. The σ-invariant is also known for connected sums of RP 3:s
with S2 ×S1:s [3], for CP 2 [16] and for connected sums of CP 2 with several copies
of S3×S1. With similar methods, it can also be determined for some related mani-
folds, but even σ(S2 ×S2) is not known. To the knowledge of the authors there are
no manifolds M of dimension n ≥ 5 for which σ(M) ∈ (0, σ(Sn)) has been shown,
but due to Schoen’s conjecture finite quotients of spheres would be examples of
such manifolds.

As explicit calculation is difficult, it is natural to use surgery theory to get
estimates for more complicated examples. Several articles study the behavior of
the smooth Yamabe invariant under surgery. In [15] and [33] it is proven that
the existence of a positive scalar curvature metric is preserved under surgeries of
codimension at least 3. In terms of the σ-invariant this means that if N is obtained
from a compact manifold M by surgery of codimension at least 3 and σ(M) > 0,
then σ(N) > 0.

Later Kobayashi proved in [21] that if N is obtained from M by 0-dimensional
surgery, then σ(N) ≥ σ(M). A first consequence is an alternative deduction of
σ(Sn−1 × S1) = σ(Sn) using the fact that Sn−1 × S1 is obtained from Sn by 0-
dimensional surgery. More generally one sees that σ(Sn−1×S1# · · ·#Sn−1×S1) =
σ(Sn) as this connected sum is obtained from Sn by 0-dimensional surgeries as well.

Note that it follows from what we said above that the smooth Yamabe invariant
of disjoint unions M = M1 ∐ M2 satisfies

σ(M) = min {σ(M1), σ(M2)}

if σ(M1) ≥ 0 or σ(M2) ≥ 0, and otherwise

σ(M) = −
(
|σ(M1)|n/2 + |σ(M2)|n/2

)2/n

.

Kobayashi’s result then implies σ(M1#M2) ≥ σ(M1∐M2), and thus yields a lower
bound for σ(M1#M2) in terms of σ(M1) and σ(M2).

A similar monotonicity formula for the σ-invariant was proved by Petean and
Yun in [28]. They prove that σ(N) ≥ min{σ(M), 0} if N is obtained from M
by surgery of codimension at least 3. See also [24, Proposition 4.1], [1] for other
approaches to this result. Clearly, this surgery result is particularly interesting
in the case σ(M) ≤ 0, and it has several fruitful applications. In particular, any
simply connected compact manifold of dimension at least 5 has σ(M) ≥ 0, [27].
This result was generalized to manifolds with certain types of fundamental group
in [9].

In the present article we show a surgery formula that is stronger than the
Gromov-Lawson/Schoen-Yau surgery formula, the Kobayashi surgery formula and
the Petean-Yun surgery formula described above. Suppose that M1 and M2 are
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compact manifolds of dimension n and that W is a compact manifold of dimen-
sion k. Let embeddings W →֒ M1 and W →֒ M2 be given. We assume further
that the normal bundles of these embeddings are trivial. Removing tubular neigh-
borhoods of the images of W in M1 and M2, and gluing together these manifolds
along their common boundary, we get a new compact manifold N , the connected
sum of M1 and M2 along W . Strictly speaking N also depends on the choice of
trivialization of the normal bundle. See section 3 for more details.

Surgery is a special case of this construction: if M2 = Sn, W = Sk and if
Sk →֒ Sn is the standard embedding, then N is obtained from M1 via k-dimensional
surgery along Sk →֒ M1.

Theorem 2.3. Let M1 and M2 be compact manifolds of dimension n. If N is
obtained as a connected sum of M1 and M2 along a k-dimensional submanifold
where k ≤ n − 3, then

σ(N) ≥ min {σ(M1 ∐ M2), Λn,k}
where Λn,k is positive, and only depends on n and k. Furthermore Λn,0 = σ(Sn).

From Theorem 2.1 we know that σ(M) ≤ σ(Sn) and thus σ(M ∐ Sn) = σ(M)
for all compact M . Hence, we obtain for the special case of surgery the following
corollary.

Corollary 2.4. Let M be a compact manifold of dimension n. Assume that N is
obtained from M via surgery along a k-dimensional sphere W , k ≤ n− 3. We then
have

σ(N) ≥ min {σ(M), Λn,k}

This surgery result can be combined with standard techniques of bordism theory.
Such applications will be the subject of a sequel to this article, and we will only
give some typical conclusions as examples.

The first corollary uses the fact that spin bordism groups and oriented bordism
groups are finitely generated together with techniques developed for the proof of
the h-cobordism theorem.

Corollary 2.5. For any n ≥ 5 there is a constant Cn > 0, depending only on n,
such that

σ(M) ∈ {0} ∪ [Cn, σ(Sn)]

for any simply-connected compact manifold M of dimension n.

Setting σ̄(M) := min{σ(M), Λn,1, . . . , Λn,n−3} one sees that σ̄(M) is a bordism
invariant, where the precise meaning of the expression “bordism invariant depends
on some topological properties of the manifold M . For example σ̄(M) is a spin-
bordism invariant of simply connected spin manifolds of dimension ≥ 5. It is
an oriented bordism invariant of simply connected oriented non-spin manifolds of
dimension ≥ 5. Non-simply connected manifolds can be dealt with by considering
bordisms with maps to Bπ1(M).

The constants Λn,k will be characterized in section 4. In the case k = 0 we prove
that Λn,0 = µ(Sn) in Subsection 4.4. However an explicit calculation for k > 0 seems
very difficult. The main problem consists in calculating the conformal Yamabe
invariant of certain Riemannian products, which is in general a hard problem. See
[2] for recent progress on this problem.
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An analogous surgery formula holds if we replace the Conformal Laplacian by
the Dirac operator, see [4] for details and applications.

Acknowledgments. The authors want to thank the Max Planck Institute for
Gravitational Physics in Potsdam, Germany, for its hospitality, its support and its
friendly working conditions which had an important impact on this article.

3. The connected sum along a submanifold

In this section we are going to describe how two manifolds are joined along a
common submanifold with trivialized normal bundle. Strictly speaking this is a
differential topological construction, but since we work with Riemannian manifolds
we will make the construction adapted to the Riemannian metrics and use distance
neighborhoods defined by the metrics etc.

Let (M1, g1) and (M2, g2) be complete Riemannian manifolds of dimension n. Let
W be a compact manifold of dimension k, where 0 ≤ k ≤ n. Let w̄i : W ×R

n−k →
TMi, i = 1, 2, be smooth embeddings. We assume that w̄i restricted to W × {0}
maps to the zero section of TMi (which we identify with Mi) and thus gives an
embedding W → Mi. The image of this embedding is denoted by W ′

i . Further we
assume that w̄i restrict to linear isomorphisms {p} × Rn−k → Nw̄i(p,0)W

′
i for all

p ∈ Wi, where NW ′
i denotes the normal bundle of W ′

i defined using gi.
We set wi := expgi ◦w̄i. This gives embeddings wi : W × Bn−k(Rmax) → Mi for

some Rmax > 0 and i = 1, 2. We have W ′
i = wi(W ×{0}) and we define the disjoint

union

(M, g) := (M1 ∐ M2, g1 ∐ g2),

and

W ′ := W ′
1 ∐ W ′

2.

Let ri be the function on Mi giving the distance to W ′
i . Then r1 ◦ w1(p, x) =

r2 ◦w2(p, x) = |x| for p ∈ W , x ∈ Bn−k(Rmax). Let r be the function on M defined
by r(x) := ri(x) for x ∈ Mi, i = 1, 2. For 0 < ǫ we set Ui(ǫ) := {x ∈ Mi : ri(x) < ǫ}
and U(ǫ) := U1(ǫ) ∪ U2(ǫ). For 0 < ǫ < θ we define

Nǫ := (M1 \ U1(ǫ)) ∪ (M2 \ U2(ǫ))/∼,

and

UN
ǫ (θ) := (U(θ) \ U(ǫ))/∼

where ∼ indicates that we identify x ∈ ∂U1(ǫ) with w2 ◦ w−1
1 (x) ∈ ∂U2(ǫ). Hence

Nǫ = (M \ U(θ)) ∪ UN
ǫ (θ).

We say that Nǫ is obtained from M1, M2 (and w̄1, w̄2) by a connected sum along
W with parameter ǫ.

The diffeomorphism type of Nǫ is independent of ǫ, hence we will usually write
N = Nǫ. However, in situations when dropping the index causes ambiguities we
will keep the notation Nǫ. For example the function r : M → [0,∞) gives a
continuous function rǫ : Nǫ → [ǫ,∞) whose domain depends on ǫ. It is also going
to be important to keep track of the subscript ǫ on UN

ǫ (θ) since crucial estimates
on solutions of the Yamabe equation will be carried out on this set.

The surgery operation on a manifold is a special case of taking connected sum
along a submanifold. Indeed, let M be a compact manifold of dimension n and
let M1 = M , M2 = Sn, W = Sk. Let w1 : Sk × Bn−k → M be an embedding
defining a surgery and let w2 : Sk ×Bn−k → Sn be the standard embedding. Since
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Sn \ w2(S
k × Bn−k) is diffeomorphic to Bk+1 × Sn−k−1 we have in this situation

that N is obtained from M using surgery on w1, see [22, Section VI, 9].

4. The constants Λn,k

In Section 2 we defined the conformal Yamabe invariant only for compact man-
ifolds. There are several ways to generalize the conformal Yamabe invariant to
non-compact manifolds. In this section we define two such generalizations µ(1) and
µK , and also introduce a related quantity called µ(2). These invariants will be
needed to define the numbers Λn,k and to prove their positivity and to prove their
positivity on our model spaces H

k+1
c × S

n−k−1.
The definition of µ(2) comes from a technical difficulty in the proof of Theorem

7.1 and is only relevant in the case k = n − 3 ≥ 3, see Remark 4.4.

4.1. The manifolds Hk+1
c × Sn−k−1. For c ∈ R we define the metric ηk+1

c :=
e2ctξk + dt2 on R

k × R and we write

H
k+1
c := (Rk × R, ηk+1

c ).

We denote by

Gc := ηk+1
c + σn−k−1

the product metric on Hk+1
c × Sn−k−1. The scalar curvature of Hk+1

c × Sn−k−1 is

ScalGc = −k(k + 1)c2 + (n − k − 1)(n − k − 2).

Proposition 4.1. H
k+1
1 × Sn−k−1 is conformal to Sn \ Sk.

Proof. Let Sk be embedded in Sn ⊂ Rn+1 by setting the last n − k coordinates to
zero and let s := d(·, Sk) be the distance to Sk. Here the distance is meant as the
intrinsic distance in S

n. Then the function sin s is smooth and positive on Sn \Sk.
The points of maximal distance π/2 to Sk lie on an (n− k − 1)-sphere, denoted by
(Sk)⊥. On Sn \ (Sk ∪ (Sk)⊥) the round metric is

σn = (cos s)2σk + ds2 + (sin s)2σn−k−1.

Substitute s ∈ (0, π/2) by t ∈ (0,∞) such that sinh t = cot s. Then cosh t =
(sin s)−1 and cosh t dt = −(sin s)−2 ds, so σn is conformal to

(sin s)−2σn = (sinh t)2σk + dt2 + σn−k−1.

Here we see that the first two terms give a metric

(sinh t)2σk + dt2

on Sk × (0,∞). This is just the standard metric on H
k+1
1 \ {p0} where t = d(·, p0),

written in polar normal coordinates. In the case k ≥ 1 it is evident that the
conformal diffeomorphism Sn \ (Sk ∪ (Sk)⊥) → (Hk+1

1 \ {p0}) × Sn−k−1 extends to

a conformal diffeomorphism Sn \ Sk → H
k+1
1 × Sn−k−1.

In the case k = 0 we equip s and t with a sign, that is we let s > 0 and t > 0
on one of the components of S

n \ (S0 ∪ (S0)⊥), and s < 0 and t < 0 on the other
component. The functions s and t are then smooth on Sn \ S0 and take values
s ∈ (−π/2, π/2) and t ∈ R. Then the argument is the same as above. �
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4.2. Definition of Λn,k. Let (N, h) be a Riemannian manifold of dimension n.

For i = 1, 2 we let Ω(i)(N, h) be the set of non-negative C2 functions u which solve
the Yamabe equation

Lhu = µup−1 (6)

for some µ = µ(u) ∈ R and satisfy

• u 6≡ 0,
• ‖u‖Lp(N) ≤ 1,
• u ∈ L∞(N),

together with

• u ∈ L2(N), for i = 1,

or

• µ(u)‖u‖p−2
L∞(N) ≥

(n−k−2)2(n−1)
8(n−2) , for i = 2.

For i = 1, 2 we set

µ(i)(N, h) := inf
u∈Ω(i)(N,h)

µ(u).

In particular, if Ω(i)(N, h) is empty then µ(i)(N, h) = ∞.

Definition 4.2. For integers n ≥ 3 and 0 ≤ k ≤ n − 3 let

Λ
(i)
n,k := inf

c∈[−1,1]
µ(i)(Hk+1

c × S
n−k−1)

and

Λn,k := min
{
Λ

(1)
n,k, Λ

(2)
n,k

}
.

Note that the infimum could just as well be taken over c ∈ [0, 1] since Hk+1
c ×

Sn−k−1 and H
k+1
−c ×Sn−k−1 are isometric. We are going to prove that these constants

are positive.

Theorem 4.3. For all n ≥ 3 and 0 ≤ k ≤ n − 3, we have Λn,k > 0.

To prove Theorem 4.3 we have to prove that Λ
(1)
n,k > 0 and that Λ

(2)
n,k > 0. This

is the object of the following two subsections. In the final subsection we prove that

Λn,0 = µ(Sn) = n(n − 1)ω
2/n
n .

Remark 4.4. Suppose that either k ≤ n − 4 or k = n − 3 ≤ 2. With similar
methods as in Section 6 one can show that under these dimension restrictions any

Lp solution of (6) on the model spaces is also L2. This implies that Λ
(2)
n,k ≥ Λ

(1)
n,k in

these dimensions, and hence

Λn,k = Λ
(1)
n,k.

In the case k = n − 3 ≥ 4 there are Lp-solutions of (6) on H
k+1
1 × Sn−k−1 which

are not L2.

4.3. Proof of Λ
(1)
n,k > 0. The proof proceeds in several steps. We first introduce

a conformal Yamabe invariant for non-compact manifolds and show that it gives a
lower bound for µ(1). We will conclude by studying this conformal invariant.

Let (N, h) be a Riemannian manifold which is not necessarily compact or com-
plete. We define the conformal Yamabe invariant µK of (N, h) following Kim [19]
as

µK(N, h) := inf Jh(u)
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where Jh is defined in (1) and the infimum runs over all non-zero compactly sup-

ported smooth functions u on N . If h and h̃ are conformal metrics on N it follows
from (3) that µK(N, h) = µK(N, h̃).

Lemma 4.5. Let 0 ≤ k ≤ n − 3. Then

µ(1)(Hk+1
c × S

n−k−1) ≥ µK(Hk+1
c × S

n−k−1)

for all c ∈ R.

Proof. Suppose that u ∈ Ω(1)(Hk+1
c ×S

n−k−1) is a solution of (6) on H
k+1
c ×S

n−k−1

with µ = µ(u) close to µ(1)(Hk+1
c × Sn−k−1). Let χα be a cut-off function on

Hk+1
c ×Sn−k−1 depending only on the distance r to a fixed point, such that χα(r) =

1 for r ≤ α, χα(r) = 0 for r ≥ α + 2, and |dχα| ≤ 1. We are going to see that

lim
α→∞

JGc(χαu) = µ‖u‖p−2

Lp(Hk+1
c ×Sn−k−1)

≤ µ. (7)

Integrating by parts and using Equation (6) we get
∫

H
k+1
c ×Sn−k−1

(χαu)LGc(χαu) dvGc =

∫

H
k+1
c ×Sn−k−1

χ2
αuLGcu dvGc

+ a

∫

H
k+1
c ×Sn−k−1

|dχα|2u2 dvGc

= µ

∫

H
k+1
c ×Sn−k−1

χ2
αup dvGc

+ a

∫

Supp(dχα)

|dχα|2u2 dvGc .

Since u ∈ L2(Hk+1
c ×Sn−k−1) and |dχα| ≤ 1 the last integral goes to zero as α → ∞

and we conclude that

lim
α→∞

∫

H
k+1
c ×Sn−k−1

(χαu)LGc(χαu) dvGc = µ‖u‖p

Lp(Hk+1
c ×Sn−k−1)

.

Going back to the definition of JGc we easily get (7) and Lemma 4.5 follows. �

We define

ΛK
n,k := inf

c∈[−1,1]
µK(Hk+1

c × S
n−k−1).

Then Lemma 4.5 tells us that Λ
(1)
n,k ≥ ΛK

n,k, so we are done if we prove that ΛK
n,k > 0.

To do this we need two lemmas.

Lemma 4.6. Let 0 ≤ k ≤ n − 3. Then

µK(Hk+1
1 × S

n−k−1) = µ(Sn).

Proof. The inequality µK(Hk+1
1 × Sn−k−1) ≤ µ(Sn) is completely analogous to [7,

Lemma 3]. As we do not need this inequality later, we skip the proof. The opposite

inequality µK(Hk+1
1 × Sn−k−1) ≥ µ(Sn) can either be derived from results in [19]

or proven directly with the following simple cut-off argument.
Proposition 4.1 together with the conformal invariance of µK tells us that

µK(Hk+1
1 × S

n−k−1) = µK(Sn \ S
k).
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Now, if u is compactly supported in Sn\Sk, then u can be seen as a smooth function
on Sn. Let ǫ be a small positive number and choose u such that

∫
Sn\Sk uLσn

u dvσn

‖u‖2
Lp(Sn\Sk)

≤ µK(Sn \ S
k) + ǫ.

Then, by definition of µ(Sn), we have

µ(Sn) ≤
∫

Sn uLσn

u dvσn

‖u‖2
Lp(Sn)

=

∫
Sn\Sk uLσn

u dvσn

‖u‖2
Lp(Sn\Sk)

≤ µK(Sn \ S
k) + ǫ

= µK(Hk+1
1 × S

n−k−1) + ǫ.

Lemma 4.6 follows since we can take ǫ to be arbitrarily small. �

Lemma 4.7. Let 0 ≤ k ≤ n − 2 and 0 < c0 ≤ c1. Then

µK(Hk+1
c0

× S
n−k−1) ≥

(
c0

c1

) 2(n−k−1)
n

µK(Hk+1
c1

× S
n−k−1).

Proof. Let c > 0. Setting s = ct + ln c we see that

Gc = e2ctξk + dt2 + σn−k−1 =
1

c2

(
e2sξk + ds2

)
+ σn−k−1.

Hence Gc is conformal to the metric

G̃c := e2sξk + ds2 + c2σn−k−1

and by the conformal invariance of µK we get that

µK(Hk+1
ci

× S
n−k−1) = µK(Rk × R × Sn−k−1, G̃ci

)

for i = 0, 1. In these coordinates we easily compute that ScalG̃c0 ≥ ScalG̃c1 ,

|du|2
G̃′

c0

≥ |du|2
G̃c1

, and dvG̃c0 =
(

c0

c1

)n−k−1

dvG̃c1 . We conclude that

J G̃c0 (u) ≥
(

c0

c1

) 2(n−k−1)
n

J G̃c1 (u)

for all functions u on Rk × R × Sn−k−1 and Lemma 4.7 follows. �

If we set c1 = 1 and use Lemma 4.6 together with (4) we get the following result.

Corollary 4.8. For c0 > 0 we have

inf
c∈[c0,1]

µK(Hk+1
c × S

n−k−1) ≥ n(n − 1)ωn
2/nc0

4
n .

Finally, we are ready to prove that ΛK
n,k is positive.

Theorem 4.9. Let 0 ≤ k ≤ n − 3. Then ΛK
n,k > 0.
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Proof. Choose c0 > 0 small enough so that ScalGc0 > 0. We then have ScalGc ≥
ScalGc0 for all c ∈ [0, c0]. Hence

µK(Hk+1
c × S

n−k−1) ≥ inf

∫
H

k+1
c ×Sn−k−1

(
a|du|2Gc

+ ScalGc0u2
)

dvGc

‖u‖2
Lp(Hk+1

c ×Sn−k−1)

.

By Hebey [17, Theorem 4.6, page 64], there exists a constant A > 0 such that
for all c ∈ [0, c0] and all smooth non-zero functions u compactly supported in
Hk+1

c × Sn−k−1 we have

‖u‖2
Lp(Hk+1

c ×Sn−k−1)
≤ A

∫

H
k+1
c ×Sn−k−1

(
|du|2Gc

+ u2
)

dvGc .

This implies that

µK(Hk+1
c × S

n−k−1) ≥ 1

A
min

{
a, ScalGc0

}
> 0

for all c ∈ [0, c0], and together with Lemma 4.7 we obtain that

inf
c∈[0,1]

µK(Hk+1
c × S

n−k−1) > 0.

Since Hk+1
c × Sn−k−1 and H

k+1
−c × Sn−k−1 are isometric we have

ΛK
n,k = inf

c∈[−1,1]
µK(Hk+1

c × S
n−k−1) > 0.

This ends the proof of Theorem 4.9. �

As an immediate consequence we obtain that Λ
(1)
n,k is positive.

Corollary 4.10. Let 0 ≤ k ≤ n − 3. Then Λ
(1)
n,k > 0.

4.4. Proof of Λ
(2)
n,k > 0.

Theorem 4.11. Let 0 ≤ k ≤ n − 3. Then Λ
(2)
n,k > 0.

Proof. We prove this by contradiction. Assume that there exists a sequence (ci) of
ci ∈ [−1, 1] for which µi := µ(2)(Hk+1

ci
× Sn−k−1) tends to a limit l ≤ 0 as i → ∞.

After removing the indices i for which µi is infinite we get for every i a solution
ui ∈ Ω2(Hk+1

ci
× Sn−k−1) of the equation

LGci ui = µiu
p−1
i .

By definition of Ω(2)(Hk+1
ci

× S
n−k−1) we have

(n − k − 2)2(n − 1)

8(n − 2)
≤ µi‖ui‖p−2

L∞ , (8)

which implies that µi > 0. We conclude that l := limi µi = 0. We cannot assume
that ‖ui‖L∞ is attained but we can choose points xi ∈ Hk+1

ci
× Sn−k−1 such that

ui(xi) ≥ 1
2‖ui‖L∞ . Moreover, we can compose the functions ui with isometries so

that all the xi are the same point x. From (8) we get

1

2

(
(n − k − 2)2(n − 1)

8(n − 2)µi

) 1
p−2

≤ ui(x).

We define mi := ui(x). Since limi→∞ µi = 0 we have limi→∞ mi = ∞. Restricting
to a subsequence we can assume that c := limi ci ∈ [−1, 1] exists. Define g̃i :=
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m
4

n−2

i Gci
. We apply Lemma 5.1 with α = 1/i, (V, γα) = Hk+1

ci
× Sn−k−1, (V, γ0) =

Hk+1
c ×Sn−k−1, qα = xi = x, and bα = m

2
n−2

i . For r > 0 we obtain a diffeomorphism

Θi : Bn(r) → BGci (x, m
− 2

n−2

i r)

such that Θ∗
i (g̃i) tends to the flat metric ξn on Bn(r). We let ũi := m−1

i ui. By (2)
we then have

Lg̃i ũi = µiũ
p−1
i

on BGci (xi, m
− 2

n−2

i r) and
∫

BGci (xi,m
−

2
n−2

i r)

ũp
i dvg̃i =

∫

BGci (xi,m
−

2
n−2

i r)

up
i dvGci

≤
∫

N

up
i dvGci

≤ 1.

Here we used dvg̃i = mp
i dvGci . The last inequality comes from the fact that any

function in Ω(2)(Hk+1
ci

× Sn−k−1) has Lp-norm smaller than 1. Since

Θi : (Bn(r), Θ∗
i (g̃i)) → (BGci (x, m

− 2
n−2

i r), g̃i)

is an isometry we can consider ũi as a solution of

LΘ∗

i (g̃i)ũi = µiũ
p−1
i

on Bn(r) with
∫

Bn(r) ũp
i dvΘ∗

i (g̃i) ≤ 1. Since ‖ũi‖L∞(Bn(r)) = |ũi(0)| = 1 we can

apply Lemma 5.2 with V = Rn, α = 1/i, gα = Θ∗
i (g̃i), and uα = ũi (we can apply

this lemma since each compact set of Rn is contained in some ball Bn(r)). This
shows that there exists a non-negative function u 6≡ 0 (since u(0) = 1) of class C2

on (Rn, ξn) satisfying

Lξn

u = a∆ξn

u = µ̄up−1

where µ̄ = 0. By (12) we further have
∫

Bn(r)

up dvξn

= lim
i→0

∫

BGci (x,m
−

2
n−2

i r)

up
i dvGci ≤ 1

for any r > 0. In particular, ∫

Rn

up dvξn ≤ 1.

Lemma 5.3 below then implies the contradiction 0 = µ̄ ≥ µ(Sn). This proves that

Λ
(2)
n,k is positive. �

4.5. The constant Λn,0. Now we show that Λn,0 = µ(Sn) = n(n − 1)ω
2/n
n . The

corresponding model spaces H1
c × Sn−1 carry the standard product metric dt2 +

σn−1 of R × Sn−1, independently of c ∈ [−1, 1]. Thus Λ
(i)
n,0 = µ(i)(R × Sn−1).

Proposition 4.1 yields a conformal diffeomorphism from the cylinder R × Sn−1 to
Sn \ S0, the n-sphere with North and South pole removed.

Lemma 4.12.

Λ
(i)
n,0 ≤ µ(Sn) = n(n − 1)ω2/n

n

for i = 1, 2.
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Proof. We use the notation of Proposition 4.1 with k = 0. Then the standard
metric on Sn is

σn = (sin s)2(dt2 + σn−1) = (cosh t)−2(dt2 + σn−1).

It follows that (ωn)−2/n(cosh t)−2(dt2+σn−1) is a (non-complete) metric of volume 1
and scalar curvature n(n − 1)ω2/n = µ(Sn) on H1

c × Sn−1 = R × Sn−1. This is
equivalent to saying that

u(t) := ω
−n−2

2n
n (cosh t)−

n−2
2

is a solution of (6) with µ = µ(Sn) and ‖u‖Lp = 1 on H1
c × Sn−1. Obviously

u ∈ L2, and ‖u‖L∞ = ω
−n−2

2n
n < ∞. Thus u ∈ Ω(1)(H1

c × Sn−1). This implies

Λ
(1)
n,0 ≤ n(n − 1)ω

2/n
n .

Further, we have

µ(Sn)‖u‖p−2
L∞ = n(n − 1) >

(n − 0 − 2)2(n − 1)

8(n − 2)

and thus u ∈ Ω(2)(H1
c × Sn−1) which implies Λ

(2)
n,0 ≤ n(n − 1)ω

2/n
n . �

Lemma 4.13. Let u ∈ C2(R×Sn−1) be a solution of (6) on R×Sn−1 with ‖u‖Lp ≤
1, u 6≡ 0. Then µ ≥ µ(Sn).

Proof. As above σn = (sin s)2(dt2 + σn−1). If u solves (6) for h = dt2 + σn−1 then

ũ := (sin s)−
n−2

2 u solves

Lσn

ũ = µũp−1.

Further ũp dvσn

= up dvh, hence ν := ‖ũ‖Lp(Sn\S0,σn) ≤ 1. For α > 0 we choose

a smooth cut-off function χα : Sn → [0, 1] that is 1 on Sn \ Uα(S0), with support
disjoint from S0, and with |dχ|σn ≤ 2/α. Then using (65) we see that

∫

Sn

(χαũ)Lσn

(χαũ) dvσn

= µ

∫

Sn

upχ2
α dvσn

+ a

∫

Sn

|dχ|2σn ũ2 dvσn

.

The first summand tends to µνp as α → 0. By Hölder’s inequality the second
summand is bounded by

4a

α2
‖ũ‖2

Lp(Uα(S0)\S0,σn)Vol(Uα(S0) \ S0, σn)2/n ≤ C‖ũ‖2
Lp(Uα(S0)\S0,σn) → 0

as α → 0. Together with limα→0 ‖χαũ‖Lp(Sn\S0,σn) = ν we obtain

µ(Sn) ≤ Jσn

(χαũ) → µνp−2 ≤ µ

as α → 0. �

This lemma obviously implies Λ
(i)
n,0 ≥ µ(Sn) for i = 1, 2, and thus we have

Λn,0 = Λ
(1)
n,0 = Λ

(2)
n,0 = µ(Sn).
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5. Limit spaces and limit solutions

In the proofs of the main theorems we will construct limit solutions of the Yamabe
equation on certain limit spaces. For this we need the following two lemmas.

Lemma 5.1. Let V be an n-dimensional manifold. Let (qα) be a sequence of
points in V which converges to a point q as α → 0. Let (γα) be a sequence of
metrics defined on a neighborhood O of q which converges to a metric γ0 in the
C2(O)-topology. Finally, let (bα) be a sequence of positive real numbers such that
limα→0 bα = ∞. Then for r > 0 there exists for α small enough a diffeomorphism

Θα : Bn(r) → Bγα(qα, b−1
α r)

with Θα(0) = qα such that the metric Θ∗
α(b2

αγα) tends to the flat metric ξn in
C2(Bn(r)).

Proof. Denote by expγα
qα

: Uα → Oα the exponential map at the point qα defined
with respect to the metric γα. Here Oα is a neighborhood of qα in V and Uα is a
neighborhood of the origin in Rn. We set

Θα : Bn(r) ∋ x 7→ expγα
qα

(b−1
α x) ∈ Bγα(qα, b−1

α r).

It is easily checked that Θα is the desired diffeomorphism. �

Lemma 5.2. Let V be an n-dimensional manifold. Let (gα) be a sequence of
metrics which converges to a metric g in C2 on all compact sets K ⊂ V as α → 0.
Assume that (Uα) is an increasing sequence of subdomains of V such that

⋃
α Uα =

V . Let uα ∈ C2(Uα) be a sequence of positive functions such that ‖uα‖L∞(Uα) is
bounded independently of α. We assume

Lgαuα = µαup−1
α (9)

where the µα are numbers tending to µ̄. Then there exists a non-negative function
u ∈ C2(V ), satisfying

Lgu = µ̄up−1 (10)

on V and a subsequence of uα which tends to u in C1 on each open set Ω ⊂ V with
compact closure. In particular

‖u‖L∞(K) = lim
α→0

‖uα‖L∞(K), (11)

and ∫

K

ur dvg = lim
α→0

∫

K

ur
α dvgα (12)

for any compact set K and any r ≥ 1.

Proof. Let K be a compact subset of V and let Ω be an open set with smooth
boundary and compact closure in V such that K ⊂ Ω. From equation (9) and the
boundedness of ‖uα‖∞ we see with standard results on ellitpic regularity (see e.g.
[12]) that (uα) is bounded in the Sobolev space H2,2n(Ω, g), i.e. all derivatives of
uα|Ω up to second order are bounded in L2n(Ω)). As this Sobolev space embeds
compactly into C1(Ω), a subsequence of (uα) converges in C1(Ω) to a function
uΩ ∈ C1(Ω), uΩ ≥ 0, depending on Ω. Let ϕ ∈ C∞(Ω) be compactly supported
in Ω. Multiplying Equation (9) by ϕ and integrating over Ω, we obtain that uΩ

satisfies Equation (10) weakly on Ω. By standard regularity results uΩ ∈ C2(Ω)
and satisfies Equation (10).
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Now we choose an increasing sequence of compact sets Km such that
⋃

m Km =
V . Using the above arguments and taking successive subsequences it follows that
(uα) converges to functions um ∈ C2(Km) which solve Equation (10) and satisfy
um ≥ 0 and um|Km−1 = um−1. We define u on V by u = um on Km. By taking

a diagonal subsequence of (uα) we get that (uα) tends to u in C1 on any compact
set K ⊂ V . This ends the proof of Lemma 5.2. �

Lemma 5.2 will be applied several times in the article, in most applications the
limit space R

n will be obtained. In this situation, the following lemma will be
helpful.

Lemma 5.3. Let ξn be the standard flat metric on Rn and assume that u ∈ C2(Rn),
u ≥ 0, u 6≡ 0 satisfies

Lξn

u = µup−1 (13)

for some µ ∈ R. Assume in addition that u ∈ Lp(Rn) and that

‖u‖Lp(Rn) ≤ 1.

Then µ ≥ µ(Sn).

Proof. The map ϕ : R × Sn−1 → Rn \ {0}, ϕ(t, x) = etx, is a conformal diffeomor-
phism with

dt2 + σn−1 = e−2tϕ∗ξn.

Thus if u is a solution of (13), then û := e(n−2)t/2u◦ϕ is a solution of Ldt2+σn−1

û =
µûp−1 and ‖û‖Lp(R×Sn−1) = ‖u‖Lp(Rn) ≤ 1. The lemma now follows from Lemma
4.13. �

6. L2-estimates on WS-bundles

Manifolds with a certain structure of a double bundle will appear in the proofs of
our main results. We have chosen to call manifolds of this type WS-bundles. In this
section we assume that a solution of the Yamabe equation (or a perturbed Yamabe
equation) is given on a WS-bundle. We derive L2-estimates for such solutions.

6.1. Definition and statement of the result. Let n ≥ 1 and 0 ≤ k ≤ n − 3 be
integers. Let W be a closed manifold of dimension k and let I be an interval. By
a WS-bundle we will mean the product P := I × W × Sn−k−1 equipped with a
metric of the form

gWS = dt2 + e2ϕ(t)ht + σn−k−1 (14)

where ht is a smooth family of metrics on W depending on t ∈ I and ϕ is a function
on I. Let π : P → I be the projection onto the first factor and let Ft := π−1(t) =
{t} × W × Sn−k−1. The metric induced on Ft is gt := e2ϕ(t)ht + σn−k−1. Let Ht

be the mean curvature of Ft in P , that is Ht∂t is the mean curvature vector of Ft.
The mean curvature is given by the following formula

Ht = − k

n − 1
ϕ′(t) + e(ht) (15)

with e(ht) := 1
2 trht

(∂tht). Obviously, e(ht) = 0 if t 7→ ht is constant. The derivative
of the volume element dvgt of Ft is then

∂tdvgt = −(n − 1)Htdvgt .
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It is straightforward to check that the scalar curvatures of gWS and ht are related
by (see Appendix B for details)

ScalgWS = e−2ϕ(t)Scalht + (n − k − 1)(n − k − 2)

− k(k + 1)ϕ′(t)2 − 2kϕ′′(t) − (k + 1)ϕ′(t)tr(h−1
t ∂tht)

+
3

4
tr((h−1

t ∂tht)
2) − 1

4
tr(h−1

t ∂tht)
2 − trht

(∂2
t ht).

(16)

Definition 6.1. We say that condition (At) holds if the following assumptions are
true:

(1) t 7→ ht is constant,

(2) e−2ϕ(t) infx∈W Scalht(x) ≥ −n−k−2
32 a,

(3) |ϕ′(t)| ≤ 1,
(4) 0 ≤ −2kϕ′′(t) ≤ 1

2 (n − 1)(n − k − 2)2.

(At)

Similarly we say that (Bt) holds if the following assumptions are true:

(1) t 7→ ϕ(t) is constant,

(2) infx∈Ft
ScalgWS(x) ≥ 1

2Scalσ
n−k−1

= 1
2 (n − k − 1)(n − k − 2),

(3) (n−1)2

2 e(ht)
2 − n−1

2 ∂te(ht) ≥ − 3
64 (n − k − 2).

(Bt)

Let P be WS-bundle equipped with a metric G which is close to gWS in a sense
to be made precise later. Let α, β ∈ R be such that [α, β] ⊂ I. Our goal in
the following is to derive an estimate for the distribution of L2-norm of a positive
solution to the Yamabe equation

LGu = µup−1.

If we write this equation in terms of the metric gWS we get a perturbed version of
the Yamabe equation for gWS. We assume that we have a smooth positive solution
u of the equation

LgWSu = a∆gWSu + ScalgWSu = µup−1 + d∗A(du) + Xu + ǫ∂tu − su (17)

where s, ǫ ∈ C∞(P ), A ∈ End(T ∗P ), and X ∈ Γ(TP ) are perturbation terms
coming from the difference between G and gWS. We assume that the endomorphism
A is symmetric and that X and A are vertical, that is dt(X) = 0 and A(dt) = 0.

Theorem 6.2. Assume that P carries a metric gWS of the form (14). Let α, β ∈ R

be such that [α, β] ⊂ I. Assume further that for each t ∈ I either condition (At)
or condition (Bt) is true. We also assume that u is a positive solution of (17)
satisfying

µ‖u‖p−2
L∞(P ) ≤

(n − k − 2)2(n − 1)

8(n − 2)
. (18)

Then there exists c0 > 0 independent of α, β, and ϕ, such that if

‖A‖L∞(P ), ‖X‖L∞(P ), ‖s‖L∞(P ), ‖ǫ‖L∞(P ), ‖e(ht)‖L∞(P ) ≤ c0

then ∫

π−1((α+γ,β−γ))

u2 dvgWS ≤ 4‖u‖2
L∞

n − k − 2
(Volgα(Fα) + Volgβ (Fβ)) ,

where γ :=
√

32
n−k−2 .

Note that this theorem only gives information when β − α > 2γ.
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6.2. Proof of Theorem 6.2. Before proving the theorem we prove the following
lemma.

Lemma 6.3. Suppose T is a positive number. Let w : [−T − γ, T + γ] → R be a
smooth positive function satisfying

w′′(t) ≥ w(t)

γ2
. (19)

Then ∫ T

−T

w(t)m dt ≤ γ

m
(w(T + γ)m + w(−T − γ)m) (20)

for all m ≥ 1.

Proof. Since w′′ ≥ w/γ2 > 0 there exists a t0 ∈ [−T − γ, T + γ] such that w′(t) > 0
if t ∈ (t0, T + γ), and w′(t) < 0 if t ∈ (−T − γ, t0). We first study the case when
t0 ∈ (−T, T ). We define W (t) := w(t)+ γw′(t). As w and w′ are increasing we get

W (T ) = w(T ) +

∫ T+γ

T

w′(T ) dt

≤ w(T ) +

∫ T+γ

T

w′(t) dt

= w(T + γ).

(21)

From (19) we see that W ′(t) ≥ W (t)/γ, or ∂t lnW (t) ≥ 1/γ. Integrating this
relation between t ∈ (t0, T ) and T we get

W (t) ≤ e−
T−t

γ W (T ).

Using that w ≤ W on (t0, T ) together with (21) we obtain

w(t) ≤ W (t) ≤ e−
T−t

γ w(T + γ),

and hence

w(t)m ≤ e−m T−t
γ w(T + γ)m

for all t ∈ [t0, T ] and m ≥ 1. Integrating this relation over t ∈ [t0, T ] we get

∫ T

t0

w(t)m dt ≤ γ(1 − e−m
T−t0

γ )

m
w(T + γ)m ≤ γ

m
w(T + γ)m. (22)

Similarly we conclude that
∫ t0

−T

w(t)m dt ≤ γ

m
w(−T − γ)m. (23)

This proves relation (20) in this case. In the case that t0 ≤ −T relation (22) remains
valid. Using ∫ T

−T

w(t)m dt ≤
∫ T

t0

w(t)m dt

and

w(T + γ)m ≤ w(T + γ)m + w(−T − γ)m,

we obtain relation (20). We proceed in a similar way using (23) in case t0 ≥ T .
This ends the proof of Lemma 6.3. �
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Proof of Theorem 6.2. The Laplacian ∆gWS on P is related to the Laplacian ∆gt

on Ft through the formula

∆gWS = ∆gt − ∂2
t + (n − 1)Ht∂t,

so ∫

Ft

u∆gWSu dvgt =

∫

Ft

(
u∆gtu − u(∂2

t u) + (n − 1)Htu(∂tu)
)

dvgt

=

∫

Ft

(
|dvertu|2 − u(∂2

t u) + (n − 1)Htu(∂tu)
)

dvgt .

Together with (17) we get

a

∫

Ft

u∂2
t u dvgt =

∫

Ft

(
a|dvertu|2 + a(n − 1)Htu∂tu

− 〈dvertu, A(dvertu)〉 − uXu− ǫu∂tu

+ (ScalgWS + s)u2 − µup
)

dvgt .

In the following we denote by δ(c0) a positive constant which goes to 0 if c0 tends to
0 and whose convergence depends only on n, µ, and h. We set St := infFt

ScalgWS .
If we use the inequality 2

∫
|ab| ≤

∫
(a2 + b2) to simplify the terms involving X and

ǫ we obtain

a

∫

Ft

u∂2
t u dvgt ≥

∫

Ft

(
(a − δ(c0))|dvertu|2 + a(n − 1)Htu∂tu

− δ(c0)(∂tu)2 + (St − δ(c0))u
2 − µup

)
dvgt .

If c0 is small enough so that a − δ(c0) > 0 we conclude that

a

∫

Ft

(
u∂2

t u − (n − 1)Htu(∂tu)
)

dvgt ≥ (St − δ(c0))w(t)2

−
∫

Ft

(
δ(c0)(∂tu)2 + µup

)
dvgt .

(24)

We define

w(t) := ‖u‖L2(Ft) =

(∫

Ft

u2 dvgt

)1/2

.

Differentiating this we get

2w′(t)w(t) = ∂t

∫

Ft

u2 dvgt

=

∫

Ft

(
2u(∂tu) − (n − 1)Htu

2
)

dvgt .

(25)

We now assume that (At) holds. Then (15) tells us that

Ht = − k

n − 1
ϕ′(t),

so (25) becomes

w′(t)w(t) =

∫

Ft

u(∂tu) dvgt +
k

2
ϕ′(t)w(t)2. (26)
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We differentiate this and obtain

w′(t)2 + w′′(t)w(t) =

∫

Ft

(∂tu)2 dvgt

+

∫

Ft

(
u∂2

t u − (n − 1)Htu∂tu
)

dvgt

+
k

2
ϕ′′(t)w(t)2 + kϕ′(t)w′(t)w(t).

From (24) we get

w′(t)2 + w′′(t)w(t) ≥
(

1 − δ(c0)

a

)∫

Ft

(∂tu)2 dvgt

+

(
1

a
(St − δ(c0)) +

k

2
ϕ′′(t)

)
w(t)2

− 1

a

∫

Ft

µup dvgt + kϕ′(t)w′(t)w(t).

(27)

We now use (26) to get

w(t)2
∫

Ft

(∂tu)2 dvgt ≥
(∫

Ft

u(∂tu) dvgt

)2

=

(
w′(t)w(t) − k

2
ϕ′(t)w(t)2

)2

,

or ∫

Ft

(∂tu)2 dvgt ≥
(

w′(t) − k

2
ϕ′(t)w(t)

)2

. (28)

From assumption (18) it follows that

µ

a

∫

Ft

up dvgt ≤ (n − k − 2)2

32
w(t)2. (29)

Inserting (28) and (29) into (27) we obtain

w′(t)2 + w′′(t)w(t) ≥
(

1 − δ(c0)

a

)(
w′(t) − k

2
ϕ′(t)w(t)

)2

+

(
1

a
(St − δ(c0)) +

k

2
ϕ′′(t)

)
w(t)2

− (n − k − 2)2

32
w(t)2 + kϕ′(t)w′(t)w(t),

or after some rearranging,

w′′(t)w(t) ≥ −δ(c0)

a

(
w′(t) − k

2
ϕ′(t)w(t)

)2

+

(
1

a
(St − δ(c0)) +

k

2
ϕ′′(t) +

k2

4
ϕ′(t)2 − (n − k − 2)2

32

)
w(t)2.

(30)

Next we estimate the coefficient of w(t)2 in the last line of (30). We denote this
coefficient by D. Using (16) and assumption (At), (1), which tells us that f(ht) = 0
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we get

D =
1

a

(
e−2ϕ(t)Scalht − k(k + 1)ϕ′(t)2 − 2kϕ′′(t) + (n − k − 1)(n − k − 2)

)

− δ(c0)

a
+

k

2
ϕ′′(t) +

k2

4
ϕ′(t)2 − (n − k − 2)2

32

=
1

a
e−2ϕ(t)Scalht +

1

a
((n − k − 1)(n − k − 2) − δ(c0)) +

k

2(n − 1)
ϕ′′(t)

− k

4(n − 1)
(n − k − 2)ϕ′(t)2 − (n − k − 2)2

32
.

From assumptions (At), (2) and (3), we obtain

D ≥ −n− k − 2

32
+

1

a
((n − k − 1)(n − k − 2) − δ(c0)) +

k

2(n − 1)
ϕ′′(t)

− k

4(n − 1)
(n − k − 2) − (n − k − 2)2

32

=
1

4(n − 1)

(
(n − 1)(n − k − 2)2 + 2kϕ′′(t)

)

− n − k − 2

32
− (n − k − 2)2

32
− δ(c0)

a
.

Using (At), (4), and n − k − 2 ≥ 1 we further obtain

D ≥ 1

4(n − 1)

(
1

2
(n − 1)(n − k − 2)2

)

− (n − k − 2)2

32
− (n − k − 2)2

32
− δ(c0)

a

=
(n − k − 2)2

16
− δ(c0)

a
.

Inserting this in (30) we get

w′′(t)w(t) ≥ −δ(c0)

a

(
w′(t) − k

2
ϕ′(t)w(t)

)2

+

(
(n − k − 2)2

16
− δ(c0)

a

)
w(t)2

≥ −2δ(c0)

a
w′(t)2

+

(
−2δ(c0)

a

k2

4
ϕ′(t)2 +

(n − k − 2)2

16
− δ(c0)

a

)
w(t)2,

where we also used (a − b)2 ≤ 2a2 + 2b2. Again using (At), (3), we conclude

w′′(t)w(t) ≥ −2δ(c0)

a
w′(t)2

+

(
(n − k − 2)2

16
− δ(c0)

a

(
1 +

k2

2

))
w(t)2.

(31)
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Fix a small positive number δ̂. Choose c0 small so that δ(c0) is also small. Then
(31) tells us that

w′′(t)w(t) ≥ (n − k − 2)2

32
w(t)2 − δ̂w′(t)2. (32)

Define v(t) := w(t)1+δ̂ . This function satisfies

v′′(t) = (1 + δ̂)w′′(t)w(t)δ̂ + δ̂(1 + δ̂)w′(t)2w(t)δ̂−1

≥ (1 + δ̂)
(n − k − 2)2

32
w(t)1+δ̂

≥ (n − k − 2)2

32
v(t).

Next we assume that (Bt) holds. Then (15) becomes

Ht = e(ht),

and from (25) we get

w′(t)w(t) =

∫

Ft

(
u(∂tu) − n − 1

2
e(ht)u

2

)
dvgt . (33)

Differentiating this we get

w′(t)2 + w′′(t)w(t) =

∫

Ft

(
(∂tu)2 − (n − 1)e(ht)u∂tu

+

(
(n − 1)2

2
e(ht)

2 − n − 1

2
∂te(ht)

)
u2
)

dvgt

+

∫

Ft

(
u∂2

t u − (n − 1)Htu∂tu
)

dvgt .

Next we use (24) followed by assumptions (Bt), (2) and (3), to obtain

w′(t)2 + w′′(t)w(t) ≥
∫

Ft

(
(∂tu)2 − (n − 1)e(ht)u∂tu

+

(
(n − 1)2

2
e(ht)

2 − n − 1

2
∂te(ht)

)
u2

− δ(c0)

a
(∂tu)2 − µ

a
up
)

dvgt

+
1

a
(St − δ(c0))w(t)2

≥
∫

Ft

((
1 − δ(c0)

a

)
(∂tu)2 − (n − 1)e(ht)u∂tu − µ

a
up
)

dvgt

+

(
1

2a
(n − k − 1)(n − k − 2) − 3

64
(n − k − 2) − δ(c0)

a

)
w(t)2.
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From (29) we further get

w′(t)2 + w′′(t)w(t) ≥
∫

Ft

((
1 − δ(c0)

a

)
(∂tu)2 − (n − 1)e(ht)u∂tu

)
dvgt

+
( 1

2a
(n − k − 1)(n − k − 2) − 3

64
(n − k − 2)

− 1

32
(n − k − 2)2 − δ(c0)

a

)
w(t)2

≥
∫

Ft

((
1 − δ(c0)

a

)
(∂tu)2 − (n − 1)e(ht)u∂tu

)
dvgt

+

(
1

32
(n − k − 2)(n − k − 3/2)− δ(c0)

a

)
w(t)2

≥
∫

Ft

((
1 − δ(c0)

a

)
(∂tu)2 − (n − 1)e(ht)u∂tu

)
dvgt

+

(
1

32
(n − k − 2)2 +

1

64
− δ(c0)

a

)
w(t)2.

(34)

We set Et := supFt
|e(ht)| and use (33) to compute

w(t)2
∫

Ft

(∂tu)2 dvgt ≥
(∫

Ft

u(∂tu) dvgt

)2

=

(
w′(t)w(t) +

n − 1

2

∫

Ft

e(ht)u
2 dvgt

)2

= (w′(t)w(t))
2
+

(
n − 1

2

∫

Ft

e(ht)u
2 dvgt

)2

+ (n − 1)w′(t)w(t)

∫

Ft

e(ht)u
2 dvgt

≥ w′(t)2w(t)2 −
(

n − 1

2

)2

E2
t w(t)4

− (n − 1)|w′(t)|w(t)

∫

Ft

|e(ht)|u2 dvgt

≥ w′(t)2w(t)2 −
(

n − 1

2

)2

E2
t w(t)4

− (n − 1)Et|w′(t)|w(t)3.

Next we divide by w(t)2 and obtain

∫

Ft

(∂tu)2 dvgt ≥ w′(t)2 −
(

n − 1

2

)2

E2
t w(t)2 − (n − 1)Et|w′(t)|w(t)

≥ w′(t)2 −
(

n − 1

2

)2

E2
t w(t)2 − n − 1

2
Et

(
w′(t)2 + w(t)2

)

=

(
1 − n − 1

2
Et

)
w′(t)2 −

(
n − 1

2
Et +

(
n − 1

2

)2

E2
t

)
w(t)2.

(35)
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Also ∫

Ft

e(ht)u∂tu dvgt ≤
∫

Ft

|e(ht)u∂tu| dvgt

≤ Et

∫

Ft

|u∂tu| dvgt

≤ 1

2
Et

∫

Ft

(
u2 + (∂tu)2

)
dvgt ,

so ∫

Ft

(−(n − 1)e(ht)u∂tu) dvgt ≥ −n − 1

2
Et

∫

Ft

(
u2 + (∂tu)2

)
dvgt . (36)

Fix a small number δ̂ > 0. We insert (35) and (36) in (34) and choose c0 small
enough so that δ(c0) and Et are small. Then we get that w(t) satisfies the same
inequality (32) as we obtained under the assumption (At). We have showed that

in both cases (At) and (Bt) the function v(t) := w(t)1+δ̂ satisfies

v′′(t) ≥ v(t)/γ2

since 32
(n−k−2)2 = γ2.

Now we apply Lemma 6.3 to the function ṽ(t) := v(t + β+α
2 ) with T = β−α

2 − γ

and m = 2

1+δ̂
. From this we obtain

γ

m
(ṽ(T + γ)m + ṽ(−T − γ)m) ≥

∫ T

−T

ṽm dt. (37)

We further have
∫ T

−T

ṽm dt =

∫ β−α
2 −γ

− β−α
2 +γ

(w(1+δ̂))m

(
t +

β + α

2

)
dt

We set s = t + β+α
2 and we obtain

∫ T

−T

ṽm dt =

∫ β−γ

α+γ

w2 ds.

From the definition of w we obtain
∫ T

−T

ṽm dt =

∫

π−1((α+γ,β−γ))

u2 dvgWS .

In addition, we have

(ṽ(T + b)m + ṽ(−T − b)m) =

∫

Fα

u2 dvgα +

∫

Fβ

u2 dvgβ

≤ ‖u‖2
L∞(P ) (Volgα(Fα) + Volgβ (Fβ)) .

Choosing δ̂ small we may assume m ≥
√

2. This together with (37) and γ =
√

32
n−k−2

gives us
∫

π−1((α+γ,β−γ))

u2 dvgWS ≤ 4‖u‖2
L∞

n − k − 2
(Volgα(Fα) + Volgβ (Fβ)) .

This proves Theorem 6.2. �
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7. Proof of Theorem 2.3

7.1. Stronger version of the Theorem 2.3. In this section we prove the follow-
ing Theorem 7.1. By taking the supremum over all conformal classes Theorem 7.1
implies Theorem 2.3.

Theorem 7.1. Suppose that (M1, g1) and (M2, g2) are compact Riemannian mani-
folds of dimension n. Let N be obtained from M1, M2, by a connected sum along W
as described in Section 3. Then there is a sequence of metrics gθ on N satisfying

min {µ(M1 ∐ M2, g1 ∐ g2), Λn,k} ≤ lim
θ→0

µ(N, gθ) ≤ µ(M1 ∐ M2, g1 ∐ g2).

In the following we define suitable metrics gθ, and then we show that they satisfy
these inequalities.

7.2. Definition of the metrics gθ. We continue to use the notation of Section 3.
In the following, C denotes a constant that might change its value between lines.
Recall that (M, g) = (M1 ∐M2, g1 ∐ g2). For i = 1, 2 we define the metric hi as the
restriction of gi to W ′

i = wi(W×{0}), and we set h := h1∐h2 on W ′ = W ′
1∐W ′

2. As
already explained, the normal exponential map of W ′ ⊂ M defines a diffeomorphism

wi : W × Bn−k(Rmax) → Ui(Rmax), i = 1, 2,

which decomposes U(Rmax) = U1(Rmax)∐U2(Rmax) as a product W ′×Bn−k(Rmax).
In general the Riemannian metric g does not have a corresponding product struc-
ture, and we introduce an error term T measuring the difference to the product
metric. If r denotes the distance function to W ′, then the metric g can be written
on U(Rmax) \ W ′ ∼= W ′ × (0, Rmax) × Sn−k−1 as

g = h + ξn−k + T = h + dr2 + r2σn−k−1 + T. (38)

where T is a symmetric (2, 0)-tensor vanishing on W ′ (in the sense of sections of
(T ∗M ⊗ T ∗M)|W ′). We also define the product metric

g′ := h + ξn−k = h + dr2 + r2σn−k−1, (39)

on U(Rmax) \ W ′. Thus g = g′ + T . Since T vanishes on W ′ we have

|T (X, Y )| ≤ Cr|X |g′ |Y |g′ (40)

for any X, Y ∈ TxM where x ∈ U(Rmax). Since T is smooth we have

|(∇UT )(X, Y )| ≤ C|X |g′ |Y |g′ |U |g′ ,

and

|(∇2
U,V )T (X, Y )| ≤ C|X |g′ |Y |g′ |U |g′ |V |g′ ,

for X, Y, U, V ∈ TxM . We define Ti := T |Mi
for i = 1, 2.

For a fixed R0 ∈ (0, Rmax) we choose a smooth positive function F : M \W ′ → R

such that

F (x) =

{
1, if x ∈ Mi \ Ui(Rmax);

ri(x)−1, if x ∈ Ui(R0) \ W ′.

Next we choose small numbers θ, δ0 ∈ (0, R0) with θ > δ0 > 0. Here “small” means
that we first choose a sequence θ = θj of small positive numbers tending to zero,
such that all following arguments hold for all θ. Then we choose for any given θ a
number δ0 = δ0(θ) ∈ (0, θ) such that all arguments which need δ0 to be small will
hold, see Figure 1. For any θ > 0 and sufficiently small δ0 there is Aθ ∈ [θ−1, (δ0)

−1)
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Hierarchy of parameters

Rmax > R0 > θ > δ0 > ǫ > 0

We choose parameters in the order Rmax, R0, θ, δ0, Aθ. We then set ǫ := e−Aθδ0.
This implies |t| = Aθ ⇔ ri = δ0.

Figure 1. Hierarchy of parameters

t = ±(ln r − ln ǫ)

f

− ln θ
+ ln ǫ

ln θ
− ln ǫ

− ln δ0

+ ln ǫ
ln δ0

− ln ǫ
+ ln ǫ − ln ǫ

lnAθ

− ln θ

r1 = θ r2 = θr1 = δ0
r1 = ǫ
r2 = ǫ

r2 = δ0r1 = 1 r2 = 1

Figure 2. The function f

and a smooth function f : U(Rmax) → R depending only on the coordinate r such
that

f(x) =

{
− ln r(x), if x ∈ U(Rmax) \ U(θ);

lnAθ, if x ∈ U(δ0),

and such that
∣∣∣∣r

df

dr

∣∣∣∣ =

∣∣∣∣
df

d(ln r)

∣∣∣∣ ≤ 1, and

∥∥∥∥r
d

dr

(
r
df

dr

)∥∥∥∥
L∞

=

∥∥∥∥
d2f

d2(ln r)

∥∥∥∥
L∞

→ 0 (41)

as θ → 0. See Figure 2.
We set ǫ = e−Aθδ0. We can and will assume that ǫ < 1.
Let N be obtained from M by a connected sum along W with parameter ǫ, as

described in Section 3. In particular, UN
ǫ (s) = U(s) \ U(ǫ)/∼ for all s ≥ ǫ. On the

set UN
ǫ (Rmax) = U(Rmax) \ U(ǫ)/∼ we define the variable t by

t :=

{
− ln r1 + ln ǫ, on U1(Rmax) \ U1(ǫ);

ln r2 − ln ǫ, on U2(Rmax) \ U2(ǫ).

Note that t ≤ 0 on U1(Rmax) \ U1(ǫ) and t ≥ 0 on U2(Rmax) \ U2(ǫ), with t = 0
precisely on the common boundary ∂U1(ǫ) identified with ∂U2(ǫ) in N . It follows
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that

ri = e|t|+ln ǫ = ǫe|t|.

We can assume that t : UN
ǫ (Rmax) → R is smooth. Expressed in the variable t we

have

F (x) = ǫ−1e−|t|

for x ∈ U(R0) \ UN (θ), or in other words if |t| + ln ǫ ≤ lnR0. Then Equation (38)
tells us that

F 2g = ǫ−2e−2|t|(h + T ) + dt2 + σn−k−1

on U(R0) \ UN (θ). If we view f as a function of t, then

f(t) =

{
−|t| − ln ǫ, if ln θ − ln ǫ ≤ |t| ≤ lnRmax − ln ǫ;

lnAθ, if |t| ≤ ln δ0 − ln ǫ;

and |df/dt| ≤ 1, ‖d2f/dt2‖L∞ → 0. We choose a cut-off function χ : R → [0, 1]
such that χ = 0 on (−∞,−1], |dχ| ≤ 1, and χ = 1 on [1,∞). With these choices
we define

gθ :=





F 2gi, on Mi \ Ui(θ);

e2f(t)(hi + Ti) + dt2 + σn−k−1, on Ui(θ) \ Ui(δ0);

A2
θχ(t/Aθ)(h2 + T2) + A2

θ(1 − χ(t/Aθ))(h1 + T1)

+ dt2 + σn−k−1,
on UN

ǫ (δ0).

On UN (R0) we write gθ as

gθ = e2f(t)h̃t + dt2 + σn−k−1 + T̃t,

where the metric h̃t is defined for t ∈ R by

h̃t := χ(t/Aθ)h2 + (1 − χ(t/Aθ))h1,

and where the error term T̃t is equal to

T̃t := e2f(t) (χ(t/Aθ)T2 + (1 − χ(t/Aθ))T1) .

On UN (R0) we also define the metric without error term

g′θ := gθ − T̃t = e2f(t)h̃t + dt2 + σn−k−1. (42)

An upper bound for the error term T̃t will be needed in the following. We claim
that

|X |g′ ≤ Ce−f(t)|X |g′

θ
(43)

for X ∈ TxN , where g′ is the metric defined by (39). To prove the claim, we
decompose X in a radial part, a part parallel to W ′, and a part parallel to Sn−k−1.
This decomposition is orthogonal with respect to both g′ and g′θ. For X = ∂

∂t =

±ǫe|t| ∂
∂r we have that 1 = |X |g′

θ
and |X |g′ = ǫe|t| ≤ e−f(t) since f(t) ≤ −|t|− ln(ǫ).

The argument is similar if X is parallel to Sn−k−1. If X is tangent to W ′, then
|X |g = |X |h ≤ C|X |h̃t

≤ Ce−f(t)|X |g′

θ
, and the claim follows.

The Relations (43) and (40) imply

|T̃t(X, Y )| ≤ Ce2f(t)|T (X, Y )|
≤ Ce2f(t)r|X |g′ |Y |g′

≤ Cr|X |g′

θ
|X |g′

θ
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for all X, Y . In other words this means

|T̃t|g′

θ
≤ Cr = Cǫe|t| ≤ Ce−f(t). (44)

One can calculate that

|∇T̃t|g′

θ
≤ Ce−f(t), (45)

and

|∇2T̃t|g′

θ
≤ Ce−f(t). (46)

Here ∇ denotes the Levi-Civita-connection with respect to g′θ. In particular we see
with Corollary A.2

|Scalgθ − Scalg
′

θ | ≤ Ce−f(t). (47)

7.3. Geometric description of the new metrics. In this subsection we collect
some facts about the geometry of F 2g and g′θ. Most of the results are not needed
for the proof of our result, but are useful to understand the underlying geometric
concept of the argument. We will thus skip most of the proofs in this subsection.

The first proposition explains the special role of Hk+1 × Sn−k−1.

Proposition 7.2. Let xi be a sequence of points in M \ W , converging to W .
Then the Riemann tensor of F 2g in xi converges to the Riemann tensor of Hk+1×
Sn−k−1. The covariant derivative of the Riemann tensor of F 2g converges to zero.
For any fixed R > 0 these convergences are uniform on balls (with respect to the
metric F 2g) of radius R.

It follows that for any fixed R > 0 the balls (BF 2g(xi, R), xi, F
2g) converge to a

ball of radius R in Hk+1 × Sn−k−1 in the C2,α-topology of Riemannian manifolds
with base point. This topology has its origins in Cheeger’s finiteness theorem [11]
and in the work of Gromov [13], [14]. The article by Petersen [29, Pages 167–202]
is a good overview of the subject.

In the limit r → 0 (or equivalently t → ∞) the W -component of the metrics
F 2g grows exponentially. The motivation for introducing the function f into the
definition of gθ is to slow down this exponential growth: the diameter of the W -
component with respect to gθ is then bounded by Aθdiam(W, g), where diam(W, g)
is the diameter of W with respect to g. This slowing down has to be done carefully
in order to get nice limit spaces. The properties claimed for f imply the following
result.

Proposition 7.3. Let θi be a sequence of positive numbers tending to zero, and
let xi ∈ UN

ǫ (Rmax) be a sequence of points such that the limit c := lim( ∂
∂tf)(t(xi))

exists. Then the Riemann tensor of gθi
in xi converges to the Riemann tensor of

H
k+1
c × S

n−k−1. The covariant derivative of the Riemann tensor of F 2g converges
to zero. For any fixed R > 0 these convergences are uniform on balls (with respect
to the metric F 2g) of radius R.

From this proposition it follows that the balls (BF 2g(xi, R), xi, F
2g) converge to

a ball of radius R in Hk+1
c × Sn−k−1 in the C2,α-topology of Riemannian manifolds

with base point. Thus, we get an explanation why the spaces Hk+1
c ×Sn−k−1 appear

as limit spaces.
The sectional curvature of Hk+1

c is −c2. Hence the sectional curvatures of the
product Hk+1

c × Sn−k−1 are in the interval [−c2, 1]. Using this fact we can prove
the following Proposition.
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Proposition 7.4. The scalar curvatures of gθ and g′θ are bounded by a constant
independent of θ.

Proof. The metric g′θ is the metric of a WS-bundle. Hence (16) is valid. We

calculate ∂th̃t = (1/Aθ)χ
′(t/Aθ)(h2 − h1) and ∂2

t h̃t = (1/Aθ)
2χ′′(t/Aθ)(h2 − h1).

This implies |trh̃t
∂th̃t| ≤ C/Aθ, |tr(h̃−1

t ∂th̃t)
2| ≤ C/A2

θ, and |trh̃t
∂2

t h̃t| ≤ C/A2
θ.

From (16) it follows that Scalg
′

θ is bounded. Equation (47) then implies that Scalgθ

is bounded. �

The geometry close to the gluing of M1 \ U1(ǫ) with M2 \ U2(ǫ) is described by
the following simple proposition.

Proposition 7.5. Let H be the metric on W × (−1, 1) given by (χ(t)h2 + (1 −
χ(t))h1) + dt2. Then (UN (δ0), g

′
θ) is isometric to (W × (−1, 1) × Sn−k−1, A2

θH +
σn−k−1).

7.4. Proof of Theorem 7.1. The metrics gθ are defined for small θ > 0 as de-
scribed above. In order to prove Theorem 7.1 it is sufficient to prove

min {µ(M, g), Λn,k} ≤ lim
i→∞

µ(N, gθi
) ≤ µ(M, g)

for any sequence θi → 0 as i → ∞. Recall that (M, g) = (M1 ∐ M2, g1 ∐ g2).
The upper bound on limi→∞ µ(N, gθi

) is easy to prove. The proof of the lower
bound is inspired by the compactness-concentration principle in analysis, see for
example [34, I.4] for a good overview (but be aware of some misleading typos).

For each metric gθ we have a solution of the Yamabe equation (5). We take a
sequence of θ tending to 0. Following the compactness-concentration principle, this
sequence of solutions can concentrate in points or converge to a non-trivial solution
or do both at the same time. The concentration in points can be used to construct
a non-trivial solution on a sphere by blowing up the metrics.

In our situation we may have concentration in a fixed point (subcase I.1) or
in a wandering point (subcase I.2), and we may have convergence to a non-trivial
solution on the original manifold (subcase II.1.2) or in the attached part (sub-
cases II.1.1 and II.2). In each of these cases we obtain a different lower bound for
limi→∞ µ(N, gθi

): In the subcases I.1 and I.2 the lower bound is µ(Sn), in subcase

II.1.2 it is µ(M, g), and in the subcases II.1.1 and II.2 we obtain Λ
(1)
n,k and Λ

(2)
n,k as

lower bounds. Together these cases give the lower bound of Theorem 7.1.
The cases here are not exclusive. For example it is possible that the solutions

may both concentrate in a point and converge to a non-trivial solution on the
original manifold.

In our arguments we will often pass to subsequences. To avoid complicated
notation we write θ → 0 for a sequence (θi)i∈N converging to zero, and we will
pass successively to subsequences without changing notation. Similarly limθ→0 h(θ)
should be read as limi→∞ h(θi).

We set µ := µ(M, g) and µθ := µ(N, gθ). From Theorem 2.1 we have

µ, µθ ≤ µ(Sn). (48)

After passing to a subsequence, the limit

µ̄ := lim
θ→0

µθ ∈ [−∞, µ(Sn)]

exists. Let J := Jg and Jθ := Jgθ be defined as in (1).
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We start with the easier part of the argument, namely with

µ̄ ≤ µ. (49)

For this let α > 0 be a small number. We choose a smooth cut-off function χα

on M such that χα = 1 on M \ U(2α), |dχα| ≤ 2/α, and χα = 0 on U(α). Let u
be a smooth non-zero function such that J(u) ≤ µ + δ where δ is a small positive
number. On the support of χα the metrics g and gθ are conformal since gθ = F 2g
and hence by (3) we have

µθ ≤ Jθ

(
χαF−n−2

2 u
)

= J(χαu)

for θ < α. It is straightforward to compute that limα→0 J(χαu) = J(u) ≤ µ + δ.
From this Relation (49) follows.

Now we turn to the more difficult part of the proof, namely the inequality

µ̄ ≥ min {µ, Λn,k} . (50)

In the case µ̄ = µ(Sn) this inequality follows trivially from (48). Hence we assume
µ̄ < µ(Sn) in the following, which implies µθ < µ(Sn) if θ is sufficiently small. From
Theorem 2.2 we know that there exist positive functions uθ ∈ C2(M) such that

Lgθuθ = µθu
p−1
θ , (51)

and ∫

N

up
θ dvgθ = 1.

We begin by proving a lemma which yields a bound of the L2-norm of uθ in
terms of the L∞-norm. This lemma is non-trivial since Vol(N, gθ) → ∞ as θ → 0.

Lemma 7.6. Assume that there exists b > 0 such that

µθ sup
UN (b)

up−2
θ ≤ (n − k − 2)2(n − 1)

8(n − 2)

for θ small enough. Then there exist constants c1, c2 > 0 independent of θ such that
∫

N

u2
θ dvgθ ≤ c1‖uθ‖2

L∞(N) + c2

for all sufficiently small θ. In particular, if ‖uθ‖L∞(N) is bounded, so is ‖uθ‖L2(N).

Proof. Let r̃ ∈ (0, b) be fixed and set P = U(r̃). Then P is a WS-bundle where, with
the notation of Section 6, I = (α, β) with α = − ln(r̃)+ ln(ǫ) and β = ln(r̃)− ln(ǫ).

On P we have two natural metrics: gθ and gWS = g′θ = gθ − T̃t. The metric

gWS has exactly the form (14) with ϕ = f and ht = h̃t. Let θ be small enough
and let t ∈ (− ln(r̃) + ln(ǫ),− ln(δ0) + ln(ǫ)) ∪ (ln(δ0) − ln(ǫ), ln(r̃) − ln(ǫ)). Then
assumption (At) of Theorem 6.2 is true. Now, again if θ is small enough, we have for

all t ∈ (− ln(δ0)+ln(ǫ), ln(δ0)− ln(ǫ)) the relation ScalgWS = Scalσ
n−k−1

+O(1/Aθ).

The error term e(h̃t) from (Bt) in this case satisfies

|e(h̃t)| ≤
∣∣∣trh̃t

∂th̃t

∣∣∣ =

∣∣∣∣trh̃t

(
χ′(t/Aθ)

h2 − h1

Aθ

)∣∣∣∣ ≤
C

Aθ
,

and

|∂te(h̃t)| =
∣∣∣tr
(
h̃−1

t (∂th̃t)h̃
−1
t (∂th̃t)

)∣∣∣+
∣∣∣trh̃t

∂2
t h̃t

∣∣∣ ≤ C

A2
θ

.
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Because of 1/Aθ ≤ θ condition (Bt) is true. Equation (51) is written in the metric
gθ. Using the expression of the Laplacian in local coordinates,

∆gθ u = −
∑

i,j

(det gθ)
−1/2∂i

(
gij

θ (det gθ)
1/2∂ju

)
,

one can check that if we write Equation (51) in the metric gWS we obtain an
equation of the form (17) with µ = µθ. Together with (44), (45) and (47), one
verifies that the error terms satisfy

|A(x)|gWS , |X(x)|gWS , |s(x)|gWS , |ǫ(x)|gWS ≤ Ce−f(t),

where | · |gWS denotes the pointwise norm at a point in UN(R0), and where C is a
constant independent of θ. In particular for any c0 > 0, we obtain on UN (θ) for
small θ

|A(x)|gWS , |X(x)|gWS , |s(x)|gWS , |e(h̃t)(x)|gWS , |ǫ(x)|gWS ≤ c0.

This estimate allows us to apply Theorem 6.2. By the assumptions of Lemma 7.6,
if r̃ ∈ (0, b) is small enough, Assumption (18) of Theorem 6.2 is true. Thus, all
hypotheses of Theorem 6.2 hold for −α := β := ln r̃ − ln ǫ, and hence

∫

P ′

u2
θ dvgWS ≤ 4‖uθ‖2

L∞

n − k − 2
(Volgα(Fα) + Volgβ (Fβ)) .

where P ′ := UN(r̃e−γ). Now observe that

C :=
4

n − k − 2
(Volgα(Fα) + Volgβ (Fβ))

does not depend on θ (since Fα and Fβ correspond to the hypersurface r = r̃). This
implies that ∫

P ′

u2
θ dvgWS ≤ C‖uθ‖2

L∞(N)

where C > 0 is independent of θ. Since if r̃ is small enough, we clearly have

dvgθ ≤ 2dvgWS ,

we obtain that ∫

P ′

u2
θ dvgθ ≤ c1‖uθ‖2

L∞(N)

where c1 := 2C > 0 is independent of θ. Now observe that Volgθ (N \P ′) is bounded
by a constant independent of θ. Using the Hölder inequality we obtain

∫

N

u2
θ dvgθ =

∫

P ′

u2
θ dvgθ +

∫

N\P ′

u2
θ dvgθ

≤ c1‖uθ‖2
L∞(N) + Volgθ (N \ P ′)

2
n

(∫

N\P ′

up
θ dv

)n−2
n

.

Since ‖uθ‖Lp(N) = 1, this proves Lemma 7.6 with c1 as defined above and with

c2 := Volgθ (N \P ′)
2
n . For small θ, the metric gθ|N\P ′ is independent of θ, and thus

c2 does not depend on θ. �

Corollary 7.7.

lim inf
θ→0

‖uθ‖L∞(N) > 0.
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Proof. We set mθ := ‖uθ‖L∞(N) and we choose xθ in N such that uθ(xθ) = mθ.
In order to prove the corollary by contradiction we assume limθ→0 mθ = 0. Then
since µθ ≤ µ(Sn) the assumption of Lemma 7.6 is satisfied for all b > 0 for which
UN(b) is defined. We get the contradiction

1 =

∫

N

up
θdvgθ ≤ mp−2

θ

∫

N

u2
θdvg ≤ mp−2

θ (c1m
2
θ + c2) → 0

as θ → 0. �

Corollary 7.8.

µ̄ = lim
θ→0

µθ > −∞.

Proof. Choose xθ as above. We then have ∆gθ uθ(xθ) ≥ 0, which together with (51)
gives us

Scalgθ (xθ)‖uθ‖L∞(N) ≤ µθ‖uθ‖p−1
L∞(N).

Proposition 7.4 and the previous corollary then imply that µθ is bounded from
below. �

In addition, by Theorem 2.1, µθ is bounded from above by µ(Sn). It follows that
µ̄ ∈ R. The rest of the proof proceeds in several cases.

Case I. lim supθ→0 ‖uθ‖L∞(N) = ∞.

As before we set mθ := ‖uθ‖L∞(N) and we choose xθ ∈ N with uθ(xθ) = mθ.
After taking a subsequence we can assume that limθ→0 mθ = ∞. We consider two
subcases.

Subcase I.1. There exists b > 0 such that xθ ∈ N \ UN(b) for an infinite number
of θ.

We recall that N\UN(b) = Nǫ\UN
ǫ (b) = M1∐M2\U(b). By taking a subsequence

we can assume that there exists x̄ ∈ M1 ∐ M2 \ U(b) such that limθ→0 xθ = x̄. We

let g̃θ := m
4

n−2

θ gθ. In a neighborhood U of x̄ the metric gθ = F 2g does not depend
on θ. We apply Lemma 5.1 with O = U , α = θ, qα = xθ, q = x̄, γα = gθ = F 2g, and

bα = m
2

n−2

θ . Let r > 0. For θ small enough Lemma 5.1 gives us a diffeomorphism

Θθ : Bn(r) → Bgθ (xθ, m
− 2

n−2

θ r)

such that the sequence of metrics (Θ∗
θ(g̃θ)) tends to the flat metric ξn in C2(Bn(r)).

We let ũθ := m−1
θ uθ. By (2) we then have

Lg̃θ ũθ = µθũ
p−1
θ

on Bgθ (xθ , m
− 2

n−2

θ r) and
∫

Bgθ (xθ,m
−

2
n−2

θ
r)

ũp
θ dvg̃θ =

∫

Bgθ (xθ,m
−

2
n−2

θ
r)

up
θ dvgθ

≤
∫

N

up
θdvgθ

= 1.

Here we used the fact that dvg̃θ = mp
θ dvgθ . Since

Θθ : (Bn(r), Θ∗
θ(g̃θ)) → (Bgθ (xθ, m

− 2
n−2

θ r), g̃θ)
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is an isometry we can consider ũθ as a solution of

LΘ∗

θ(g̃θ)ũθ = µθũ
p−1
θ

on Bn(r) with
∫

Bn(r) ũp
θ dvΘ∗

θ(g̃θ) ≤ 1. Since ‖ũθ‖L∞(Bn(r)) = |ũθ(0)| = 1 we can

apply Lemma 5.2 with V = Rn, α = θ, gα = Θ∗
θ(g̃θ), and uα = ũθ (we can apply

this lemma since each compact set of Rn is contained in some ball Bn(r)). This
shows that there exists a non-negative function u 6≡ 0 (since u(0) = 1) of class C2

on (Rn, ξn) which satisfies

Lξn

u = a∆ξn

u = µ̄up−1.

By (12) we further have
∫

Bn(r)

up dvξn

= lim
θ→0

∫

Bgθ (xθ,m
−

2
n−2

θ
r)

up
θ dvgθ ≤ 1

for any r > 0. In particular, ∫

Rn

up dvξn ≤ 1.

From Lemma 5.3, we get that µ̄ ≥ µ(Sn) ≥ min{µ, Λn,k}. We have proved (50) in
this subcase.

Subcase I.2. For all b > 0 it holds that xθ ∈ UN (b) for θ sufficiently small.

The subset UN (b) is diffeomorphic to W × I × Sn−k−1 where I is an interval.
We identify

xθ = (yθ, tθ, zθ)

where yθ ∈ W , tθ ∈ (− lnR0 + ln ǫ,− ln ǫ + lnR0), and zθ ∈ Sn−k−1. By taking a
subsequence we can assume that yθ,

tθ

Aθ
, and zθ converge respectively to y ∈ W ,

T ∈ [−∞, +∞], and z ∈ Sn−k−1. First we apply Lemma 5.1 with V = W , α = θ,

qα = yθ, q = y, γα = h̃tθ
, γ0 = h̃T (we define h̃−∞ = h1 and h̃+∞ = h2), and

bα = m
2

n−2

θ ef(tθ). The lemma provides diffeomorphisms

Θy
θ : Bk(r) → Bh̃tθ (yθ, m

− 2
n−2

θ e−f(tθ)r)

for r > 0 such that (Θy
θ)

∗(m
4

n−2

θ e2f(tθ)h̃tθ
) tends to the flat metric ξk on Bk(r)

as θ → 0. Second we apply Lemma 5.1 with V = Sn−k−1, α = θ, qα = zθ,

γα = γ0 = σn−k−1, and bα = m
2

n−2

θ . For r′ > 0 we get diffeomorphisms

Θz
θ : Bn−k−1(r′) → Bσn−k−1

(zθ, m
− 2

n−2

θ r′)

such that (Θz
θ)

∗(m
4

n−2

θ σn−k−1) converges to ξn−k−1 on Bn−k−1(r′) as θ → 0. For
r, r′, r′′ > 0 we define

Uθ(r, r
′, r′′) := Bh̃tθ (yθ, m

− 2
n−2

θ e−f(tθ)r) × [tθ − m
− 2

n−2

θ r′′, tθ + m
− 2

n−2

θ r′′]

× Bσn−k−1

(zθ, m
− 2

n−2

θ r′),

and

Θθ : Bk(r) × [−r′′, r′′] × Bn−k−1(r′) → Uθ(r, r
′, r′′)

by

Θθ(y, s, z) := (Θy
θ(y), t(s), Θz

θ(z)),
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where t(s) := tθ +m
2

n−2

θ s. By construction Θθ is a diffeomorphism, and we see that

Θ∗
θ(m

4
n−2

θ gθ) = (Θy
θ)∗(m

4
n−2

θ e2f(t)h̃t) + ds2

+ (Θz
θ)

∗(m
4

n−2

θ σn−k−1) + Θ∗
θ(m

4
n−2

θ T̃t).
(52)

Next we study the first term on the right hand side of (52). Note that it is here eval-
uated at t, while we have information above when evaluated at tθ. By construction
of f(t) one can verify that

lim
θ→0

∥∥∥∥
ef(tθ)

ef(t)
− 1

∥∥∥∥
C2([tθ−m

−
2

n−2
θ

r′′,tθ+m
−

2
n−2

θ
r′′])

= 0

since df
dt and d2f

dt2 are uniformly bounded. Moreover it is clear that

lim
θ→0

∥∥∥h̃t − h̃tθ

∥∥∥
C2(B

h̃tθ (yθ,m
−

2
n−2

θ
e−f(tθ )r))

= 0

uniformly in t ∈ [tθ − m
− 2

n−2

θ r′′, tθ + m
− 2

n−2

θ r′′]. As a consequence

lim
θ→0

∥∥∥∥(Θ
y
θ)∗
(

m
4

n−2

θ

(
e2f(t)h̃t − e2f(tθ)h̃tθ

))∥∥∥∥
C2(Bk(r))

= 0

uniformly in t. This implies that the sequence (Θy
θ)∗(m

4
n−2

θ e2f(t)h̃t) tends to the flat

metric ξk in C2(Bk(r)) uniformly in t as θ → 0. We also know that the sequence

(Θz
θ)

∗(m
4

n−2

θ σn−k−1) tends to ξn−k−1 in C2(Bn−k−1(r′)) as θ → 0. Recall from

(42) that g′θ = gθ − T̃t, we have proved that Θ∗
θ(m

4
n−2

θ g′θ) tends to the flat metric

in C2(Bk(r) × [−r′′, r′′] × Bn−k−1(r′)). Finally we are going to show that the last
term of (52) tends to zero in C2. It follows from (44) that

lim
θ→0

∥∥∥∥Θ
∗
θ(m

4
n−2

θ T̃t)

∥∥∥∥ = 0. (53)

Indeed, (44) tells us that
∣∣∣∣Θ

∗
θ(m

4
n−2

θ T̃t)(X, Y )

∣∣∣∣ = m
4

n−2

θ

∣∣∣T̃t(Θθ∗(X), Θθ∗(Y ))
∣∣∣

≤ Crm
4

n−2

θ |Θθ∗(X)|g′

θ
|Θθ∗(Y )|g′

θ

≤ Cr|X |
Θ∗

θ
(m

4
n−2
θ

g′

θ
)
|X |

Θ∗

θ
(m

4
n−2
θ

g′

θ
)
,

and since Θ∗
θ(m

4
n−2

θ g′θ) tends to the flat metric we get (53). Doing the same with

∇T̃t and ∇2T̃t using (45) and (46), we obtain that

lim
θ→0

Θ∗
θ(m

4
n−2

θ T̃t) = 0 (54)

in C2(Bk(r)× [−r′′, r′′]×Bn−k−1(r′)). Returning to (52) we see that the sequence

Θ∗
θ(m

4
n−2

θ gθ) tends to ξn = ξk + ds2 + ξn−k−1 on Bk(r) × [−r′′, r′′] × Bn−k−1(r′).
We proceed as in Subcase I.1 to show that µ̄ ≥ µ(Sn) ≥ min{µ, Λn,k}, which proves
Relation (50) in this subcase. This ends the proof of Theorem 7.1 in Case I.

Case II. There exists a constant C1 such that ‖uθ‖L∞(N) ≤ C1 for all θ.
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As in Case I we consider two subcases.

Subcase II.1. There exists b > 0 such that

lim inf
θ→0

(
µθ sup

UN (b)

up−2
θ

)
<

(n − k − 2)2(n − 1)

8(n − 2)
.

By restricting to a subsequence we can assume that

µθ sup
UN (b)

up−2
θ <

(n − k − 2)2(n − 1)

8(n − 2)

for all θ. Lemma 7.6 tells us that there is a constant A0 > 0 such that

‖uθ‖L2(N,gθ) ≤ A0. (55)

We split the treatment of Subcase II.1. into two subsubcases.

Subsubcase II.1.1. lim supb→0 lim supθ→0 supUN (b) uθ > 0.

We set D0 := 1
2 lim supb→0 lim supθ→0 supUN (b) uθ > 0. Then there are sequences

(bi) and (θi) of positive numbers converging to 0 such that

sup
UN (bi)

uθi
≥ D0,

for all i. For brevity of notation we write θ for θi and bθ for bi. Let x′
θ ∈ UN (bθ)

be such that

uθ(x
′
θ) ≥ D0. (56)

As in Subcase I.2 above we write x′
θ = (yθ, tθ, zθ) where yθ ∈ W , tθ ∈ (− lnR0 +

ln ǫ,− ln ǫ + lnR0), and zθ ∈ Sn−k−1. By restricting to a subsequence we can
assume that yθ,

tθ

Aθ
, and zθ converge respectively to y ∈ W , T ∈ [−∞, +∞], and

z ∈ Sn−k−1. We apply Lemma 5.1 with V = W , α = θ, qα = yθ, q = y, γα = h̃tθ
,

γ0 = h̃T , and bα = ef(tθ) and conclude that there is a diffeomorphism

Θy
θ : Bk(r) → Bh̃tθ (yθ, e

−f(tθ)r)

for r > 0 such that (Θy
θ)∗(e2f(tθ)h̃tθ

) converges to the flat metric ξk on Bk(r). For
r, r′ > 0 we define

Uθ(r, r
′) := Bh̃tθ (yθ, e

−f(tθ)r) × [tθ − r′, tθ + r′] × Sn−k−1,

and

Θθ : Bk(r) × [−r′, r′] × Sn−k−1 → Uθ(r, r
′)

by

Θθ(y, s, z) := (Θy
θ(y), t(s), z),

where t(s) := tθ + s. By construction, Θθ is a diffeomorphism, and we see that

Θ∗
θ(gθ) =

e2f(t)

e2f(tθ)
(Θy

θ)∗(e2f(tθ)h̃t) + ds2 + σn−k−1 + Θ∗
θ(T̃t) (57)

We will now find the limit of Θ∗
θ(gθ) in the C2 topology. We define c := limθ→0 f ′(tθ).

Lemma 7.9. For fixed r, r′ > 0 the sequence of metrics Θ∗
θ(gθ) tends to Gc =

ηk+1
c + σn−k−1 = e2csξk + ds2 + σn−k−1 in C2(Bk(r) × [−r′, r′] × Sn−k−1).

As this lemma coincides with [4, Lemma 4.1] we only sketch the proof.
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Proof. The intermediate value theorem tells us that

|f(t) − f(tθ) − f ′(tθ)(t − tθ)| ≤
r′2

2
max

s∈[tθ−r′,tθ+r′]
|f ′′(s)|

for all t ∈ [tθ − r′, tθ + r′]. Because of (41) we also have ‖f ′′‖L∞ → 0 for θ → 0,
and hence

lim
θ→0

‖f(t) − f(tθ) − f ′(tθ)(t − tθ)‖C0([tθ−r′,tθ+r′]) = 0

for r′ fixed. Further we have∣∣∣∣
d

dt

(
f(t) − f(tθ) − f ′(tθ)(t − tθ)

)∣∣∣∣ = |f ′(t) − f ′(tθ)|

=

∣∣∣∣
∫ t

tθ

f ′′(s) ds

∣∣∣∣

≤ r′ max
s∈[tθ−r′,tθ+r′]

|f ′′(s)|

→ 0

as θ → 0, and and finally
∣∣∣∣
d2

dt2
(f(t) − f(tθ) − f ′(tθ)(t − tθ))

∣∣∣∣ = |f ′′(t)| → 0

as θ → 0. Together with c = limθ→0 f ′(tθ) we have shown that

lim
θ→0

‖f(t) − f(tθ) − c(t − tθ)‖C2([tθ−r′,tθ+r′]) = 0.

Hence

lim
θ→0

∥∥∥ef(t)−f(tθ) − ec(t−tθ)
∥∥∥

C2([tθ−r′,tθ+r′])
= 0.

We now write e2f(t)h̃t = e2f(t)(h̃t − h̃tθ
) + e2f(t)

e2f(tθ ) e
2f(tθ)h̃tθ

. Using the fact that

lim
θ→0

∥∥∥h̃t − h̃tθ

∥∥∥
C2(B

h̃tθ (yθ,e−f(tθ )r))
= 0

uniformly for t ∈ [tθ − r′, tθ − r′] we get that the sequence e2f(t)

e2f(tθ ) (Θ
y
θ)∗(e2f(tθ)h̃t)

tends to e2csξk in C2(Bk(r)) where again s = t− tθ ∈ [−r′, r′]. Finally, proceeding
exactly as we did to get Relation (54), we have that

lim
θ→0

Θ∗
θ(T̃t) = 0

in C2(Bk(r) × [−r′, r′] × Sn−k−1). Going back to (57) this proves Lemma 7.9. �

We continue with the proof of Subsubcase II.1.1. As in Subcases I.1 and I.2 we
apply Lemma 5.2 with (V, g) = (Rk+1 × Sn−k−1, Gc), α = θ, and gα = Θ∗

θ(gθ) (we
can apply this lemma since any compact subset of Rk+1 × Sn−k−1 is contained in
some Bk(r)× [−r′, r′]×Sn−k−1). We obtain a C2 function u ≥ 0 which is a solution
of

LGcu = µ̄up−1

on Rk+1 × Sn−k−1. From (12) it follows that
∫

Rk+1×Sn−k−1

up dvGc ≤ 1.

From (11) it follows that u ∈ L∞(Rk+1×Sn−k−1). With (56), we see that u(0) ≥ D0

and thus, u 6≡ 0. By (55), we also get that u ∈ L2(Rk+1×Sn−k−1). By the definition
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of Λ
(1)
n,k we have that µ̄ ≥ Λ

(1)
n,k ≥ Λn,k. This ends the proof of Theorem 7.1 in this

subsubcase.

Subsubcase II.1.2. limb→0 lim supθ→0 supUN (b) uθ = 0.

The proof in this subsubcase proceeds in several steps.

Step 1. We prove limb→0 lim supθ→0

∫
UN (b) up

θ dvgθ = 0.

Let b > 0. Using (55) we have
∫

UN (b)

up
θ dvgθ ≤ A0 sup

UN (b)

up−2
θ

where the constant A0 is independent of b and θ. Step 1 follows.

Step 2. We show lim infb→0 lim infθ→0

∫
UN (2b)\UN (b) u2

θ dvgθ = 0.

Let

d0 := lim inf
b→0

lim inf
θ→0

∫

UN (2b)\UN (b)

u2
θ dvgθ .

We prove this step by contradiction and assume that d0 > 0. Then there exists
δ > 0 such that for all b ∈ (0, δ],

lim inf
θ→0

∫

UN (2b)\UN (b)

u2
θ dvgθ ≥ d0

2
.

For m ∈ N we set Vm := U(2−mδ) \ U(2−(m+1)δ). In particular we have

lim inf
θ→0

∫

Vm

u2
θ dvgθ ≥ d0

2

for all m. Let N0 ∈ N. For m 6= m′ the sets Vm and Vm′ are disjoint. Hence we
can write ∫

N

u2
θ dvgθ ≥

∫
⋃N0

m=0 Vm

u2
θ dvgθ ≥

N0∑

m=0

∫

Vm

u2
θ dvgθ

for θ small enough. This leads to

lim inf
θ→0

∫

N

u2
θ dvgθ ≥ lim inf

θ→0

N0∑

m=0

∫

Vm

u2
θ dvgθ

≥
N0∑

m=0

lim inf
θ→0

∫

Vm

u2
θ dvgθ

≥ (N0 + 1)
d0

2
.

Since N0 is arbitrary, this contradicts that (uθ) is bounded in L2(N) and proves
Step 2.

Step 3. Conclusion.

Let d0 > 0. By Steps 1 and 2 we can find b > 0 such that after passing to a
subsequence, we have for all θ close to 0

∫

N\UN (2b)

up
θ dvgθ ≥ 1 − d0 (58)
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and ∫

UN (2b)\UN (b)

u2
θ dvgθ ≤ d0. (59)

Let χ ∈ C∞(M), 0 ≤ χ ≤ 1, be a cut-off function equal to 0 on UN (b) and
equal to 1 on N \ UN (2b). Since the set UN(2b) \ UN (b) corresponds to t ∈
[t0 − ln(2), t0]∪ [t1, t1 + ln 2] with t0 = − ln(b) + ln(ǫ) and t1 = ln(b)− ln(ǫ) we can
assume that

|dχ|gθ
≤ 2 ln 2. (60)

We will use the function χuθ to estimate µ. This function is supported in N \
UN(b). If θ is smaller than b, then (N \UN (b), gθ) is isometric to (M \UM (b), F 2g).
In other words (N \ UN (b), gθ) is conformally equivalent to (M \ UM (b), g). Rela-
tion (3) implies that

µ ≤ Jθ(χuθ) =

∫
N (a|d(χuθ)|2gθ

+ Scalgθ (χuθ)
2) dvgθ

(∫
N

(χuθ)p dvgθ

)n−2
n

. (61)

We multiply Equation (51) by χ2uθ and integrate over N . From (65) we see
∫

N

|d(χuθ)|2gθ
dvgθ =

∫

N

χ2uθ∆
gθ uθ dvgθ +

∫

N

|dχ|2gθ
u2

θ dvgθ ,

and we obtain
∫

N

(
a|d(χuθ)|2gθ

+ Scalgθ (χuθ)
2
)

dvgθ = µθ

∫

N

up
θχ

2 dvgθ + a

∫

N

|dχ|2gθ
u2

θ dvgθ

≤ µθ

∫

N

up
θ dvgθ + |µθ|

∫

UN (2b)

up
θ dvgθ

+ a

∫

N

|dχ|2gθ
u2

θ dvgθ .

Using (59) and (60), we have
∫

N

|dχ|2gθ
u2

θ dvgθ =

∫

UN (2b)\UN (b)

|dχ|2gθ
u2

θ dvgθ ≤ 4(ln 2)2d0.

Relation (58) implies
∫

UN (2b)
up

θ dvgθ ≤ d0. Together with
∫

N
up

θ dvgθ = 1

∫

N

(a|d(χuθ)|2gθ
+ Scalgθ (χuθ)

2) dvgθ ≤ µθ + |µθ|d0 + 4(ln 2)2ad0. (62)

In addition, by Relation (58),
∫

N

(χuθ)
p dvgθ ≥ 1 − d0. (63)

Plugging (62) and (63) in (61) we get

µ ≤ µθ + |µθ|d0 + 4(ln 2)2ad0

(1 − d0)
n−2

n

for small θ. By taking the limit θ → 0 we can replace µθ by µ̄ in this inequality.
Since d0 can be chosen arbitrarily small we finally obtain µ ≤ µ̄. This proves
Theorem 7.1 in Subcase II.1.
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Subcase II.2. For all b > 0, we have

lim inf
θ→0

(
µθ sup

UN (b)

up−2
θ

)
≥ (n − k − 2)2(n − 1)

8(n − 2)
.

Hence, we can construct a subsequence of θ and a sequence (bθ) of positive
numbers converging to 0 with

lim inf
θ→0

(
µθ sup

UN (bθ)

up−2
θ

)
≥ (n − k − 2)2(n − 1)

8(n − 2)
.

Choose a point x′′
θ ∈ UN(bθ) such that uθ(x

′′
θ ) = supUN (bθ) uθ. Since µθ ≤ µ(Sn),

we have

uθ(x
′′
θ ) ≥ D1 :=

(
(n − k − 2)2(n − 1)

8µ(Sn)(n − 2)

) 1
p−2

.

With similar arguments as in Subcase II.1.1 (just replace x′
θ by x′′

θ and D0 by D1),
we get the existence of a C2 function u ≥ 0 which is a solution of

LGcu = µ̄up−1

on Hk+1
c × Sn−k−1. As in Subsubcase II.1.1, u 6≡ 0, u ∈ L∞(Hk+1

c × Sn−k−1), and
∫

Rk+1×Sn−k−1

up dvGc ≤ 1.

Moreover, the assumption of Subcase II.2 implies that

µ̄up−2(0) = lim
θ→0

µθu
p−2
θ (x′′

θ ) ≥ (n − k − 2)2(n − 1)

8(n − 2)
.

By the definition of Λ
(2)
n,k we have that µ̄ ≥ Λ

(2)
n,k ≥ Λn,k.

Appendix A. Scalar curvature

In this section U denotes an open subset of a manifold and q ∈ U a fixed point.

Proposition A.1. Let g be a Riemannian metric on U and T a symmetric 2-tensor
such that g̃ := g + T is positive definite. Then the scalar curvature Scalg+T (q) of
g + T in q ∈ U is a smooth function of the Riemann tensor of g in q, of T |q, ∇T |q
and ∇2T |q. Here ∇ is the Levi-Civita connection of g. Moreover the operator

T 7→ Scalg+T (q) is a quasilinear partial differential operator of second order.

Proof. Here we denote the Riemann curvature of g̃ by R̃, etc. We use to the notation
from [18] which also coincide with those in [5].

Rijkl = g(R(∂k, ∂l)∂j , ∂i), R̃ijkl = g̃(R̃(∂k, ∂l)∂j , ∂i)

We work in normal coordinates for the metric g centered in q, indices of partial
derivatives in coordinates are added and separated with , and covariant ones with
respect to g separated with ;. In particular T = Tijdxi dxj ,

Tkl;i = (∇iT )(∂k, ∂l) = ∂iTkl − TmlΓ
m
ik − TkmΓm

il .

In particular in q we have g̃kl,i = Tkl;i.
As explained in [5, Formula (13)] we have in q

∇αΓk
ij = ∂αΓk

ij = −1

3
(Rikαj + Riαkj) .
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Hence in q,

Tkl;rs = (∇2
rsT )(∂k, ∂l) = ∂r∂sTkl +

1

3
Tml(Rsmrk +Rsrmk)+

1

3
Tmk(Rsmrl +Rsrml).

In order to calculate the scalar curvature Scalg̃(q) of g̃ in q we use the curvature
formula as in [18] and contract twice. We obtain

Scalg̃(q) = g̃ikg̃jm(g̃km,ij − g̃ki,mj) + P (g̃rm, g̃ij,k) (64)

where P is an invariant polynomial expression in g̃−1 and ∂g̃ that is cubic in
g̃−1 = g̃rm and quadratic in g̃ij,k. (Note that formula (64) holds for an arbitrary
metric in arbitrary coordinates.) The polynomial P vanishes for T = 0 in normal
coordinates for g. �

Corollary A.2. Let R ⊂ T ∗
q M ⊗T ∗

q M ⊗T ∗
q M ⊗TqM be a bounded set of curvature

tensors. Then there is an ǫ > 0 and C ∈ R such that for all metrics g on U with
Rg|q ∈ R we have: if

max
i∈{0,1,2}

∣∣(∇iT )q

∣∣ < ǫ,

then

|Scalg+T (q) − Scalg(q)| ≤ C
(∣∣∇2T |q

∣∣+ |∇T |q|2 + |T |q|
)

.

Appendix B. Details for equation (16)

We compute the scalar curvature of the metric dt2 + e2ϕ(t)ht on I × W . This is
a generalized cylinder metric as studied in [8]. In the following computations we
use the notation from [8], so gt = e2ϕ(t)ht and we have

ġt = 2ϕ′(t)e2ϕ(t)ht + e2ϕ(t)∂tht,

and

g̈t = (2ϕ′′(t) + 4ϕ′(t)2)e2ϕ(t)ht + 4ϕ′(t)e2ϕ(t)∂tht + e2ϕ(t)∂2
t ht.

This implies that the shape operator S of the hypersurfaces of constant t is given
by

S = −ϕ′ − 1

2
h−1

t ∂tht,

so

tr(S2) = kϕ′(t)2 + ϕ′(t)tr(h−1
t ∂tht) +

1

4
tr((h−1

t ∂tht)
2),

and

tr(S)2 = k2ϕ′(t)2 + kϕ′(t)tr(h−1
t ∂tht) +

1

4
tr(h−1

t ∂tht)
2.

Further

trgt
g̈t = (2ϕ′′(t) + 4ϕ′(t)2)k + 4ϕ′(t)trht

(∂tht) + trht
(∂2

t ht)

= (2ϕ′′(t) + 4ϕ′(t)2)k + 4ϕ′(t)tr(h−1
t ∂tht) + trht

(∂2
t ht).

From [8, Proposition 4.1, (21)] we have

Scale
2ϕ(t)ht+dt2 = Scale

2ϕ(t)ht + 3tr(S2) − tr(S)2 − trgt
g̈t

= e−2ϕ(t)Scalht − k(k + 1)ϕ′(t)2 − (k + 1)ϕ′(t)tr(h−1
t ∂tht)

− 2kϕ′′(t) +
3

4
tr((h−1

t ∂tht)
2) − 1

4
tr(h−1

t ∂tht)
2 − trht

(∂2
t ht).
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When we add the scalar curvature of σn−k−1 we get Formula (16) for the scalar
curvature of gWS = dt2 + e2ϕ(t)ht + σn−k−1.

Appendix C. A Cut-off formula

Here we state a formula used several times in the article. The functions u and
χ are smooth functions on a Riemannian manifold (N, h). We assume that χ is
compactly supported. Then

∫

N

|d(χu)|2 dvh =

∫

N

u (〈dχ, d(χu)〉 + 〈χdu, d(χu)〉) dvh

=

∫

N

(
u2|dχ|2 + uχ〈dχ, du〉 + χud∗(χdu)

)
dvh

=

∫

N

(
u2|dχ|2 + χ2u∆u

)
dvh.

(65)
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