

Sur la géométrie systolique des variétés de Bieberbach Chady Elmir, Jacques Lafontaine

▶ To cite this version:

Chady Elmir, Jacques Lafontaine. Sur la géométrie systolique des variétés de Bieberbach. 2008. hal-00271304v1

HAL Id: hal-00271304 https://hal.science/hal-00271304v1

Preprint submitted on 8 Apr 2008 (v1), last revised 3 Jun 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sur la géométrie systolique des variétés de Bieberbach

Chady El Mir Jacques Lafontaine

April 9, 2008

Institut de Mathématiques et Modélisation de Montpellier CNRS, UMR 5149 Université Montpellier 2 CC 0051, Place Eugène Bataillon F-34095 Montpellier Cedex 5, France

Abstract

The systole of a compact non simply connected Riemannian manifold is the smallest length of a non-contractible closed curve ; the systolic ratio is the quotient volume/(systole)ⁿ. Its infimum, on the set of all the riemannian metrics, is known to be positive for a large class of manifolds, including the K(π, 1). We study the optimal systolic ratio of compact, 3-dimensional non orientable Bieberbach manifolds, and prove that it cannot be realized by a flat metric.
Key words and phrases. Systole; systolic ratio; singular Riemannian metric; Bieberbach manifold.
Introduction
Un invariant naturel d'une variété riemannienne compacte (non simplement connexe) (Mⁿ, g) est sa systole, définie comme la plus petite longueur d'une courbe fermée non contractile. Pour length of a non-contractible closed curve; the systolic ratio is the quotient volume/(systole)ⁿ.

 \bigcirc est sa systole, définie comme la plus petite longueur d'une courbe fermée non contractile. Pour avoir un invariant homogène, on introduit le quotient systolique $\frac{\operatorname{vol}(g)}{\operatorname{sys}(g)^n}$.

Un résultat fondamental de M. Gromov (cf. [8]), qui fait suite à une propagande inlassable de M. Berger (voir [3]), assure que si M^n est essentielle la borne inférieure des quotients systoliques, \bigcirc quand q parcourt l'ensemble des métriques riemanniennes sur M^n est strictement positive. Une variété compacte M est dite essentielle s'il existe une application continue de M dans un $K(\pi, 1)$ requi envoie la classe fondamentale sur une classe non triviale. Concernant la géométrie systolique, deux références incontournables sont le rapport [4] de M. Berger et la monographie [10] de M. Katz.

Les surfaces compactes autres que S^2 sont essentielles, et le théorème de Gromov est une généralisation profonde de résultats antérieurs concernant le tore T^2 (C. Loewner, voir [7] p.95-96 ou [9] p.295-296 pour une preuve), et le plan projectif (M. Pu, voir [11]).

Pour ces deux variétés, le résultat est beaucoup plus précis : on a en fait

$$\frac{\operatorname{aire}(g)}{(\operatorname{sys}(g))^2} \ge \frac{\operatorname{aire}(g_0)}{(\operatorname{sys}(g_0))^2}$$

où g_0 est la métrique plate hexagonale (cas du tore) ou la métrique à courbure constante (cas du plan projectif). De plus, dans ces deux cas, l'égalité caractérise les métriques isométriques à g_0 .

Il existe un troisième cas, élucidé par C. Bavard (cf. [1]) où la borne inférieure de ce quotient systolique est connue, et réalisée, celui de la bouteille de Klein. Mais la métrique optimale est singulière. Voir 3.1 ci-dessous. Cet exemple joue ici un rôle décisif.

Pour les variétés essentielles de dimension supérieure, on ne connait que très peu de choses. L'argument de Gromov, puissant mais très général, ne donne qu'une minoration très grossière du quotient systolique. A fortiori, on n'a aucune information sur les métriques qui pourraient réaliser sa borne inférieure, même pour des variétés essentielles aussi simples que les tores et les projectifs réels. On aimerait pourtant pouvoir montrer que dans ce cas les métriques optimales sont à courbure constante ...

Dans ce travail, nous nous intéressons aux variétés de Bieberbach, c'est-à-dire aux variétés compactes qui portent une métrique riemannienne plate. Ces variétés sont des $K(\pi, 1)$, donc le théorème de Gromov s'applique. Nous allons voir par contre que pour celles de ces variétés qui ne sont pas des tores, il ne faut pas s'attendre à ce que les métriques plates soient optimales. Notre résultat est le suivant.

Soit M une variété de Bieberbach de dimension 3 non orientable. Alors il existe sur M une métrique riemannienne g telle que, pour toute métrique plate h,

$$\frac{\operatorname{vol}(g)}{(\operatorname{sys}(g))^3} < \frac{\operatorname{aire}(h)}{(\operatorname{sys}(h))^3}$$

1.2 Résumé de la preuve

Nous commençons par vérifier (cf. 2) que nos métriques plates s'obtiennent par des suspensions de la bouteille de Klein. Dans 3, nous étudions d'un peu plus près la métrique singulière sur la bouteille de Klein découverte par C. Bavard, et en particulier ses isométries. Celles-ci permettent de construire par suspension des métriques singulières en dimension 3. Le calcul direct des systoles, fait dans 4, met en évidence des métriques singulières pour lesquelles le quotient systolique $\frac{\text{vol}(g)}{\text{sys}(g)^3}$ est inférieur à celui de toute métrique plate sur la même variété.

Pour conclure, il suffit d'approcher la métrique singulière obtenue par une métrique lisse, et d'utiliser la continuité de la systole pour la topologie C^0 .

1.3 Notations

Si V est un sous-espace affine d'un espace affine euclidien E, et a un vecteur parallèle à V, on note $\sigma_{V,a}$ la symétrie glissée produit de la réflexion orthogonale par rapport à V et de la translation de vecteur a.

Quand une isométrie de \mathbb{R}^n passe au quotient, nous la noterons par le même symbole.

On appelle déplacement d'une isométrie γ d'un espace métrique (qui sera ici une variété riemannienne, éventuellement singulière), le nombre

$$\mathbf{d}(\gamma) = \inf_{p \in M} \operatorname{dist}(p, \gamma(p)).$$

Rappelons que si (M, g) est une variété riemannienne compacte, de revêtement riemannien (\tilde{M}, \tilde{g}) , le groupe fondamental opère sur (\tilde{M}, \tilde{g}) par isométries, et

$$\operatorname{sys}(M,g) = \inf_{\gamma \in \pi_1(M)} \mathbf{d}(\gamma)$$

Ce résultat s'étend immédiatement aux métriques singulières considérées ci-dessous.

2 Rappels et compléments sur les variétés plates

2.1 Variétés plates

Les variétés compactes et plates sont les quotients \mathbb{R}^n/Γ où Γ est un sous groupe discret Γ , cocompact et sans points fixes d'isométries affines de \mathbb{R}^n . Le théorème de Bieberbach (voir [13] ou [6], ch. 1 pour une preuve) assure que Γ est une extension finie d'un réseau de \mathbb{R}^n par un groupe fini G. Ce réseau est le sous-groupe des éléments de Γ qui sont des translations. Nous l'appelerons dans la suite le *réseau associé* à Γ . On a une suite exacte

$$0 \longrightarrow \Lambda \longrightarrow \Gamma \longrightarrow G \longrightarrow e$$

(En fait, ce résultat se démontre sans supposer que Γ opère librement). Quand l'action de Γ est libre, la variété \mathbb{R}^n/Γ est isométrique au quotient du tore plat \mathbb{R}^n/Λ par un groupe d'isométries isomorphe à G.

Un procédé classique de construction de variétés est la suspension par un difféomorphisme φ d'une variété K: il s'agit du quotient de $K \times \mathbb{R}$ par le groupe engendré par $(p,t) \mapsto (\varphi(p), t+1)$. Si K^n est une variété plate de dimension n et si $\varphi \in \text{Isom}(K)$, le quotient riemannien de $K \times \mathbb{R}$ par le groupe engendré par $(p,t) \mapsto (\varphi(p), t+a)$, où a est un paramètre > 0, définit sur cette suspension une métrique plate.

2.2 Folklore kleinien

Le plan euclidien étant rapporté à une base orthonormée, les bouteilles de Klein plates sont les variétés \mathbf{R}^2/Γ , où Γ est engendré par la symétrie glissée $(x, y) \mapsto (x + \frac{a}{2}, -y)$ et la translation $(x, y) \mapsto (x, y + b)$. Nous noterons $K_{a,b}$ (ou simplement K quand la donnée de a et b est sous-entendue ou inutile), la variété riemannienne plate ainsi obtenue.

Rappelons que les géodésiques "horizontales" de $K_{a,b}$ sont fermées de longueur a, à l'exception de deux d'entre elles qui sont de longueur $\frac{a}{2}$ (cf. [7] p.82-83). Cela permet de voir $K_{a,b}$ comme le recollement de deux rubans de Möbius plats de largeur $\frac{b}{2}$ le long de leur bord. Cette identification n'est pas seulement topologique mais aussi riemannienne : la réflexion orthogonale par rapport au bord commun est une isométrie qui échange les deux rubans. La composante neutre de Isom(K) est formée des translations horizontales $r_{\alpha} : (x, y) \mapsto (x+\alpha, y)$ (α étant pris modulo a). A signaler : la translation $(x, y) \mapsto (x + \frac{a}{2}, y)$ qui coïncide avec $(x, y) \mapsto (x, -y)$. Elle laisse fixes les deux géodésiques horizontales courtes y = 0 et y = b/2. C'est la symétrie orthogonale par rapport à ces *deux* géodésiques simultanément.

Le quotient $\text{Isom}(K)/\text{Isom}_0(K)$ est isomorphe au groupe du matelas, appelé aussi groupe de Klein (c'est plus qu'une coïncidence !).

Les trois éléments non triviaux de ce quotient sont représentés par

- 1. une réflexion par rapport à une géodésique verticale, qui est aussi une symétrie par rapport à un point d'une géodésique horizontale courte (en fait, une telle transformation, que nous noterons S_1 , est à la fois une réflexion par rapport à deux géodésiques verticales et une symétrie par rapport à deux points distincts)
- 2. une symétrie par rapport à un point du bord commun des deux rubans. Nous noterons S_2 une telle symétrie.
- 3. la réflexion par rapport à ce bord commun, ou la transformation obtenue par passage au quotient de $(x, y) \mapsto (x, y + b/2)$. Nous noterons T cette dernière transformation.

2.3 Une description géométrique des variétés de Bieberbach non orientables

Nous allons voir que toute variété compacte plate non orientable de dimension 3 peut s'obtenir par suspension de la bouteille de Klein, et qu'en fait à chaque élément de $Isom(K)/Isom_0(K)$ il correspond une classe de difféomorphisme de variété plate non orientable de dimension 3. Cela se voit en interprétant convenablement (et plus géométriquement) la description de J. Wolf (voir [13], p.120-123), dont nous suivons les notations. Voir aussi [12], 4.2.

i) Type B_1 . On se donne un plan P, deux vecteurs indépendants a_1 et a_2 de P, et un vecteur a_3 orthogonal à P. Le groupe Γ est engendré par la symétrie glissée $\sigma_{P,a_1/2}$ et les translations de vecteurs a_2 et a_3 . Notons que Γ est d'indice 2 dans le réseau Λ engendré par a_1 , a_2 et a_3 . La variété est difféomorphe au produit d'une bouteille de Klein et d'un cercle, et isométrique à un tel produit si a_1 et a_2 sont orthogonaux. Dans le cas général, on écrit $a_2 = \lambda a_1 + v$, où v est parallèle à P et orthogonal à a_1 , et on vérifie que \mathbb{R}^3/Γ est le quotient riemannien de $K_{|a_1|,|a_3|} \times \mathbb{R}$ par le groupe d'isométries engendré par

$$(p,t) \mapsto (r_{\alpha}(p), t + |v|), \text{ avec } \alpha = \lambda |a_1|.$$

ii) Type B_2 . On se donne deux plans parallèles P_1 et P_2 , et deux vecteurs indépendants a_1 et a_2 parallèles à ces plans. Le groupe Γ est engendré par les symétries glissées $\sigma_{P_1,a_1/2}$ et $\sigma_{P_2,a_2/2}$. Soit **k** un vecteur unitaire orthogonal à ces plans, et d**k** le vecteur de la translation qui envoie P_1 sur P_2 . Alors $\sigma_{P_2,a_2/2} \circ \sigma_{P_1,a_1/2}$ est la translation de vecteur $a_3 = \frac{a_1+a_2}{2} + 2d$ **k**. Le réseau Λ associé à Γ est engendré par a_1, a_2 et a_3 .

Cette variété est difféomorphe à la suspension d'une bouteille de Klein par T. En effet, le sous-groupe engendré par $\sigma_{P_1,a_1/2}$ et la translation de vecteur $4d\mathbf{k}$ est distingué dans Γ ; il est isomorphe au groupe fondamental de la bouteille de Klein, et le quotient est isomorphe à \mathbb{Z} .

Pour expliciter cette identification au niveau des métriques, on écrit comme plus haut $a_2 = \lambda a_1 + v$, avec v orthogonal à a_1 , et on vérifie que \mathbb{R}^3/Γ est le quotient riemannien de $K_{|a_1|,4d} \times \mathbb{R}$ par le groupe d'isométries engendré par

$$(p,t) \mapsto \left(r_{\alpha}\left(T(p)\right), t + \frac{|v|}{2}\right), \text{ avec } \alpha = |a_1| \frac{\lambda - 1}{2}.$$

iii) Type B_3 . On se donne un plan P, une droite D de P, et une base orthogonale (a_1, a_2, a_3) , telle que a_1 et a_2 soient parallèles à D et P respectivement. Le groupe Γ est engendré par $\sigma_{D,a_1/2}$, $\sigma_{P,a_2/2}$ et la translation de vecteur a_3 . On peut aussi obtenir cette métrique par suspension de la bouteille de Klein : c'est le quotient riemannien de $K_{|a_2|,|a_3|} \times \mathbb{R}$ par le groupe d'isométries engendré par

$$(p,t)$$
 \mapsto $(S_1(p), t + |a_1|/2)$ (voir 2.2).

iv) Type B_4 . On se donne un plan P, une droite D paralèle à P mais non incluse dans P, deux vecteurs orthogonaux a_1 et a_2 , parallèles à D et P respectivement. Le groupe Γ est engendré par $\sigma_{D,a_1/2}$ et $\sigma_{P,a_2/2}$.

Le réseau associé à Γ est engendré par la base orthogonale (a_1, a_2, a_3) , avec $|a_3| = 4 \operatorname{dist}(P, D)$. Cette fois, la métrique est le quotient riemannien de $K_{|a_2|,|a_3|} \times \mathbb{R}$ par le groupe d'isométries engendré par

$$(p,t)$$
 $\mapsto (S_2(p), t + |a_1|/2)$ (voir encore 2.2).

3 Métriques singulières

3.1 Présentation de la bouteille de Klein–Bavard

Nous travaillerons avec des métriques riemanniennes singulières dans le sens suivant.

- 1. Elles sont continues, c'est-à-dire que les coefficients g_{ij} , exprimés en cartes locales, sont continus.
- 2. La variété est une réunion de domaines à bord d'intérieurs deux à deux disjoints, tels qu'à l'intérieur de chaque domaine la métrique est lisse.

Une telle métrique définit bien un espace de longueur (voir [5] pour des détails sur cette notion). On peut donc parler de géodésiques. De plus, la mesure riemannienne se définit exactement comme dans le cas lisse.

Pour les métriques qui nous intéressent, le modèle local est le suivant. On part de la sphère ronde, et on repère les points par la latitude ϕ et la longitude θ . Pour $\phi_o \in]0, \pi/2[$, soit Σ_{ϕ_o} le domaine défini par $|\phi| \leq \phi_o$. Sur Σ_{ϕ_o} , la métrique ronde est donnée par $d\phi^2 + \cos^2 \phi d\theta^2$. A partir de là, on introduit sur \mathbb{R}^2 la métrique riemannienne singulière (au sens précédent)

$$d\phi^2 + f^2(\phi)d\theta^2,\tag{1}$$

où f est la fonction $2\phi_0$ -périodique qui coïncide avec $\cos \phi$ sur l'intervalle $[-\phi_o, \phi_o]$ (comparer à [2]).

Exemple 1. La métrique sur la bouteille de Klein qui donne le rapport isosystolique optimal s'obtient pour $\phi_o = \frac{\pi}{4}$ en quotientant le plan muni de la métrique 1 par l'action du groupe engendré par

$$(\theta, \phi) \mapsto (\theta + \pi, -\phi)$$
 et $(\theta, \phi) \mapsto (\theta, \phi + 4\phi_0)$.

Nous noterons (\mathbf{K}, b) la bouteille de Klein munie de cette métrique, (\mathbf{T}^2, b) son revêtement orientable. Il se trouve que (\mathbf{K}, b) a le même groupe d'isométries que celui d'une bouteille de Klein plate (attention, la propriété analogue pour (\mathbf{T}^2, b) est fausse !). Cela peut se voir par un calcul direct, mais il sera utile de voir les choses géométriquement : le domaine sphérique à bord Σ_{ϕ_o} vu plus haut peut se voir comme

$$\{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1, |z| \le \sin \phi_o\}.$$

Le cylindre obtenu en prenant tous les tranlatés de vecteur $2n \sin \phi_0 \vec{k}$ de Σ_{ϕ_o} , muni de la structure de longueur induite par la métrique euclidienne, est un revêtement riemannien de (\mathbf{T}^2, b) (et donc de (\mathbf{K}, b)). Nous le noterons (\mathbf{C}, b) .

On récupère (\mathbf{K}, b) en quotientant (\mathbf{C}, b) par le groupe engendré par les antipodies par rapport aux centres des sphères portant ces domaines (deux domaines contigus suffisent). On notera σ l'une quelconque de ces antipodies.

Alors les isométries suivantes de ce cylindre passent au quotient ; elles sont les exactes analogues, si on adopte la formulation analytique de la formule (1), des isométries décrites en 2.2.

- 1. les rotations autour de l'axe (analogues aux translations "horizontales").
- 2. les réflexions par rapport à un plan méridien (analogues aux réflexions par rapport à une géodésique "verticale", c'est-à-dire aux transformations de type S_1).
- 3. les réflexions par rapport à un diamètre d'un cercle singulier (analogues aux symétries par rapport à un point du bord commun des deux rubans, c'est-à-dire aux transformations de type S_2).
- 4. la réflexion par rapport à un plan d'un cercle singulier (qui donne par passage au quotient une transformation équivalente (modulo Isom_o) à celle obtenue en faisant passer au quotient la translation de vecteur $2\sin\phi_0\vec{k}$). Cette dernière transformation est l'analogue de $(x, y) \mapsto (x, y + \frac{b}{2})$.

3.2 Quelques propriétés géométriques de la bouteille singulière

Proposition 1. Localement, une géodésique de (\mathbf{C}, b) , (\mathbf{T}^2, b) ou (\mathbf{K}, b) est de l'un des types suivants :

1) un arc de grand cercle (éventuellement tangent à une ligne singulière) ;

2) la juxtaposition d'un arc de grand cercle tangent à une ligne singulière et d'un arc de cette ligne singulière;

3) la juxtaposition de deux arcs de grand cercle ayant une extrémité commune r sur une ligne singulière, localement de part et d'autre de cette ligne, qui fait avec ces deux arcs des angles dont la somme est π .

Proof. Il suffit de juxtaposer les remarques suivantes :

- 1. Pour les courbes contenues dans l'intérieur d'un Σ , la théorie classique s'applique. Ce sont des géodésiques si et seulement si ce sont des arcs de grand cercle.
- 2. Une courbe contenue dans un Σ et dont les extrémités p et q sont sur la ligne singulière est plus longue que le plus court des deux arcs de la ligne singulière qui joignent p et q. Pour le voir, il suffit d'expliciter la longueur en utilisant la formule (1) et de remarquer que la fonction $\cos \phi$ est décroissante.
- 3. Soit c une courbe C^1 par morceaux, paramétrée par longueur d'arc, qui est la juxtaposition d'une courbe c_1 contenue dans un Σ , ayant une extrémité r sur une ligne singulière, et d'une courbe c_2 partant de r et contenue dans cette ligne singulière. Si $c'_1(r) \neq c'_2(r)$, d'après la formule de variation première, c peut être raccourcie en gardant les mêmes extrémités.
- 4. soit enfin une courbe dont les extrémités p et q sont dans deux exemplaires contigus de Σ , et qui intersecte la ligne singulière en un point. Si elle minimise la longueur des courbes joignant p et q, elle est nécessairement du troisième type décrit dans l'énoncé en raison de la formule de variation première.

Remarque 1. A partir de là, on voit que deux points appartenant à des domaines Σ contigus sont joints en général par un segment géodésique unique, éventuellement par deux. Ce dernier cas n'arrive que pour des points ayant des latitudes opposées ; la réflexion orthogonale par rapport au plan défini par l'axe des z et les deux points échange alors ces segments.

Désignons par T_{δ} le déplacement hélicoïdal obtenu en composant la translation de vecteur $2\sin\phi_0\vec{k}$ et la rotation d'angle δ autour de l'axe des z, considéré comme isométrie du cylindre (**C**, b). Nous avons vu que cette isométrie passe au quotient pour (**T**, b) comme pour (**K**, b).

Proposition 2. Sur (\mathbf{T}, b) , la fonction dist $(p, (T_{\delta}(p)))$ est constante.

Proof. On vérifie facilement qu'il suffit de faire la preuve pour (\mathbf{C}, b) . On remarque que T_{δ} est la restriction au cylindre d'un déplacement de \mathbb{R}^3 qui est le produit de deux réflexions par rapport à des droites orthogonales à l'axe des z, faisant entre elles un angle égal à $\delta/2$, et de plus courte distance (dans l'espace euclidien) sin ϕ_o . Soit γ une géodésique minimisante joignant p et $T_{\delta}(p)$. Admettons un instant que cette géodésique rencontre une ligne singulière en un unique point r, et que l'on se trouve donc dans la troisième situation de la proposition 1. Cet arc est inclus dans la juxatoposition de deux arcs de grand cercle r_1r et rr_2 , contenus dans deux domaines sphériques contigus Σ_1 et Σ_2 , et faisant le même angle β avec les lignes singulières en r, r_1, r_2 (voir figure 1). Notons aussi que γ se prolonge en une géodésique de (\mathbf{C}, b) formée de tels arcs de grand cercle, et que $T_{\delta}(r_1) = r$, $T_{\delta}(r) = r_2$. Choisissons les réflexions dont la composée est T_{δ} comme suit : l'axe de la première passant par le milieu de l'arc r_1r , l'axe de la seonde passant par r. Cela permet de voir que T_{δ} laisse la géodésique qui prolonge γ globalement invariante. Comme il n'y a pas de point fixe, c'est une translation le long de cette géodésique. L'assertion de l'énoncé en résulte, puisque toute la situation est invariante par rotation autour de l'axe des z.

Fig. 1. Géodésique de type 3

Fig. 2. Géodésique de type 2

Reste à justifier notre affirmation sur γ . Elle est clairement vraie pour $\delta = 0$ et donc pour δ assez petit. Dans ce cas, un calcul explicite que nous laissons au lecteur montre que

$$\tan \delta = \frac{-2\sqrt{2}\cot\beta}{\cot^2\beta - 2},$$

et donc que tous les δ possibles peuvent être obtenus ainsi. On applique alors la remarque qui suit la proposition précédente.

Dorénavant, nous supposerons que $\phi_0 = \frac{\pi}{4}$.

Pour les rotations r_{α} on a la propriété suivante.

Proposition 3. Soit p un point du tore (\mathbf{T}, b) et p_0 un point d'une ligne singulière. Alors

$$\operatorname{dist}_{(\mathbf{T},b)}(p, r_{\alpha}(p)) \ge \operatorname{dist}_{(\mathbf{T},b)}(p_0, r_{\alpha}(p_0))$$

pour tout $\alpha \in [0,\pi]$

Ainsi, le minimum est obtenu pour les points de la ligne singulière.

Proof. On utilise la proposition 1, en remarquant qu'il suffit de faire le calcul dans (\mathbf{C}, b) . Soit Σ le domaine sphérique où se trouve p (et donc $q = r_{\alpha}(p)$). Tant que le grand cercle passant par ces deux points est entièrement dans Σ (ce qui est le cas si leur latitude commune β est assez petite), la formule fondamentale de la trigonométrie sphérique donne

$$\operatorname{dist}(p, r_{\alpha}(p)) = \operatorname{arccos}(\sin^2 \beta + \cos^2 \beta \sin \alpha),$$

et cette distance est une fonction décroissante de β .

Si ce n'est pas le cas, on est dans le deuxième cas de la Proposition 1. Le segment géodésique qui joint p et q est formé d'un arc de grand cercle partant de p et tangent à la ligne singulière en son autre extrémité que nous noterons p', d'un arc de la ligne singulière d'extrémités p' et q', et d'un second arc de grand cercle q'q analogue au premier. Si ψ est la différence de longitude entre p et p' (ou entre q et q') on vérifie que cos $\psi = \tan \beta$. On a alors

$$\operatorname{dist}(p, p') = \operatorname{dist}(q, q') = \operatorname{arccos}\left(\frac{\cos\beta\cos\psi}{\sqrt{2}} + \frac{\sin\beta}{\sqrt{2}}\right) = \operatorname{arccos}(\sqrt{2}\sin\beta)$$

 et

$$\operatorname{dist}(p',q') = \frac{\alpha - 2\psi}{\sqrt{2}}$$

(on vérifie au passage que l'on est dans cette situation si $\beta \ge \arctan(\cos \alpha/2)$.

Finalement dans ce cas

dist
$$((p, r_{\alpha}(p))) = \frac{\alpha}{\sqrt{2}} - \sqrt{2} \arccos(\tan \beta) + 2 \arccos(\sqrt{2} \sin \beta).$$

La fonction de β ainsi obtenue a pour dérivée

$$\frac{\sqrt{2}}{\cos\beta\sqrt{1-2\sin^2\beta}}(1-2\cos^2\beta).$$

Les expressions de dist $((p, r_{\alpha}(p))$ pour $\beta \in [0, \beta_0]$, puis pour $\beta \in [\beta_0, \pi/4]$ montrent que l'on a une fonction décroissante de β . Son minimum est atteint quand p est sur une ligne singulière. Il vaut $\alpha\sqrt{2}$.

En passant au quotient, on déduit de ce qui précède les résultats analogues pour la bouteille de Klein.

Corollaire 1. Pour (\mathbf{K}, b) , on a

$$\mathbf{d}(r_{\alpha})) = \inf\left\{\frac{\alpha}{\sqrt{2}}, \pi - \alpha\right\} \quad \text{et} \quad \mathbf{d}(T_{\delta}) = \inf\left\{\frac{\pi - \delta}{\sqrt{2}}, \arccos\frac{\cos\delta - 1}{2}\right\}$$

Proof. En fait,

$$\mathbf{d}(r_{\alpha}) = \inf_{p \in \Sigma} \{ \operatorname{dist}(p, r_{\alpha}(p)), \operatorname{dist}(\sigma(p), r_{\alpha}(p)) \}.$$

Mais comme les points $\sigma(p)$ et $r_{\alpha}(p)$ sont situés de part et d'autre de l'équateur de Σ , l'arc minimal de grand cercle qui les joint est contenu dans Σ , et on est dans le premier cas de la proposition 1. On vérifie alors que dist $(\sigma(p), r_{\alpha}(p))$, est une fonction décroissante de la latitude, d'où le résultat pour r_{α} .

Pour étudier $\mathbf{d}(T_{\delta})$, il suffit de considérer deux exemplaires contigus Σ_1 et Σ_2 , et de calculer l'infimum analogue au précédent quand p parcourt Σ_1 . On sait déjà d'après la Proposition 2 que dist $(p, T_{\delta}(p))$ est constante (et égale à $\arccos \frac{\cos \delta - 1}{2}$). Passons à dist $(T_{\delta}(p), \sigma(p))$. Soit cle segment géodésique qui joint ces points. On est dans le deuxième ou le troisième cas de la Proposition 1. Dans tous les cas, soit r son premier point de rencontre avec la ligne singulière, et q le symétrique de $T_{\delta}(p)$ par rapport à cette ligne singulière. Dans Σ_1 , on passe de q à $\sigma(p)$ par une rotation d'angle $\pi - \delta$. Par ailleurs, ces deux points sont reliés par la courbe \tilde{c} obtenue en prenant la symétrique de la partie de c de $T_{\delta}(p)$ à r, puis c elle même de r à $\sigma(p)$. On a alors

$$\operatorname{longueur}(c) = \operatorname{longueur}(\tilde{c}) \ge \frac{\pi - \delta}{\sqrt{2}}$$

d'après la Proposition 3.

4 Fin de la preuve

Lemme 1. Pour toute métrique plate g sur une variété N de type B_1 , on a

$$\frac{\operatorname{vol}(N,g)}{(\operatorname{sys}(N,g))^3} \ge \frac{\sqrt{3}}{2},$$

avec égalité si et seulement si le réseau associé admet une base (a_1, a_2, a_3) telle que $|a_1| = 2|a_2| = 2|a_3|$, l'angle des vecteurs a_1 et a_2 étant égal à $\pi/3$. Il existe sur N une métrique g_0 , continue sur N et lisse en dehors d'une hypersurface, localement isométrique à $S^2 \times \mathbb{R}$ là où elle est lisse, de rapport systolique strictement inférieur à $\sqrt{3}/2$.

Proof. Dans le cas plat, le volume est égal à $\frac{1}{2} \det(a_1, a_2)|a_3|$, la systole à $\inf\{|a_3|, s\}$, où s est la systole du tore plat de dimension 2 défini par le réseau de base $\frac{a_1}{2}, a_2$. Normalisons de façon que $|a_3| = 1$. Alors le quotient systolique vaut

$$\frac{\det(a_1, a_2)}{2s^3} \quad \text{si } s \le 1, \text{ et } \quad \frac{\det(a_1, a_2)}{2} \quad \text{si } s \ge 1,$$

ce qui donne la première partie d'après les résultats classiques sur les réseaux en dimension 2.

Pour la construction de g_0 , on part de la métrique sur la bouteille de Klein singulière vue en 3, dont la systole est égale à π et le volume à $2\pi\sqrt{2}$, et on procède par suspension : d'après 2.3 et 3.1 le quotient de $(\mathbf{K}, b) \times \mathbb{R}$ par $\langle (r_{\alpha}, t_d) \rangle$ est une variété homéomorphe à une variété de type B_1 . Son volume est égal à $2\pi\sqrt{2}d$, et sa systole à

$$\inf \big\{ \pi, \sqrt{\mathbf{d}(r_{\alpha})^2 + d^2} \big\}.$$

D'après le Corollaire 1, $\mathbf{d}(r_{\alpha})$ est égal à

$$\frac{\alpha}{\sqrt{2}}$$
 si $\alpha \le \pi (2 - \sqrt{2})$, et $\pi - \alpha$ si $\pi (2 - \sqrt{2}) < \alpha < \pi$

Pour obtenir le meilleur rapport systolique en faisant cette construction, c'est-à-dire en faisant varier α et d, on fixe sys = π , et on essaie de minimiser d. Pour le faire il faut maximiser $\mathbf{d}(r_{\alpha})$, donc choisir $\alpha = \pi(2 - \sqrt{2})$, d'où $d = \pi(2\sqrt{2} - 2)^{\frac{1}{2}}$.

Pour ces valeurs de α et d on a $\frac{\text{Vol}}{\text{sys}^3} = \frac{4(\sqrt{2}-1)^{1/2}}{\pi} < \sqrt{3}/2.$

Lemme 2. Pour toute métrique plate (N,g) de type B_3 ou B_4 , on a

$$\frac{\operatorname{vol}(N,g)}{\operatorname{sys}(N,g)^3} \ge 1,$$

avec égalité si et seulement si $|a_1| = |a_2| = 2|a_3|$. Dans les deux cas, il existe sur N une métrique g_0 continue, lisse et localement isométrique à $S^2 \times \mathbb{R}$ sur le complémentaire d'une hypersurface, de rapport systolique strictement inférieur à 1.

Proof. Dans les deux cas, le réseau associé est orthogonal et d'indice 4 dans Γ , si bien que

$$\operatorname{vol}(N,g) = |a_1||a_2||a_3|/4$$
 et $\operatorname{sys}(N,g) = \inf\{|a_1|/2, |a_2|/2, |a_3|\},\$

d'où la première partie. Pour la deuxième partie, on procède par suspension, en partant de la bouteille (K, b) comme précédemment, et en quotientant $K \times \mathbb{R}$ par le groupe $\langle (S_1, t_\pi) \rangle$ (pour le type B_3) ou $\langle (S_2, t_\pi) \rangle$ (type B_4). Comme S_1 et S_2 ont des points fixes, la systole reste égale à π . Le volume vaut $2\pi^2\sqrt{2}$, et le quotient vol/(sys)³ est égal à $2\sqrt{2}/\pi$.

Lemme 3. Pour toute métrique plate g sur une variété riemannienne N de type B_2 on a

$$\frac{\operatorname{vol}(N,g)}{\operatorname{sys}(N,g)^3} \ge \frac{\sqrt{39}}{8}$$

L'égalité est réalisée si et seulement si

i) $|a_1| = |a_2| = 8d$, où d est la distance entre les plans P_1 et P_2 des symétries glissées qui engendrent Γ (cf. 2.3);

ii) l'angle α des vecteurs a_1 et a_2 est égal à $\arccos(-15/24)$.

Proof. On a $(N, g) = \mathbb{R}^3/\Gamma$, où Γ est décrit dans la définition de B_2 . On note Λ le réseau associé à Γ et L le réseau 2-dimensionnel engendré par (a_1, a_2) . Le volume est égal à det $(a_1, a_2)d$. Dans la suite on identifie un réseau Λ avec ses élements. On sait que

$$\operatorname{sys}(N,g) = \inf_{\gamma \in \Gamma} \mathbf{d}(\gamma).$$

En regroupant les éléments de Γ en trois catégories, les symétries glissées de vecteur $a_1 + v$ ou $a_2 + v$ ($v \in L$), et les éléments de Λ c'est à dire les translations pures de Γ , on obtient

$$sys(N, g) = inf\{|a_1/2 + \Lambda|, |a_2/2 + \Lambda|, |\Lambda|\}.$$

En faisant intervenir le réseau L, on obtient

$$sys(N,g) = \inf\{|a_1/2 + L|, |a_2/2 + L|, 4d, \sqrt{|\frac{(a_1 + a_2)}{2} + L|^2 + 4d^2}, |L|\}$$

a) si (a_1, a_2) est une base minimale du réseau L (les vecteurs a_1 et a_2 sont non colinéaires et minimaux dans L), alors

$$sys(N,g) = inf\{|a_1|/2, |a_2|/2, 4d\}, vol(N,g) = |a_1||a_2|d\sin\alpha,$$

d'où $\frac{\text{vol}}{\text{sys}^3} \ge \sqrt{3}/2$ avec égalité si $|a_1| = |a_2| = 8d$ et $\alpha = \pi/3$ b) si $(a_1, a_1 + a_2)$ est une base minimale de L et $|a_1| \le |a_1 + a_2|$ alors

$$sys(N,g) = inf\{|a_1|/2, 4d\} \text{ et } vol(N,g) = |a_1||a_2|d\sin\alpha$$

et on se ramène au cas précédent.

c) si $(a_1, a_1 + a_2)$ est une base minimale de L et $|a_1| \ge |a_1 + a_2|$ alors

sys
$$(N,g) = \inf\{|a_1|/2, 4d, \sqrt{\frac{(a_1+a_2)^2}{4} + 4d^2}, |a_1+a_2|\}.$$

On adopte les normalisations d'usage concernant les réseaux de dimension 2, en rapportant le plan à une base orthonormée (u, v) telle que $u = a_1 + a_2$, $a_1 = xu + yv$. Ainsi, $x^2 + y^2 \ge 1$, $|x| \le 1/2$, et

$$\operatorname{vol}(N,g) = \frac{1}{2} \det(a_1, a_2, \frac{a_1 + a_2}{2} + 2dk) = dy.$$

On discute alors suivant les valeurs de d.

- si $0 < d \le 1/8$ alors la systole vaut 4d et $\frac{\text{vol}}{\text{sys}^3} = \frac{y}{64d^2} \ge y \ge \sqrt{3}/2$
- si $1/8 \le d \le \frac{1}{4\sqrt{3}}$ alors sys = $\inf\{\frac{\sqrt{x^2+y^2}}{2}, 4d\}$ et deux cas se présentent :
 - Premier cas : $\frac{\sqrt{x^2+y^2}}{2} \ge 4d$. Alors sys = 4d et $y \ge \frac{\sqrt{256d^2-1}}{2}$, d'où $\frac{\text{vol}}{\text{sys}^3} = \frac{y}{64d^2} \ge \frac{\sqrt{256d^2-1}}{128d^2} \ge \sqrt{39}/8.$

L'égalité est réalisée si $d = \frac{1}{4\sqrt{3}}, x = 1/2$ et $y = \frac{\sqrt{13}}{2\sqrt{3}}$ - Second cas : $\frac{\sqrt{x^2+y^2}}{2} \leq 4d$. Alors sys $= \frac{\sqrt{x^2+y^2}}{2}$ et le quotient systolique est égal à $\frac{yd}{(\frac{x^2+y^2}{4})^{3/2}}$. Il faut minimiser cette fonction sur le domaine

$$\{(x, y, d): x^2 + y^2 \ge 1, x \le 1/2, 1/8 \le d \le 1/4\sqrt{3}, 4d \ge \frac{\sqrt{x^2 + y^2}}{2}\}$$

Une étude directe donne le même minimum qu'auparavant (mêmes valeurs de d, x, y).

• si
$$\frac{1}{4\sqrt{3}} \le d \le \frac{\sqrt{3}}{4}$$
 alors sys $(N, g) = \inf\{\frac{\sqrt{x^2 + y^2}}{2}, \frac{\sqrt{16d^2 + 1}}{2}\}$
- Premier cas: $\frac{\sqrt{x^2 + y^2}}{2} \ge \frac{\sqrt{16d^2 + 1}}{2}$. Alors
 $\frac{\operatorname{vol}}{\operatorname{sys}^3} = \frac{8yd}{(16d^2 + 1)^{3/2}}$.

Mais $y^2 \ge 16d^2 + 3/4$ d'où $\frac{\text{vol}}{\text{sys}^3} \ge 8d\frac{\sqrt{16d^2+3/4}}{(16d^2+1)^{3/2}}$. Sur l'intervalle considéré, cette fonction atteint son minimum en $d = \frac{1}{4\sqrt{3}}$. On retombe sur $\sqrt{39}/8$.

– Second cas: $\frac{\sqrt{x^2+y^2}}{2} \le \frac{\sqrt{16d^2+1}}{2}$. Alors

$$\frac{\text{vol}}{\text{sys}^3} = \frac{8yd}{(x^2 + y^2)^{3/2}}$$

Comme précédemment, le minimum est réalisé en un point de la frontière du domaine de définition. Il est atteint lorsque $d = 1/4\sqrt{3}$, x = 1/2 et $4d = \frac{\sqrt{x^2+y^2}}{2}$: c'est toujours $\frac{\sqrt{39}}{8}$.

- si $d \ge \sqrt{3}/4$ alors sys = $\inf\{1, \frac{\sqrt{x^2+y^2}}{2}\}$
 - Premier cas: si $1 \le \frac{\sqrt{x^2 + y^2}}{2}$ alors $\frac{\text{vol}}{\text{sys}^3} = yd \ge d\sqrt{15}/2 \ge \sqrt{45}/8$
 - Second cas: si $1 \ge \frac{\sqrt{x^2+y^2}}{2}$ alors $\frac{\text{vol}}{\text{sys}^3} = \frac{8yd}{\sqrt{x^2+y^2}} \ge \frac{2\sqrt{3}y}{(x^2+y^2)^{3/2}}$. Dans le domaine $\{4 \ge x^2 + y^2\}$, cette fonction atteint son minimum lorsque $x^2 + y^2 = 4$, ce minimum est aussi égal à $\sqrt{45}/8$.

Lemme 4. Soit N une variété de type B2, alors il existe sur N une métrique g_0 , continue sur N et lisse en dehors d'une hypersurface, localement isométrique à $S^2 \times \mathbb{R}$, de rapport systolique strictement inférieur à $\sqrt{39}/8$.

Proof. La construction de g_0 se fait comme précédemment en partant de la bouteille de Klein singulière de Bavard. On fait le quotient de $(\mathbf{K}, b) \times \mathbb{R}$ par (T_{δ}, t_d) , où (T_{δ}, t_d) est la transformation T_{δ} déjà définie sur la composante (\mathbf{K}, b) et la translation de vecteur d sur \mathbb{R} . Cela donne bien une variété homéomorphe à une variété de type B_2 , munie d'une métrique singulière isométrique localement à $S^2 \times \mathbb{R}$ là où elle est lisse. On normalise en supposant que la systole vaut π . Cela impose l'inégalité $(\mathbf{d}(T_{\delta}, t_d))^n \geq \pi$ pour tout n. Le volume est égal à $2\pi\sqrt{2}d$. Pour obtenir le plus petit rapport systolique il faut que d soit minimal. On commence par étudier l'inéquation $\mathbf{d}(T_{\delta}, t_d) \geq \pi$, ce qui est équivalent à $(d(T_{\delta}))^2 + d^2 \geq \pi^2$. La valeur maximale de $d(T_{\delta})$ est obtenue lorsque δ vérifie $\frac{\cos \delta - 1}{2} = \cos \frac{\pi - \delta}{\sqrt{2}}$, on note δ_0 la solution de cette équation; le d minimal est obtenu lorsqu'on a une égalité dans l'inéquation précédente, on le note d_0 . Pour ces valeurs de δ et d, on a bien $(\mathbf{d}(T_{\delta}, t_d))^n \geq \pi$ pour tout n, puisque d_0 est de l'ordre de 2, 64143 et nd est supérieur à π pour $n \geq 2$. Ainsi, ces deux constantes donnent le plus petit rapport systolique parmi ceux de toutes les constructions similaires. Il est égal à $\frac{2\sqrt{2}d_0}{\pi^2} < \sqrt{39}/8$.

5 Remarque finale

Ivan Babenko nous a signalé la propriété remarquable suivante : si la borne inférieure des quotients systoliques est réalisée par une métrique g (éventuellement singulière), alors les géodésiques fermées de longueur sys(g) recouvrent M^n .

Outre les métriques homogènes (exemple sans intérêt), cette propriété est satisfaite, d'après la discussion du paragraphe précédent, par les métriques plates sur les variétés non orientables de

dimension 3 qui minimisent $\frac{\text{vol}(g)}{\text{sys}(g)^3}$ sur l'ensemble des métriques plates. Un argument spécifique tel que le notre est donc nécessaire pour pouvoir montrer que ces métriques ne sont pas optimales. Notons aussi que pour les métriques singulières que nous venons de construire, la variété est encore recouverte par les géodésiques systoliques. Il n'y a donc pas d'obstacle "évident" à ce que ces métriques soient optimales, même si nous sommes loin de pouvoir le montrer.

Par contre, cette propriété n'est jamais satisfaite par les métriques plates de type G_6 (voir le dessin suggessif de [12], p. 236), ce qui montre notre résultat pour la variété G_6 . En fait, ce résultat reste vrai pour les autres variétés plates orientables de dimension 3, à l'exception du tore pour lequel la question reste ouverte, mais les méthodes mises en œuvre sont très différentes. Elles feront l'objet d'un travail ultérieur.

References

- Bavard, C., Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274, 439– 441(1986)
- [2] Bavard, C., Inégalités isosystoliques conformes pour la bouteille de Klein, Geom. Dedicata 27(3), 349–355 (1988)
- [3] Berger, M., Quelques problèmes de géométrie riemannienne ou deux variations sur les espaces compacts symétriques de rang 1, L'Ens.Math. (2) 16 73–96 (1970)
- [4] Berger, M., Systoles et applications selon Gromov, Séminaire N. Bourbaki, exposé 771, Astérisque 216, 279–310 (1993)
- [5] Burago D., Burago, Y.D., Ivanov, S., A course in metric geometry, Graduate studies in Mathematics (33), Amer. Math. Soc., Providence, R.I. 2001
- [6] Charlap, L.S., Bieberbach Groups and Flat Manifolds, Universitext, Berlin 1986
- [7] Gallot, S., Hulin, D., Lafontaine, J., Riemannian Geometry, 3rd edition, Springer, Berlin Heidelberg 2004
- [8] Gromov, M., Filling Riemannian manifolds, J. Diff. Geom. 18, 1–147(1983)
- [9] Gromov M., Systoles and intersystolic inequalities, in : Besse, A.L. (ed.), Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Société Mathématique de France, Séminaires et Congrès no. 1, p. 291–362
- [10] Katz, M.G, Systolic Geometry and Topology, Math. Surveys and Monographs137, Amer. Math. Soc., Providence, R.I. 2007
- [11] Pu, P., Some inequalities in certain non-orientable riemannian manifolds. Pacific J.Math.2, 55–71(1952)
- [12] Thurston, W.P., Three-Dimensional Geometry and Topology, edited by S. Levy, Princeton University Press, Princeton (1997)
- [13] Wolf, J.A., Spaces of constant curvature, Publish or Perish, Boston 1974

E-mail: elmir@math.univ-montp2.fr E-mail: jaclaf@math.univ-montp2.fr