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A. BUADES , A. CHIEN , J.M. MOREL , AND S. OSHER

Abstract.

Key words. Image restoration, PDE smoothing filters, 3D medical imaging, Non-local image
analysis, Graph based image segmentation.

AMS subject classifications. 62H35

1. Introduction. Advances in 3D medical imaging have taken a prominent role
in clinical evaluation and treatment planning [39, 28, 36, 9]. 3D images allow re-
construction of organs or vessels, and allow physicians to visualize morphology and
monitor pathological changes [39, 36, 9, 31]. However, these detailed images generate
large data sets. To efficiently analyze this 3D data has been technically challenging.
Researchers have proposed methods for segmentation and reconstruction [23, 43, 38].
However, in addition to general imaging processing issues such as noise and artifacts,
the greatest challenges presented by medical images are the presence of inhomoge-
neous contrast, and irregular contouring [31, 43, 10, 7]. In fact, many important
pathological abnormalities are also indicated by inhomogeneous contrast or irregular
contouring in an image. Therefore, an algorithm that distinguishes noise without
losing topology is needed.

Image processing on medical images usually favors one particular imaging modal-
ity, and using prior information in the reconstruction process is common [23, 7, 1].
However, the usage of prior information can easily omit the small changes in pathol-
ogy which are important in clinical follow-up and essential to detect motion. In this
paper, we utilized the information provided by images without relying on prior infor-
mation or methods specific to a particular image acquisition technique. Therefore, in
the future, the presented algorithm can be easily applied to dynamic imaging tech-
niques (dynamic MR or 4D CT images) to detect small pulsation and derive tissue
functional data.

The mathematical tools used to solve this problem go across partial differential
equations (PDEs) and the calculus of variations. We can distinguish two kinds of
methods. Some define an iterative process which can be implemented directly [21].
Other more ambitious ones fix a segmentation energy to be minimized for the ideal
segmentation [29]. Such methods are called energy methods, or variational methods.
In a wide extent, however, both approaches are linked. Indeed most of the considered
PDEs minimize some energy and conversely variational methods are almost necessarily
implemented as a PDE evolution. Thus, we’ll concentrate on PDEs and we’ll go back
later to the variational principles. In image processing, PDEs are nothing but formulas
describing local interactions between neighboring pixels. In the case of smoothing
PDEs, this interaction is described as an evolution starting from the initial image
u0(x) = u(0,x) and leading to a smoother version u(t,x) depending on a scale t.

Since many image processing algorithms are described in a discrete setting we’ll
jump from the continuous to the discrete by writing u(x) for the grey level image
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defined on the continuous domain Ω and u(i) for i belonging to a discrete set of pixels
on a regular grid of Ω.

Our analysis will mainly deal with linearizations of classic and less classic PDEs.
Probably the main technical outcome of the present study is to demonstrate that the
linearized versions of several classical and less classical nonlinear heat equations work
better for image segmentation than their nonlinear counterparts. This is a posteriori
understandable: while the solution u(t,x) to the nonlinear equations goes away from
its initial data u0, the linearized version maintains the direct knowledge of u0 and this
presence acts as a fidelity term to the initial datum. The heat equations we consider
are non local on the image domain, but can be interpreted as local heat equations in
a similarity graph associated with the initial image u0. In this we shall follow and
extend recent works where grey level similarity has been used to define the weights
between nodes of a graph whose nodes are all image pixels [3, 4, 24, 18, 19].

1.1. All filters in a table. On the technical side the main lines of our discussion
on image filters with increasing image fidelity are summarized in Table 1.1. Each row
represents an image processing method. The first column is the name of the process,
the second one gives the associated discrete filter name, the third column gives the
PDE form and the fourth column the form of the linearized version. Finally the
fifth column specifies the initial data. It can be the image or, in the case where a
segmentation is sought, a set of seed points with value 1 and others with zero value,
manually indicated by an expert. In this latter case the result of the evolution is not
a smoothed version of u0 but a probability for each pixel to belong to the same region
as the seed [19, 16]. In all cases the steady state for the evolution is a “harmonic
function” with respect to a graph Laplacian associated with the initial image. This
harmonic version is faithful to the original u0, but with more homogeneous regions.

PDE Filter PDE Linearized PDE initial

Heat Gaussian ∂u
∂t

=∆u ∂u
∂t

=∆u u0
Mean Curv. median ∂u

∂t
=∆Du⊥u ∂u

∂t
=∆Du⊥

0
u u0

Per.-Malik sigma filter ∂u
∂t

=∆NF (u)u
∂u
∂t

=∆NF (u0)u u0
Grady sigma-filter ∂u

∂t
=∆NF (u)u

∂u
∂t

=∆NF (u0)u Seeds

Non Local NL-means ∂u
∂t

=∆NL(u)u
∂u
∂t

=∆NL(u0)u u0
Table 1.1

Table of main PDEs and their linearized versions, which are all heat equa-
tions. Each row represents an image processing method. The first column is the name of
the PDE, the second one gives the associated discrete filter name, the third column gives the
nonlinear PDE form and the fourth column the linearized version. The fifth column specifies
the kind of initial data. The initial data can be the image or, in the case where a segmenta-
tion is sought, some seed points with value 1 et others with zero value are indicated by the
expert. In this later case the result of the evolution is not a smoothed version of u0 but a
probability for each pixel to belong to the same region as the seed. In all cases the steady
state for the evolution is a “harmonic function” with respect to a graph Laplacian associated
with the initial image u0.

The four main neighborhood filters we consider in the second column are:
• the Gaussian mean, a Gaussian average of neighboring pixels,

Gρu(x) =
1

C(x)

∫

Ω

e
− |x−y|2

ρ2 u(y)dy;

• the anisotropic or median filter, Gaussian average of pixels the level line
direction,
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Figure 1.1. On the right-hand side of each pair, we display the weight distribution used
to estimate the central pixel of the left image by the NL-means algorithm. Compare with
Figure 1.2.

AFhu(x) = Gh ∗ u|L(x) =

∫

R

Gh(t)u(x+ t
Du⊥

|Du|
)dt

where L(x) is the line passing by x and orthogonal to the gradient of u at x;
• The sigma filter, a local average of pixels with similar grey level,

NFρ,hu(x) =
1

C(x)

∫

Ω

e
− |x−y|2

ρ2 e−
|u(x)−u(y)|2

h2 u(y) dy;

(In some versions the spatial distance weights are replaced by a distance
threshold.)

• the non-local means filter, an average of all pixels with similar local configu-
ration

NLh,au(x) =
1

C(x)

∫

Ω

e−
1
h2

∫
R2

Ga(t)|u(x+t)−u(y+t)|2dt u(y) dy,

where Ga is a Gaussian kernel of standard deviation a and h acts as a filtering
parameter. In all cases C(x) is a normalization constant so that the integral
of coefficients is 1.

The sigma filter due to Lee [25] fits into the general theory of neighborhood filters
developed by the Soviet school [41]. Several variants, discrete and continuous make
it also known as SUSAN [37] and as the bilateral filter [40]. An iterative version of
this filter is applied to color imaging in [11]. The authors of this paper also show by
a kernel based density estimation point of view that clusters of points converge to its
mean, making such an approach useful for segmentation purposes.

In the NL-means filter the resemblance between pixels is evaluated by comparing
a whole window around each pixel, not just the color of the pixel itself. This idea
which originates in [14] leads to a generalized sigma filter whose denoising properties
were studied in [6]. NL-means is more robust to noise than the sigma filter. The
window comparison also makes the weight distribution of NL-means adapt to the
local geometry of the image as displayed in Figure 1.1 which we take from [6].
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The simple form of the PDEs in the table of Figure 1.1 is slightly deceptive.
It could suggest that we consider heat equations, that is local, linear and isotropic
image processes. In fact, with the exception of the very first equation, all considered
equations in the third column are nonlinear local or nonlocal diffusion processes.
However, from the numerical view point they all compute a neighborhood for each
pixel and then perform an average on this adaptive neighborhood. Passing from the
third to the fourth column only means on the numerical side that the neighborhood
of each pixel is fixed at the beginning of the iterations. Thus, it is computed with the
initial image u0 and not computed again at each time iteration. So the equations of the
fourth column which are the linearized versions of the ones in the third column turn
out to be iterative averages on fixed neighborhoods. They are considerably simpler,
being linear. One of the main outcomes of the present paper is to demonstrate that
these linear equations are more adapted to a faithful image processing.

The main differences between the five rows of the table is the shape of the neigh-
borhood of these equations viewed as implementations of an iterative average on an
adaptive neighborhood. The shape of these neighborhoods is shown (in red) in Figure
1.2. The central point is assumed to be grey in the left hand image. The second image
shows the Gaussian radial neighborhood associated of this point, which corresponds
to the first row of the table. The third image shows the neighborhood given by the
median filter (this filter turns out to be equivalent to an average in the direction
tangent to the level line [21]). The fourth and fifth row of our table correspond to
the classical sigma-filter, which select pixels which are both close in space and in grey
level. The last row of the table corresponds to a more sophisticated neighborhood
filter, the non-local means filter, which selects the pixels for which a surrounding win-
dow looks like the corresponding window of the current pixel. In all cases the red
points depict a criterion for pixel similarity, with growing efficiency.

1.2. Plan of the paper. Our plan follows from the above table. Section 2
discusses the comparative properties of the PDEs, with emphasis on their topology
preserving properties. Section 3 gives the linearizations of all nonlinear heat equations
and nonlinear filters and shows experimentally that they are more faithful to the
original. They also are much easier and faster to implement. Section 4 contains an
application to medical image segmentation. One of the main outcomes of the linear
filters is illustrated in Section 4.3 on the histogram concentration phenomenon.

2. Classic PDEs first .

2.1. The heat equation as simplest neighborhood filter. The first process
we shall consider is the heat equation as a PDE and the Gaussian convolution as
a filter. This filter stems from the remark that the difference between the original
image u0 and a blurred version image of it, k ∗ u0, is roughly proportional to its
Laplacian. More precisely assume that k is spatially concentrated and scale k as
kh(x) =

1
h
k( x

h
1
N

), where N is the image domain dimension and h→ 0. Denote by x a

point of the image domain and assume that u0 is C3 around x. Assume further that k
is a positive radial kernel satisfying

∫

(1+ |x|2+ |x|3)k(x)dx <∞ and
∫

x21k(x)dx = 2.
Under these assumptions and using a Taylor expansion of u0 around x, it is easy to
prove that [21]:

kh ∗ u0(x)− u0(x)

h
→ ∆u0(x)
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Image Gaussian Anisotropic

Sigma filter NLmeans

Figure 1.2. In red: the shape of the neighborhoods involved in 2D image filters. From left
to right: a point is picked on the disk’s boundary; the heat equation corresponds to a Gaussian
average (red disk centered at the point). The median corresponds to an anisotropic filtering
in the direction tangent to the disk boundary. The sigma filter selects points which are close
to the current point in both space and grey level value. NL-means selects as neighbors the
points for which a small image window around them is similar to the corresponding image
window around the current pixel. This results in the selection of a piece of the grey disk’s
boundary. See Figure 1.1 for examples of NL-means neighborhoods on real images.

as h→ 0. We can rewrite this relation as

kh ∗ u0(x)− u0(x) = h∆u0(x) + o(h). (2.1)

Let u(t,x) denote the solution of the heat equation

∂u

∂t
= ∆u, u(0,x) = u0(x). (2.2)

If u0 is C2 and bounded, then we deduce that

u(t,x)− u(0,x) = t∆u0(x) + o(t). (2.3)

The comparison of equations (2.1) and (2.3) shows that blurring u0 with a kernel kh
is for small h equivalent to applying the heat equation to u0 at scale h.

2.2. The Perona-Malik equation. Our second main equation was proposed
by Perona and Malik [30] to avoid the blur effect of the Gaussian convolution. The
idea is to smooth what needs to be smoothed, namely the homogeneous regions, and
to enhance the boundaries of u0. With this in mind, the diffusion should look like
the heat equation when |Du| is small, but it should act like the inverse heat equation
when |Du| is large. This leads to an equation in divergence form:

∂u

∂t
= div(g(|Du|)Du), (2.4)

where (e.g.) g(s) = 1/(1 + λ2s2). It is easily checked that we have a diffusion
equation when λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. To see
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Figure 2.1. The intrinsic coordinates ξ and η computed at a point of an image. The
coordinate η is normal to the level lines and therefore normal to the image structure while
the coordinate ξ is the tangent to the level line. The image Laplacian ∆u = uηη + uξξ =

D2u( Du
|Du|

, Du
|Du|

)+D2u(Du⊥

|Du|
, Du⊥

|Du|
) can be decomposed into the sum of the second derivatives

in both directions.

this, consider the second derivative of u in the direction of Du,

uηη = D2u

(

Du

|Du|
,
Du

|Du|

)

,

and the second derivative of u in the orthogonal direction,

uξξ = D2u

(

Du⊥

|Du|
,
Du⊥

|Du|

)

,

where Du = (ux, uy) and Du⊥ = (−uy, ux). The Laplacian can be rewritten in
the intrinsic coordinates (ξ, η) as ∆u = uξξ + uηη. We display an example of these
intrinsic coordinates in Figure 2.1. The Perona–Malik equation writes in the intrinsic
coordinates

∂u

∂t
=

1

1 + λ2|Du|2
uξξ +

1− λ2|Du|2

(1 + λ2|Du|2)2
uηη.

The first term in this representation always appears as a one-dimensional diffusion
in the direction orthogonal to the gradient, tuned by the size of the gradient. The
nature of the second term depends on the value of the gradient; it can be either a
diffusion in the direction Du or an inverse diffusion in the same direction.

2.3. Perona-Malik as a sigma filter. Local average filters can be asymptoti-
cally related to the above PDE formulations. It was suggested in [2] and proved in [5]
that the sigma filters are asymptotically equivalent to a Perona-Malik equation. This
result was proven with the slightly simpler (but in practice equivalent) form

NFh,ρu(x) =
1

C(x)

∫

Bρ(x)

u(y)e−
|u(y)−u(x)|2

h2 dy, (2.5)

where Bρ(x) is a ball of center x and radius ρ, h is the filtering parameter and

C(x) =
∫

Bρ(x)
e−

|u(y)−u(x)|2

h2 dy is the normalization factor. The Perona-Malik equation

writes in general form

ut = div(g(|Du|2)Du),
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Figure 2.2. The diffusion and inverse diffusion weights in the Perona-Malik equation.
The diffusion in the direction of level line term coefficient is g(|Du|2). See its graph above
in continuous line. This term remains positive, which means that there is a diffusion in the
direction of the level line, like in the mean curvature motion. This diffusion is slower when
the gradient is large. The coefficient of the diffusion in the direction normal to the level
line is h(|Du|2). This term performs like an inverse heat equation (an enhancement) in the
direction of the gradient when the gradient is above a critical value. This enhancement effect
also decays when the gradient is large. Compare with the shapes of g and h for the sigma
filter.

where g : [0,+∞) → [0,+∞) satisfying g(0) = 1, lims→+∞ g(s) = 0 is a smooth
decreasing function. This equation rewrites as

ut = g(|Du|2)uξξ + h(|Du|2)uηη. (2.6)

It is good to get the shape of g and h as illustrated in Figure 2.2. Theorem 2.1 below
and Figures 2.2 and 2.3 explain why sigma filters are efficient implementations of a
Perona-Malik equation.

Theorem 2.1. [5] If h and ρ are of the same order of magnitude,

NFh,ρu(x)− u(x) ≃
[

ĝ(
ρ

h
|Du(x)|) uξξ(x) + ĥ(

ρ

h
|Du(x)|) uηη(x).

]

ρ2 (2.7)

First, the form of the PDE (2.7) is the same as for the Perona-Malik form (2.6) and

second the functions ĝ and ĥ weighting the diffusion tangent to the level line and
the diffusion orthogonal to the level line have the same shape as the corresponding
functions g and h in (2.6). This confirms the experimental evidence that the sigma
filter is an implementation of a Perona-Malik equation. This implementation as a local
adaptive average filter is notably simple. It yields a maximum decreasing, minimum
increasing numerical scheme.

2.4. Mean curvature motion, the median and the geometry of surfaces.

The mean curvature motion was first introduced in shape analysis by Tannenbaum et
al. [22] and a clever implementation, the “threshold dynamics” can be found in [27].
It amounts in fact to iterate a radial median on the image [21]. Let us give a more
geometric explanation about the mean curvature motion. This equation writes

∂u

∂t
= |Du| div

(

Du

|Du|

)

. (2.8)
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Figure 2.3. The functions ĝ and ĥ weighting diffusion tangent to the level line and
diffusion orthogonal to the level line for the sigma filter. They have the same shape as for
a Perona-Malik equation. This implies that the sigma filter has the same qualitative action
as the Perona-Malik equation. It can be considered as an implementation of a Perona-Malik
equation, particularly remarkable as it performs like a local adaptive average equation.

In order to understand its geometric meaning one has first to introduce the principal
curvatures of the level surface of u.

Definition 2.2. Let u : RN → R be C2 at x0, with Du(x0) 6= 0. The principal
curvatures of u at x0 are the real numbers

κj =
µj

|Du(x0)|
,

where µj are the eigenvalues of D2u(x0) restricted to Du(x0)
⊥.

Definition 2.3. The mean curvature of a C2 function u : RN → R at x0 ∈ R
N

is the sum of the principal curvatures at x0. It is denoted by curv(u)(x0) and satisfies

curv(u) = div
( Du

|Du|

)

.

It is an easy calculation to check that, if u is C2 and g : R → R a “contrast change”,
namely a non decreasing C2 function with g′((u(x))) 6= 0, then curv(g ◦ u)(x) =
curv(u)(x). This means that the mean curvature only depends on the geometry of
the level surface and on the sign of u (indeed curv(−u) = −curv(u).)

Finally the next proposition permits to interpret the mean curvature motion as
a geometric motion of the level surface.

Proposition 2.4. Let u(t, x) be a solution of the mean curvature motion which
is C2 around x and such that Du(x) 6= 0. Then the level surface of u passing by x

moves according to the equation

∂x

∂t
= curv(u)n(x),

where n(x) = Du
|Du| (x) is the normal to the level surface at x. Notice that curv(u)(x)

and n(x) are invariant with respect to contrast changes and that they both change
sign when u is changed into −u. Thus curv(u)(x)n(x) does not change sign and the
motion only depends on the level surface of u passing by x. This is why this motion
is called geometric.
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In three dimensions the level surfaces have two principal curvatures. In the case
of a cylindrical surfaces, the highest curvature is the inverse of the radius of the
cylinder. Thus under mean curvature motion such a surface evolves by getting thinner
and eventually collapses. The speed being proportional to the curvature, broader
cylinders hardly move, while thinner cylinders disappear quickly. Thus, applying the
mean curvature motion to a set of connected tubes like the arteries network leads
to the elimination of the smaller arteries. The straight broad arteries are instead
nearly steady. In consequence the mean curvature motion is a simplification tool for
irrigation networks. It can be implemented very easily by iterating a median filter
[27]. However, we shall see that in practice the removal effect for thin arteries is much
too quick and makes mean curvature motion unfit for 3D medical imaging. This is
illustrated in the comparative experiments of Figure 4.3.

In [26], Weickert et al. introduced a variant of the curvature equation, with
nonlocal estimate of the direction orthogonal to the gradient: the diffusion direction
d = SEigen(k ∗ (Du⊗Du)) is computed as the eigenvector of the least eigenvalue of
k ∗ (Du ⊗Du): if the convolution kernel is removed, this eigenvector simply is Du⊥.

The Rudin-Osher-Fatemi [32] total variation model evolves the image by the steep-
est descent of the image total variation TV (u) =

∫

|Du(x)|dx and its evolution reads,
at least formally

ut = div(
Du

|Du|
). (2.9)

There is a clear link with the mean curvature motion and, in fact the mean curva-
ture motion can be shown to decrease the total variation (and so does also the heat
equation, by Jensen’s inequality).

3. Linearizing all filters .

3.1. Linearizing Perona-Malik and the mean curvature. We have seen
in Section 2.3 that sigma filters implement a Perona-Malik equation. By linearized
version of the Perona-Malik equation we mean, as for the linearized version of the
mean curvature motion, that the diffusion directions are fixed and given by the initial
image gradient Du0. Thus the equation in two dimensions is

∂u

∂t
= g(|Du0|

2)uξ0ξ0 + h(|Du0|
2)uη0η0

where η0 denotes the coordinate parallel to Du0 and ξ0 the orthogonal one. In the
same way, the mean curvature motion being a diffusion in the plane tangent to the
level surface of u can be written

∂u

∂t
=∆Du⊥u,

where ∆~w⊥u = ∆u−D2u( ~w
|~w| ,

~w
|~w|) denotes the Laplacian of u restricted to the plane

orthogonal to a vector ~w. By fixing the diffusion plane to be always the tangent plane
to the level surface of u0, the fidelity of the evolution to the initial image is intuitively
reinforced. The equation becomes linear and reads

∂u

∂t
=∆Du⊥

0
u.

As can be appreciated in Figure 3.1 the result of a linearized mean curvature motion
starting from u0 is fairly equivalent to the mean curvature motion starting from u0.
Some more fidelity to u0 is, however, gained by this linearization.



10 A. BUADES, A. CHIEN, J.M MOREL AND S. OSHER

Figure 3.1. Median and linearized median. On the left a piece of brain image slice.
Middle: iterated median filter, equivalent to the mean curvature motion ∂u

∂t
=∆Du⊥u. Right,

linearized mean curvature motion, which amounts to smooth u in the direction tangent to
the level lines of the initial u0, starting from u0. The linear equation is ∂u

∂t
=∆Du⊥

0
u and

the effect is actually quite similar to the curvature motion, but slightly more faithful to the
original.

3.2. Linear heat equations based on sigma filter and NL-means. As we
shall see in Section 4.1, the sigma filter and NL-means can be used for a supervised
segmentation of a medical image starting from seed regions. These filters can be
applied iteratively, in which case we have the choice of fixing the weights or to let
them evolve. If we fix them, we are led to a linearized version which can be interpreted
as a heat equation. Calling now u0 the initial image, let us set for x,y in the image
domain Ω

w̃(x,y) = e−
−|u0(y)−u0(x)|2

h2 or e−
∫

R2
Ga(t)|u0(x+t)−u0(y+t)|2dt

h2

and to get normalized weights

w(x,y) =
w̃(x,y)

∫

Ω w̃(x,y)dy
.

Consider the weighted average linear operator defined for any function u on Ω by

LNF (u0)u(x) =:

∫

Ω

w(x,y)u(y)dy.

Following the formalism in [16] for any function u on Ω the difference

∆NF (u0)u(x) =:

∫

Ω

w(x,y)u(y)dy− u(x)

is called the Laplacian of u for the weights w(x,y). This terminology can be viewed
as a generalization of the asymptotic equivalence between local averaging and the
Laplacian explained in Section 2.1.

Thus iterating the linear smoothing operator un+1(x) = LNF (u0)u(x) becomes an
implementation of the generalized heat equation

∂u

∂t
= ∆NF (u0), u(0) = u0

whose solution is

u(t) = et(LNF(u0)−I)u0 = et∆NF(u0)u0.
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3.3. Comparing filters with their linear counterpart. Figure 3.2 shows a
comparison of four diffusion processes. On the right fully non linear processes such as
the mean curvature motion, the Perona-Malik equation, the sigma filter and the NL-
means have been applied while on the left column their linearized versions are tested
at the same evolution time. The aim of Figure 3.2 is definitely not to recommend the
use of such filters for portraits, but only to demonstrate that the fidelity to the original
image is increased when using the linearized version. This fact is quite apparent with
the iterated linearized sigma-filter. In spite of the consistency of the sigma filter with
the Perona-Malik equation, the visual aspects of the results by both filters are quite
different. Both create shocks, namely new edges, but these edges are step edges for the
Perona-Malik equation in both nonlinear and linear version. The edges created by the
sigma filter are step edges, but this staircase effect does not occur in the linear version!
In summary the linearized version of the neighborhood (or sigma-, or bilateral) filter
shows better image quality and fidelity. We observe the same effect in the NL-means
algorithm. The iterated version also produces shocks. These shocks are avoided by
its linear counterpart.

3.4. Variational interpretation of all filters. All PDEs considered above,
with the exception of the mean curvature motion, derive from an energy functional.
The heat equation (2.2) is the steepest descent from u0 for the energy

∫

Ω |Du|2.
The Perona-Malik equation (2.4) is the steepest descent for

∫

Ω
G(Du) where G is a

primitive of g. In [33] Kindermann-Osher-Jones interpreted the NL-means and the
sigma filters in general as regularizations based on nonlocal functionals in the general
form

∫

Ω×Ω

g

(

|u(x)− u(y)|2

h2

)

w(|x− y|)dxdy,

where w(|x − y|) is a spatial weight function. Gilboa et al. [16] consider the general
kind of quadratic non local functional

J(u) :=

∫

Ω×Ω

(u(x)− u(y))2wu0(x,y)dxdy. (3.1)

where wu0(x,y) now depends on the initial image u0. The weight function w(x,y) ≥
0 is always assumed nonnegative. The corresponding Euler-Lagrange equation for
minima is L(u)(x) = 0 with

L(u)(x) =

∫

Ω

(u(x)− u(y))wu0 (x,y)dy (3.2)

and the authors in [16] considered the gradient descent of the minimization for J(u).
The limit of the gradient descent for J(u) is solution to (3.2) and is obtained by the
numerical iteration

un+1(x) =
1

C(x)

∫

Ω

un(y)wu0(x,y)dy, (3.3)

where C(x) =
∫

Ω
w(x,y)dy is a normalizing factor and u0 is given as an initial condi-

tion of the process. The freedom of this initial condition and the weight distribution
(independent of u) makes this formulation a linear and powerful tool for image pro-
cessing.
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Figure 3.2. Comparison of linear (left images) and nonlinear (right images) diffusion
schemes. From top to bottom: original image, mean curvature motion, the Perona-Malik
equation, the sigma filter and the NL-means. This experiment shows first that linearized
versions are more faithful for the original. This is not a surprise, since the original image
features are kept in the linearized version while they are updated in the nonlinear version. The
third row illustrates how much better the linearized version of the neighborhood (or sigma-,
or bilateral) filter performs with respect to the non linear one. We observe the same effect
in the NL-means algorithm. The iterated version produces shocks as the neighborhood filter,
which are avoided by its linear counterpart. See Section 3 for more details.

Surprisingly enough and as anticipated in the seminal Grady work to be com-
mented upon next, one can get good segmentation results with quadratic functionals
which are by far simpler than the classic energy segmentation functionals which we
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shall now recall briefly for comparison. The most emblematic ones are the total vari-
ation restoration [32] where a restored image u is obtained from the original u0 by
minimizing a smoothness+fidelity functional

ETV (u) =

∫

Ω

|Du(x)|dx+ λ

∫

Ω

(u− u0)
2(x)dx;

and the Mumford-Shah energy [29] which seeks explicitly a set of boundaries K in
the image,

EMS(u) =

∫

Ω\K

|Du|2 + λ(u− u0)
2(x)dx +measure(K).

Here K the set of discontinuities of u. The term measure(K) is the area of K in 3D
images and its length in 2D images.

The ROF functional is actually a restoration algorithm and does not give a seg-
mentation. The Mumford-Shah functional is highly non convex and not easy to deal
with numerically. In addition, it suffers the same drawbacks we mentioned for the
mean curvature motion: Since it minimizes the area in three dimensions, it has a ten-
dency to eliminate small tubes and is therefore not fit for the extraction of intricate
topological objects.

4. Enhancement by linear diffusion. In this section experiments on common
3D CT diagnostic images, are presented. In general, MR images are used to charac-
terize soft tissue information. Changes in tissue properties can be differentiated by
variations in gray scales. It is commonly used to inspect organ morphology and locate
tumors. CT images, on the other hand, show clear bone structure with less tissue
information. With the presence of radioactive contrast (iodine), detailed arterial tree
structures are enhanced and shown as a bright area. This is typically used to screen
for arterial disease, vessel occlusion, and malformation. CT imaging modalities sup-
port clinical diagnosis; therefore, a large amount of data needs to be analyzed in a
timely fashion [39, 28, 9, 31].

4.1. Grady’s multi-labeled segmentation. In [18], [17], a novel method was
proposed for performing multi-label, semi-automated medical image segmentation.
Given a small number of pixels with user-defined labels which are called seeds, this
method computes the probability that a random walker starting at each unlabeled
pixel will first reach one of the pre-labeled pixels. By assigning each pixel to the label
for which the greatest probability is calculated, a high-quality image segmentation can
be obtained. With each unlabeled pixel, a K-tuple vector is assigned that represents
the probability that a random walker starting from this unlabeled pixel first reaches
each of the K seed points. A final segmentation may be derived from these K-tuples
by selecting for each pixel the most probable seed destination for random walker.
By biasing the random walker to avoid crossing sharp intensity gradients, a quality
segmentation is obtained that respects object boundaries (including weak boundaries).
The image (or volume) is treated as a graph with a fixed number of vertices and
edges. Each edge is assigned real-valued weight corresponding to the likelihood that
a random walker will cross that edge (e.g., a weight of zero means that the walker
may not move along that edge). By a classical result the probability that a random
walker first reaches a seed point exactly equals the solution to the heat equation [3]
with boundary Dirichlet conditions at the locations of the seed points, the seed point
in question being fixed to unity, while the others seeds are set to zero. This idea was
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Figure 4.1. (Taken from [19].) The Grady segmentation method is a linearized sigma
filter applied to propagate seed regions. The grey curves are user defined seed region. In that
case one of the seed region is put to 1 and the other to zero. A diffusion with sigma filter
weights computed on the original image u0 is applied until a steady state is attained. This
gives at each pixel y a value p1(y) between 0 and 1 which is interpreted as the probability
for y to belong to the region of the first seed. A threshold at 0.5 gives the black curves
separating the regions of both seeds. Like the active contour method, this method is highly
dependent on the initial seeds. It is, however, much less sensitive to noise than the snakes
method and permits to initialize fairly far from the desired contours. We shall see that by the
histogram concentration effect one can get similar or better results without any initialization.
See Section 4.1.

not quite new. Region competition segmentation is an old concept [44]. One can also
refer to an algorithm developed for machine learning by Zhu et. al [45] which also
finds clusters based upon harmonic functions, using boundary conditions set by a few
seed points. [35] also involves weights in the image considered as a graph and takes
seed points. The method is also directly related to the Sapiro et al. recent image
coloring method by diffusion from seeds [42] (see also [34]).

Let us review the main and simple idea of the diffusion equations on a graph.
Each pixel (or voxel) is a graph node and neighboring pixels i and j are linked by a
non oriented edge with weight wij . This weight represents the amount of similarity
between pixels i and j, which in the Grady et al. paper is computed as

wij(u) = e−
(u(i)−u(j))2

h2 , (4.1)

where u(i) denotes the grey value at i and h is free parameter left to the user and the
only parameter of the algorithm. This is nothing but a sigma filter!

The diffusion algorithm defined by the authors can be viewed in two different
ways. First, we can see it as a mere diffusion on the graph of a probability distribution.
K =

⋃

lKk is a set of seed points. Each set Kk is manually indicated by the user
as associated with an image region, with label k. Set p0k(i) = 1 if i ∈ Kk, p

0
k(i) = 0

otherwise and consider the iteration

pn+1
k (i) =

∑

j∈J(i) wij(u)p
n
k (j)

∑

j∈J(i) wij

if i /∈ K, pn+1
k (k) = p0k otherwise, (4.2)

where J(i) is the set of neighboring pixels of i. At the seed points the value pn+1
k (l)

remains fixed to 1 in Kk and 0 otherwise. This represents a Dirichlet boundary
condition.
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Notice that the notions of Markov walk probabilities and diffusion vectors should
be well separated: given a Markov matrix M such that M · 1 = 1, the left eigen-
functions, ψl of M are the asymptotic probabilities of the Markov walk defined on
the data by M , and we have

∑

i ψl(i) = 1. In contrast, the right eigenvectors ψl

are not probability vectors and are often denoted as diffusion vectors, due to their
use in spectral/diffusion embeddings. According to equation (4.2), this approach is a
diffusion.

It is a classical result that pn+1
k converges towards a function pk such that 0 ≤

pk ≤ 1. The value pk(i) is interpreted as the probability that a random walker starting
at pixel i will reach k before reaching one of the other pre-labeled pixels l ∈ K. By
choosing for each pixel i the seed realizing max pk(i), one obtains a set of regions
labeled by k ∈ K which is the desired segmentation. The steady state pk is solution
of a discrete Laplace equation with Dirichlet boundary condition on the set K of
seeds,

∆wpk(i) =:

∑

j∈J(i) wij(u)p
n
k (j)

∑

j∈J(i) wij

− pn+1
k (i) = 0, pk(l) = p0k(l) for l ∈ K. (4.3)

In [20] a numerical solution is proposed to this numerical problem. Actually the
iteration (4.2) works as well but can be a bit slow.

Thus, the Grady segmentation method is a linearized sigma filter applied to prop-
agate seed regions. Figure 4.1 taken from [19] illustrates the process on a two chamber
view of a cardiac image. The grey curves are user defined seed regions roughly denot-
ing the ventricles in the image. In that case one of the seed regions is put to 1 and the
other to zero. A diffusion with sigma filter weights computed on the original image
u0 is applied until a steady state is attained. This gives at each pixel y a value p1(y)
between 0 and 1 which is interpreted as the probability for y to belong to the region
of the first seed. In this binary case a single threshold at 0.5 gives the black curves
separating the regions of both seeds. Like the active contour method, this method is
highly dependent on the initial seeds. It is, however, much less sensitive to noise than
the snakes method [8] and permits to initialize fairly far from the desired contours.
We shall see that by the histogram concentration phenomenon (Section 4.3) one can
get similar or better results without any initialization.

4.2. Proposed diffusion approach. We now focus on 3D imaging. As a result
of the discussion of the preceding section our proposed model boils down to a linear
algorithm which iterates a fixed average distribution (3.3) at each point of the 3D
volume. This distribution is x-dependent and is computed only once. But this is a
huge amount of data when dealing with 3D structures. For this reason the spatial
support of the weight distribution is limited by setting w(x,y) = 0 if ‖x− y‖ > ǫ.

The exponential function computing weights for NL-means and sigma filters is
simplified to a threshold function. This threshold strategy reduces the amount of
data necessary to represent the probability distribution of each point and actually
increases the enhancing effect of the algorithm. Thus,

w(x,y) =

{

1 if ‖x− y‖ < ǫ, ‖u(B(x, ρ))− u(B(y, ρ))‖ < τ
0 otherwise

where ǫ denotes the spatial support of the weight distribution, ρ denotes the size of
the 3-dimensional comparison neighborhood and τ is the grey level distance threshold.
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When ρ = 0 the weight distribution yields a sigma filter and when ρ > 0 the NL-
means algorithm (comparing the grey level values in a cube of size (2ρ+ 1)3). In the
experimentation we have set ρ to one, thus comparing a 3 × 3 × 3 cube. By using
this cube we actually compare 27 values, which is enough to take into account the
local geometry around each point and to be robust to noise. The parameter epsilon
has been set to 3, comparing a 7× 7 neighborhood in each slide and 5 slices for each
point. This neighborhood is larger inside each slice because the resolution in the
third dimension is smaller than in each image. The only parameter which is critical
is the filtering parameter τ , which is the same parameter appearing in sigma-filters
and mean-shift, and for which the statistical theory doesn’t give any specification
(in principle it could be fixed at any value and still deliver an optimal asymptotic
estimation). In practice this parameter must be fixed empirically for a given medical
application and a given apparatus.

For each initial image u the weight configuration is computed at each point of
the volume. Depending now on the initial condition u0 of the iterative process we
can enhance the image or propagate initial seeds. Choosing u0 = u and iterating the
above procedure removes the noise and the superfluous details while enhancing the
main edges.

If instead of diffusing the original image some initial seeds are propagated the 3D
image gets segmented. Assume the user fixes initial values f(x) on a subset Ω0 ⊂ Ω,
and u0(x) = f(x) for x ∈ Ω0 and 0 elsewhere. In that case, the iterative procedure
is only applied to pixels not manually set, which is equivalent to the minimization of
the functional

∫

Ω×Ω

(u(x)− u(y))2w(x,y)dxdy

with boundary constraints u(Ω0) = f(Ω0). The flexibility of this second approach
makes it suitable for several applications including colorization, interpolation and
segmentation. However, we shall see in the experimental section that this method is
overcome by an unsupervised one, thanks to the concentration phenomenon explained
in Section 4.3.

4.3. The histogram concentration phenomenon.. Our experiments begin
with a computed tomography (CT) angiography image of the brain (see Figure 4.3,
top) where the objective is to extract an object with complex geometry, the cerebral
arteries. The challenge is to preserve small surrounding arteries. Also, we want
to minimize contour smoothing and maintain the original shape. As displayed in
Figure 4.4, top-left, a simple threshold does not perform the task because of strong
oscillations surrounding the vessels. The complexity of the task is extremely well
analyzed in Frangi’s PhD [15]. This threshold was performed manually trying to get
the best visual result. The next two experiments display the extraction of the arteries
boundary after an iterated median filter (mean curvature motion) has been applied
and the thinning of arteries and disappearance of smaller ones is patent. The third
process which was tried is the sigma filter (with the same weights as in Grady et
al. algorithm). The result conserves the topology slightly better, but is far from
usable. The fourth image displays the filtered image by the proposed model with NL-
means weights and an automatic extraction of the arteries boundaries by unsupervised
threshold.

How can such an automatic threshold be found? Figure 4.3 shows the problem.
The top image shows one slice of a 3D CT image with interest area surrounded by a
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parallelepiped. The next row shows several slices of this area of interest. It can be
appreciated, first that the background of arteries has a lot of oscillating clutter and,
second, that the grey level value in arteries varies a lot, thus making an automatic
threshold problematic. The best way actually to convince oneself that even in this
small area a direct threshold wouldn’t do the job is to refer to the histograms of Figure
4.5. The first histogramwhich is Gaussian-like and poorly concentrated corresponds to
the background. The background mode decreases slowly. On the far right part of the
histogram one can see a small pick corresponding to very white arteries. The fixing of
an accurate threshold in the slowly decreasing background mode is problematic. The
top right histogram shows what happens after the application of a median iterative
filtering (the mean curvature motion). The histogram does not concentrate at all. The
bottom left histogram is obtained after applying the linearized sigma filter described in
Section 3.2. The bottom right histogram the one obtained by the linearized NL-means
described in the same section. In both cases, one observes that the background mode
of the histogram is strongly concentrated on a few grey level values. An automatic
threshold is easily fixed by taking the first local minimum after the main histogram
peak. This histogram concentration is very similar to the obtained by the mean-shift
approach [11] where the neighborhood filter is nonlinearly iterated. In that case, the
authors show that clusters tend to its mean yielding piecewise constant image.

The histogram concentration phenomenon is actually visible in the comparative
evolution of some slices under the various considered filters, as shown in Figure 4.3.
The first row shows these slices picked in the interest area. The topology killing
effect of the median filter (mean curvature motion) as predicted in Section 2.4 is
illustrated on the second row: small arteries tend to vanish and larger ones shrink
and become circular as shown in the third slice showing an artery section. The third
row is dedicated to the linear sigma filter, which corresponds to Grady’s method
applied directly to the image instead of using seeds. It is quite apparent that well
contrasted objects are well maintained and the contrast augmented, in agreement
with the consistency of this recursive filter with the Perona-Malik equation. However,
the less contrasted objects tend to vanish because, on them, the evolution becomes
similar to an isotropic heat equation. The fourth row is the result of applying the 3D
non-local linear heat equation, where the Laplacian coefficients are computed from
the original image. The whole sequence has been treated as a 3D image with a weight
support of (7×7×3) and a comparison window of 3×3×3. Clearly the background is
flattened and blood vessels are enhanced on this background. A threshold just above
the homogeneous made background level should give back arteries, and this indeed
occurs. Thus in that case the 3d visualization of objects with complex topology like the
cerebral arteries can be achieved by an automatic threshold. The exact segmentation
of the artery is a more difficult problem. Even if the histogram is concentrated, a
different choice of the visualization threshold can produce slightly different surfaces.

The validity of these conclusions can be checked on the test experiment of Figure
4.2. This experiment was performed on a simulated section of an artery. The first
image shows the grey level section and its central profile. This is a noisy and blurry
blob with a tiny boundary contrast with the background, in conformity with real data.
The left hand image of the first row displays the image histogram, where the high
peak on the left corresponds to the black background and the grey values of the artery
are spread out on a wide interval. The second row shows the same display after a
Gaussian mean (heat equation) has been performed. This process creates blur and, as
expected, the histogram does not discriminate the artery. The very same observation
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holds with the application on the third row of the sigma-filter. Only the NL-means
linearized filter on the fourth row permits actually to detect the artery boundary and
to perform an internal diffusion of the color inside it and outside it. The histogram
concentration effect occurs and permits to separate neatly figure from background.

4.4. Comparison of multi-date data. The proposed filtering strategy is well
adapted to the analysis of the evolution of the same patient. In this case, we are
interested on the evolution of the surface and therefore in an automatically extracted
and artifact free volume.

The experiment in Figure 4.7 involves two CT scans of the same patient at a one
year interval. The densities of foreground and background have changed. Thus the
same threshold cannot be applied to both images to compare structures. However,
the automatic application of the threshold procedure yields fairly the same structures.
This is due to the histogram concentration phenomenon, which permits to segment
automatically both images. The first row shows two slices of the two images with
one year interval. Because of a different orientation of the patient’s head the slices
are not in good correspondence. The interest area, a small parallelepiped, can be
approximately picked in both volume images. The linear NL-means algorithm was
applied to both images and then the automatic threshold procedure. The iso-surfaces
at this threshold value are shown in the second row, with approximately the same
perspective. They are in fair correspondence.

4.5. Discussion. The change of dynamic between different images is not a
strong objection to the preceding method, since the threshold is fixed by the his-
togram peak after its concentration has been obtained. However, a previous histogram
equalization before processing both images might be useful. Julie Delon [13] demon-
strated that the Cox et al. [12] equalization procedure permits to improve drastically
the comparison of two images by warping their histograms towards their ”midway”
histogram.

The results of the experiments of the former section will have to be confirmed
by clinical studies. They shouldn’t not be taken farther than what the real claims
are. We just claimed that a certain procedure, applied to images taken from the same
apparatus and the same patient at several dates, can lead to very similar local seg-
mentation and permit comparisons. The interpretation of what is segmented is left to
medical doctors. We only claim that the surface extracted could be extracted without
supervision, by an automatic threshold. Intuitively, the level surface extracted is one
of the more contrasted level surfaces between two different phases, no matter what
those phases are from the anatomic viewpoint. Thus, we didn’t try to compare with
anatomic databases, but only compared on several multi-date images of the same
patient. Of course if the average contrast between two organs were null, then no
threshold would work.
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Figure 4.2. Experiment on a 2D image. From top to bottom: original image, iterative
application of a Gaussian mean, iterative application of a median filter, proposed method
with linear sigma filter weights and proposed method with linear NL-means weights. On the
middle central line of each image. On the right, histogram of the filtered image
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Figure 4.3. Comparative behavior of discussed methods in 3D. Application to a 3D
angiograhy CT image of the head where blood vessels should be segmented. Top: One slice
image of the CT volume data with marked interested area. Middle: Display of interest area
for several slices of the 3D image. Second row: filtered slices by using median filter. Third
row: sigma filter. Fourth row: 3D nonlocal heat equation. Bottom: filtered slices by using the
linear method with 3D NL-means weights. The whole sequence has been treated as a 3D image
with a weight support of (5×5×3) and a comparison window of 3×3×3. The background is
flattened and blood vessels are enhanced. Thus, a better segmentation is possible by a simple
threshold as justified by Figure 4.5.
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Figure 4.4. From top to bottom and left to right: original iso-surface of the 3D image,
same iso-surface filtered by iterative median filter, by linear sigma filter, and by linear NL-
means. The iso-surface extracted from the original image presents many irregularities due
to noise. The median filter makes them disappear but makes important parts disappear and
some vessels disconnect or fuse. Linear NL-means keeps most vessels and maintains the
topology.

Figure 4.5. Grey level histogram of 3D areas of interest. Top left: original 3D image
before. Top right: after median filtering. Bottom left: after proposed method with sigma
filter weights. Bottom right; proposed method with NL-means weights The background is now
represented by a few grey level values when the volume is filtered by the proposed method. A
threshold can therefore be more easily and automatically applied.
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Figure 4.6. This experiment, to be compared to the former one, shows the result of
Grady’s seed neighborhood diffusion and compares it to the linearized NL-means (figure 4.4).
The seed region is taken to be the set of all pixels which are nearly white. Five slices of the
seed region are displayed on the first row of images. The external surface of the seed region
is displayed in the bottom left image. The second row shows the final state of the algorithm
and the bottom right image the reconstructed iso-surface. Details (smaller vessels) are lost:
compare with Figure 4.4.
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Figure 4.7. This experiment tests the feasibility of an automatic approach to the evolution
analysis of the same patient. It involves two CT scans of the same patient at a one year
interval. The densities of foreground and background has changed. Thus the same threshold
cannot be applied to both images to compare structures. However, the automatic application
of the threshold procedure described in Section 4.3 yields fairly the same structures. This
is due to the histogram concentration phenomenon, which permits to segment automatically
both images. The first row shows two slices of the two images with one year interval. Because
of different orientation of the head the slices are not in good correspondence, but the interest
area, a small parallelepiped, can be approximately picked in both volume images. The linear
NL-means algorithm was applied to both images and then the automatic threshold procedure.
The iso-surfaces at this threshold value are shown in the second row, with approximately the
same perspective.


