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Nonlocal image and movie denoising

Antoni Buades Bartomeu Coll Jean-Michel Morel

Abstract

Neighborhood filters are nonlocal image and movie filters which reduce the noise by
averaging similar pixels. The first object of the paper is to present a unified theory of
these filters and reliable criteria to compare them to other filter classes. A CCD noise
model will be presented justifying the involvement of neighborhood filters. A classification
of neighborhood filters will be proposed, including classical image and movie denoising
methods and discussing further a recently introduced neighborhood filter, NL-means. In
order to compare denoising methods three principles will be discussed. The first principle,
“method noise”, specifies that only noise must be removed from an image. A second
principle will be introduced, “noise to noise”, according to which a denoising method must
transform a white noise into a white noise. Contrarily to “method noise”, this principle,
which characterizes artifact-free methods, eliminates any subjectivity and can be checked
by mathematical arguments and Fourier analysis. “Noise to noise” will be proven to rule
out most denoising methods, with the exception of neighborhood filters. This is why a
third and new comparison principle, the “statistical optimality”, is needed and will be
introduced to compare the performance of all neighborhood filters.

The three principles will be applied to compare ten different image and movie denoising
methods. It will be first shown that only wavelet thresholding methods and NL-means
give an acceptable method noise. Second, that neighborhood filters are the only ones
to satisfy the “noise to noise” principle. Third, that among them NL-means is closest to
statistical optimality. A particular attention will be paid to the application of the statistical
optimality criterion for movie denoising methods. It will be pointed out that current
movie denoising methods are motion compensated neighborhood filters. This amounts to
say that they are neighborhood filters and that the ideal neighborhood of a pixel is its
trajectory. Unfortunately the aperture problem makes it impossible to estimate ground
true trajectories. It will be demonstrated that computing trajectories and restricting the
neighborhood to them is harmful for denoising purposes and that space-time NL-means
preserves more movie details.

1 Introduction

1.1 Neighborhood filters

The main objective of this paper is to set under a common framework and give comparison
principles to all neighborhood filters, including movie filters which are usually treated as a
different class. We shall call neighborhood filters all image and movie filters which reduce the
noise by averaging similar pixels. General CCD noise models (briefly presented in Section 2)
imply that noise in digital images and movies is signal dependent. Fortunately two pixels which
received the same energy from the outdoor scene undergo the same kind of perturbations and
therefore have the same noise model. Under the fairly general assumption that at each energy
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level the noise model is additive and white, denoising can be achieved by first finding out the
pixels which received the same original energy and then averaging their observed grey levels.
This observation has led to the wide class of neighborhood filters classified in [48]. Since the
original image value is lost these filters proceed by picking for each pixel i the set of pixels J(i)
spatially close to i and with a similar grey level value.

Neighborhood filters proceed by replacing the grey level value of i, u(i), by the average
NFu(i) = 1

|J(i)|

∑

j∈J(i) u(j). (Depending on the noise model other statistical estimates are

of course possible like the median, etc.) Under the assumption that pixels j ∈ J(i) indeed
received the same original energy as i, NFu(i) is a denoised version of u(i). The more famous
neighborhood filters are Lee’s σ-filter [28], SUSAN [42] and the bilateral filter [44] where the
neighborhoods are gaussian in space and grey level.

1.2 Non local means

In a recent communication [8] (see also [7] for a mathematical analysis) the authors of the
present paper extended the above mentioned neighborhood filters to a wide class which they
called non-local means (NL-means). This algorithm class defines the neighborhood J(i) of i by
the condition: j ∈ J(i) if the grey level of a whole window around j is close to the grey level of
the window around i. The spatial constraint is instead relaxed.

NL-means filters can be given two origins beyond classical neighborhood filters. The same
Markovian pixel similarity model was used in the seminal paper [15] for texture synthesis from
a texture sample. In that case the neighborhood J(i) is not used for denoising. The aim was
to estimate from the texture sample the law of i knowing its neighborhood. This law is used
to synthesize similar texture images by an iterative algorithm.

1.3 Movie denoising

Last but not least, most state of the art movie denoising methods are neighborhood filters
and some of them, in some sense, NL-means filters. Indeed, motion compensated denoising
methods start with the search for a temporal neighborhood J(i), the trajectory, followed by
an averaging process. By the Lambertian assumption a pixel belonging to a certain object
conserves the same grey level value during its trajectory. Therefore this is computed as a grey
level neighborhood of i in the sense of neighborhood filters. The comparison of grey levels is
not a sufficient criterion, a difficulty usually called the aperture problem. Thus several motion
compensated filters involve block matching. They construct J(i) by comparing a whole block
around j to a whole block around i.

In all of these movie denoising algorithms the neighborhood J(i) picks a single pixel per
frame. One of our objectives is to prove that this restriction is actually counterproductive.
In fact the performance of movie denoising filters improves significantly by forgetting about
trajectories and using all similar pixels in space-time, no matter how many are picked per
frame. For this reason the NL-means filter treats movies as a union of images, rather than an
image sequence. The time ordering of this union is irrelevant. The aperture problem results in
the existence of more samples for each pixel and therefore increases the denoising performance
by nonlocal means.
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1.4 Three comparison principles

A systematic comparison of the huge variety of denoising methods is requested. On the other
hand a comparison between methods which are based on very different principles cannot be
performed without formal comparison criteria. Visual comparison of artificially noisy images
with their denoised version is subjective. Tables comparing distances of the denoised image
to the original are useful. They have two drawbacks, though. The added noise is usually not
realistic, generally a white uniform noise with too large variance. Such comparison methods
depend strongly on the choice of the image and do not permit to address the main issues: the
loss of image structure in noise and the creation of artifacts.

Thus we shall apply three principles aiming at more objective benchmarks. The first princi-
ple (already presented in [8]) asks that noise and only noise be removed from an image. It has
to be perceptually tested directly on an image with no artificial noise added. The comparison of
methods is performed on the difference between the image and its denoised version. We called
this difference method noise. It is much easier to evaluate whether a method noise contains
some structure removed from the image or not. The outcome of such experiments is clear cut
on a wide class of denoising filters of all origins including all mentioned neighborhood filters.

We shall introduce here a second principle, noise to noise, which requires that a denoising
algorithm transforms a white noise into a white noise. This paradoxical requirement seems
to be the best way to characterize artifact-free algorithms. It is affordable to mathematical
analysis and to Fourier spectrum testing. Mathematical and experimental arguments will show
that bilateral filters and NL-means are the only ones satisfying the noise to noise principle.

The third principle, the statistical optimality is restricted to neighborhood filters. It ques-
tions whether a given neighborhood filter is able or not to retrieve faithfully the neighborhood
J(i) of any pixel i. NL-means will be shown to best match this requirement. We shall ap-
ply this principle to demonstrate that, contrarily to the current dominant technology, motion
estimation or compensation is not needed, and even harmful, to perform movie denoising.

1.5 The extension of patch-based denoising methods

Since a first version [9] of the present paper was disclosed in May 2005, several variants of non-
local, or “patch-based” methods and very careful denoising benchmarks have been published
by several authors. Mahmoudi and Sapiro [30] reported excellent denoising results and accel-
eration methods for the non local means algorithms applied to images and movies. Kervrann
et al. [23], [24] proposed an adaptive extension of NL-means with variable window size de-
pending on statistical estimates, and performed an impressive comparison benchmark. Awate
and Whitaker [4] have simultaneously proposed a method whose principles stand close to the
NL-means algorithm, since the method involves comparison between subwindows to estimate a
restored value. The objective of the algorithm “UINTA, for unsupervised information theoretic
adaptive filter”, is to denoise the image by decreasing the randomness of the image. Azzabou
and Paragios [5] have proposed an acceleration of NL-means by a random walk exploration
around each pixel and have again reported impressive results for this accelerated NL-means.
Kindermann et al. [25] and Gilboa et al. [18] have given a new, variational framework to non-
local denoising leading to iterated algorithms. They have also performed extensive comparisons
with total variation denoising.

Probably the most impressive results for a block matching based denoising have been just
reported by Dabov et al. [12]. Let us summarize their methods in their own terms: (We start
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by) “grouping similar 2D image fragments (e.g. blocks) into 3D data arrays called ”groups”.
Collaborative filtering is a special procedure developed to deal with these 3D groups. We realize
it using the three successive steps: 3D transformation of 3D group, shrinkage of transform
spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly
filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even
the finest details shared by grouped blocks and at the same time it preserves the essential unique
features of each individual block. The filtered blocks are then returned to their original positions.
Because these blocks are overlapping, for each pixel we obtain many different estimates which
need to be combined. Aggregation is a particular averaging procedure which is exploited to
take advantage of this redundancy. (...) The experimental results presented here demonstrate
that the developed methods achieve state-of-the-art denoising performance in terms of both peak
signal-to-noise ratio and subjective visual quality.”

The most striking point of this method is the fusion of NL-means with a transform-domain
shrinkage. The main step remains block matching, but then the process is analogous to a
motion compensated movie denoising algorithm : all similar blocks are put into a single 3D
volume, where time is replaced by a similarity order. We may anticipate that our conclusions
are similar to the conclusions of [12]. Applied to a movie, their algorithm will lead to substitute
to the movie time a “similarity time”, where all blocks are put after each other based on their
similarity and not on their time order. This yields much more redundancy, and therefore to a
better denoising.

1.6 Plan

We shall proceed as follows. Section 2 presents a realistic CCD noise model which leads to the
basic hypothesis justifying neighborhood filters. Neighborhood filters including NL-means and
motion compensated movie denoising filters are defined in Section 3. This section describes
and discusses some main movie filters. Section 4 proposes the three principles to evaluate the
performance of any denoising method. All three principles are designed to serve comparative
experiments. Finally, the last section is devoted to a more mathematical comparison of classical
neighborhood filters and the NL-means.

2 Noise model

Most digital images and movies are obtained by a CCD device. Following [10, 13, 19], CCD’s
show three kinds of noise. The first one is the shot noise proportional to the square root of the
number of incoming photons in the captors during the exposure time, namely

n0 =

√

Φ

hν
t ·A · η,

where Φ is the light power (W/m2), hν the photon energy (Ws), t the exposure time in seconds
(s), A the pixel area (m2) and η the quantum efficiency. The other constants being fixed we
can simply retain n0 = c

√
Φ where Φ is the “true image” and C a constant (see Figure 1).

Second, a dark or obscurity noise n1 is due to spurious photons produced by the captor
itself. We can assume the dark noise to be white, additive and with zero mean. The zero mean
property is due to the substraction of a dark frame from the raw image. The dark frame is
obtained by averaging the obscurity noise over a long period of time.
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Figure 1: Simulated shot noise. Left: original image u. Right: noise image
√
un where n is the

realization of a zero mean white noise with standard deviation σ = 1. The noise in bright parts is
larger than in dark parts, an effect which is corrected and sometimes reversed by gamma-correction.

Third, the read out noise n2 is another electronic additive and signal independent noise.
This noise can be assumed to have zero mean by the substraction from the raw image of a bias
frame.

Digital images eventually undergo a “gamma” correction, i.e. a nonlinear increasing contrast
change g: “Gamma correction is the name of an internal adjustment made in the rendering
of images through photography, television, and computer imaging. The adjustment causes
the spacing of steps of shade between the brightest and dimmest part of an image to appear
“appropriate” [19].” Summarizing,

u(i) = g
(

Φ(i) + c
√

Φ(i)n0(i) + n1(i) + n2(i)
)

,

where u(i) is the observed intensity at a pixel i, Φ(i) the “true physical” light intensity average
power sent by the scene to pixel i, c a constant, n0(i), n1(i) and n2(i) three independent and
signal independent white noises. In practice g(s) = sα with 0 < α < 1. When Φ(i) is large
the shot noise

√

Φ(i) dominates n1 and n2 and is dominated by the signal Φ(i). Thus we can
expand u(i) as

u(i) ≃ g(Φ(i)) + g′(Φ(i))
(

c
√

Φ(i)n0(i) + n1(i) + n2(i)
)

=: g(Φ(i)) + n(i). (1)

If instead Φ(i) is small with respect to n1(i) + n2(i),

n(i) ≃ u(i) ≃ g(n1(i) + n2(i)). (2)

Let us mention a case of particular interest. If g(s) ≃ s
1
2 , the noise n(i) reads

n(i) ≃







n0(i) in the bright parts of the image

√

n1(i) + n2(i) in the dark parts of the image
(3)

In all cases the noise is signal dependent but independent at different pixels. Figure 1
displays a simulated shot noise associated to the Lena image. This noise is signal dependent and
much stronger in bright regions than in dark regions. In order to apply many computer vision
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algorithms, the noise parameters must be first estimated. For the study of these parameters
for the previous real CCD model we refer the reader to [29].

In the following we aim at recovering g(Φ(i)), namely the true image up to the unknown
gamma correction. Equations (1), (2) and the white noise and independence assumptions on
n0, n1 and n2 legitimate the following hypothesis:

Hypothesis 1 In a digital image, the noise model at each pixel i only depends on the original
pixel value Φ(i) and is additive. Let J(i) be the set of pixels with the same original value as i.
Then n(j), j ∈ J(i) are independent and identically distributed.

Hypothesis 1 cannot be used directly because Φ(i) is unknown. The challenge is to find
out J(i) for every i. The simplest idea to do so is to assume that all pixels with the same
observed value u(i) have the same noise model. A more sophisticated use of Hypothesis 1 is
the following : for a given pixel in an image, detect all pixels which have the same underlying
model. By Hypothesis 1 each j in J(i) obeys a model u(j) = v(i) + n(j) where n(j) are i.i.d.
It is then licit to perform a denoising of u(i) by replacing it by NFu(i) =: 1

|J(i)|

∑

j∈J(i) u(j).

By the variance formula for independent variables one then obtains NFu(i) = v(i)+ ñ(i) where

Var(ñ(i)) =
1

|J(i)|Var(n(i)). (4)

By (4) if nine pixels with the same color plus some uncorrelated noise are averaged the noise
is divided by three. Algorithms proceeding in this way will be called neighborhood filters. We
shall now examine several classical or new instances.

3 General neighborhood filters

3.1 Local neighborhood filters

The more primitive neighborhood filters replace the color of a pixel with an average of the
nearby pixels colors. Thus J(i) is a spatial neighborhood. The filtered value can be written as

Mρu(x) =
1

πρ2

∫

R2

e
− |x−y|2

ρ2 u(y) dy,

where the parameter ρ is roughly the size of the spatial neighborhood involved in the filtering.
Now, the closest pixels to i have not necessarily the same color as i. For instance the red pixel
placed in the middle of Figure 2 has five red neighbors and three blue ones. If its color is
replaced by the average of the colors of its neighbors, it turns blue. The same process would
likewise redden the blue pixels of this figure. Thus, the border between red and blue would be
blurred.

In order to denoise the central red pixel, it is better to average the color of this pixel with
the nearby red pixels and only them, excluding the blue ones. This is exactly the technique of
the sigma-filter. This famous algorithm is generally attributed to J.S. Lee [28] in 1983 but can
be traced back to L. Yaroslavsky and the Soviet Union image processing school [48]. The idea
is to average neighboring pixels which also have a similar color value. The filtered value by this
strategy can be written

NFh,ρ u(x) =
1

C(x)

∫

Bρ(x)

e−
|u(y)−u(x)|2

h2 u(y)dy, (5)
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Figure 2: The nine pixels in the baboon image on the left have been enlarged. They present a high
red-blue contrast. In the red pixels, the first (red) component is stronger. In the blue pixels, the third
component, blue, dominates. Neighborhood filters select pixels with the same color for averaging. In
this case the neighborhood of the central pixel should contain the six red pixels or, still better, the
pixels of the central column.

where u(x) is the color at x and NFh,ρ u(x) its denoised version. Only pixels inside Bρ(x) are
averaged, h controls the color similarity and C(x) is the normalization factor. SUSAN [42] and
the bilateral filter [44] make this process more symmetric by involving a “bilateral” gaussian
depending on both space and grey level. This leads to

SNFh,ρ u(x) =
1

C(x)

∫

e
−

|x−y|2

ρ2 e−
|u(y)−u(x)|2

h2 u(y)dy

There is another way to avoid the blurring effect of the spatial filtering Mρ by a statistical
correction which we are going to use in the sequel. When the gaussian mean is performed on
an edge, the variance of the performed mean can become larger than the variance of the noise.
This is a clue that the average is not licit. A statistically optimal correction was proposed by
Lee again [27],

LMρu(x) = Mρu(x) +
σ2
x

σ2
x
+ σ2

(u(x)−Mρu(x)),

where

σ2
x
= max(0,

1

πρ2

∫

R2

e
− |x−y|2

ρ2 (u(y)−Mρu(x))
2 dy− σ2)

and σ is the noise standard deviation. The original noisy values are less altered when the
variance of the performed mean dominates the variance of the noise. This happens near the
edges or in textured regions. In consequence, the noise is mainly reduced in flat zones as
displayed in Figure 4.

The bilateral filters perform a better denoising than Lee’s correction. They maintain sharp
boundaries, since they average pixels belonging to the same region as the reference pixel. Bi-
lateral filters fail when the standard deviation of the noise exceeds the edge contrast. This fact
is more extensively exposed in Section 5. In the following experiments we do not distinguish
between the classical neighborhood filter and SUSAN or the bilateral filter. The following ex-
periments have been performed using a fixed spatial neighborhood and a Gaussian weighted
grey level difference.
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Figure 3: Most image details occur repeatedly. Each color indicates a group of squares in the image
which are almost indistinguishable. Image self-similarity can be used to eliminate noise. It suffices to
average the squares which resemble each other.

Let us finally mention that the mean operation can be replaced by nonlinear operator like
the median filter. The median filter [45] chooses the median value, that is, the value which has
exactly the same number of grey level values above and below in a fixed neighborhood. The
median filter preserves the main boundaries, but it tends to remove the details. This filter is
optimal for the removal of impulse noise on images and does’nt blur edges. It is equivalent
to an average of the pixels in a direction orthogonal to the gradient, that is to an anisotropic
diffusion or mean curvature motion [32]. In the following, we shall also show experiments based
on the mean curvature motion implemented as originally proposed in [1]. For a more recent
review of the subject see [22].

Figure 4 compares the performance of the various considered local neighborhood filters on
a noisy image. Even if each method provides a reasonable solution (all except the gaussian
filtering maintain sharp edges), none of them is fully acceptable. The anisotropic filter removes
small details and fine structures. These features are nearly untouched by Lee’s statistical filter
and therefore completely noisy. The bilateral filters create irregularities on the edges and leave
some residual noise on flat zones.

3.2 Non local averaging

The most similar pixels to a given pixel have no reason to be close to it. Think of periodic
patterns, or of the elongated edges which appear in most images. In 1999 Efros and Leung
[15] used non local self-similarities as the ones illustrated in Figure 3 to synthesize textures and
to fill in holes in images. Their algorithm scans a vast portion of the image in search of all
the pixels that resemble the pixel in restoration. The resemblance is evaluated by comparing
a whole window around each pixel, not just the color of the pixel itself. Applying this idea to
neighborhood filters leads to a generalized neighborhood filter which we called non-local means
(or NL-means) [7, 8]. NL-means has a formula quite similar to the sigma-filter,

NLu(x) =
1

C(x)

∫

Ω

e−
(Gρ∗|u(x+.)−u(y+.)|2)(0)

h2 u(y) dy, (6)
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Figure 4: Comparison of neighborhood filters. From top to bottom and left to right: noisy image
(σ = 15), gaussian filtering, anisotropic filtering, Lee’s statistical filter, sigma or bilateral filter and the
NL-means algorithm. All methods except the gaussian filtering maintain sharp edges. However, the
anisotropic filtering removes small details and fine structures. These features are nearly untouched by
Lee’s statistical filter and therefore completely noisy. The comparison of noisy grey level values by the
sigma or bilateral filter is not so robust and irregularities are created on the edges. The NL-means
better cleans the edges without losing too many fine structures and details.

where Gρ is the Gauss kernel with standard deviation ρ, C(x) is the normalizing factor, h acts
as a filtering parameter and

(Gρ ∗ |u(x+ .)− u(y+ .)|2)(0) =
∫

R2

Gρ(t)|u(x+ t)− u(y+ t)|2dt.

The formula (6) means that u(x) is replaced by a weighted average of u(y). The weights are
significant only if a gaussian window around y looks like the corresponding gaussian window
around x. Thus the non-local means algorithm uses image self-similarity to reduce the noise
as illustrated in Figure 4. As Figure 5 shows, the NL-means seems to be well adapted to text
denoising since characters and combinations of characters are easily repeated in a text. One of
the limitations of the NL-means algorithm is the removal of highly structured noise as in jpeg
compressed images (see Figure 6). The NL-means is able to remove the block artifact due to
compression but at the cost of removing some details as the difference between the compressed
and restored images shows.
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3.3 NL-means implementation details

A NL-means simple version averages pixels which have a grey level window around at a distance
less or equal than a certain threshold. The comparison of both windows is made by an Euclidean
norm of their difference. Indeed, if the noise samples are locally i.i.d. with zero mean and
variance σ2 ,

E||u(Ni)− u(Nj)||2 = ||u0(Ni)− u0(Nj)||2 + 2σ2,

where u0 denotes the original (unknown) image and u the noisy one obtained by the addition
of a white noise. Thus using a threshold function and setting this hard threshold to 2σ2 leads
to take an average of pixels which originally had an almost identical window around them.

So the point is: why using a soft gaussian threshold instead of a hard one? We may find
pixels for which there is no identical or nearly identical window in the image. In that case,
the threshold strategy should leave exactly the noise value at such points. The result would
visually be identified as an impulse noise and the noise to noise principle would be violated.
An exponential function is used instead of the threshold and makes a more adaptive weighting
distribution.

The Euclidean distance between two windows is also weighted by a gaussian-like kernel
decaying from the center of the window to its boundary. Indeed in digital images, closer pixels
are more dependent and therefore closer pixels to the reference one should have more importance
in the window comparison. In order to involve the current pixel in its own average, the distance
between the window centered at the reference pixel and itself is set equal to the minimum of
the other distances. Otherwise, the probability distribution should be excessively large at the
pixel itself.

For computational purposes of the NL-means algorithm, we can restrict the search of similar
windows in a larger ”search window” of size S × S pixels. In all experiments we have fixed a
21 × 21 pixels search window and a similarity square neighborhood of 7 × 7 pixels (this can
be reduced for color images). If the image has a size N × N , then the final complexity of
the algorithm is about 49 × 441 × N2. The acceleration of the algorithm by multiresolution
strategies has been proposed in [7, 30].

The filtering parameter h has been fixed to k ∗σ with k ∈ [0.75, 1], when a noise of standard
deviation σ is added. Due to the fast decay of the exponential kernel, large Euclidean distances
lead to nearly zero weights acting as an automatic threshold (see Figures 16 and 18).

3.4 Movie denoising

Nearly all state of the art movie filters are motion compensated. The underlying idea is the
existence of a “ground true” physical motion, which motion estimation algorithms should be
able to estimate. Legitimate information should exist only along these physical trajectories.
The motion compensated filters estimate explicitly the motion of the sequence by a motion
estimation algorithm. The motion compensated movie yields a new stationary data on which
a static filter can be applied.

One of the major difficulties in motion estimation is the ambiguity of trajectories, the so
called aperture problem. This problem is illustrated in Figure 8. At most pixels, there are
several options for the displacement vector. All of these options have a similar grey level value
and a similar block around them. Now, motion estimators have to select one by some additional
criterion. The most classical approaches to motion estimation are the optical flow constraint
(OFC) based methods and the block matching algorithms. OFC methods assume that the grey
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Figure 5: Comparison of different denoising methods on a text image. Top: noisy image. Below and
from left to right: crop of the noisy image, the total variation minimization, the stationary wavelet
thresholding, the neighborhood filter with spatial neighborhood 11 × 11 and the NL-means with the
whole image as search window. NL-means seems well adapted to text denoising since characters and
combinations of characters are easily repeated in a text. Since we have used only three paragraphs the
result can be substantially improved by using a complete page or even more pages. In that case the
problem would be the huge time of computation.
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Figure 6: Application of NL-means to restore a highly compressed image. Top: Compressed and
restored image by NL-means. Bottom: detail of previous images and its difference. NL-means is able
to remove block artifacts due to compression but at the cost of removing some details, as the difference
between the compressed and restored image shows.

level value of the objects during their trajectory is nearly constant (Lambertian assumption).
In order to obtain a unique flow they impose the flow field to vary smoothly in space. There
has been a constant progress in this estimation Horn-Schunck [20], Nagel and Weickert [36, 46],
Weickert and Schnor [47]. Other constraints enforcing the constancy of the gradient and the
Laplacian can be added as proposed in [34].

The second class of motion estimation algorithms computes the displacement at each pixel
by comparing the grey level values in a whole block around it. The similarity is measured by a
l1 or a l2 distance. As Figure 8 shows, there can be many blocks with similar configurations in
the reference frame.

Once the motion compensation has been performed one can classify the movie denoising
methods by the kind of 3D neighborhood filter they apply to the compensated movie. We
refer to [6] for a comprehensive review. Samy [40] and Sezan et al. [41] proposed the LMMSE
filter which is a motion compensated Lee’s filter. Ozkan et al [37] proposed the AWA filter, a
motion compensation of the neighborhood filters. Huang [21] and Martinez [31] implemented
motion compensated median filters. Motion compensated Wiener filters were earlier proposed
by Kokaram [26].

Figure 9 illustrates the improvement of motion compensated algorithms compared with their
static version. The static filters are obtained by extending the 2D image filter support to the
3D time-space support. We call them static because they do not take into account the dynamic
character of image sequences. As this figure illustrates, the details are better preserved and
the boundaries less blurred with motion compensation. This explains why most recent papers
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Figure 7: Three consecutive frames of a degraded image sequence. The sparse time sampling in film
sequences makes restoration more difficult than in 3D images.

Figure 8: Aperture problem and the ambiguity of trajectories are the most difficult problem in motion
estimation: There can be many good matches. The motion estimation algorithms must pick one.

propose motion compensated algorithms.

Non local means for movies

The above description of movie denoising algorithms and its juxtaposition to the NL-means
principle shows how the main problem, motion estimation, can be circumvented. In denoising,
the more samples we have the happier we are. The aperture problem is just a name for the
fact that there are many blocks in the next frame similar to a given one in the current frame.
Thus, singling out one of them in the next frame to perform the motion compensation is an
unnecessary and probably harmful step. A much simpler strategy which takes advantage of the
aperture problem is to denoise a movie pixel by involving indiscriminately spatial and temporal
similarities: let the best win! In that way, we propose to apply the NL-means to a movie in the
following way:

NLu(x, t) =
1

C(x, t)

∫

Ω

∫

R

e−
(Gρ∗|u(x+.,t)−u(y+.,s)|2)(0)

h2 u(y, s) dyds. (7)

Notice that the Gauss kernel Gρ is 2D but the integral involves time and space. In practical
terms NL-means takes a spatial block around pixel x in frame t and looks for all similar blocks
in all frames including the current one. Then a weighted average of all the similar pixels (y, s)
is performed. Figure 9 compares NL-means with motion compensated neighborhood filters.
The NL-means also reduces motion blur since it is not affected by possible errors of motion
estimation algorithms.
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Figure 9: Comparison of static filters, motion compensated filters and NL-means applied to the
sequence of Figure 7. Only a piece of the central frame is displayed. From top to bottom and left to
right: Lee’s correction, Lee’s correction with block matching (BM)-(LMMSE), sigma filter and sigma
filter with block-matching (AWA). Middle: the noise removed by each method (difference between the
noisy and filtered frame). Motion compensation improves the static algorithms by better preserving the
details and creating less blur. The noise removed by LMMSE is nearly zero on the strong boundaries.
Thus, these boundaries are kept noisy. We can read the titles of the books in the noise removed by
AWA. Therefore, that much information has been removed from the original. Finally, the NL-means
algorithm (bottom row) has almost no noticeable structure in its removed noise. As a consequence,
the filtered sequence has kept more details and is less blurred.
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Figure 10: Method noise obtained by various denoising methods applied to a slightly noisy image

(σ = 2.5). From top to bottom and left to right: noisy image, gaussian mean, mean curvature motion,

total variation minimization, translation invariant soft and hard thresholding, bilateral filter and NL-

means. The various method parameters have been adjusted so that the method noise has a per pixel

variance equal to σ
2.

4 Three principles for denoising algorithms evaluation

In this section, we shall address the problem of comparing different denoising methods by
proposing three formal comparison criteria.

4.1 Method noise

A difference between the original image and its filtered version shows the “noise” removed by
the algorithm. This procedure has been introduced recently in [7] and this difference or residue
is called method noise. In principle the method noise should look like a noise. Otherwise, the
method noise can be filtered again and its deterministic part turned back to the image. Recent
denoising methods adopted this recursive strategy to recover image information lost in method
noise [38, 43]. When the standard deviation of the noise is higher than the feature contrast a
visual exploration of the method noise is not reliable. Image features can be masked in method
noise. Thus the evaluation of a denoising method should not rely on experiments where a white
noise with standard deviation larger than 5 has been added to the original. The best way is
actually not to add noise at all.

Definition 1 (method noise) Let u be a (not necessarily noisy) image and Dh a denoising
operator depending on h. The method noise of u is the image difference

n(Dh, u) = u−Dh(u). (8)

Principle 1 For every denoising algorithm, the method noise must be zero if the image contains
no noise and should be in general an image of independent zero-mean random variables.

Figure 10 and 11 display the method noise of various denoising methods on a simple geo-
metrical image. The algorithms are applied to a slightly noisy version of the image (σ = 2.5).
Method parameters are fixed so that the method noise has exactly σ2 variance per pixel. The
same parameters have been used in the second experiment on a real image. These method noise
images should look like a white noise in Figure 10 and like a constant image in Figure 11. The
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Figure 11: Method noise experiment. Application of various denoising methods to the non noisy image
of Figure 10 with the same filtering parameters. From top to bottom and left to right: noisy image,
gaussian mean, mean curvature motion, total variation minimization, translation invariant soft and
hard thresholding, bilateral filter and the NL-means.

gaussian filter method noise highlights all the boundaries and corners of the image. Averages
are performed on a radial neighborhood and therefore do not adapt to the geometrical config-
uration of the image. The anisotropic (median, mean curvature equation) filter averages pixels
in the direction of contours and therefore tends to preserve straight edges. However, the corners
are not well preserved since they move at the speed of their high curvature. The iteration of the
median or the application of the mean curvature motion for larger times would completely mod-
ify the image and even straight edges would not be preserved. The total variation minimization
[39] is praised for maintaining sharp boundaries. However, most structures are modified and
even straight edges are not well preserved. This fact has received a mathematical proof in [35].
The wavelet thresholding [14] method noise is concentrated on the edges and corners. These
structures lead to coefficients of large enough value but lower than the threshold and which are
erroneously canceled. The method noise of the soft thresholding is not only based on the small
coefficients but also on an attenuation of the large ones, leading to a general alteration of the
original image.

The bilateral filter preserves the flat zones, but the edges with a low contrast have been
modified. The NL-means method noise is the one which looks the more like a white noise. When
applying the algorithms to the non noisy image, the removed features are more noticeable. The
corners of the squares can now be seen in the NL-means method noise. These are the only
features with a reduced amount of similar samples, since for every corner there are only three
similar corners in the image. The experiment of Figure 11 has been designed to illustrate
the usage of the method noise on images without noise at all, usually synthetic images. Such
experiments characterize immediately the image features sensitive to a given denoising method.

Finally, Figure 12 displays the method noise on a real image. The algorithms were applied
to the original Lena image scanned in 1973, in grey level. It contains a little amount of noise.
None of the methods can be claimed to deliver a method noise looking like a noise. The hard
thresholding and NL-means give the least structured method noise. The method noise of Lena
in color is displayed in Figure 13. Color images are obviously easier to denoise by neighborhood
filters.
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Figure 12: Method noise experiment on Lena (gray levels only). ¿From top to bottom and left to
right: original image, gaussian mean, mean curvature motion, total variation minimization, translation
invariant soft and hard thresholding, bilateral filter and NL-means.

Figure 13: Lena method noise (in color) by the sigma filter and the NL-means. The results of neigh-
borhood filters improve dramatically on color images because similar pixels are much better identifiable
with three components.

4.2 Noise to noise principle

The noise to noise principle asks that a white noise be transformed into a white noise. This
requirement may look paradoxical since noise is what we wish to get rid of. Now, it is impossible
to totally remove noise. The question is how the remnants of noise look like. The transformation
of a white noise into any correlated signal creates structure and artifacts. Only white noise is
perceptually devoid of structure, as was pointed out by Attneave [2].

Principle 2 A denoising algorithm must transform a white noise image into a white noise
image (with lower variance).

There are two ways to check this principle for a given denoising method. One of them is to
find a mathematical proof that the pixels remain independent (or at least uncorrelated) and
identically distributed random variables. The experimental device simply is an observation the
effect of denoising on the simulated realization of a white noise. Since the Fourier transform
of a white gaussian noise is a white gaussian noise, the visualization of the Fourier transform
also is an adequate tool. Let us review how well classical algorithms match the noise to noise
principle. Figures 14 and 15 respectively display the filtered noises and their Fourier transforms.
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Figure 14: Noise to noise principle: Application of the denoising algorithms to a noise sample. From
left to right and top to bottom: noise sample (σ = 15), filtered noise by the gaussian filtering, total
variation minimization, hard wavelet thresholding, bilateral filter and the NL-means algorithm. The
parameters of each algorithm have been tuned in order to have a filtered noise of standard deviation 2.5.
For the neighborhood or bilateral filter the research zone has been fixed to 21× 21 and for NL-means
we have used the whole image. Therefore, only the h parameter has been tuned in order to obtain the
desired standard deviation.

Gaussian convolution. The convolution with a Gauss kernel Gh is equivalent to the prod-
uct in the Fourier domain with a Gauss kernel of inverse standard deviation G1/h. Therefore,
convolving the noise with a kernel reinforces the low frequencies and cancels the high ones.
Thus, the filtered noise will no more be a white noise and actually shows big grains due to its
prominent low frequencies.

Total variation minimization. The Fourier transforms of the total variation minimization
and the gaussian filtering are quite similar even if the total variation preserves some high
frequency components.

Wavelet Thresholding. Noise filtered by a wavelet thresholding is no more a white noise.
The few coefficients with a magnitude larger than the threshold are spread all over the image.
The pixels which do not belong to the support of one of these coefficients are set to zero. The
visual result is a constant image with superposed wavelets as displayed in Figure 14. It is easy
to prove that the denoised noise is spatially highly correlated.

Bilateral filter. For simplicity consider the case where the grey level neighborhood is an
interval. Given a noise realization, the filtered value by the bilateral filter at a pixel i only
depends on its value n(i) and the parameters h and ρ. The bilateral filter averages noise values
at a distance from n(i) less or equal than h. Thus as the size ρ of the neighborhood increases by
the law of large numbers the filtered value tends to the expectation of the Gauss distribution
restricted to the interval (n(i) − h, n(i) + h). The filtered value is therefore a deterministic
function of n(i) and h. Independent random variables are mapped by a deterministic function
on independent variables. Thus the noise to noise requirement is asymptotically satisfied by
the bilateral filter. A visual check in Figure 15 fully confirms this theoretical result.

18



Figure 15: Noise to Noise principle: Fourier transforms of the filtered noises displayed in Figure 14.
The Fourier transform of a gaussian white noise is a gaussian white noise.

NL-means algorithm. Figure 15 indicates that NL-means satisfies the noise to noise
principle in the same extent as a classical bilateral filter. However, a mathematical statement
and proof of this property are intricate and we shall skip them.

4.3 Statistical optimality

The statistical optimality means the ability of a generalized neighborhood filter to find the
right set of pixels J(i) for performing the average yielding the new estimate for u(i). This
principle for the comparison of denoising algorithms applies for all algorithms performing an
average over a set of selected pixels, namely, all neighborhood filters including NL-means and
all motion compensated movie denoising algorithms (AWA, LMMSE,...).

Principle 3 A generalized neighborhood filter is optimal if it finds for each pixel i all and only
the pixels j having the same model as i.

Returning to the signal dependent noise model given by Hypothesis 1, we notice that the
ideal denoising algorithm from that point of view would give for J(i) the set of all pixels j
with the same original, noiseless value Φ(j) = Φ(i) as i. This aim is not attainable and can be
replaced by a search for pixels j which are likely to have the same value as i. In movies, by
the Lambertian assumption, it can be assumed that a non occluded pixel keeps the same grey
level in several frames. Thus in motion compensated movie filters, J(i) is the trajectory of i. In
the case of NL-means, it is assumed that pixels having similar neighborhoods for some distance
also have close colors. Principle 3 cannot be checked in theory but can be in practice explored
by displaying the probability distribution of w(j), j ∈ J(i) for various algorithms and images.
In that way it can be checked whether J(i) corresponds to the pixels j perceptually equivalent
or similar to i. This visualization is actually quite informative as illustrated in Figures 16 and
18.

As displayed in Figure 16, the orientation computed by the anisotropic filter is not exactly
the expected one. This fact is due to the noise interference on the gradient computation. The
noise also degrades the probability distribution of the bilateral filter. The window comparison
of NL-means is more robust to noise and yields a more adapted weight configuration. In the
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Figure 16: Weight distribution of NL-means, the bilateral filter and the anisotropic filter used to
estimate the central pixel in four detail images.

Figure 17: Denoising experiment on a noisy periodic texture. ¿From top to bottom and left to
right: noisy image (standard deviation 35), total variation minimization, translation invariant hard
thresholding (threshold 3σ), translation invariant hard thresholding (optimal threshold

√
2 logNσ),

bilateral filter and NL-means.

wall example of Figure 16 NL-means does not find picks the pixels with a similar grey level
value while the classical neighborhood does. This avoids mistakes when the standard deviation
of the noise is increased as displayed in Figure 17. NL-means shows a good ability for the
restoration of binary textures without assuming any prior about the texture statistics. When
this prior is available optimal solutions can be obtained by imposing the statistical constraints
as recently proposed in [11] via a graph cuts algorithm.

Statistical optimality and the aperture problem.

Let us now address the problem of statistical optimality for movies. We shall sustain the position
that, in fact, motion estimation is not only unnecessary, but probably counterproductive. The
aperture problem, viewed as a general phenomenon in movies, can be positively interpreted in
the following way: There are many pixels in the next or previous frames which can match the
current pixel. Thus, it seems sound to use not just one trajectory, but rather all similar pixels
to the current pixel across time and space.

Motion estimation algorithms try to solve the aperture problem. The block matching algo-
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rithm chooses the pixel with the more similar configuration, thus loosing many other interesting
possibilities, as displayed in Figure 8. Algorithms based on the optical flow constraint must
impose a regularity condition of the flow field in order to choose a single trajectory. Thus, the
motion estimation algorithms are forced to choose a candidate among all possible equally good
choices. However, when dealing with sequence restoration, the redundancy is not a problem
but an advantage. Figure 8 shows all possible and equally good candidates for the averaging.
Why not take all of them.

Figure 18 displays the probability distribution of the weights computed by NL-means for
three different cases. The algorithm favors pixels with a similar local configuration even if they
are far away from the reference pixel. As the similar configurations move, so do the weights.
Thus, the algorithm is able to follow the similar configurations when they move without any
explicit motion computation. No need to solve any aperture problem. This problem turns out
to be a help for denoising purposes.

5 NL-means vs classical neighborhood filters. A simple

example

In this section we shall discuss more extensively the application of the neighborhood filters
to a simple piece-wise constant image as the one displayed in Figure 19. The analysis of this
image can be decomposed in two parts depending if the research window contains the edge
or it is totally flat. For this analysis we shall use a simplified version of the NL-means and
neighborhood filter, that is,

NLh,nu(i) =
1

|J(i)|
∑

j∈J(i)

u(j),

where J(i) = {j ∈ R(i) | dn(i, j) ≤ h}, R(i) denotes a research zone around the interest
pixel and dn(i, j) denotes the squared normalized Euclidean distance between two comparison
windows around i and j of size n.

5.1 A research zone totally contained inside the same region.

In that case, the original grey level value of the considered pixels is the same. This case can be
viewed as the application of the algorithm to a noise sample and the committed error just as
the noise reduction.

As we discussed in section 4.2, the filtered noise value of the neighborhood filter does not
depend on the size of the research window but only on the value of h. This means that in order
to decrease the error inside flat zones we must increase the value of h as illustrated in Figure
19. As we use the same value for all the image this fact becomes critical when we get near any
edge or detail.

The use of a comparison window by NL-means permits a higher noise reduction while keeping
a small value of h. We begin by studying the difference between two noise windows of size n.
If we denote by dn the normalized squared Euclidean distance, then

dn
2σ2

=
1

n

∑

i

(

mi√
2σ

)2
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a)

b)

c)

Figure 18: Weight distribution of NL-means applied to a movie. In a), b) and c) the first row shows
a five frames image sequence. In the second row, the weight distribution used to estimate the central
pixel (in white) of the middle frame is shown. The weights are equally distributed over the successive
frames, including the current one. They actually involve all the candidates for the motion estimation
instead of picking just one per frame. The aperture problem can be taken advantage of for a better
denoising performance by involving more pixels in the average.
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where mi/
√
2σ follows a N(0, 1) and then n dn/2σ

2 follows a χ-squared distribution with n
degrees of freedom.

For a sake of simplicity in the mathematical calculations, we assume that the central point of
the window is not used in the comparisons. In that case independent values are being averaged
and the next theorem estimates the achieved noise reduction.

Theorem 1 Assume that the n(i) are i.i.d. with zero mean and variance σ2. Then, the filtered
noise by the NL-means algorithm NLh,n satisfies,

Var NLh,n n(i) =
1

βn(
h

2σ2 )|R(i)| σ
2,

where

βn(x) =

∫ n x

−∞

fχ2
n
(y) dy,

and fχ2
n
denotes the probability distribution function of a χ2

n.

This result shows that we can increase the noise reduction by increasing the size of the
sample and keeping the same value of h as illustrated in Figure 19. We can for example set a
conservative threshold h = 2σ2 and have a noise reduction tending to 2

|R(i)| as n increases.

5.2 A research zone containing the edge

In this case, the risk is to average pixels with an original value different from the pixel of interest.
Therefore, we want to separate as much as possible the distances from the correct pixels from
the distances of the incorrect ones. Following the same notations of the above section and
denoting by c the contrast between the two different regions of the image, we can write the
distance between two windows as

dn
2σ2

=
1

n







W
∑

i=0

(

mi√
2σ

)2

+

n
∑

j=W+1

(

ni√
2σ

)2






,

wheremi/
√
2σ and ni/

√
2σ follow a N(c/

√
2σ, 1) andN(0, 1) distributions, respectively, andW

denotes the number of pixels with a different grey level value inside the comparison window. The
distribution of the above distances follows a non central chi squared distribution of parameters
n and λ = W ∗ (

√
2σ)2.

The above normalized distance has mean 1 + (W/n)λ2 and variance 2
n (1 + 2λ2(W/n)).

Therefore, the distance between two windows completely contained in different sides of the
edge has a mean 1 + λ2 and a variance 2

n (1 + 2λ2). The mean is independent of n while the
variance tends to zero as n increases. Thus, windows from the same side of the edge can be
better separated from the incorrect ones as n increases. The same argument applies when
the ratio W/n is kept constant while n increases. For the neighborhood filter (n = 1), the
above statistics shows that the comparison of one single pixel is not robust enough. Indeed, the
standard deviation of the distance of two pixels on different sides of the edge is larger than the
distance between the mean distances of the correct and incorrect choices.
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Figure 19: Comparison of neighborhood filters and NL-means on a piecewise constant image. From
left to right: input image, NL-means filtered image and the neighborhood filter with an increasing
value of h. Using the whole image as research zone, NL-means is able to recover the original image
almost perfectly with h = 2σ2. For the neighborhood filter we have used a research zone of 7×7 pixels.
For h small the neighborhood filter is not able to reduce much noise and by increasing the value of h
we begin to filter excessively the edge. In contrast with the neighborhood filter, NL-means is able to
reduce the noise with a very conservative value of the filtering parameter.

6 Conclusion

A common framework for the study of the neighborhood filters has been presented. We have
proposed three principles for the comparison of denoising methods evaluating the loss of image
structure, the creation of artifacts, and the complete usage of image self-similarity. After a
structural comparison of non-local denoising methods with other classes, we have shown that
movie denoising can avoid the explicit computation of an optical flow estimate. What is left
to be done? The very recent extensions of NL-means we mentioned in the introduction point
towards the involvement of still more sophisticated statistical instruments. Beyond denoising,
we have seen that the association with each pixel of a probability distribution weighting its
similarity with the other pixels of the image may become a central tool in image analysis. This
rich structure unfolds image information and should be used for algorithm which simultaneously
analyze and process images. The recent work of Gilboa and Osher [17] points towards this
direction. These authors use NL-means as a segmentation tool.
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