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Abstract

In this paper, a theoretical framework for the conditional diffusion
of digital images is presented. Different approaches have been proposed
to solve this problem by extrapolating the idea of the anisotropic diffu-
sion for a grey level images to vector-valued images. Then, the diffusion
of each channel is conditioned to a direction which normally takes into
account information from all channels. In our approach, the diffusion
model assumes the a priori knowledge of the diffusion direction during
all the process.

The consistency of the model is shown by proving the existence
and uniqueness of solution for the proposed equation from the viscos-
ity solutions theory. Also a numerical scheme adapted to this equation
based on the neighborhood filter is proposed. Finally, we discuss sev-
eral applications and we compare the corresponding numerical schemes
for the proposed model.

1 Introduction
The most simple diffusion model is the heat equation

u = Au

where Au denotes the Laplacian of image u. The heat equation is linear and
isotropic. However, isotropic diffusion is not well suited for natural images
since it does not preserve the location and direction of edges which convey
the main perceptual information of the image, the first works on anisotropic
diffusion goes back to [16] and [19].

LAMS Subject Classification: 68U10, 35K65



Non linear PDE equations were introduced in order to favor diffusion
directions adapted to the local geometry of the image. Perona and Malik
[24] proposed the following equation,

ou )

%~ div(g(|Dul) Du), (1)
where g : IR — IR is a decreasing function with ¢(0) = 1 and lim,_,~ g(s) =
0. The equation can be decomposed as the sum of two directional diffusion
terms

ou
Fn = Q(IDU‘)U& + h(]Du\)um], (2)

where
uge = D*u(€,€),  up, = D*u(n,n),

respectively denote the second derivatives of u in the direction of n =
Du/|Du| and ¢ = Dut/|Dul|. The diffusion term in the ¢ direction, tangent
to the level line passing through x, is always positive. The diffusion term
in the n direction, across the level line, can take positive or negative val-
ues depending on the magnitude of the gradient. This equation combines a
filtering/deblurring strategy as already proposed by Gabor in the 60s [14].
The same objective can be attained by using reaction diffusion equations as
proposed by Cottet et al. in [10].

A simpler non linear equation is the mean curvature motion [20]. The

equation is written as 5

a—z = Uge. (3)
This equation diffuses only in the £ direction preserving the main discon-
tinuities. Other anisotropic diffusion equations have been more recently
proposed [27, 7, 26].

The diffusion direction in the previous equations is defined implicitly by
the equation itself. The aim of this work is to introduce a new theoretical
framework in which the diffusion direction is given by a certain vector field
W (z,t) available a priori. The motivation for this work comes from the
color image filtering equation presented in [9]. This equation conditions the
color diffusion on the luminance

Ou; , (DI+ DI+ ,
=Du; | — . —— =1,2.3 4
ot i (\DI\’ |DI| )’ PE LS9 (4)

where u : IR? — IR? is the color image, u = (uy,ug,u3), and I = %

Because of the linearity of the expressions involved in (4), the luminance I



itself must satisfy a mean curvature equation

1 1
8I_DZI<DI DI >

o |DI|’ | DI (5)

Then, the luminance image can be previously filtered I(¢,z) and coded as a
priori data inside a vector field W (t,x) = DI(t,z)*. The equation (4) can
then be rewritten as,

du 2, Wi(t,z)  W(t z)
o =P <uw<t,x>u’uw<t,x>u>'

(6)

This general diffusion model adapts to many applications in which the
diffusion direction during all the process is known a priori. Cabral et al [6]
used the same idea in order to filter noise images with fixed a priori vector
fields. The obtained filtered noise reflects the vector field obtaining visually
artistic images. This model is suitable for real applications where some
additional information on the desired solution is available. For example,
Caselles et al. [2] proposed to increase the resolution of the color channels of
satellite images using the panchromatic component at the desired resolution.
In [30], the authors proposed to restore color to damaged or old black and
white images by diffusing the initial data in the orthogonal direction to the
gray image gradient. The subjacent idea common to these applications is
that the geometry of color images is contained in the luminance as proposed
and tested in [8].

Conditional diffusion is not restricted to color or multivalued images.
Recently, Almansa et al. [13] proposed to filter the disparity map of a stereo
pair by a diffusion equation. The diffusion direction is computed on the
original grey level image and not on the disparity image.

A similar constraint can be introduced when dealing with optical flow
computation. The introduced requirement restricts the variation of the dis-
placement vectors in directions with small or no variation of gray values. Dif-
ferent model have been proposed taking advantage of this technique Nagel
et al. [21], Alvarez et al. [1] and Weickert et al. [28]

All these applications can be set under the same general framework given
by equation (6) since the directional field is known at the beginning of the
process. The aim of this work is to perform the theoretical study of this
equation and discuss its possible applications. The theoretical results of this
paper apply for time dependent vector fields even if in many application this
field is taken to be constant in time.

The planning of the paper is as follows. In section 2 we introduce a
general PDE equation for conditional diffusion. We prove the existence and



uniqueness of solution in section 3. In section 4 we propose a numerical
scheme adapted to this equation. Section 5 is devoted to the discussion and
experimentation on the several applications of the model. Finally, section 6
exposes some conclusions.

2 Conditional diffusion model

Let W(z,t) be a vector field giving the direction of the diffusion process.
Then, the proposed equation reads

ou 2, Wi(t,z)  W(t, z)
T <uw<t,x>u’uw<t,x>u>' @)

Following the ideas in [17, 24] the above diffusion can be coupled with a dif-
fusion term of decreasing magnitude in the orthogonal direction to the vector
field, W. This second term avoids the singularity of the diffusion process
when W = 0. Then, when there is no meaningful directional information,
an isotropic regularization is performed.

The proposed final equation and a uniqueness result are stated in the
next theorem.

Theorem 2.1 Let W : [0,00)xIR™ — IR"™ be a continuous in time, Lipschitz
continuous in the space variable and bounded vector field. Let f : [0,00) —
[0,00) be a smooth decreasing function, f € C1([0,+0c0)), satisfying f(0) =
1, fA(0) =0 and lims_, 4 f(s) = 0. Then the equation

W W wt wt
=D%u( —r, —— WIND?u [ ——
u “<||W||’||W||>+f<” D “<||W||’||W||>’ ®)

has a unique viscosity solution in (0,T] x R™, given a continuous initial
condition u(0,z) = up(x).

The diffusion in the orthogonal direction decreases as the field mag-
nitude increases. When this is small, both diffusion terms are combined
leading to the heat equation. When this magnitude increases, the term in
the orthogonal direction cancels and the diffusion is performed only in the
field direction.

The result applies for multivalued functions v = (u1,...,uy). In that
case, each component is diffused by the same field direction. This is the
case for instance of color image filtering. The vector field W = W (¢, z) is in
general time dependent. It can be constant in time for several applications
as we shall see in section 5.



3 Proof of the main result

The aim of this section is to prove the Theorem 2.1. It is divided into
three subsections. In the first one, we present the assumptions that must
satisfy the equation in order to have a comparison principle and the well-
known result in the framework of viscosity solutions for degenerate parabolic
equations [15]. In the second one we prove that the proposed equation (8)
satisfies the above assumptions and then we have a comparison principle
for equation (8) and, as a consequence, uniqueness of the solution is proved.
Finally, in the last subsection, we prove the existence part of Theorem 2.1 by
constructing a consistent and monotone scheme. Then, following the ideas
of [4], the scheme converges to the solution of the equation.

3.1 A general uniqueness result

We adapt a comparison principle for second-order degenerate parabolic
equations stated in [15]. We apply this result in order to prove the exis-
tence and uniqueness of equation (8) in Theorem 2.1.

Let T be any positive constant and consider a degenerate parabolic equa-
tion of the form

ug = F(t,z,D*u), in Q= (0,T] x IR". (9)

We list the assumptions on F' = F'(t,z, X) which are necessary for the
uniqueness result.

(F1) F : @ x S, — IR is continuous, where S, is the space of real n x n
symmetric matrices.

(F2) F is degenerate elliptic, i.e.,
F(t,z,X)< F(t,z,X +Y), Y >0.
(F3) For every R >0

cr =sup{|F(t,z, X)|: || X||<R,(t,z,X) €Q x S,} < 0.

(F4) Suppose that
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with p,v,w > 0. Then it holds:
F(taya _Y) - F(t,l’,X) > _m(ny - yHQ) - m(zw)
with some modulus m independent of ¢, z,y, X, Y, u, v, w.

Next, we recall the definition of viscosity sub- and supersolution of (9)
(see also [11]).

Definition 3.1 An upper-semicontinuous function u : Q — IR is called a
viscosity subsolution of (9) in Q if

T < F(t,z,X) forall (r,p,X) € Péfu(t,x), (t,z) € Q.

Similarly, a lower-semicontinuous function u : Q — IR is called a viscosity
supersolution of (9) in Q if

7> F(t,z,X) forall (r,p,X) € Pé’_u(t,x), (t,z) € Q.

Finally, a continuous function u : @ — IR is a viscosity solution of (9) in Q
if it is both a viscosity subsolution and a viscosity supersolution of (9) in Q.

Here 7322’+u(t,:c) denotes the parabolic super 2-jet in @, that is the set of
(r,p,X) € R x IR™ x S,, such that
1
u(s,y) <u(t,z)+7(s —t)+ <p,y —x > +§ <Xly—2a),y—xz>+

+olls —t| + |ly — zl1*) as (s,9) = (t,2),
2,— 2,+
and Py u=—Pg5" (—u).
Then the comparison theorem for equation (9) is a particular adaptation
of a more general kind of equations studied in [15].

Theorem 3.1 Suppose that F of equation (9) satisfies (F1)-(F4). Let u
and v be respectively, sub and super-solutions of (9). Assume that

i) u(t,x) < K(||z|| + 1), v(t,z) > —K(||z|| + 1) for some K > 0 inde-
pendent of (t,x) € Q.

it) u(0,2) —v(0,y) < K||z—vy|| for all (z,y) € IR™ x IR™, for some K > 0
independent of (z,y).

Then there is a modulus m such that
u(t,z) —v(t,y) <m(|lx —yl|) on U =(0,T] x R" x IR".
In particular u < v on Q.

The proof of this theorem is similar to the one of Theorem 4.2 in [15].



3.2 Proof of uniqueness of the solution for Theorem 2.1

Next, we apply the comparison principle, Theorem 3.1, to equation (8). This
equation can be rewritten as

us = Tr(B(W)D?u),
where, if we denote as W = (wy, ws) then B(W) € Sy and it writes as

witf(IW[Dws  wiwa(1—f(|IW]])

BOV) W12 w1 )
wiway(I-f(IW]D))  wi+f(IW|hw?
W12 i

Note that B(W) is not defined when W = 0 but due to the continuity of
f we have that limy_,o B(W) = I. This fact implies that we can extend
continuously B at points where W = 0 as B(0) = I. Therefore, if we write

_ [ B(W(t,z)) if W(t,z) #0,
Alt,z) = { I if W(t,z) =0, (12)
then equation (8) can be rewritten as
ug = Tr(A(t, 2)D*u). (13)

This formulation, acting B(W) as a diffusion tensor, can be found in [26]
where the authors study a general framework that unifies a large number of
methods for vector-valued image regularization.

Next result proves that F(t,z,X) = Tr(A(t,r)D?u) is under the hy-
pothesis of Theorem 3.1 and by applying it, we obtain a uniqueness result
for equation (13).

Theorem 3.2 Suppose W is Lipschitz continuous in the space wvariable,
continuous in time variable and bounded. Assume also that f € C*([0,+00)),
is a decreasing function satisfying f(0) =1, f1.(0) =0 and lims_, o f(s) =
0. Then, it holds

(i) A(t,z) defined by (12) is a positive and bounded matriz and A(t,z)/?
1s Lipschitz in the space variable.

(ii) F(t,z,X) = Tr(A(t,z)D?u) satisfies hypothesis (F1)-(F4) of Theo-
rem 3.1.



Proof: To prove part (i), note that W is bounded which implies A(z,t) >
61 > 0. Therefore, if we prove that A is Lipschitz then it follows that A'/2
is also Lipschitz continuous. From the hypothesis on W and f, it is easy
to see that the matrix B(W) defined above is differentiable with bounded
differential, for all W = (w1, ws). Therefore, if M is a bound of DB(W') and
L is the Lipschitz constant of W (¢, x), then we can apply the mean value
theorem and we have, for any (¢,y), (t,z) € Q,

IA(t,y) — At 2)|] = [[B(wi(t y), wa(t,y)) — B(wi(t, z), wa(t, z))|l
< [IDB(@n, )|V (1t y) — Wt z)|| < MLy — ||,

which proves that A is Lipschitz with Lipschitz constant M L.

To prove part (i7), note that (F1) and (F2) follow from the properties
of A stated above.

To prove (F3), note that if ||A|| < K, then |F(t,z, X)| < 2K||X|| for
all (t,x) € Q. As a consequence, for every R > 0,

cr =sup{|F(t,z, X)| : | X||<R,(t,z,X)e@QxS"} =2KR < x

Finally, for (F4), we multiply the right side inequality in (10) by the
nonnegative symmetric matrix (see also [11])

A(t,x) A(t,y)l/QA(t,x)l/2
< A(t,z) 2 A(t,y)'/? Alt,y) >

and taking traces yields

Tr(A(t,z)X) +Tr(A(t,y)Y) < I/T?“((A(t7x)1/2 _ A(t,y)1/2)2)
+wTr(A(t,z) + A(t,y)).

By part (4), AY/2 is Lipschitz continuous with constant L, and then we have

> —2wl?||r —y|* - 4Kw.

If we choose m(s) = as where a = max(2L?,2K), then we have the desired
inequality. (]



3.3 Proof of existence of the solution for Theorem 2.1

In this section, we will construct a numerical finite difference scheme for
equation (13). Based on a work by Barles-Souganidis [4], the convergence
to the viscosity solution of equation (13) is ensured if the scheme is monotone
and consistent. In fact, the main requirement for convergence is that the
scheme satisfies a discrete comparison principle (see also [23], [22] for the
notion of finite difference scheme).

Due to the fact that equation (13) is degenerate and anisotropic, we
consider a grid in space and orientation of mesh sizes denoted by dx and d#f,
respectively. Next, we give the definitions of consistency and monotonicity.

Definition 3.2 (Consistency) A numerical scheme Fyg 49 is consistent if
for every ¢ € C3(Q), (t,x) € Q, where Q = (0,T) x IR?, then
Wm  Fupae(¢) = ¢¢ — F(t,x, D*¢). (14)
da,d6—0
Definition 3.3 (Monotonicity) If u,v are solutions of a scheme with

boundary data f,g respectively, then f < g on the boundary implies u < v
on the domain.

The monotonicity is a discrete version of the comparison principle. For
explicit schemes, this is satisfied if the solution map is a non decreasing
function of the values at the previous step.

3.3.1 The scheme on a uniform grid

Equation (8) acts as the diffusion of the function u in two directions, one
given by the vector field W and the other one by the orthogonal direction
WL, In each of one, the equation behaves like the one dimensional heat
equation in this direction. Then, the numerical approach applying finite
differences is based on this fact.

We consider a grid which depends on two parameters dx and df. The
time discretization will be uniform and a monotone scheme for equation (13)
can be built, provided that a CFL condition is satisfied.

For a fixed time ¢ and xg a reference grid point, denote x1,...,z,, the
xo neighbors and w; = u(z;,t) the discrete values at x;, i = 1,...,m. We
define the direction vectors v; = x; —xo and the distances d; = |z; — x|, i =
1,...,m and we denote as 0; = Z—j the normalized vector, ¢ = 1,...,m.

Define the local spatial resolution

m
dx = max d;,
i=1



and the local directional resolution

df = max min lv — 4.
veSt i=1

We choose the neighbors such that if v is a direction vector, then so is —wv
and v*. Then we have the following result

Proposition 3.1 (Consistency ) Let u be a C? function in a neighborhood
of xg. Suppose x1,...xy, are the neighbors of xg such that if ¥; is a direction
vector, then so is —0;. Suppose also & € IR? a given direction, ||£|| = 1. Then
there is a direction vector vy, such that

e — 2
U = W +O(dz + db), (15)

where xp« denotes the symmetrical point to xp with respect to xg.

Proof: Let 0 be the direction vector closest to &, (resp. Op« = —0 the
closest direction to —&), that is

max < v >=< > .
1<i<m Z7§ k7§

By the Taylor expansion we have
~ dl2 2 LS 3 . *
u; = ug + d; < 05, Du(xg) > +7D u (05, 0;) + O(dz?), i=k,k".

Then, by taking into account that dy = dy~, we get

Up + upr — 2ug

1 1
2 = §D2u (D, D) + §D2“ (D=, g+ ) + O(dx). (16)
k

By using |0 — &| = O(df) and |0g + &| = O(dB), we have

D?u (b, ) = D?*u(b — & 0k + &) + D?u(&,€)
= D%u(&,6) + O(df), 17
D2 (i ine) = DPu(tge — &, ipe 4+ ) + D2u (£, ) (17)
— D2u(£,€) + O(db).

Then by combining expressions (17) and (16), we have the desired result.
(]

10



Theorem 3.3 For equation (8), there exists a difference scheme which is
consistent and monotone and it converges to the unique viscosity solution.

Proof: Let (t,x0) be a discrete point of the grid and suppose that
W(t,xg) # 0. We denote by & = % and n = HWTLH the normalized vec-
tor field and its orthogonal, respective#y. Then, the operator associated to
equation (8) writes as F(t,zo, D?u) = uge + f(||[W|]) -

By Proposition 3.1 there exist two orthogonal vectors u; and wu; such

that )

Uy = wuéi%—%o + O(dz + db),

where zp+ and z;» denote the symmetrical points to z; and x; respectively
with respect to xg.

By using the explicit Euler discretization in time, we get the explicit
discrete solution

u(t +dt, x0) = (1= 245 — 2f(||W(t, 20)|)) §)uo+

S i)+ S AW 0, 20)] ) 25 o+ ), "
where the time step is bounded by the nonlinear CFL condition dt < M,
where dz’ = min]", d;. Then Proposition (3.1) is applied to proof consis-
tency of the method.

If W(t,z9) = 0, then the operator F' associated to equation (8) writes
as the Laplacian Awu. In this case, there can be chosen any two orthogo-
nal directions and apply the explicit Euler discretization (18) to obtain the
consistency of the method with the same CFL condition.

To prove the monotonicity, we note that, in all cases, the discrete map
(18) gives us u(t + dt, zo) as a convex combination of u(t, zp) and the value
of two neighbors, which implies the monotonicity of the scheme.

Finally, the consistence and the monotonicity of the scheme imply its
uniform convergence to the unique viscosity solution of equation (8) (see

). O

We note that the previous scheme allows only a finite number of smooth-
ing directions. In order to extend this scheme, we propose an alternative
one using neighborhood filters.

11



4 Numerical approximation

In the previous section we built a numerical scheme to proof the existence
of solution to the proposed equation. This scheme involves the choice of a
certain direction in which the second order derivatives are discretized. This
choice can be noise dependent and therefore not accurate. For this reason,
we introduce an extension based on neighborhood filters [18, 29] and a recent
modification [5].

4.1 Local adaptive averages

Let u be a scalar function defined on a bounded domain  C R2. Then the
filtered value at x is defined as

NEj pu(x) = — / e T g (19)
hpt(X) = =— u(y)e R v,
g C(x) B,(X)

where only pixels inside B,(x) are averaged, h controls the grey level simi-

_ ) —uX)P?
larity and C(x) = [ B,(x) € n? dy is the normalization factor. This

filter is usually called sigma [18] or neighborhood filter [29] and was intro-
duced in the 80’s for the restoration of digital images. In order to preserve
the discontinuities of the image, only pixels with a similar gray level value
to the one being restored are averaged.

The mathematical study of this filter was made in [5]. It is shown that the
subjacent PDE of the neighborhood filter is equivalent to the Perona-Malik
equation. The neighborhood filter suffers from a staircase effect, which was
explained by the inverse diffusion term of its subjacent PDE. The authors
also proposed a simple variant of the neighborhood filter replacing the av-
erage by a linear regression. This strategy amounts to find for every point
x = (1, x2) the plane locally approximating v in the following sense,

g in, [ wley)(uy) (o + )y, (20
’ ) P X
_ ) -uX))? )
where w(x,y) =e nZ and then replacing u(x) by the filtered value

asts + a1x1 + ag. The weights used to define the minimization problem
are the same as the ones used by the neighborhood filter. Thus, the points
with a grey level value close to u(x) will have a larger influence in the
minimization process than those with a further grey level value. We denote
the above linear regression correction as LNF}, ,. The subjacent PDE of this
new filter is related to the mean curvature motion.

12



4.2 Extension for the proposed equation

The LNF' can be extended following the model introduced in this paper. In
fact, the neighborhood filter performs an average of the neighboring pixels,
but under the condition that their color is close enough to the one of the
pixels in restoration. In some sens, it is equivalent to impose some kind
of constraint, the weights, in order to preserve the geometry of the image
as the contours. Thinking about the vector-valued images, we can average
pixels of the same channel u but the weights can be related to the geometry
of another image 1.

In other works, we can diffuse the image u conditionally to the geometry
of any other image I. In that case the minimization process reads

ap,a1,a2

arg min / w(x,y)(u(y) — (a2y2 + a1y1 + (10))2 dy, (21)
B,(X)

Y -1X)? ) . .
where w(x,y) = e h2 . Thus, the image is locally approximated by

a plane with the weight distribution computed on the image I.

The next theorem shows that when p and h have the same order, the
application of the linear regression neighborhood filter is equivalent to one
step of the proposed model (8).

Theorem 4.1 Suppose u € CQ(Q,R),] € C%(Q,R), and let p,h,a > 0
such that p,h — 0 and h = O(p®). Let f be the continuous function defined

as f(0) =1,
. 3 ot et
1) =55 <1_ B0 )

fort #0, where E(t) = 2]5 e=5" ds. Then, for xe Q

1. Ifa<1,

UWWM@—M@:Q%Qﬁ

where Au denotes the Laplacian of u.
2. Ifa=1,
~ 2
LNFj, yu(w) — u(@) = | D*u(€.)(2) + f(71DI@)) D*uln.n)(@)| &

where £ = % and n = % denote respectively the tangent and or-

thogonal directions to the level line passing through x.

13



Proof: Let us suppose without loss of generality that x = 0. In that case,
it is easily seen that

LNF}, ,u(0) — u(0) = %,
where
a(2,0) a(1,1) a(1,0) a(2,0) a(1,1) b(1,0)
A= a(1,1) a(0,2) a(0,1) |, A=| a(1,1) a(0,2) b(0,1)
a(1,0) a(0,1) a(0,0) a(1,0) a(0,1) b(0,0)
and

a(al, 042) = / t?ltgmw(tl, tz) dtldtz,
B, (0)

b(Oél, 042) = / ttlll tSQw(tl, tg) [u(tl, tg) — u(O)] dtldtg.
B, (0)

We take the Taylor expansion of I(t) in the orthogonal system given by
¢ = DI /|DI| and n = DI/|DI]|,

I(t) = 1(0) + pt1 + Lyyt: + Leets + Ientita + O(|t]?),

where p = |DI(0)| and if p > 0

1 1
Ige = 5D*I(E,€), Ly = 5D*1(n,m),  Tey = D*I(&,m).
We take the Taylor expansion of u(t) in the same orthogonal reference,

u(t) = w(0) + upts + ugts + ugnti + ueets + ugntits + O(Jt)*),
where ug = ‘g—g, Uy = g—z and

1 1
Uge = §D2u(§7§)7 Unn = §D2u(77777)7 Ugn = D2u(§’77)'

When a < 1, we apply the usual Taylor expansion of the exponential
function. The terms of lower order of matrices A and A are in their diagonal
and the quotient can be approximated by the lower terms of b(0,0)/a(0,0).
Therefore, the analysis of the difference reduces to the computation of the
two terms,

a(0,0) ~ /B o dtydty ~ 4p
P

14



and

4Au
b(0,0) ~ / )(C]nnt% + geets) diydty = Tﬂ4-

P
This proves (1).
When a = 1, we cannot apply the above expansion and we decompose
the weight function as

Pty

2,2
_r 1 2pt1
w(ty, te) ~ e 72 (1 — ?(unnt% + ugets + u§nt1t2)> :

In this case, the terms of lower order of the matrices A and A are the diagonal
elements, a(1,0), a(0,1), b(1,0) and b(0,1). Then, the terms of lower order
of the quotient are given by the lower terms of

det A a(2,0)a(0,2)b(0,0) — a(1,0)a(0,2)b(1,0) — a(2,0)a(0,1)b(0,1)
det A a(2,0)a(0,2)a(0,0) '

(22)
Therefore, the analysis of the difference reduces to the computation of the
terms,

B
CL(O,O)Z/B (0)6 2 dtldtQ,
P

2p _r’d
a/(0, 1):—ﬁ/3(0) Iey t3t5 e 12 dtydis,
P
2p 2 2y ,2 —Ti
a(1,0) = =5 (Iygts + Ieety) tie” n2 dtidts,
Bp(0)

th% th%
a(0,2) ~ / t% e 12 dtidta, a(2,0) ~ / t% e 12 dtidits,
B, (0) B, (0)

2,2

~ 2 _ﬁ ~ 2 _PrY
b(O, 1) ~ un/ t2 e h? dtldtg, b(l, O) = ug / tl e h? dtldtg,
B, (0) By (0)

- p2t? ) p2:2
b(0,0) ~ / (uget? + upptd)e™ 12 dtydty — =2 u, / 12(Lyt? + Teet)e™ 72 dtydty
B, (0) B,(0)

h2
P
2,2

_“p L2422
Ug £nt1t2€ h dtldtg.
(0

P

Now, replacing the terms in (22) by the previous estimates we get

1 P
242 /B ( (unnt% + U§§t%) e n? dtldtQ
pr(O) e h? dtldtg ’
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Figure 1: Weighting function of Theorem 4.1.

Computing the previous integrals and taking into account that O(p) = O(h)
we prove (2). O

The previous theorem tells us that when p and h have the same order,
the subjacent PDE of this filter is equal to the proposed equation with
W = DI+. As displayed in Figure 1, the weighting function f is positive
and quickly decreasing to zero. It can be easily checked that it satisfies all
the conditions of Theorem 2.1.

The iteration of this filter is not straightforward. As the filter is iterated
the value of h must decrease in accordance. This is due to the decreasing of
the gray level differences of pixels as the diffusion processes. For this reason,
the above discretization will be only applied when the vector field W is not
time dependent. In that case, the weight distribution is computed only once
and maintained constant during the iteration process.

5 Discussion

We begin by discussing the application of the proposed equation (8) to color
image filtering. The selected field W is equal to the orthogonal direction
to the gradient of the luminance component as exposed in the introduction.
The vector field is then obtained by diffusing the luminance according to
the mean curvature equation, W (t,z) = DI(t,x)*. This vector field is time
dependent. If the vector field is taken constant in time then the sharpness
of edges is lost due to the mismatch of color and luminance edges as time
increases.

Figure 2 compares the application of the above model with the multival-
ued extension of the mean curvature motion presented by Sapiro et al [25].
In the mentioned work, the diffusion direction is computed as the direction
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Figure 2: Color filtering comparison. Left: original image. Middle: fil-
tered image by the extension of mean curvature motion [25]. Right: filtered
image with the proposed equation. Both equations have been numerically
implemented by a finite difference scheme. Even if the solutions are nearly
identical, the difference is the theoretical well posedness of the presented
model.

of minimum variation. This direction depends non linearly on the image
at each time and therefore cannot be set under the conditional framework.
Both solutions are nearly identical as displayed in the figure. The main dif-
ference of both models is the well posedness of the proposed equation while,
as far as we know, there is no existence and uniqueness theorem for the
equation proposed in [25].

For other applications is more suitable to take a constant in time vector
field. This is the case of giving color to a grey level image. Some initial
chromatic information is diffused according to the gradient of the grey level
image, W (z,t) = DI(z)". Figure 3 displays a colorization experiment with
equation (8). The initial chromatic information is used as boundary condi-
tions.

Another application in which the direction field can be constant in time
is the inpainting or filling-in problem. The objective is to fill in the miss-
ing information of a whole zone of the image in a non recognizable way.
PDE approaches for filling-in try to diffuse the geometric information of the
boundary inside the hole. A special case is when some information on the
geometry inside the hole is available but not the grey level value. Common
PDE models for image interpolation are not adapted to this case. Only in
[3], the authors take this special case as a motivation for the final proposed
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functional. The final functional is presented in a general framework but it
can be easily adapted to this possibility since the geometry and grey level
variables are decoupled.

In Figure 4 we applied the proposed equation (8) to fill in the informa-
tion on a colour image where only two of the three channels are damaged.
The diffusion is only performed on damaged pixels. The orthogonal direc-
tion to the gradient of the non-damaged channel is used as the vector field
W. This vector field is taken constant in time. We compare the finite dif-
ference scheme and the linear neighborhood one. The linear neighborhood
scheme is able to continue better the edges as it is less diffusive than a finite
difference scheme. This type of structures are the most difficult to fill in for
PDE models, since finite difference schemes are rarely able to recover sharp
edges. Because of the size of the removed zones, classical inpainting tech-
niques (PDE and Efros-Leung based) are not able to interpolate separately
each channel. Efros-Leung based interpolation techniques as [12] could be
adapted to this problem in order to take advantage of the green channel
but the main inconvenient of such a technique is the lack of a regularity
condition assuring the non presence of artifacts.

6 Conclusions

In this work we have shown the feasibility and mathematical well posedness
of a diffusion model with an a priori fixed directional field. Based on the
theory of viscosity solutions we have proved the existence and uniqueness
of the solution. We have also shown that a numerical scheme based on
neighborhood filters is a better option to implement such a diffusion than
a finite differences scheme. Experiments illustrate how this model can be
applied to several image processing tasks including image filtering.
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Figure 3: Colorization experiment using the conditional diffusion equation.
Top Left: Input image with original luminance and initial data on the chro-
matic components. Top Right: Result image by applying the linear neigh-
borhood scheme to the chromatic components using the initial chromatic
data as boundary conditions. Middle left and bottom left: initial data on
the two chromatic components. Middle right and bottom right: final inter-
polated components.
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Figure 4: Inpainting example on a colour image where only two of the three
channels are damaged. The tangent to the gradient direction of the non-
damaged channel is used as the vector field W and maintained constant in
time. Top: Original image, inpainted by the finite difference scheme and
inpainted by the linear neighborhood scheme. Below: damaged channels
and inpainted by the finite difference scheme and the linear neighborhood
one. The linear neighborhood scheme is able to better recover the sharp
edges as it is less diffusive than a finite difference scheme.
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