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The staircasing effect in neighborhood filters and its solution
Antoni Buades, Bartomeu Coll, and Jean-Michel Morel

Abstract— Many classical image denoising methods are based on a
local averaging of the color, which increases the signal/noise ratio. One
of the most used algorithms is the neighborhood filter by Yaroslavsky or
sigma filter by Lee, also called in a variant ”SUSAN” by Smith and Brady
or ”Bilateral filter” by Tomasi and Manduchi. These filters re place the
actual value of the color at a point by an average of all valuesof points
which are simultaneously close in space and in color. Unfortunately, these
filters show a “staircase effect”, that is, the creation in the image of flat
regions separated by artifact boundaries. In this paper, wefirst explain
the staircase effect by finding the subjacent PDE of the filter. We show
that this ill-posed PDE is a variant of another famous image processing
model, the Perona-Malik equation, which suffers the same artifacts. As
we prove, a simple variant of the neighborhood filter solves the problem.
We find the subjacent stable PDE of this variant. Finally, we apply the
same correction to the recently introduced NL-means algorithm which
had the same staircase effect, for the same reason.

Edics: 2-NFLT Nonlinear Filtering and Enhancement. 2-REST
Restoration.

I. I NTRODUCTION

Many classical image denoising methods are based on a local
average. The restored value at a pixelp is obtained as an average of
its neighboring pixels. The most classical algorithm is theGaussian
filtering. In that case, the restored value is obtained as a weighted
average where the weight at each pixel depends on the distance to
the restored one. This low pass filter tends to blur the image.

The neighborhood filters avoid the blurring effect by restricting
the average to pixels having a similar grey level value. The idea is
that grey level values inside a homogeneous region slightlyfluctuate
while pixels belonging to different regions have a larger grey level
difference. The Yaroslavsky neighborhood filter, [20], or sigma-filter
[10], defines a neighborhoodG(x, h)∩Bρ(x), whereBρ(x) is a ball
of centerx and radiusρ and

G(x, h) = {y ∈ Ω | u(x)− h < u(y) < u(x) + h}.

Then, the filter takes an average of the values of pixels whichare
simultaneously close in grey level value and spatial distance. Many
variants of the neighborhood filter have been introduced. Let us
mention the SUSAN filter [17] and the bilateral filter [18] which are
detailed in section II-A. These last filters have been further studied
in [7], [3].

The strategy applied by neighborhood filters to avoid the blurring
effect is similar to the one applied by some non linear PDE’s.The
early Perona-Malik “anisotropic diffusion” [13] reads

ut = div(g(|Du|2)Du), (1)

where g : [0,+∞) → [0,+∞) is a smooth decreasing function
satisfyingg(0) = 1, lims→+∞ g(s) = 0. The aim of this equation is
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to apply a diffusion process inside the homogeneous regions, where
|Du| is small, while the diffusion is stopped near the boundaries
or edges, where there is a large grey level difference between
neighboring pixels and therefore a large gradient. The similarity
between the neighborhood filters and the non linear PDE equations
has been discovered in [3]. In the mentioned paper, which uses and
extends anterior calculations in [15] and ideas of Weickert[19] it
is actually proved that in one dimension, a discrete versionof the
Perona-Malik equation can be made similar to a 3x3 neighborhood
filter.

In this paper we use a PDE formalism and, extending the results
and technique of [3], prove that the neighborhood filter is equivalent
to a Perona-Malik equation when the size of the spatial neighbor-
hood tends to zero. The restored images by both methods are then
compared. Mathematical and experimental evidences show that both
filters share an undesirable shock effect that creates largeflat zones
and boundaries inside smooth regions.

We finally show that a simple modification of the neighborhood
filter, a linear regression correction, allows us to avoid this shock
effect and leads to more natural filtered images. The subjacent PDE
of this new model explains the avoidance of the shock effect.This
nonlinear PDE is equivalent to a heat equation when the image
gradient is low and to the mean curvature motion when the gradient
is large. Thus, it is an edge-preserving parabolic partial differential
equation.

Our plan is as follows. In section II we give a brief introduc-
tion to neighborhood or bilateral filters and non-linear PDE’s in
image filtering. In section III we prove that neighborhood filters are
asymptotically equivalent to the Perona-Malik equation asthe size of
the neighborhood tends to zero. In section IV we present a simple
modification of the neighborhood filter, a linear regressioncorrection,
which avoids the shock effect and compute its subjacent PDE.Finally,
in section V we show that the above linear correction can be applied
to a recently introduced filter: The NL-means (Non local means) [4],
[5], which is a strong improvement of neighborhood filters.

II. N EIGHBORHOOD FILTERS ANDPDE’S

A. Neighborhood filters

We call neighborhood filter any filter which restores a pixel by
taking an average of the values of neighboring pixels with a similar
grey level value. Yaroslavsky (1985) [20] and Lee (1983) [10]
averages pixels belonging to the neighborhoodG(x, h)∩Bρ(x). This
filter can be rewritten in a more continuous form as

YNFh,ρu(x) =
1

C(x)

∫

Bρ(x)
u(y)e−

|u(y)−u(x)|2

h2 dy, (2)

wherex ∈ Ω andC(x) =
∫

Bρ(x) e
−

|u(y)−u(x)|2

h2 dy is the normaliza-
tion factor. The grey level threshold has been changed by a weighting
function depending on a filtering parameterh. Only pixels inside
Bρ(x) are averaged. This filter is less known than more recent
versions, namely theSUSAN filter(1995) [17] and theBilateral filter
(1998) [18]. Both algorithms, instead of considering a fixedspatial
neighborhoodBρ(x), weigh the distance to the reference pixelx,

SNFh,ρu(x) =
1

C(x)

∫

Ω

u(y)e
−

|y−x|2

ρ2 e
−

|u(y)−u(x)|2

h2 dy, (3)
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where C(x) =
∫

Ω
e
−

|y−x|2

ρ2 e
−

|u(y)−u(x)|2

h2 dy is the normalization
factor andρ is now a spatial filtering parameter.

In principle, there is no difference betweenYNFh,ρ andSNFh,ρ.
The performance of both algorithms is justified by the same argu-
ments. Inside a homogeneous region, the grey level values slightly
fluctuate because of the noise. In that case, the first strategy computes
an arithmetic mean of the neighborhood and the second strategy a
gaussian mean. At a contrasted edge separating two regions,if the
grey level difference between both regions is larger thanh, both
algorithms compute averages of pixels belonging to the sameregion
as the reference pixel. Thus, the algorithm does not blur theedges,
which is its main scope. Unfortunately, it creates artificial shocks,
which it is our aim to analyze.

B. Image filtering and enhancement by PDE models

Let us return to the Perona and Malik equation [13],

ut = div(g(|Du|2)Du), (4)

where g : [0,+∞) → [0,+∞) is a smooth decreasing function
satisfyingg(0) = 1, lims→+∞ g(s) = 0. In order to interpret this
equation, let us consider the second derivatives of u in the directions
of Du andDu⊥,

uηη = D2u(
Du

|Du|
,
Du

|Du|
)(x), uξξ = D2u(

Du⊥

|Du|
,
Du⊥

|Du|
)(x),

where D2u is the matrix of the second derivatives ofu and all
derivatives are evaluated atx. Then, the equation (1) can be rewritten
as

ut = g(|Du|2)uξξ + h(|Du|2)uηη, (5)

where h(s) = g(s) + 2sg′(s). This last equation is obtained by
decomposing the divergence operator and taking into account that
|Du|2uηη(x) = u2

xuxx+2uxuyuxy+u2
yuyy and∆u(x) = uξξ(x)+

uηη(x).
Perona and Malik proposed the functiong(s) = 1

1+s/k
. In that

case, the coefficient of the first term is always positive and therefore
this term appears as a one dimensional diffusion in the orthogonal
direction to the gradient. The sign of the second coefficient, however,
depends on the value of the gradient. When|Du|2 < k this second
term appears as a one dimensional diffusion in the gradient direction.
It leads to a reverse heat equation term when|Du|2 > k. The
equation is ill-posed.

The Perona-Malik model has had many variants and extensions.
Tannenbaum and Zucker [8] proposed, endowed in a more general
shape analysis framework, the simplest equation of the list,

ut = |Du|div

(

Du

|Du|

)

= uξξ .

This equation had been proposed some time before in another context
by Sethian [16] as a tool for front propagation algorithms. It performs
a “pure” diffusion in the direction orthogonal to the gradient and is
related to two models proposed in image restoration. The Rudin-
Osher-Fatemi [14] total variation model leads to minimize the total
variation of the imageTV (u) =

∫

|Du|, subject to some constraints.
The steepest descent of this energy reads, at least formally,

∂u

∂t
= div

(

Du

|Du|

)

(6)

which is quite related to the mean curvature motion and to thePerona-
Malik equation wheng(|Du|2) = 1

|Du|
. This particular case, which

is not considered in [13], yields again (6). The existence ofa solution
and the qualitative properties of this curvature flow were studied in

[1], [2]. These authors study mathematically and actually demonstrate
the existence of a staircase effect for this equation.

In the next section, we shall pile up a new argument in favor ofthis
convergence of image restoration models by PDE towards variants
of the curvature equation. We shall indeed prove that neighborhood
filters are consistent with a Perona-Malik equation with an inverse
diffusion term. We shall propose a straightforward improvement of
the neighborhood filter. It consists of replacing the average by a
linear regression. This improved neighborhood filter will be shown
equivalent to a heat equation when the image gradient is low and to
the mean curvature motion when the gradient is high.

III. R ELATION BETWEEN THE NEIGHBORHOOD FILTERS AND THE

PERONA-MALIK FILTER

In the next theorem we compute the asymptotic expansion of the
Yaroslavky neighborhood filter whenρ, h → 0. We distinguish three
different cases depending on the order of magnitude ofh andρ: h is
much larger thanρ, both have the same order, orρ is much larger than
h. The first case takes us back to the heat equation and is therefore
uninteresting. The second case leads to an equivalence between the
Yaroslavky neighborhood filter and the Perona-Malik equation. The
third case is uninteresting again as it gives back a slightlyanisotropic
heat equation. Thus, one of the aims of the next theorem is also to
give a relevant relationship between the space scaleρ and the grey
level scaleh.

Theorem 1:Supposeu ∈ C2(Ω), and letρ, h, α > 0 such that
ρ, h → 0 andh = O(ρα). Let us consider the continuous function

g̃ defined byg̃(t) = 1
3

te−t2

E(t)
, for t 6= 0, g̃(0) = 1

6
, whereE(t) =

2
∫ t

0
e−s2 ds. Let f̃ be the continuous function defined by

f̃(t) = 3g̃(t) +
3g̃(t)

t2
−

1

2t2
, f̃(0) =

1

6
.

Then, forx ∈ Ω,
1) If α < 1,

YNFh,ρu(x)− u(x) ≃
△u(x)

6
ρ2.

2) If α = 1,

YNFh,ρu(x)− u(x) ≃
[

g̃(
ρ

h
|Du(x)|) uξξ(x)

+ f̃(
ρ

h
|Du(x)|) uηη(x)

]

ρ2

3) If 1 < α < 3
2
,

YNFh,ρu(x)−u(x) ≃ g̃
(

ρ1−α|Du(x)|
)

[ uξξ(x) + 3uηη(x)] ρ
2.

Proof:
First, we rewrite the differenceYNFh,ρu(x)− u(x) as

YNFh,ρu(x)−u(x) =
1

C(x)

∫

Bρ(0)

(u(x+t)−u(x))e−
|u(x+t)−u(x)|2

h2 dt,

and denote it bydh,ρ(x). We denote byη = Du(x)/|Du(x)| and
ξ = Du(x)⊥/|Du(x)| the gradient and tangent directions atx. If
Du(x) = 0, we take an arbitrary pair of orthogonal unit vectors for
η and ξ. Taking into account thatξ and η are orthogonal and with
norm equal to 1, we use them to define a Cartesian reference frame
centered atx. Then, by taking the Taylor expansion ofu(x + t) in
the new coordinate system we obtain

u(x + t)− u(x) = pt1 + qt21 + rt22 + st1t2 +O(|t|3),

wheret = (t1, t2), p = |Du(x)| and if p > 0,

q =
1

2
D2u(

Du

|Du|
,
Du

|Du|
)(x), r =

1

2
D2u(

Du⊥

|Du|
,
Du⊥

|Du|
)(x),



3

Fig. 1. Comparison between the neighborhood filter and the Perona-Malik equation. Left: original image. Middle: Perona-Malik filtered image. Right: filtered
image by the neighborhood filter. The filtered images are verysimilar and both share artificial contours and flat zones thathave been created inside the
homogeneous regions.

s = D2u(
Du⊥

|Du|
,
Du

|Du|
)(x).

Whenα < 1, we expand the exponential function and obtain

dh,ρ(x) =
1

C(x)

∫

Bρ(0)

(u(x + t)− u(x))(1−
p2t21
h2

+O(
|t|3

h2
))

≃
1

4ρ2
2△u(x)ρ4

3
.

This proves(1). When 1 ≤ α < 3
2
, we cannot apply the above

expansion becauseρ
2

h2 does not tend to zero. However,ρ3

h2 → 0, and
we can decompose the exponential as

e
−

|u(x+t)−u(x)|2

h2 = e
−p2t21

h2 (1−
2pt1(qt

2
1 + rt22 + st1t2)

h2
+O(

|t|4

h2
)).

Using the Taylor expansion ofu and of the exponential function we
obtain

dh,ρ(x) ≃
p

2hρE( ρ
h
p)



4e
− ρ2

h2 p2
ρ4q +

4e
− ρ2

h2 p2

p2
h2ρ2q

+
4

3
e
− ρ2

h2 p2
ρ4r − 2E(

ρ

h
p)h3ρ

)

.

If h ≃ ρ, then all the terms of above expression have the same order
ρ2 and rewriting them proves(2). Whenh ≃ ρα, 1 < α < 3

2
, we

keep the term of lower order and get(3).
Interpretation: According to Theorem 1 the Yaroslavsky neigh-

borhood filter acts as an evolution PDE with two terms. The first
term is proportional to the second derivative ofu in the direction
ξ, which is tangent to the level line passing throughx. The second
term is proportional to the second derivative ofu in the directionη
which is orthogonal to the level line passing throughx. The evolution
equationsut = c1uξξ andut = c2uηη act as filtering or enhancing
models depending on the signs ofc1 andc2. Following the previous
theorem, we can distinguish three cases, depending on the values of
h andρ.

First, if h is much larger thanρ, both second derivatives are
weighted by the same positive constant. In that case, the addition
of both terms is equivalent to the Laplacian ofu, ∆u, and we get
back to gaussian filtering.

Second, ifh andρ have the same order of magnitude, the neighbor-
hood filter behaves as a filtering/enhancing algorithm. The weighting
coefficient of the tangent diffusion,uξξ , is given byg̃( ρ

h
|Du|). The

function g̃ is positive and decreasing. Thus, there is always diffusion
in that direction. The weight of the normal diffusion,uηη, is given
by f̃( ρ

h
|Du|). As the functionf̃ takes positive and negative values

(see Figure 2), the filter behaves as a filtering/enhancing algorithm

in the normal direction and depending on|Du|. If B̃ denotes the
zero of f̃ , then a filtering model is applied wherever|Du| < B̃ h

ρ

and an enhancing strategy wherever|Du| > B̃ h
ρ

. The intensity of
the filtering in the tangent diffusion and the enhancing in the normal
diffusion tend to zero when the gradient tends to infinity. Thus, points
with a very large gradient are not altered.

Finally, if ρ is much larger thanh, the valueρ
h

tends to infinity and
if the gradient of the image is bounded then the filtering magnitude
g̃( ρ

h
|Du|) tends to zero. Thus, the original image is hardly altered.

Fig. 2. Comparison of the neighborhood filter and the Perona Malik filter.
Magnitude of the tangent diffusion (continuous line) and normal diffusion
(dashed line – –) of Theorem 1 in the case thatρ = h. Magnitude of the
tangent diffusion (continuous line) and normal diffusion (dashed line - - -) of
the Perona-Malik model (7). Both models show nearly the samebehavior.

We observe that whenρ andh have the same order, the neighbor-
hood filter asymptotically behaves like a Perona-Malik model. Let us
be more specific about this comparison. Takingg(s) = g̃(s

1
2 ) in the

Perona-Malik equation (5), we obtain

ut = g̃(|Du|)uξξ + h̃(|Du|)uηη , (7)

whereh̃(s) = g̃(s) + sg̃′(s). Thus, the Perona-Malik model and the
neighborhood filter can be decomposed in the same way and with
exactly the same weight in the tangent direction. Then the function
h̃ has the same behavior as̃f (Theorem 1), as can be observed in
Figure 2. Thus in that case, a neighborhood filter has exactlythe
same qualitative behavior as a Perona-Malik model, even if we cannot
rewrite it exactly as such.

Figure 1 displays an experiment comparing both methods. The
filtered images are very similar, although the implementations are
obviously very different. The neighborhood filter is implemented
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exactly as in its definition and the Perona-Malik model by theexplicit
difference scheme proposed in the original paper. Both filters tend to
create large flat zones and boundaries inside smooth regionsas can be
observed in the figure. Let us mention that similar calculations were
performed in a particular case for the neighborhood median filter by
Masnou [11].

IV. A REGRESSION CORRECTION OF THE NEIGHBORHOOD FILTER

In the previous section we have shown the enhancing character of
the neighborhood filter. We have seen that the neighborhood filter,
as the Perona-Malik model, can create large flat zones and spurious
contours inside smooth regions. This effect depends upon a gradient
threshold which is hard to fix in such a way as to always separate the
visually smooth regions from edge regions. Thus, both models cannot
be applied to images without some user’s supervision. In particular,
none of them gives satisfactory results in denoising software. In order
to avoid this undesirable effect let us analyze it in more detail.

x

uHxL

uHxL+h

uHxL-h

YNFHxL

x- x+

Fig. 4. Illustration of the shock effect of the YNF on a concave signal.
The number of points y satisfyingu(x) − h < u(y) ≤ u(x) is larger
than the number satisfyingu(x) ≤ u(y) < u(x) + h. Thus, the average
valueY NF (x) is smaller thanu(x), enhancing that part of the signal. The
regression line ofu inside (x−, x+) better approximates the signal atx.

In Figure 4 we give a simple illustration of this effect with the
Yaroslavsky neighborhood filter. For eachx in the concave part of
the signal, the filtered value is the average of the pointsy such
that u(x) − h < u(y) < u(x) + h for a certain thresholdh.
As it is illustrated in the figure, the number of points satisfying
u(x)−h < u(y) ≤ u(x) is larger than the number of points satisfying
u(x) ≤ u(y) < u(x) + h. Thus, the average valueY NF (x) is
smaller thanu(x) and the concavity of the signal is enhanced. A
similar argument can be applied in the convex parts of the signal,
dealing to the opposite enhancing effect. Therefore, shocks appear
at inflexion points, where concave and convex parts meet. Figure 4
also shows that the mean is not a good estimate ofu(x) in that case.
In the same figure, we display the regression line approximating u
inside(u−1(u(x)−h), u−1(u(x)+h)). The value of the regression
line atx better approximates the signal. In the sequel, we propose to
correct the neighborhood filter with this better estimate.

Definition 1 (Linear regression neighborhood filter):We call
LYNFh,ρu(x) the value obtained atx = (x1, x2) by finding the
plane locally approximatingu in the following sense,

min
a,b,c

∫

Bρ(x)
w(x, y)(u(y)− ay1 − by2 − c)2dy (8)

where

w(x, y) = e
−

|u(y)−u(x)|2

h2 .
Then, the restored value atx is given byax1+bx2+c. The weights

used to define the minimization problem are the same as the ones
used by the neighborhood filter. Thus, the points with a grey level

value close tou(x) will have a stronger influence in the minimization
process. The only difference withYNF is the replacement of an
average by a linear regression. The minimization process ismade
explicit, since we can easily derive the normal equations. Thus, the
computation of the above linear regression reduces to the solution of
a 3x3 linear system.

Next, we compute the asymptotic behavior of the filter whenρ
andh have the same order and tend to zero. This has shown to be
the interesting case in Theorem 1, but also the one causing a shock
effect.

Theorem 2:Supposeu ∈ C2(Ω), and let ρ, h > 0 such that
ρ, h → 0 and O(ρ) = O(h). Let h̃ be the continuous function
defined byh̃(0) = 1

6
,

h̃(t) =
E(t)− 2te−t2

2t2E(t)

for t 6= 0, where E(t) = 2
∫ t

0
e−s2 ds. Then h̃(t) is positive

decreasing and

LYNFh,ρu(x)− u(x) ≃
[

1

6
uξξ(x) + h̃(

ρ

h
|Du(x)|)uηη(x)

]

ρ2.

Proof: We can suppose without loss of generality thatx =
(0, 0). In that case,LYNFh,ρu(0, 0) = c, wherec is given by the
solution of (8). By straightforward computations, it is easy to prove
that c = c1/c2, where
c1 = c020(c200c001 − c100c101) + c110(c100c011 − c110c001) +

c010(c110c101 − c200c011)
c2 = c020(c200c000 − c2100) + c110(c010c100 − c110c000) +

c010(c100c110 − c010c200)
andcijm =

∫

Bρ(0,0)
w(t1, t2)t

i
1t

j
2u(t1, t2)

m dt1dt2.
By the same arguments of Theorem 1 we take the following Taylor

expansion ofu(t)

u(t) = u(0, 0) + pt1 + qt21 + rt22 + st1t2 +O(|t|3)

and

w(t) = e
−p2t21

h2 (1−
2pt1(qt

2
1 + rt22 + st1t2)

h2
+O(

|t|4

h2
)),

where the differential operatorsp, q, r, s are defined in the proof of
Theorem 1 and are evaluated at(0, 0). Taking these approximations
of u andw into c, we obtain

c−u(0, 0) ≃
8e−2d2p2(dp)2 − 8e−d2p2E(dp)dp+ 2E(dp)2

(dp)2(2E(dp)2 − 4e−d2p2E(dp)(dp))
q+

1

3
r,

whered = ρ/h. The result of the theorem follows.

Fig. 5. Weight functions of Theorem 2. Constant function1/6 (continuous
line) and functionh̃ (dashed line).

According to the previous theorem, the filter can be written as the
sum of two diffusion terms in the direction ofξ andη. The behavior
of the weight functions is quite different from the neighborhood
filter case. The function weighting the tangent diffusion isa positive
constant. The function weighting the normal diffusion is positive
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Fig. 3. Comparison of the neighborhood filter and the linear regression correction. Top left: original image. Top middle: filtered image by the neighborhood
filter. Top right: filtered image by the regression neighborhood filter. Bottom: level lines of a part of the images on the above line. Both neighborhood filters
have been performed with the same filtering parameters and the same number of iterations. The linear regression neighborhood algorithm has filtered the
image while preserving the main boundaries as the original neighborhood filter. No enhancing has been applied by the linear correction avoiding the shock
effect. The level lines of the neighborhood filter tend to group and create large flat zones. In addition, these level linesoscillate while those of the linear
regression algorithm have been correctly filtered.

and decreasing, and therefore there is no enhancement effect. The
algorithm combines the tangent and normal diffusions when the
gradient is small. When the gradient is large, the normal diffusion
is cancelled and the image is filtered only in its tangent direction.
This diffusion makes the level lines evolve proportionallyto their
curvature. In the Perona-Malik model the diffusion is stopped near
the edges. In this case, the edges are filtered by a mean curvature
motion.

Figure 3 displays an experiment comparing the neighborhood
filter and the linear regression correction. The linear regression
neighborhood algorithm has filtered the image and preservedthe
main boundaries, as the original neighborhoods filters do. The figure
shows that no artificial enhancement has been applied by the linear
correction, thus avoiding the shock effect. Figure 3 also displays
the level lines of the filtered images which corroborate the above
observations. The level lines of the neighborhood filter tend to group
and create large flat zones. In addition, these level lines oscillate
while those of the linear regression correction have been correctly
filtered.

V. THE NL-MEANS AND THE REGRESSION CORRECTION

The above regression correction applied to the neighborhood filter
can be applied to all filters involving a local average. Such filters are
characterized by a family of weightsw(x, y) for y ∈ Bρ(x) which can
be modified by the previous argument. The weightw(x, y) reflects
the influence that pixely has in the minimization process. Let us
apply this strategy to the filter recently introduced in [5],[6]. In that
case, the similarity between the pixelsx and y is measured by the
grey level differences in a whole Gaussian neighborhood ofx andy.
The NL-means (Non Local Means) algorithm is defined by

NLh[u](x) =
1

C(x)

∫

Ω

w(x, y) u(y) dy, (9)

where

w(x, y) = e
− 1

h2

∫
R2

Ga(t)|u(x+t)−u(y+t)|2dt
,

C(x) =
∫

Ω
w(x, y)dy, Ga is a Gaussian kernel of standard deviation

a and h acts as a filtering parameter. A recent paper by Kindermann
et al. [9] gives a variational interpretation of the neighborhood and
NL-means filters.

For pixelsx andy, the NL-means algorithm does not only compare
the grey level valuesu(x) and u(y), but also the grey level values
in a Gaussian neighborhood. This permits a more robust comparison
based on the detailed configurations of the neighborhoods ofx and
y. For example, a pixely such thatu(x) = u(y) can have a
very small or nearly zero weight in the restoration ofx, since the
configurations aroundx and y can be very different. For a more
exhaustive description of the NL-means and the comparison with the
neighborhood filters and other algorithms see [4].

In order to apply the regression correction to the NL-means
algorithm it is sound to restrict the search zone for a pixelx =
(x1, x2) to a neighborhoodBρ(x). The filtered value is given by
ax1 + bx2 + c, wherea, b, c minimize

min
a,b,c

∫

Bρ(x)
w(x, y)(u(y)− ay1 − by2 − c)2dy

and

w(x, y) = e
− 1

h2

∫
R2

Ga(t)|u(x+t)−u(y+t)|2dt
.

Figure 6 displays a denoising experiment with the NL-means
algorithm. The filtered image presents a shock effect similar to the
one of the neighborhood filter. The regression correction avoids these
shocks and restores a more natural image. Finally, Figures 7compares
the visual quality of the filtered images by the linear corrections of
the neighborhood filter and the NL-means.
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Fig. 6. Comparison of the NL-means and its regression correction on a noisy image. Left: Noisy image. Middle: NL-means filtered image. Right: Regression
correction image. The face filtered by NL-means presents a shock effect similar to the neighborhood filter. These shocks are not created by the corrected filter
leading to a more natural image.

Fig. 7. Comparison of the linear regression neighborhood filter and the linear regression NL-means. Left: Noisy image. Middle: Linear regression neighborhood
filtered image. Right: Linear regression NL-means filtered image.
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