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A REVIEW OF IMAGE DENOISING ALGORITHMS, WITH A NEW
ONE.

A. BUADES † ‡ , B. COLL † , AND J.M. MOREL ‡

Abstract. The search for efficient image denoising methods still is a valid challenge, at the
crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed
methods, most algorithms have not yet attained a desirable level of applicability. All show an out-
standing performance when the image model corresponds to the algorithm assumptions, but fail in
general and create artifacts or remove image fine structures. The main focus of this paper is, first, to
define a general mathematical and experimental methodology to compare and classify classical image
denoising algorithms, second, to propose an algorithm (Non Local Means) addressing the preservation
of structure in a digital image. The mathematical analysis is based on the analysis of the “method
noise”, defined as the difference between a digital image and its denoised version. The NL-means
algorithm is proven to be asymptotically optimal under a generic statistical image model. The de-
noising performance of all considered methods are compared in four ways; mathematical: asymptotic
order of magnitude of the method noise under regularity assumptions; perceptual-mathematical: the
algorithms artifacts and their explanation as a violation of the image model; quantitative experi-
mental: by tables of L2 distances of the denoised version to the original image. The most powerful
evaluation method seems, however, to be the visualization of the method noise on natural images.
The more this method noise looks like a real white noise, the better the method.

Key words. Image restoration, non parametric estimation, PDE smoothing filters, adaptive
filters, frequency domain filters
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1. Introduction.

1.1. Digital images and noise. The need for efficient image restoration meth-
ods has grown with the massive production of digital images and movies of all kinds,
often taken in poor conditions. No matter how good cameras are, an image improve-
ment is always desirable to extend their range of action.

A digital image is generally encoded as a matrix of grey level or color values. In
the case of a movie, this matrix has three dimensions, the third one corresponding
to time. Each pair (i, u(i)) where u(i) is the value at i is called pixel, for “picture
element”. In the case of grey level images, i is a point on a 2D grid and u(i) is a
real value. In the case of classical color images, u(i) is a triplet of values for the red,
green and blue components. All of what we shall say applies identically to movies,
3D images and color or multispectral images. For a sake of simplicity in notation
and display of experiments, we shall here be contented with rectangular 2D grey-level
images.

The two main limitations in image accuracy are categorized as blur and noise.
Blur is intrinsic to image acquisition systems, as digital images have a finite number of
samples and must satisfy the Shannon-Nyquist sampling conditions [32]. The second
main image perturbation is noise.
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Each one of the pixel values u(i) is the result of a light intensity measurement,
usually made by a CCD matrix coupled with a light focusing system. Each captor
of the CCD is roughly a square in which the number of incoming photons is being
counted for a fixed period corresponding to the obturation time. When the light
source is constant, the number of photons received by each pixel fluctuates around
its average in accordance with the central limit theorem. In other terms one can
expect fluctuations of order

√
n for n incoming photons. In addition, each captor, if

not adequately cooled, receives heat spurious photons. The resulting perturbation is
usually called “obscurity noise”. In a first rough approximation one can write

v(i) = u(i) + n(i),

where i ∈ I, v(i) is the observed value, u(i) would be the “true” value at pixel i,
namely the one which would be observed by averaging the photon counting on a long
period of time, and n(i) is the noise perturbation. As indicated, the amount of noise
is signal-dependent, that is n(i) is larger when u(i) is larger. In noise models, the
normalized values of n(i) and n(j) at different pixels are assumed to be independent
random variables and one talks about “white noise”.

1.2. Signal and noise ratios. A good quality photograph (for visual inspec-
tion) has about 256 grey level values, where 0 represents black and 255 represents
white. Measuring the amount of noise by its standard deviation, σ(n), one can define
the signal noise ratio (SNR) as

SNR =
σ(u)

σ(n)
,

where σ(u) denotes the empirical standard deviation of u,

σ(u) =

(

1

|I|
∑

i∈I

(u(i) − u)2

)
1
2

and u = 1
|I|

∑

i∈I u(i) is the average grey level value. The standard deviation of the

noise can also be obtained as an empirical measurement or formally computed when
the noise model and parameters are known. A good quality image has a standard
deviation of about 60.

The best way to test the effect of noise on a standard digital image is to add
a gaussian white noise, in which case n(i) are i.i.d. gaussian real variables. When
σ(n) = 3, no visible alteration is usually observed. Thus, a 60

3 ≃ 20 signal to noise
ratio is nearly invisible. Surprisingly enough, one can add white noise up to a 2

1
ratio and still see everything in a picture ! This fact is illustrated in Figure 1.1
and constitutes a major enigma of human vision. It justifies the many attempts to
define convincing denoising algorithms. As we shall see, the results have been rather
deceptive. Denoising algorithms see no difference between small details and noise, and
therefore remove them. In many cases, they create new distortions and the researchers
are so much used to them as to have created a taxonomy of denoising artifacts:
“ringing”, “blur”, “staircase effect”, “checkerboard effect”, “wavelet outliers”, etc.

This fact is not quite a surprise. Indeed, to the best of our knowledge, all denoising
algorithms are based on

• a noise model
• a generic image smoothness model, local or global.
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Fig. 1.1. A digital image with standard deviation 55, the same with noise added (standard
deviation 3), the signal noise ratio being therefore equal to 18, and the same with signal noise ratio
slightly larger than 2. In this second image, no alteration is visible. In the third, a conspicuous
noise with standard deviation 25 has been added but, surprisingly enough, all details of the original
image still are visible.

In experimental settings, the noise model is perfectly precise. So the weak point of the
algorithms is the inadequacy of the image model. All of the methods assume that the
noise is oscillatory, and that the image is smooth, or piecewise smooth. So they try
to separate the smooth or patchy part (the image) from the oscillatory one. Actually,
many fine structures in images are as oscillatory as noise is; conversely, white noise
has low frequencies and therefore smooth components. Thus a separation method
based on smoothness arguments only is hazardous.

1.3. The “method noise”. All denoising methods depend on a filtering pa-
rameter h. This parameter measures the degree of filtering applied to the image. For
most methods, the parameter h depends on an estimation of the noise variance σ2.
One can define the result of a denoising method Dh as a decomposition of any image
v as

v = Dhv + n(Dh, v),(1.1)

where
1. Dhv is more smooth than v
2. n(Dh, v) is the noise guessed by the method.

Now, it is not enough to smooth v to ensure that n(Dh, v) will look like a noise.
The more recent methods are actually not contented with a smoothing, but try to
recover lost information in n(Dh, v) [19], [25]. So the focus is on n(Dh, v).

Definition 1.1 (Method noise). Let u be a (not necessarily noisy) image and
Dh a denoising operator depending on h. Then we define the method noise of u as
the image difference

n(Dh, u) = u − Dh(u).(1.2)

This method noise should be as similar to a white noise as possible. In addition,
since we would like the original image u not to be altered by denoising methods, the
method noise should be as small as possible for the functions with the right regularity.

According to the preceding discussion, four criteria can and will be taken into
account in the comparison of denoising methods:

• a display of typical artifacts in denoised images.
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• a formal computation of the method noise on smooth images, evaluating how
small it is in accordance with image local smoothness.

• a comparative display of the method noise of each method on real images
with σ = 2.5. We mentioned that a noise standard deviation smaller than 3 is
subliminal and it is expected that most digitization methods allow themselves
this kind of noise.

• a classical comparison receipt based on noise simulation : it consists of taking
a good quality image, add gaussian white noise with known σ and then com-
pute the best image recovered from the noisy one by each method. A table
of L2 distances from the restored to the original can be established. The L2

distance does not provide a good quality assessment. However, it reflects well
the relative performances of algorithms.

On top of this, in two cases, a proof of asymptotic recovery of the image can be
obtained by statistical arguments.

1.4. Which methods to compare ?. We had to make a selection of the de-
noising methods we wished to compare. Here a difficulty arises, as most original
methods have caused an abundant literature proposing many improvements. So we
tried to get the best available version, but keeping the simple and genuine character
of the original method : no hybrid method. So we shall analyze :

1. the Gaussian smoothing model (Gabor [16]), where the smoothness of u is
measured by the Dirichlet integral

∫

|Du|2;
2. the anisotropic filtering model (Perona-Malik [28], Alvarez et al. [1]);
3. the Rudin-Osher-Fatemi [31] total variation model and two recently proposed

iterated total variation refinements [36, 25];
4. the Yaroslavsky ([42], [40]) neighborhood filters and an elegant variant, the

SUSAN filter (Smith and Brady) [34];
5. the Wiener local empirical filter as implemented by Yaroslavsky [40];
6. the translation invariant wavelet thresholding [8], a simple and performing

variant of the wavelet thresholding [10];
7. DUDE, the discrete universal denoiser [24] and the UINTA, Unsupervised

Information-Theoretic, Adaptive Filtering [3], two very recent new approaches;
8. the non local means (NL-means) algorithm, which we introduce here.

This last algorithm is given by a simple closed formula. Let u be defined in a bounded
domain Ω ⊂ R

2, then

NL(u)(x) =
1

C(x)

∫

e−
(Ga∗|u(x+.)−u(y+.)|2)(0)

h2 u(y) dy,

where x ∈ Ω, Ga is a Gaussian kernel of standard deviation a, h acts as a filtering

parameter and C(x) =
∫

e−
(Ga∗|u(x+.)−u(z+.)|2)(0)

h2 dz is the normalizing factor. In order
to make clear the previous definition, we recall that

(Ga ∗ |u(x + .) − u(y + .)|2)(0) =

∫

R2

Ga(t)|u(x + t) − u(y + t)|2dt.

This amounts to say that NL(u)(x), the denoised value at x, is a mean of the values
of all pixels whose gaussian neighborhood looks like the neighborhood of x.

1.5. What is left. We do not draw into comparison the hybrid methods, in
particular the total variation + wavelets ([7], [11], [17]). Such methods are significant
improvements of the simple methods but are impossible to draw into a benchmark :
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their efficiency depends a lot upon the choice of wavelet dictionaries and the kind of
image.

Second, we do not draw into the comparison the method introduced recently by
Y. Meyer [22], whose aim it is to decompose the image into a BV part and a texture
part (the so called u+v methods), and even into three terms, namely u+v+w where
u is the BV part, v is the “texture” part belonging to the dual space of BV , denoted
by G, and w belongs to the Besov space Ḃ∞

−1,∞, a space characterized by the fact that
the wavelet coefficients have a uniform bound. G is proposed by Y. Meyer as the right
space to model oscillatory patterns such as textures. The main focus of this method
is not denoising, yet. Because of the different and more ambitious scopes of the
Meyer method, [2, 37, 26], which makes it parameter and implementation-dependent,
we could not draw it into the discussion. Last but not least, let us mention the
bandlets [27] and curvelets [35] transforms for image analysis. These methods also
are separation methods between the geometric part and the oscillatory part of the
image and intend to find an accurate and compressed version of the geometric part.
Incidentally, they may be considered as denoising methods in geometric images, as the
oscillatory part then contains part of the noise. Those methods are closely related to
the total variation method and to the wavelet thresholding and we shall be contented
with those simpler representatives.

1.6. Plan of the paper. Section 2 computes formally the method noise for the
best elementary local smoothing methods, namely gaussian smoothing, anisotropic
smoothing (mean curvature motion), total variation minimization and the neighbor-
hood filters. For all of them we prove or recall the asymptotic expansion of the filter
at smooth points of the image and therefore obtain a formal expression of the method
noise. This expression permits to characterize places where the filter performs well
and where it fails. In section 3, we treat the Wiener-like methods, which proceed by
a soft or hard threshold on frequency or space-frequency coefficients. We examine
in turn the Wiener-Fourier filter, the Yaroslavsky local adaptive DCT based filters
and the wavelet threshold method. Of course the gaussian smoothing belongs to both
classes of filters. We also describe the universal denoiser DUDE, but we cannot draw
it into the comparison as its direct application to grey level images is unpractical
so far (we discuss its feasibility). Finally, we examine the UINTA algorithms whose
principles stand close to the NL-means algorithm. In section 5, we introduce the Non
Local means (NL-means) filter. This method is not easily classified in the preced-
ing terminology, since it can work adaptively in a local or non local way. We first
give a proof that this algorithm is asymptotically consistent (it gives back the con-
ditional expectation of each pixel value given an observed neighborhood) under the
assumption that the image is a fairly general stationary random process. The works
of Efros and Leung [13] and Levina [15] have shown that this assumption is sound
for images having enough samples in each texture patch. In section 6, we compare
all algorithms from several points of view, do a performance classification and ex-
plain why the NL-means algorithm shares the consistency properties of most of the
aforementioned algorithms.

2. Local smoothing filters. The original image u is defined in a bounded
domain Ω ⊂ R

2, and denoted by u(x) for x = (x, y) ∈ R
2. This continuous image is

usually interpreted as the Shannon interpolation of a discrete grid of samples, [32] and
is therefore analytic. The distance between two consecutive samples will be denoted
by ε.

The noise itself is a discrete phenomenon on the sampling grid. According to
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the usual screen and printing visualization practice, we do not interpolate the noise
samples ni as a band limited function, but rather as a piecewise constant function,
constant on each pixel i and equal to ni.

We write |x| = (x2 + y2)
1
2 and x1.x2 = x1x2 + y1y2 their scalar product and

denote the derivatives of u by ux = ∂u
∂x , uy = ∂u

∂y , uxy = ∂2u
∂x∂y . The gradient of u

is written as Du = (ux, uy) and the Laplacian of u as ∆u = uxx + uyy.

2.1. Gaussian smoothing. By Riesz theorem, image isotropic linear filtering
boils down to a convolution of the image by a linear radial kernel. The smoothing
requirement is usually expressed by the positivity of the kernel. The paradigm of such

kernels is of course the gaussian x → Gh(x) = 1
(4πh2)e

− |x|2

4h2 . In that case, Gh has

standard deviation h and it is easily seen that
Theorem 2.1 (Gabor 1960). The image method noise of the convolution with a

gaussian kernel Gh is

u − Gh ∗ u = −h2∆u + o(h2).

A similar result is actually valid for any positive radial kernel with bounded variance,
so one can keep the gaussian example without loss of generality. The preceding
estimate is valid if h is small enough. On the other hand, the noise reduction properties
depend upon the fact that the neighborhood involved in the smoothing is large enough,
so that the noise gets reduced by averaging. So in the following we assume that h = kε,
where k stands for the number of samples of the function u and noise n in an interval of
length h. The spatial ratio k must be much larger than 1 to ensure a noise reduction.

The effect of a gaussian smoothing on the noise can be evaluated at a reference
pixel i = 0. At this pixel,

Gh ∗ n(0) =
∑

i∈I

∫

Pi

Gh(x)n(x)dx =
∑

i∈I

ε2Gh(i)ni,

where we recall that n(x) is being interpolated as a piecewise constant function, the
Pi square pixels centered in i have size ε2 and Gh(i) denotes the mean value of the
function Gh on the pixel i.

Denoting by V ar(X) the variance of a random variable X, the additivity of
variances of independent centered random variables yields

V ar(Gh ∗ n(0)) =
∑

i

ε4Gh(i)2σ2 ≃ σ2ε2

∫

Gh(x)2dx =
ε2σ2

8πh2
.

So we have proved
Theorem 2.2. Let n(x) be a piecewise constant white noise, with n(x) = ni on

each square pixel i. Assume that the ni are i.i.d. with zero mean and variance σ2.
Then the “noise residue” after a gaussian convolution of n by Gh satisfies

V ar(Gh ∗ n(0)) ≃ ε2σ2

8πh2
.

In other terms, the standard deviation of the noise, which can be interpreted as the
noise amplitude, is multiplied by ε

h
√

8π
.

Theorems 2.1 and 2.2 traduce the delicate equilibrium between noise reduction
and image destruction by any linear smoothing. Denoising does not alter the image
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at points where it is smooth at a scale h much larger than the sampling scale ε.
The first theorem tells us that the method noise of the gaussian denoising method is
zero in harmonic parts of the image. A Gaussian convolution is optimal on harmonic
functions, and performs instead poorly on singular parts of u, namely edges or texture,
where the Laplacian of the image is large. See Figure 2.2.

2.2. Anisotropic filters and curvature motion. The anisotropic filter (AF )
attempts to avoid the blurring effect of the gaussian by convolving the image u at x

only in the direction orthogonal to Du(x). The idea of such filter goes back to Perona
and Malik [28] and actually again to Gabor [16]. Set

AFhu(x) =

∫

Gh(t)u(x + t
Du(x)⊥

|Du(x)| )dt,

for x such that Du(x) 6= 0 and where (x, y)⊥ = (−y, x) and Gh(t) = 1√
2πh

e−
t2

2h2 is

the one-dimensional Gauss function with variance h2. At points where Du(x) = 0 an
isotropic gaussian mean is usually applied and the result of Theorem 2.1 holds at those
points. If one assumes that the original image u is twice continuously differentiable
(C2) at x, it is easily shown by a second order Taylor expansion that

Theorem 2.3. The image method noise of an anisotropic filter AFh is

u(x) − AFhu(x) ≃ −1

2
h2D2u(

Du⊥

|Du| ,
Du⊥

|Du| ) = −1

2
h2|Du|curv(u)(x),

where the relation holds when Du(x) 6= 0.
By curv(u)(x), we denote the curvature, i.e. the signed inverse of the radius of

curvature of the level line passing by x. When Du(x) 6= 0, this means

curv(u) =
uxxu2

y − 2uxyuxuy + uyyu2
x

(u2
x + u2

y)
3
2

.

This method noise is zero wherever u behaves locally like a one variable function,
u(x, y) = f(ax + by + c). In such a case, the level line of u is locally the straight
line with equation ax + by + c = 0 and the gradient of f may instead be very large.
In other terms, with anisotropic filtering, an edge can be maintained. On the other
hand, we have to evaluate the gaussian noise reduction. This is easily done by a
one-dimensional adaptation of Theorem 2.2. Notice that the noise on a grid is not
isotropic ; so the gaussian average when Du is parallel to one coordinate axis is made
roughly on

√
2 more samples than the gaussian average in the diagonal direction.

Theorem 2.4. By anisotropic gaussian smoothing, when ε is small enough with
respect to h, the noise residue satisfies

Var (AFh(n)) ≤ ε√
2πh

σ2.

In other terms, the standard deviation of the noise n is multiplied by a factor at most
equal to ( ε√

2πh
)1/2, this maximal value being attained in the diagonals.

Proof. Let L be the line x + tDu⊥(x)
|Du(x)| passing by x, parameterized by t ∈ R and

denote by Pi, i ∈ I the pixels which meet L, n(i) the noise value, constant on pixel
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Pi, and εi the length of the intersection of L ∩ Pi. Denote by g(i) the average of

Gh(x + tDu⊥(x)
|Du(x)| ) on L ∩ Pi. Then, one has

AFhn(x) ≃
∑

i

εin(i)g(i).

The n(i) are i.i.d. with standard variation σ and therefore

V ar(AFh(n)) =
∑

i

ε2
i σ

2g(i)2 ≤ σ2 max(εi)
∑

i

εig(i)2.

This yields

Var (AFh(n)) ≤
√

2εσ2

∫

Gh(t)2dt =
ε√
2πh

σ2.

There are many versions of AFh, all yielding an asymptotic estimate equivalent to
the one in Theorem 2.3 : the famous median filter [14], an inf-sup filter on segments
centered at x [5], and the clever numerical implementation of the mean curvature
equation in [21]. So all of those filters have in common the good preservation of edges,
but they perform poorly on flat regions and are worse there than a gaussian blur. This
fact derives from the comparison of the noise reduction estimates of Theorems 2.1 and
2.4, and is experimentally patent in Figure 2.2.

2.3. Total variation. The Total variation minimization was introduced by Rudin,
Osher and Fatemi [30, 31]. The original image u is supposed to have a simple ge-
ometric description, namely a set of connected sets, the objects, along with their
smooth contours, or edges. The image is smooth inside the objects but with jumps
across the boundaries. The functional space modelling these properties is BV (Ω), the
space of integrable functions with finite total variation TVΩ(u) =

∫

|Du|, where Du
is assumed to be a Radon measure. Given a noisy image v(x), the above mentioned
authors proposed to recover the original image u(x) as the solution of the constrained
minimization problem

argmin
u

TVΩ(u),(2.1)

subject to the noise constraints

∫

Ω

(u(x) − v(x))dx = 0 and

∫

Ω

|u(x) − v(x)|2dx = σ2.

The solution u must be as regular as possible in the sense of the total variation,
while the difference v(x)− u(x) is treated as an error, with a prescribed energy. The
constraints prescribe the right mean and variance to u − v, but do not ensure that
it be similar to a noise (see a thorough discussion in [22]). The preceding problem is
naturally linked to the unconstrained problem

argmin
u

TVΩ(u) + λ

∫

Ω

|v(x) − u(x)|2dx,(2.2)
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for a given Lagrange multiplier λ. The above functional is strictly convex and lower
semicontinuous with respect to the weak-star topology of BV. Therefore the minimum
exists, is unique and computable (see (e.g.) [6].) The parameter λ controls the trade
off between the regularity and fidelity terms. As λ gets smaller the weight of the
regularity term increases. Therefore λ is related to the degree of filtering of the
solution of the minimization problem. Let us denote by TVFλ(v) the solution of
problem (2.2) for a given value of λ. The Euler Lagrange equation associated with
the minimization problem is given by

(u(x) − v(x)) − 1

2λ
curv(u)(x) = 0,

(see [30]). Thus,
Theorem 2.5. The image method noise of the total variation minimization (2.2)

is

u(x) − TVFλ(u)(x) = − 1

2λ
curv(TVFλ(u))(x).

As in the anisotropic case, straight edges are maintained because of their small
curvature. However, details and texture can be over smoothed if λ is too small, as is
shown in Figure 2.2.

2.4. Iterated Total Variation refinement. In the original TV model the
removed noise, v(x)−u(x), is treated as an error and is no longer studied. In practice,
some structures and texture are present in this error. Several recent works have tried
to avoid this effect [36, 25].

2.4.1. The Tadmor et al. approach. In [36], the authors have proposed to
use the Rudin-Osher-Fatemi iteratively. They decompose the noisy image, v = u0+n0

by the total variation model. So taking u0 to contain only geometric information, they
decompose by the very same model n0 = u1 + n1, where u1 is assumed to be again
a geometric part and n1 contains less geometric information than n0. Iterating this
process, one obtains u = u0+u1+u2+...+uk as a refined geometric part and nk as the
noise residue. This strategy is in some sense close to the matching pursuit methods
[20]. Of course, the weight parameter in the Rudin-Osher-Fatemi has to grow at each
iteration and the authors propose a geometric series λ, 2λ, ...., 2kλ. In that way, the
extraction of the geometric part nk becomes twice more asking at each step. Then,
the new algorithm is as follows:

1. Starting with an initial scale λ = λ0,

v = u0 + n0, [u0, n0] = arg min
v=u+n

∫

|Du| + λ0

∫

|v(x) − u(x)|2dx.

2. Proceed with successive applications of the dyadic refinement nj = uj+1 +
nj+1,

[uj+1, nj+1] = arg min
nj=u+n

∫

|Du| + λ02
j+1

∫

|nj(x) − u(x)|2dx.

3. After k steps, we get the following hierarchical decomposition of v

v = u0 + n0

= u0 + u1 + n1

= .....

= u0 + u1 + ... + uk + nk.
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The denoised image is given by the partial sum
∑k

j=0 uj and nk is the noise residue.
This is a multilayered decomposition of v which lies in an intermediate scale of spaces,
in between BV and L2. Some theoretical results on the convergence of this expansion
are presented in [36].

2.4.2. The Osher et al. approach. The second algorithm due to Osher et
al. [25], also consists of an iteration of the original model. The new algorithm is as
follows.

1. First solve the original TV model

u1 = arg min
u∈BV

{
∫

|∇u(x)|dx + λ

∫

(v(x) − u(x))2dx

}

,

to obtain the decomposition v = u1 + n1.
2. Perform a correction step to obtain

u2 = arg min
u∈BV

{
∫

|∇u(x)|dx + λ

∫

(v(x) + n1(x) − u(x))2dx

}

,

where n1 is the noise estimated by the first step. The correction step adds
this first estimate of the noise to the original image and raises the following
decomposition v + n1 = u2 + n2.

3. Iterate : compute uk+1 as a minimizer of the modified total variation mini-
mization,

uk+1 = arg min
u∈BV

{
∫

|∇u(x)|dx + λ

∫

(v(x) + nk(x) − u(x))2dx

}

,

where

v + nk = uk+1 + nk+1.

Some results are presented in [25] which clarify the nature of the above sequence:
• {uk}k converges monotonically in L2 to v, the noisy image, as k → ∞.
• {uk}k approaches the noisy free image monotonically in the Bregman distance

associated with the BV seminorm, at least until ‖uk̄ − u‖ ≤ σ2, where u is
the original image and σ is the standard deviation of the added noise.

These two results indicate how to stop the sequence and choose uk̄. It is enough
to proceed iteratively until the result gets noisier or the distance ‖uk̄−u‖2 gets smaller
than σ2. The new solution has more details preserved, as Figure 2.2 shows.

The above iterated denoising strategy being quite general, one can make the
computations for a linear denoising operator T as well. In that case, this strategy

T (v + n1) = T (v) + T (n1)

amounts to say that the first estimated noise n1 is filtered again and its smooth
components added back to the original, which is in fact the Tadmor et al. strategy.

2.5. Neighborhood filters. The previous filters are based on a notion of spa-
tial neighborhood or proximity. Neighborhood filters instead take into account grey
level values to define neighboring pixels. In the simplest and more extreme case, the
denoised value at pixel i is an average of values at pixels which have a grey level value
close to u(i). The grey level neighborhood is therefore

B(i, h) = {j ∈ I | u(i) − h < u(j) < u(i) + h}.
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This is a fully non-local algorithm, since pixels belonging to the whole image are used
for the estimation at pixel i. This algorithm can be written in a more continuous form

NFhu(x) =
1

C(x)

∫

Ω

u(y)e−
|u(y)−u(x)|2

h2 dy,

where Ω ⊂ R
2 is an open and bounded set, and C(x) =

∫

Ω
e−

|u(y)−u(x)|2

h2 dy is the
normalization factor. The first question to address here is the consistency of such a
filter, namely how close the denoised version is to the original when u is smooth.

Lemma 2.6. Suppose u is Lipschitz in Ω and h > 0, then C(x) ≥ O(h2).
Proof. Given x,y ∈ Ω, by the Mean Value Theorem, |u(x)−u(y)| ≤ K|x−y| for

some real constant K. Then, C(x) =
∫

Ω
e−

|u(y)−u(x)|2

h2 dy ≥
∫

B(x,h)
e−

|u(y)−u(x)|2

h2 dy ≥
e−K2

O(h2).
Proposition 2.7. (Method noise estimate). Suppose u is a Lipschitz bounded

function on Ω, where Ω is an open and bounded domain of R
2. Then |u(x)−NFhu(x)| =

O(h
√− log h), for h small, 0 < h < 1, x ∈ Ω.
Proof. Let x be a point of Ω and for a given B and h, B, h ∈ R, consider the set

Dh = {y ∈ Ω | |u(y) − u(x)| ≤ Bh}. Then

|u(x) − NFhu(x)| ≤ 1

C

∫

Dh

e−
|u(y)−u(x)|2

h2 |u(y) − u(x)|dy

+
1

C

∫

Dc
h

e−
|u(y)−u(x)|2

h2 |u(y) − u(x)|dy.

By one hand, considering that
∫

Dh
e−

|u(y)−u(x)|2

h2 dy ≤ C(x) and |u(y) − u(x)| ≤
Bh for y ∈ Dh one one sees that the first term is bounded by Bh. On the other

hand, considering that e−
|u(y)−u(x)|2

h2 ≤ e−B2

for y /∈ Dh,
∫

Dc
h

|u(y) − u(x)|dy is

bounded and by Lemma 2.6, C ≥ O(h2), one deduces that the second term has an

order O(h−2e−B2

). Finally, choosing B such that B2 = −3 log h yields

|u(x) − NFhu(x)| ≤ Bh + O(h−2e−B2

) = O(h
√

− log h) + O(h)

and so the method noise has order O(h
√− log h).

The Yaroslavsky ([40, 42]) neighborhood filters consider mixed neighborhoods
B(i, h)∩Bρ(i), where Bρ(i) is a ball of center i and radius ρ. So the method takes an
average of the values of pixels which are both close in grey level and spatial distance.
This filter can be easily written in a continuous form as,

YNFh,ρ(x) =
1

C(x)

∫

Bρ(x)

u(y)e−
|u(y)−u(x)|2

h2 dy,

where C(x) =
∫

Bρ(x)
e−

|u(y)−u(x)|2

h2 dy is the normalization factor. In [34] the authors

present a similar approach where they do not consider a ball of radius ρ but they
weigh the distance to the central pixel, obtaining the following close formula,

1

C(x)

∫

u(y)e
− |y−x|2

ρ2 e−
|u(y)−u(x)|2

h2 dy,
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where C(x) =
∫

e
− |y−x|2

ρ2 e−
|u(y)−u(x)|2

h2 dy is the normalization factor.
First, we study the method noise of the YNFh,ρ in the 1D case. In that case, u

denotes a one dimensional signal.
Theorem 2.8. Suppose u ∈ C2((a, b)), a, b ∈ R. Then, for 0 < ρ << h and

h → 0

u(s) − YNFh,ρu(s) ≃ −ρ2

2
f(

ρ

h
|u′(s)|) u′′(s),

where

f(t) =
1
3 − 3

5 t2

1 − 1
3 t2

.

Proof. Let s ∈ (a, b) and h, ρ ∈ R
+. Then

u(s) − YNFh,ρ(s) = − 1
∫ ρ

−ρ
e−

(u(s+t)−u(s))2

h2 dt

∫ ρ

−ρ

(u(s + t) − u(s))e−
(u(s+t)−u(s))2

h2 dt.

If we take the Taylor expansion of u(s + t) and the exponential function e−x2

and we
integrate, then we obtain that

u(s) − YNFh,ρ(s) ≃ −
ρ3u′′

3 − 3ρ5u′2u′′

5h2

2h − 2ρ3u′2

3h2

,

for ρ small enough. The method noise follows from the above expression.
The previous result shows that the neighborhood filtering method noise is pro-

portional to the second derivative of the signal. That is, it behaves like a weighted
heat equation. The function f gives the sign and the magnitude of this heat equation.
Where the function f takes positive values, the method noise behaves as a pure heat
equation, while where it takes negative values, the method noise behaves as a reverse
heat equation. The zeros and the discontinuity points of f represent the singular
points where the behavior of the method changes. The magnitude of this change is
much larger near the discontinuities of f producing an amplified shock effect. Figure
2.1 displays one experiment with the one dimensional neighborhood filter. We iterate
the algorithm on a sine signal and illustrate the shock effect. For the two intermediate
iterations un+1, we display the signal f( ρ

h |u′
n|) which gives the sign and magnitude of

the heat equation at each point. We can see that the positions of the discontinuities of
f( ρ

h |u′
n|) describe exactly the positions of the shocks in the further iterations and the

final state. These two examples corroborate Theorem 2.8 and show how the function
f totally characterizes the performance of the one dimensional neighborhood filter.

Next we give the analogous result for 2D images.
Theorem 2.9. Suppose u ∈ C2(Ω), Ω ⊂ R

2. Then, for 0 < ρ << h and h → 0

u(x) − YNFh,ρ(x) ≃ −ρ2

8
(g(

ρ

h
|Du|) uηη + h(

ρ

h
|Du|) uξξ),

where

uηη = D2u(
Du

|Du| ,
Du

|Du| ), uξξ = D2u(
Du⊥

|Du| ,
Du⊥

|Du| )
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.1. One dimensional neighborhood filtering experience. We iterate the filter on the sine
signal until it converges to a steady state. We show the input signal (a) and the final state (b). The
figures (e) and (f) display two intermediate states. Figures (c) and (d) display the signal f( ρ

h
|u′

n|)
which gives the magnitude and signal of the heat equation leading to figures (e) and (f). These two
signals describe exactly the positions of the shocks in the further iterations and the final state.

and

g(t) =
1 − 3

2 t2

1 − 1
4 t2

, h(t) =
1 − 1

2 t2

1 − 1
4 t2

.

Proof. Let x ∈ Ω and h, ρ ∈ R
+. Then

u(x)−YNFh,ρ(x) = − 1
∫

Bρ(0)
e−

(u(x+t)−u(x))2

h2 dt

∫

Bρ(0)

(u(x+t)−u(x))e−
(u(x+t)−u(t))2

h2 dt.

We take the Taylor expansion of u(x + t), and the exponential function e−y2

. Then,
we take polar coordinates and integrate, obtaining

u(x) − YNFh,ρ(x) ≃ 1

πρ2 − ρ4π
4h2 (u2

x + u2
y)

(

πρ4

8
∆u − πρ6

16h2

(

u2
xuxx + u2

yuxx+

+u2
xuyy + u2

xuxx

)

− πρ6

8h2
(u2

xuxx + 2uxuyuxy + u2
yuyy)

)
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for ρ small enough. By grouping the terms of above expression, we get the desired
result.

The neighborhood filtering method noise can be written as the sum of a diffusion
term in the tangent direction uξξ, plus a diffusion term in the normal direction, uηη.
The sign and the magnitude of both diffusions depend on the sign and the magnitude
of the functions g and h. Both functions can take positive and negative values. There-
fore, both diffusions can appear as a directional heat equation or directional reverse
heat equation depending on the value of the gradient. As in the one dimensional case,
the algorithm performs like a filtering / enhancing algorithm depending on the value
of the gradient. If B1 =

√
2/
√

3 and B2 =
√

2 respectively denote the zeros of the
functions g and h, we can distinguish the following cases:

• When 0 < |Du| < B2
h
ρ the algorithm behaves like the Perona-Malik filter

[28]. In a first step, a heat equation is applied but when |Du| > B1
h
ρ the

normal diffusion turns into a reverse diffusion enhancing the edges, while the
tangent diffusion stays positive.

• When |Du| > B2
h
ρ the algorithm differs from the Perona-Malik filter. A heat

equation or a reverse heat equation is applied depending on the value of the
gradient. The change of behavior between these two dynamics is marked by
an asymptotical discontinuity leading to an amplified shock effect.

Fig. 2.2. Denoising experience on a natural image. From left to right and from top to bot-
tom: noisy image (standard deviation 20), gaussian convolution, anisotropic filter, total variation
minimization, Tadmor et al. iterated total variation, Osher et al. iterated total variation and the
Yaroslavsky neighborhood filter.

3. Frequency domain filters. Let u be the original image defined on the grid
I. The image is supposed to be modified by the addition of a signal independent white
noise N . N is a random process where N(i) are i.i.d, zero mean and have constant
variance σ2. The resulting noisy process depends on the random noise component,
and therefore is modelled as a random field V ,

V (i) = u(i) + N(i).(3.1)

Given a noise observation n(i), v(i) denotes the observed noisy image,

v(i) = u(i) + n(i).(3.2)
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Let B = {gα}α∈A be an orthogonal basis of R
|I|. The noisy process is transformed

as

VB(α) = uB(α) + NB(α),(3.3)

where

VB(α) = 〈V, gα〉, uB(α) = 〈u, gα〉, NB(α) = 〈N, gα〉

are the scalar products of V, u and N with gα ∈ B. The noise coefficients NB(α)
remain uncorrelated and zero mean, but the variances are multiplied by ‖gα‖2,

E[NB(α)NB(β)] =
∑

m,n∈I

gα(m)gβ(n)E[N(m)N(n)]

= 〈gα, gβ〉σ2 = σ2‖gα‖2δ[α − β].

Frequency domain filters are applied independently to every transform coefficient
VB(α) and then the solution is estimated by the inverse transform of the new coef-
ficients. Noisy coefficients VB(α) are modified to a(α)VB(α). This is a non linear
algorithm because a(α) depends on the value VB(α). The inverse transform yields the
estimate

Û = DV =
∑

α∈A

a(α) VB(α) gα.(3.4)

D is also called a diagonal operator. Let us look for the frequency domain filter D
which minimizes a certain estimation error. This error is based on the square euclidean
distance, and it is averaged over the noise distribution.

Definition 3.1. Let u be the original image, N a white noise and V = u + N .
Let D be a frequency domain filter. Define the risk of D as

r(D,u) = E{||u − DV ||2},(3.5)

where the expectation is taken over the noise distribution.
The following theorem, which is easily proved, gives the diagonal operator Dinf

that minimizes the risk,

Dinf = argmin
D

r(D, u).

Theorem 3.2. The operator Dinf which minimizes the risk is given by the family
{a(α)}α, where

a(α) =
|uB(α)|2

|uB(α)|2 + ‖gα‖2σ2
,(3.6)

and the corresponding risk is

rinf (u) =
∑

s∈S

‖gα‖4 |uB(α)|2σ2

|uB(α)|2 + ‖gα‖2σ2
.(3.7)
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The previous optimal operator attenuates all noisy coefficients in order to mini-
mize the risk. If one restricts a(α) to be 0 or 1, one gets a projection operator. In
that case, a subset of coefficients is kept and the rest gets cancelled. The projection
operator that minimizes the risk r(D, u) is obtained by the following family {a(α)}α,
where

a(α) =

{

1 |uB(α)|2 ≥ ||gα||2σ2

0 otherwise

and the corresponding risk is

rp(u) =
∑

||gα||2 min(|uB(α)|2, ||gα||2σ2).

Note that both filters are ideal operators because they depend on the coefficients
uB(α) of the original image, which are not known. We call, as classical, Fourier
Wiener Filter the optimal operator (3.6) where B is a Fourier Basis. This is an ideal
filter, since it uses the (unknown) Fourier transform of the original image. By the
use of the Fourier basis (see Figure 3.1), global image characteristics may prevail over
local ones and create spurious periodic patterns. To avoid this effect, the basis must
take into account more local features, as the wavelet and local DCT transforms do.
The search for the ideal basis associated with each image still is open. At the moment,
the way seems to be a dictionary of basis instead of one single basis, [19].

Fig. 3.1. Fourier Wiener filter experiment. Top Left: Degraded image by an additive white
noise of σ = 15. Top Right: Fourier Wiener filter solution. Down: Zoom on three different zones
of the solution. The image is filtered as a whole and therefore a uniform texture is spread all over
the image.

3.1. Local adaptive filters in transform Domain. The local adaptive filters
have been introduced by L. Yaroslavsky [42, 41]. In this case, the noisy image is
analyzed in a moving window and in each position of the window its spectrum is
computed and modified. Finally, an inverse transform is used to estimate only the
signal value in the central pixel of the window.
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Let i ∈ I be a pixel and W = W (i) a window centered in i. Then the DCT
transform of W is computed and modified. The original image coefficients of W,
uB,W (α) are estimated and the optimal attenuation of Theorem 3.2 is applied. Finally,
only the center pixel of the restored window is used. This method is called the
Empirical Wiener Filter. In order to approximate uB,W (α) one can take averages on
the additive noise model, that is,

E|VB,W (α)|2 = |uB,W (α)|2 + σ2||gα||2.

Denoting by µ = σ||gα||, the unknown original coefficients can be written as

|uB,W (α)|2 = E|VB,W (α)|2 − µ2.

The observed coefficients |vB,W (α)|2 are used to approximate E|VB,W (α)|2, and the
estimated original coefficients are replaced in the optimal attenuation, leading to the
family {a(α)}α, where

a(α) = max

{

0,
|vB,W (α)|2 − µ2

|vB,W (α)|2
}

.

Denote by EWFµ(i) the filter given by the previous family of coefficients. The method
noise of the EWFµ(i) is easily computed, as proved in the following theorem.

Theorem 3.3. Let u be an image defined in a grid I and let i ∈ I be a pixel.
Let W = W (i) be a window centered in the pixel i. Then the method noise of the
EWFµ(i) is given by

u(i) − EWFµ(i) =
∑

α∈Λ

vB,W(α) gα(i) +
∑

α/∈Λ

µ2

|vB,W(α)|2 vB,W(α) gα(i).

where Λ = {α | |vB,W(α)| < µ}.
The presence of an edge in the window W will produce a great amount of large

coefficients and as a consequence, the cancelation of these coefficients will produce
oscillations. Then, spurious cosines will also appear in the image under the form of
chessboard patterns, see Figure 3.2.

3.2. Wavelet thresholding. Let B = {gα}α∈A be an orthonormal basis of
wavelets [20]. Let us discuss two procedures modifying the noisy coefficients, called
wavelet thresholding methods (D. Donoho et al. [10]). The first procedure is a projec-
tion operator which approximates the ideal projection (3.6). It is called hard thresh-
olding, and cancels coefficients smaller than a certain threshold µ,

a(α) =

{

1 |vB(α)| > µ
0 otherwise

Let us denote this operator by HWTµ(v). This procedure is based on the idea that
the image is represented with large wavelet coefficients, which are kept, whereas the
noise is distributed across small coefficients, which are canceled. The performance
of the method depends on the capacity of approximating u by a small set of large
coefficients. Wavelets are for example an adapted representation for smooth functions.

Theorem 3.4. Let u be an image defined in a grid I. The method noise of a
hard thresholding HWTµ(u) is

u − HWTµ(u) =
∑

{α||uB(α)|<µ}
uB(α)gα
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Unfortunately, edges lead to a great amount of wavelet coefficients lower than the
threshold, but not zero. The cancelation of these wavelet coefficients causes small
oscillations near the edges, i.e. a Gibbs-like phenomenon. Spurious wavelets can
also be seen in the restored image due to the cancelation of small coefficients : see
Figure 3.2. This artifact will be called: wavelet outliers, as it is introduced in [12]. D.
Donoho [9] showed that these effects can be partially avoided with the use of a soft
thresholding,

a(α) =

{

vB(α)−sgn(vB(α))µ
vB(α) |vB(α)| ≥ µ

0 otherwise

which will be denoted by SWTµ(v). The continuity of the soft thresholding operator
better preserves the structure of the wavelet coefficients, reducing the oscillations
near discontinuities. Note that a soft thresholding attenuates all coefficients in order
to reduce the noise, as an ideal operator does. As we shall see at the end of this
paper, the L2 norm of the method noise is lessened when replacing the hard by a soft
threshold. See Figures 3.2 and 6.3 for a comparison of the both method noises.

Theorem 3.5. Let u be an image defined in a grid I. The method noise of a soft
thresholding SWTµ(u) is

u − SWTµ(u) =
∑

{α||uB(α)|<µ}
uB(α)gα + µ

∑

{α||uB(α)|>µ}
sgn(uB(α)) gα

A simple example can show how to fix the threshold µ. Suppose the original
image u is zero, then vB(α) = nB(α), and therefore the threshold µ must be taken
over the maximum of noise coefficients to ensure their suppression and the recovery
of the original image. It can be shown that the maximum amplitude of a white noise
has a high probability of being smaller than σ

√

2 log |I|. It can be proved that the

risk of a wavelet thresholding with the threshold µ = σ
√

2 log |I| is near the risk rp

of the optimal projection, see [10, 20].
Theorem 3.6. The risk rt(u) of a hard or soft thresholding with the threshold

µ = σ
√

2 log |I| is such that for all |I| ≥ 4

rt(u) ≤ (2 log |I| + 1)(σ2 + rp(u)).(3.8)

The factor 2 log |I| is optimal among all the diagonal operators in B, that is,

lim
|I|−>∞

inf
D∈DB

sup
u∈R|I|

E{||u − DV ||2}
σ2 + rp(u)

1

2log|I| = 1.(3.9)

In practice the optimal threshold µ is very high and cancels too many coefficients
not produced by the noise. A threshold lower than the optimal is used in the experi-
ments and produces much better results, see Figure 3.2. For a hard thresholding the
threshold is fixed to 3 ∗ σ. For a soft thresholding this threshold still is too high ; it
is better fixed at 3

2σ.

3.3. Translation invariant wavelet thresholding. R. Coifman and D. Donoho
[8] improved the wavelet thresholding methods by averaging the estimation of all trans-
lations of the degraded signal. Calling vp(i) the translated signal v(i−p), the wavelet
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coefficients of the original and translated signals can be very different, and they are
not related by a simple translation or permutation,

vp
B(α) = 〈v(n − p), gα(n)〉 = 〈v(n), gα(n + p)〉.

The vectors gα(n + p) are not in general in the basis B = {gα}α∈A, and therefore the
estimation of the translated signal is not related to the estimation of v. This new
algorithm yields an estimate ûp for every translated vp of the original image,

ûp = Dvp =
∑

α∈A

a(α)vp
B(α)gα.(3.10)

The translation invariant thresholding is obtained by averaging all these estimators
after a translation in the inverse sense,

1

|I|
∑

p∈I

ûp(i + p),(3.11)

and will be denoted by TIWT (v).
The Gibbs effect is considerably reduced by the translation invariant wavelet

thresholding, (see Figure 3.2), because the average of different estimations of the image
reduces the oscillations. This is therefore the version we shall use in the comparison
section. Recently, S. Durand and M. Nikolova [12] have actually proposed an efficient
variational method finding the best compromise to avoid the three common artifacts
in TV methods and wavelet thresholding, namely the stair-casing, the Gibbs effect and
the wavelet outliers. Unfortunately, we couldn’t draw the method into the comparison.

Fig. 3.2. Denoising experiment on a natural image. From left to right and from top to bottom:
noisy image (standard deviation 20), Fourier Wiener filter (ideal filter), the DCT empirical Wiener
filter, the wavelet hard thresholding, the soft wavelet thresholding and the translation invariant
wavelet hard thresholding.

4. Statistical neighborhood approaches. The methods we are going to con-
sider are very recent attempts to take advantage of an image model learned from the
image itself. More specifically, these denoising methods attempt to learn the statisti-
cal relationship between the image values in a window around a pixel and the pixel
value at the window center.



20 A. BUADES, B. COLL AND J.M MOREL

4.1. DUDE, a universal denoiser. The recent work by Ordentlich et al. [39]
has led to the proposition of a “universal denoiser” for digital images. The authors
assume that the noise model is fully known, namely the probability transition matrix
Π(a, b) , where a, b ∈ A, the finite alphabet of all possible values for the image. In
order to fix ideas, we shall assume as in the rest of this paper that the noise is additive

gaussian, in which case one simply has Π(a, b) = 1√
2πσ

e−
(a−b)2

2σ2 for the probability of

observing b when the real value was a. The authors also fix an error cost Λ(a, b)
which, to fix ideas, we can take to be a quadratic function Λ(a, b) = (a− b)2, namely
the cost of mistaking a for b.

The authors fix a neighborhood shape, say, a square discrete window deprived of
its center i, Ñi = Ni \ {i} around each pixel i. Then the question is : once the image
has been observed in the window Ñi, what is the best estimate we can make from the
observation of the full image ?

The authors propose the following algorithm:
• Compute, for each possible value b of u(i) the number of windows Nj in

the image such the restrictions of u to Ñj and Ñi coincide and the observed
value at the pixel j is b. This number is called m(b,Ni) and the line vector
(m(b,Ni))b∈A is denoted by m(Ni).

• Then, compute the denoised value of u at i as

ũ(i) = arg min
b∈A

m(Ni)Π
−1(Λb ⊗ Πu(i)),

where w ⊗ v = (w(b)v(b)) denotes the vector obtained by multiplying each
component of u by each component of v, u(i) is the observed value at i, and
we denote by Xa the a-column of a matrix X.

The authors prove that this denoiser is universal in the sense “of asymptotically
achieving, without access to any information on the statistics of the clean signal, the
same performance as the best denoiser that does have access to this information”. In
[24] the authors present an implementation valid for binary images with an impulse
noise, with excellent results. The reason of these limitations in implementation are
clear : first the matrix Π is of very low dimension and invertible for impulse noise. If
instead we consider as above a gaussian noise, then the application of Π−1 amounts
to deconvolve a signal by a gaussian, which is a rather ill-conditioned method. All the
same, it is doable, while the computation of m certainly is not for a large alphabet, like
the one involved in grey tone images (256 values). Even supposing that the learning
window Ni has the minimal possible size of 9, the number of possible such windows is
about 2569 which turns out to be much larger than the number of observable windows
in an image (whose typical size amounts to 106 pixels). Actually, the number of
samples can be made significantly smaller by quantizing the grey level image and by
noting that the window samples are clustered. Anyway, the direct observation of the
number m(Ni) in an image is almost hopeless, particularly if it is corrupted by noise.

4.2. The UINTA algorithm. Awate and Whitaker [3] have proposed a method
whose principles stand close to the the NL-means algorithm, since, as in Dude, the
method involves comparison between subwindows to estimate a restored value. The
objective of the algorithm ”UINTA, for unsupervised information theoretic adaptive
filter”, is to denoise the image decreasing the randomness of the image. The algorithm
proceeds as follows:

• Assume that the (2d + 1)× (2d + 1) windows in the image are realizations of
a random vector Z. The probability distribution function of Z is estimated
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from the samples in the image,

p(z) =
1

|A|
∑

zi∈A

Gσ(z − zi),

where z ∈ R
(2d+1)×(2d+1), Gσ is the gaussian density function in dimension

n with variance σ2,

Gσ(x) =
1

(2π)
n
2 σ

e−
||x||2

σ2 ,

and A is a random subset of windows in the image.
• Then the authors propose an iterative method which minimizes the entropy

of the density distribution,

Ep log p(Z) = −
∫

p(z) log p(z)dz.

This minimization is achieved by a gradient descent algorithm of the previous
energy function.

The denoising effect of this algorithm can be understood, as it forces the proba-
bility density to concentrate. Thus, groups of similar windows tend to assume a more
and more similar configuration which is less noisy. The differences of this algorithm
with NL-means are patent, however. This algorithm creates a global interaction be-
tween all windows. In particular, it tends to favor big groups of similar windows and
to remove small groups. In that extent, it is a global homogenization process and is
quite valid if the image consists of a periodic or quasi periodic texture, as is patent
in the successful experiments shown in this paper. The spirit of this method is to
define a new, information theoretically oriented scale space. In that sense, the gradi-
ent descent must be stopped before a steady state. The time at which the process is
stopped gives us the scale of randomness of the filtered image.

5. Non local means algorithm (NL-means). The local smoothing methods
and the frequency domain filters aim at a noise reduction and at a reconstruction of
the main geometrical configurations but not at the preservation of the fine structure,
details and texture. Due to the regularity assumptions on the original image of pre-
vious methods, details and fine structures are smoothed out because they behave in
all functional aspects as noise. The NL-means algorithm we shall now discuss tries to
take advantage of the high degree of redundancy of any natural image. By this, we
simply mean that every small window in a natural image has many similar windows
in the same image. This fact is patent for windows close by, at one pixel distance
and in that case we go back to a local regularity assumption. Now in a very general
sense inspired by the neighborhood filters, one can define as “neighborhood of a pixel
i” any set of pixels j in the image such that a window around j looks like a window
around i. All pixels in that neighborhood can be used for predicting the value at i,
as was first shown in [13] for 2D images. This first work has inspired many variants
for the restoration of various digital objects, in particular 3D surfaces [33]. The fact
that such a self-similarity exists is a regularity assumption, actually more general and
more accurate than all regularity assumptions we have considered in section 2. It also
generalizes a periodicity assumption of the image.

Let v be the noisy image observation defined on a bounded domain Ω ⊂ R
2 and

let x ∈ Ω. The NL-means algorithm estimates the value of x as an average of the
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values of all the pixels whose gaussian neighborhood looks like the neighborhood of
x,

NL(v)(x) =
1

C(x)

∫

Ω

e−
(Ga∗|v(x+.)−v(y+.)|2)(0)

h2 v(y) dy,

where Ga is a Gaussian kernel with standard deviation a, h acts as a filtering pa-

rameter and C(x) =
∫

Ω
e−

(Ga∗|v(x+.)−v(z+.)|2)(0)

h2 dz is the normalizing factor. We recall
that,

(Ga ∗ |v(x + .) − v(y + .)|2)(0) =

∫

R2

Ga(t)|v(x + t) − v(y + t)|2dt.

Since we are considering images defined on a discrete grid I, we shall give a discrete
description of the NL-means algorithm and some consistency results. This simple and
generic algorithm and its application to the improvement of the performance of digital
cameras is the object of an European patent application [4].

5.1. Description. Given a discrete noisy image v = {v(i) | i ∈ I}, the estimated
value NL(v)(i) is computed as a weighted average of all the pixels in the image,

NL(v)(i) =
∑

j∈I

w(i, j)v(j),

where the weights {w(i, j)}j depend on the similarity between the pixels i and j, and
satisfy the usual conditions 0 ≤ w(i, j) ≤ 1 and

∑

j w(i, j) = 1.
In order to compute the similarity between the image pixels, we define a neigh-

borhood system on I.
Definition 5.1 (Neighborhoods). A neighborhood system on I is a family

N = {Ni}i∈I of subsets of I such that for all i ∈ I,
(i) i ∈ Ni,
(ii) j ∈ Ni ⇒ i ∈ Nj.

The subset Ni is called the neighborhood or the similarity window of i. We set Ñi =
Ni\{i}.

The similarity windows can have different sizes and shapes to better adapt to the
image. For simplicity we will use square windows of fixed size. The restriction of v to
a neighborhood Ni will be denoted by v(Ni),

v(Ni) = (v(j), j ∈ Ni).

The similarity between two pixels i and j will depend on the similarity of the
intensity gray level vectors v(Ni) and v(Nj). The pixels with a similar grey level
neighborhood to v(Ni) will have larger weights in the average, see Figure 5.1.

In order to compute the similarity of the intensity gray level vectors v(Ni) and
v(Nj), one can compute a gaussian weighted Euclidean distance, ‖v(Ni)− v(Nj)‖2

2,a.
Efros and Leung [13] showed that the L2 distance is a reliable measure for the com-
parison of image windows in a texture patch. Now, this measure is so much the
more adapted to any additive white noise as such a noise alters the distance between
windows in a uniform way. Indeed,

E||v(Ni) − v(Nj)||22,a = ||u(Ni) − u(Nj)||22,a + 2σ2



A REVIEW OF IMAGE DENOISING ALGORIHTMS WITH A NEW ONE 23

Fig. 5.1. q1 and q2 have a large weight because their similarity windows are similar to that
of p. On the other side the weight w(p,q3) is much smaller because the intensity grey values in the
similarity windows are very different.

where u and v are respectively the original and noisy images and σ2 is the noise
variance. This equality shows that, in expectation, the Euclidean distance preserves
the order of similarity between pixels. So the most similar pixels to i in v also are
expected to be the most similar pixels to i in u. The weights associated with the
quadratic distances are defined by

w(i, j) =
1

Z(i)
e−

||v(Ni)−v(Nj)||22,a

h2 ,

where Z(i) is the normalizing factor Z(i) =
∑

j e−
||v(Ni)−v(Nj)||22,a

h2 and the parameter
h controls the decay of the exponential function and therefore the decay of the weights
as a function of the Euclidean distances.

5.2. A consistency theorem for NL-means. The NL-means algorithm is
intuitively consistent under stationarity conditions, saying that one can find many
samples of every image detail. In fact, we shall be assuming that the image is a
fairly general stationary random process. Under these assumptions, for every pixel
i, the NL-means algorithm converges to the conditional expectation of i knowing its
neighborhood. In the case of an additive or multiplicative white noise model, this
expectation is in fact the solution to a minimization problem.

Let X and Y denote two random vectors with values on R
p and R respectively. Let

fX , fY denote the probability distribution functions of X, Y and let fXY denote the
joint probability distribution function of X and Y . Let us recall briefly the definition
of the conditional expectation.

Definition 5.2.
i) Define the probability distribution function of Y conditioned to X as

f(y | x) =

{

fXY (x,y)
fX(x) if fX(x) > 0

0 otherwise

for all x ∈ R
p and y ∈ R.

ii) Define the conditional expectation of Y given {X = x} as the expectation
with respect to the conditional distribution f(y | x)

E[Y | X = x] =

∫

y f(y | x) dy,
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for all x ∈ R
p.

The conditional expectation is a function of X and therefore a new random vari-
able g(X) which is denoted by E[Y | X].

Let now V be a random field and N a neighborhood system on I. Let Z denote
the sequence of random variables Zi = {Yi, Xi}i∈I where Yi = V (i) is real valued and
Xi = V (Ñi) is R

p valued. Recall that Ñi = Ni\{i}.
Let us restrict Z to the n first elements {Yi, Xi}n

i=1. Let us define the function
rn(x),

rn(x) = Rn(x)/f̂n(x)(5.1)

where

f̂n(x) =
1

nhp

n
∑

i=1

K(
Xi − x

h
), Rn(x) =

1

nhp

n
∑

i=1

φ(Yi)K(
Xi − x

h
),(5.2)

φ is an integrable real valued function, K is a nonnegative kernel and x ∈ R
p.

Let X and Y be distributed as X1 and Y1. Under this form the NL-means
algorithm can be seen as an instance for the exponential operator of the Nadaraya-
Watson estimator [23, 38]. This is an estimator of the conditional expectation r(x) =
E[φ(Y ) | X = x]. Some definitions are needed for the statement of the main result.

Definition 5.3. A stochastic process {Zt | t = 1, 2, . . .}, with Zt defined on
some probability space (Ω,A,P), is said to be (strict-sense) stationary if for any finite
partition {t1, t2, · · · , tn} the joint distributions Ft1,t2,···,tn

(x1, x2, · · · , xn) are the same
as the joint distributions Ft1+τ,t2+τ,···,tn+τ (x1, x2, · · · , xn) for any τ ∈ N .

In the case of images, this stationary condition amounts to say that as the size
of the image grows, we are able to find in the image many similar patches for all the
details of the image. This is a crucial point to understand the performance of the
NL-means algorithm. The following mixing definition is a rather technical condition.
In the case of images, it amounts to say that regions become more independent as
their distance increases. This is intuitively true for natural images.

Definition 5.4. Let Z be a stochastic and stationary process {Zt | t = 1, 2, · · · , n},
and, for m < n, let F

n
m be the σ − field induced in Ω by the r.v.’s Zj ,m ≤ j ≤ n.

Then, the sequence Z is said to be β−mixing if for every A ∈ F
k
1 and every B ∈ F

∞
k+n

|P (A ∩ B) − P (A)P (B)| ≤ β(n) with β(n) → 0, as n → ∞.

The following theorem establishes the convergence of rn to r, see Roussas [29].
The theorem is established under the stationary and mixing hypothesis of {Yi, Xi}∞i=1

and asymptotic conditions on the decay of φ, β(n) and K. This set of conditions will
be denoted by H and it is more carefully detailed in the Appendix.

Theorem 5.5 (Conditional expectation theorem). Let Zj = {Xj , Yj} for j =
1, 2, · · · be a strictly stationary and mixing process. For i ∈ I, let X and Y be dis-
tributed as Xi and Yi. Let J be a compact subset J ⊂ R

p such that

inf{fX(x);x ∈ J} > 0.

Then, under hypothesis H,

sup[ψn|rn(x) − r(x)|; x ∈ J ] → 0 a.s,
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where ψn are positive norming factors.
Let v be the observed noisy image and let i be a pixel. Taking for φ the identity,

we see that rn(v(Ñi)) converges to E[V (i) | V (Ñi) = v(Ñi)] under stationary and
mixing conditions of the sequence {V (i), V (Ñi)}∞i=1.

In the case where an additive or multiplicative white noise model is assumed, the
next result shows that this conditional expectation is in fact the function of V (Ñi)
that minimizes the mean square error with the original field U .

Theorem 5.6. Let V, U,N1, N2 be random fields on I such that V = U + N1 +
g(U)N2, where N1 and N2 are independent white noises. Let N be a neighborhood
system on I . Then,

(i) E[V (i) | V (Ñi) = x] = E[U(i) | V (Ñi) = x] for all i ∈ I and x ∈ R
p.

(ii) The real value E[U(i) | V (Ñi) = x] minimizes the following mean square
error,

min
g∗∈R

E[(U(i) − g∗)2 | V (Ñi) = x](5.3)

for all i ∈ I and x ∈ R
p.

(iii) The expected random variable E[U(i) | V (Ñi)] is the function of V (Ñi) that
minimizes the mean square error

min
g

E[U(i) − g(V (Ñi))]
2(5.4)

Given a noisy image observation v(i) = u(i) + n1(i) + g(u(i))n2(i), i ∈ I, where
g is a real function and n1 and n2 are white noise realizations, then the NL-means
algorithm is the function of v(Ñi) that minimizes the mean square error with the
original image u(i).

5.3. Experiments with NL-means. The NL-means algorithm chooses for each
pixel a different average configuration adapted to the image. As we explained in the
previous sections, for a given pixel i, we take into account the similarity between
the neighborhood configuration of i and all the pixels of the image. The similarity
between pixels is measured as a decreasing function of the Euclidean distance of the
similarity windows. Due to the fast decay of the exponential kernel, large Euclidean
distances lead to nearly zero weights, acting as an automatic threshold. The decay of
the exponential function and therefore the decay of the weights is controlled by the
parameter h. Empirical experimentation shows that one can take a similarity window
of size 7 × 7 or 9 × 9 for grey level images and 5 × 5 or even 3 × 3 in color images
with little noise. These window sizes have shown to be large enough to be robust to
noise and at the same time to be able to take care of the details and fine structure.
Smaller windows are not robust enough to noise. Notice that in the limit case, one can
take the window reduced to a single pixel i and get therefore back to the Yaroslavsky
neighborhood filter. We have seen experimentally that the filtering parameter h can
take values between 10 ∗ σ and 15 ∗ σ, obtaining a high visual quality solution. In all
experiments this parameter has been fixed to 12∗σ. For computational aspects, in the
following experiments the average is not performed in all the image. In practice, for
each pixel p, we only consider a squared window centered in p and size 21× 21 pixels.
The computational cost of the algorithm and a fast multiscale version is addressed in
section 5.5.

Due to the nature of the algorithm, the most favorable case for the NL-means is
the periodic case. In this situation, for every pixel i of the image one can find a large
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Fig. 5.2. NL-means denoising experiment with a nearly periodic image. Left: Noisy image with
standard deviation 30. Right: NL-means restored image.

set of samples with a very similar configuration, leading to a noise reduction and a
preservation of the original image, see Figure 5.2 for an example.

Fig. 5.3. NL-means denoising experiment with a Brodatz texture image. Left: Noisy image
with standard deviation 30. Right: NL-means restored image. The Fourier transform of the noisy
and restored images show how main features are preserved even at high frequencies.

Another case which is ideally suitable for the application of the NL-means al-
gorithm is the textural case. Texture images have a large redundancy. For a fixed
configuration many similar samples can be found in the image. In Figure 5.3 one
can see an example with a Brodatz texture. The Fourier transform of the noisy and
restored images shows the ability of the algorithm to preserve the main features even
in the case of high frequencies.

NL-means is not only able to restore periodic or texture images. Natural images
also have enough redundancy to be restored. For example in a flat zone, one can
find many pixels lying in the same region and similar configurations. In a straight or
curved edge a complete line of pixels with a similar configuration is found. In addition,
the redundancy of natural images allows us to find many similar configurations in far
away pixels. Figures 5.4 and 5.5 show two examples on two well known standard
processing images. The same algorithm applies to the restoration of color images and
films, see Figure 5.6.
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Fig. 5.4. NL-means denoising experiment with a natural image. Left: Noisy image with stan-
dard deviation 20. Right: Restored image.

Fig. 5.5. NL-means denoising experiment with a natural image. Left: Noisy image with stan-
dard deviation 35. Right: Restored image.

5.4. Testing stationarity : a soft threshold optimal correction. In this
section, we describe a simple and useful statistical improvement of NL-means, with a
technique similar to the wavelet thresholding. The stationarity assumption of Theo-
rem 5.5 is not true everywhere, as each image may contain exceptional, non repeated
structures. Such structures can be blurred out by the algorithm. The NL-means al-
gorithm, and actually every local averaging algorithm, must involve a detection phase
and special treatment of non stationary points. The principle of such a correction
is quite simple and directly derived from other thresholding methods, like the SWT
method.

Let us estimate the original value at a pixel i, u(i), as the mean of the noisy grey
levels v(j) for j ∈ J ⊂ I. In order to reduce the noise and restore the original value,
pixels j ∈ J should have a non noisy grey level u(j) similar to u(i). Assuming this
fact,

û(i) =
1

|J |
∑

j∈J

v(j) ≃ 1

|J |
∑

j∈J

u(i) + n(j) → u(i) as |J | → ∞,

because the average of noise values tends to zero. In addition,

1

|J |
∑

j∈J

(v(j) − û(i))2 ≃ 1

|J |
∑

j∈J

n(j)2 → σ2 as |J | → ∞.

If the averaged pixels have a non noisy grey level value close to u(i), as expected, then
the variance of the average should be close to σ2. If it is a posteriori observed that



28 A. BUADES, B. COLL AND J.M MOREL

Fig. 5.6. NL-means denoising experiment with a color image. Left: Noisy image with standard
deviation 15 in every color component. Right: Restored image.

this variance is much larger than σ2, this fact can hardly be caused only by the noise.
This means that NL is averaging pixels whose original grey level values were very
different in the original. At those pixels, a more conservative estimate is required,
and therefore the estimated value should be averaged with the noisy one. The next
result tells us how to compute this average.

Theorem 5.7. Let X and Y be two real random variables. Then, the linear
estimate Ŷ ,

Ŷ = EY +
Cov(X, Y )

V arX
(X − EY ),

minimizes the square error

min
a,b∈R

E[(Y − (a + bX))2].

In our case, X = Y + N where N is independent of Y, with zero mean and variance
σ2. Thus,

Ŷ = EY +
V arY

V arY + σ2
(X − EY ),

which is equal to

Ŷ = EX + max

(

0,
V arX − σ2

V arX

)

(X − EX).

This strategy can be applied to correct any local smoothing filter. However, a good
estimate of the mean and the variance at every pixel is needed. That is not the case
for the local smoothing filters of Section 2. This strategy can instead be satisfactorily
applied to the NL-means algorithm. As we have shown in the previous section, the
NL-means algorithm converges to the conditional mean. The conditional variance can
be also computed by the NL-means, by taking φ(x) = x2 in Theorem 5.5, and then
computing the variance as EX2 − (EX)2. In Figure 5.7 one can see an application of
this correction.

5.5. Fast multiscale versions.
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Fig. 5.7. Optimal correction experience. Left: Noisy image. Middle: NL-means solution.
Right: NL-means corrected solution. The average with the noisy image makes the solution to be
noisier, but details and fine structure are better preserved.

5.5.1. Plain multiscale. Let us now make some comments on the complexity
of NL-means, and how to accelerate it. One can estimate the complexity of an un-
sophisticated version as follows. If we take a similarity window of size (2f + 1)2 and
since we can restrict the search of similar windows in a larger ”search window” of size
(2s+1)2, the overall complexity of the algorithm is N2 × (2f +1)2 × (2s+1)2, where
N2 is the number of pixels of the image. As for practical numbers, we took in all
experiments f = 3, s = 10, so that the final complexity is about 49 × 441 × N2. For
a 512× 512 images, this takes about 30 seconds on a normal PC. It is quite desirable
to expand the size of the search window as much as possible and it is therefore useful
to give a fast version. This is easily done by a multiscale strategy, with little loss in
accuracy.

Multiscale algorithm
1. Zoom out the image u0 by a factor 2, by a standard Shannon subsampling

procedure. This yields a new image u1. For convenience, we denote by (i, j)
the pixels of u1 and by (2i, 2j) the even pixels of the original image u0.

2. Apply NL-means to u1, so that with each pixel (i, j) of u1, a list of windows
centered in (i1, j1), ..., (ik, jk) is associated.

3. For each pixel of u0, (2i+ r, 2j +s) with r, s ∈ {0, 1}, we apply the NL-means
algorithm. But instead of comparing with all the windows in a searching zone,
we compare only with the nine neighboring windows of each pixel (2il, 2jl)
for l = 1, · · · , k.

4. This procedure can be applied in a pyramid fashion by subsampling u1 into
u2, and so on. In fact, it is not advisable to zoom down more than twice.

By zooming down by just a factor 2, the computation time is divided by approximately
16.

5.5.2. By blocks. Let I be the 2D grid of pixels and let {i1, . . . , in} be a subset
of I. For each ik, let Wk ⊂ I be a neighborhood centered in ik, Wk = ik + Bk, where
Bk gives the size and shape of the neighborhood. Let us suppose that each Wk is a
connected subset of I, such that I = W1 ∪ W2 ∪ . . . ∪ Wn, and where we allow the
intersections between the neighborhoods to be non empty.

Then, for each Wk we define the vectorial NL-means as

NL(Wk) =
1

Ck

∑

j∈I

v(j + Bk)e−
||v(ik+Bk)−v(j+Bk)||22

h2 ,

where Ck =
∑

j∈I e−
||v(ik+Bk)−v(j+Bk)||22

h2 and h acts as a filtering parameter. We note
that NL(Wk) is a vector of the same size as Wk. In contrast with the NL-means
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algorithm, we compute a non weighted L2 distance, since we restore at the same
time a whole neighborhood and we do not want to give privilege to any point of the
neighborhood.

In order to restore the value at a pixel i, we take into account all Wk containing
i, Ai = {k | i ∈ Wk}, and define

NL(i) =
1

|Ai|
∑

k∈Ai

NL(Wk)(i).

The overlapping of these neighborhoods permits a regular transition in the restored
image and avoids block effects.

This variant by blocks of NL-means allows a better adaptation to the local image
configuration of the image and, at the same time, a reduction of the complexity. In
order to illustrate this reduction, let us describe the simplest implementation:

• Let N ×N be the size of the image and set ik = (kn, kn) for k = 1, . . . , (N −
n)/n.

• Consider the subset B = {i = (xi, yi) | |xi| ≤ m and |yi| ≤ m} and Wk =
ik + B for all k. We take m > n/2 in order to have a non empty intersection
between neighboring subsets Wk.

• If we take a squared neighborhood B of size (2m+1)2 and since we can restrict
the search of similar windows in a larger ”search window” of size (2s + 1)2,
the overall complexity of the algorithm is (2m + 1)2 × (2s + 1)2 × (N−n

n )2.
Taking n = 9 reduces the computation time of the original algorithm by more

than 81.

6. Discussion and Comparison.

6.1. NL-means as an extension of previous methods. As was said before,
the gaussian convolution only preserves flat zones while contours and fine structure
are removed or blurred. Anisotropic filters instead preserve straight edges but flat
zones present many artifacts. One could think of combining these two methods to
improve both results. A gaussian convolution could be applied in flat zones while an
anisotropic filter could be applied on straight edges. Still, other types of filters should
be designed to specifically restore corners or curved edges and texture. The NL-means
algorithm seems to provide a feasible and rational method to automatically take the
best of each mentioned algorithm, reducing for every possible geometric configuration
the image method noise. Although we have not computed explicitly the image method
noise, Figure 6.1 illustrates how the NL-means algorithm chooses in each case a weight
configuration corresponding to one of the previously analyzed filters. In particular,
according to this set of experiments, we can consider that the consistency results given
in Theorems 2.1, 2.3 and 2.5 are all valid for this algorithm.

In Figure 6.2 we display the probability distributions used to restore a noisy pixel.
The images are the same of Figure 6.1. The comparison of both figures illustrates
how the probability distribution is perturbed by the addition of a white noise. In
this case, the probability distribution is still adapted to the local configuration of the
image, and the main structures of Figure 6.1 are well preserved.

6.2. Comparison. In this section we shall compare the different algorithms
based on three well defined criteria: the method noise, the mean square error and the
visual quality of the restored images. Note that every criterion measures a different
aspect of the denoising method. It is easy to show that only one criterion is not
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.1. On the right-hand side of each pair, we display the weight distribution used to estimate
the central pixel of the left image by the NL-means algorithm. Image a: In flat zones, the weights
are distributed as a convolution filter (as a gaussian convolution). Image b: In straight edges, the
weights are distributed in the direction of the level line (as the mean curvature motion). Image
c: On curved edges, the weights favor pixels belonging to the same contour or level line, which is
a strong improvement w.r. to the mean curvature motion. Image d: In a flat neighborhood, the
weights are distributed in a grey level neighborhood (as with a neighborhood filter). In the case of
Images e and f, the weights are distributed across the more similar configurations, even though they
are far away from the observed pixel. This shows a behavior similar to a nonlocal neighborhood filter
or to an ideal Wiener filter.

enough to judge the restored image, and so one expects a good solution to have a
high performance under the three criteria.

6.2.1. Method noise comparison. In previous sections we have defined the
method noise and computed it for the different algorithms. Remember that the denois-
ing algorithm is applied on the original (slightly noisy) image. A filtering parameter,
depending mainly on the standard deviation of the noise, must be fixed for the most
part of algorithms. Let us fix σ = 2.5: we can suppose that any digital image is
affected by this amount of noise since it is not visually noticeable.

The method noise tells us which geometrical features or details are preserved by
the denoising process and which are eliminated. In order to preserve as much features
as possible of the original image the method noise should look as much as possible
like white noise. Figures 6.3-6.5 display the method noise of the different methods for
a set of standard natural images. Let us comment them briefly.

• The gaussian filter method noise highlights all important features of the image
like texture, contours and details. All these features have a large Laplacian
and are therefore modified by the application of the algorithm, see Theorem
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.2. On the right-hand side of each pair, we display the weight distribution used to estimate
the central pixel of the left image by the NL-means algorithm. Images are obtained by adding a
gaussian noise of standard deviation 12.5 to those of Figure 6.1.

2.1.
• As announced in Theorem 2.3, the anisotropic filter method noise displays

the corners and high frequency features. The straight edges are instead not
to be seen : they have a low curvature.

• The Total Variation method modifies most structures and details of the image.
Even straight edges are not well preserved.

• The iterated Total Variation refinements improve the total variation method
noise. Both strategies try to reduce the geometry present in the removed noise
adding it back to the restored image, and therefore reducing the method noise.

• The neighborhood filter preserves flat objects and contrasted edges, while
edges with a low contrast are not kept. In any case, the contours, texture
and details seem to be well preserved.

• The TIHWT method noise is concentrated on the edges and high frequency
features. These structures lead to coefficients of large enough value but lower
than the threshold. They are removed by the algorithm. The average of the
application to all translated versions reduces the method noise, and structures
are hardly noticeable.

• The TISWT method noise presents much more structure than the hard thresh-
olding. Indeed, the method noise is not only based on the small coefficients
but also on an attenuation of the large ones, leading to a high alteration of
the original image.

• It is difficult to find noticeable structure in the DCT empirical Wiener filter
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Fig. 6.3. Image method noise. From left to right and from top to bottom: original image,
Gaussian convolution, Mean curvature motion, Total Variation, Tadmor et al. Iterated Total Vari-
ation, Osher et al. Total variation, Neighborhood filter, Soft TIWT, Hard TIWT, DCT empirical
Wiener filter and NL-means.

method noise. Only some contours are noticeable. In general, this filter seems
to perform much better than all local smoothing filters and other frequency
domain filters. Its results are similar to those of a hard stationary wavelet
thresholding.

• The NL-means method noise looks the more like a white noise.
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Fig. 6.4. Image method noise. From left to right and from top to bottom: original image, Total
Variation, Neighborhood filter, Hard TIWT, DCT empirical Wiener filter and NL-means.

6.2.2. Visual quality comparison. As commented before, the visual quality
of the restored image is another important criterion to judge the performance of a
denoising algorithm. Let us present some experiments on a set of standard natural
images. The objective is to compare the visual quality of the restored images, the
non presence of artifacts and the correct reconstruction of edges, texture and fine
structure. Figures 6.6-6.9 present these experiences comparing the visual quality of
previous methods.

Figure 6.6 illustrates the fact that a non local algorithm is needed for the correct
reconstruction of periodic images. Local smoothing filters and local frequency filters
are not able to reconstruct the wall pattern. Only the NL-means algorithm and the
global Fourier Wiener filter reconstruct the original texture. The Fourier Wiener filter
is based on a global Fourier transform which is able to capture the periodic structure
of the image in a few coefficients. Now, in practice, this is an ideal filter because
the Fourier transform of the original image is used. Figure 6.1 e) shows how the
NL-means method chooses the correct weight configuration and explains the correct
reconstruction of the wall pattern.

Figure 6.7 and 6.8 illustrate the difficulty of local smoothing filters for recovering
stochastic patterns. The high degree of noise present in the image makes the local
comparisons of the neighborhood filter noise dependent. As a consequence, noise and
texture are not well differentiated. The regularity assumption involved in the bounded
variation makes it unsuitable for the restoration of textures which are filtered as noise.
Iterated Total Variation refinements improve the total variation minimization and
recover part of the excessively filtered texture.

Figure 6.9 shows that the frequency domain filters are well adapted to the recovery
of oscillatory patterns. Although some artifacts are noticeable in both solutions, the
stripes are well reconstructed. The DCT transform seems to be more adapted to
this type of texture and stripes are a little better reconstructed. For a much more
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Fig. 6.5. Image method noise. From left to right and from top to bottom: original image, Total
Variation, Neighborhood filter, Hard TIWT, DCT empirical Wiener filter and NL-means.

Fig. 6.6. Denoising experience on a periodic image. From left to right and from top to bottom:
noisy image (standard deviation 35), Gauss filtering, Total variation, Neighborhood filter, Wiener
filter (ideal filter), Hard TIWT, DCT empirical Wiener filtering, NL-means algorithm.

detailed comparison between sliding window transform domain filtering methods and
wavelet threshold methods, we refer to [18]. Figure 6.10 shows that although the
total variation minimization is not adapted to the restoration of oscillatory patterns,
the iterated total variation approaches improve the restored image and reduce this
drawback. The NL-means also performs well on this type of texture, due to its high
degree of redundancy.

Finally in Figures 6.11 and 6.12 we show a real denoising experiment. The NL-
means algorithm is applied to a natural image taken in poor light conditions. The
NL-means algorithm seems to denoise the image keeping the main structures and
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Fig. 6.7. Denoising experience on a natural image. From left to right and from top to bottom:
noisy image (standard deviation 35), Neighborhood filter, Total variation, Tadmor et al. Iterated
Total Variation, Osher et al. Iterated Total Variation and the NL-means algorithm.

Fig. 6.8. Denoising experience on a natural image. From left to right and from top to bottom:
noisy image (standard deviation 35), Neighborhood filter, Total variation, NL-means algorithm.

details.

6.2.3. Mean square error comparison. The mean square error is the square
of the Euclidean distance between the original image and its estimate. This numerical
quality measurement is the more objective one, since it does not rely on any visual
interpretation. Table 6.1 shows the mean square error of the different denoising meth-
ods with the images presented in this paper. This error table seems to corroborate
the observations made for the other criteria. One sees for example how the frequency
domain filters have a lower mean square error than the local smoothing filters. One
also sees that in presence of periodic or textural structures the Empirical Wiener
Filter based on a DCT transform performs better than the wavelet thresholding, see
also Figures 6.6 and 6.9. Note that, in presence of periodic or stochastic patterns, the
NL-means mean square error is significantly more precise than the other algorithms.
Of course, the errors presented in this table cannot be computed in a real denoising
problem. Let us remark that a small error does not guarantee a good visual quality of
the restored image. The mean square error by itself would not be meaningful and all
previous quality criteria are also necessary to evaluate the performance of denoising
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Fig. 6.9. Denoising experience on a natural image. From left to right and from top to bottom:
noisy image (standard deviation 25), the DCT empirical Wiener filter, Hard TIWT and NL-means
algorithm.

Fig. 6.10. Denoising experience on a natural image. From left to right and from top to bottom:
noisy image (standard deviation 25), the total variation minimization, the Tadmor et al. iterated
total variation, the Osher et al. iterated total variation.

methods.
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Appendix.

The set H of assumptions necessary for the statement of Theorem 5.5 are:

(H1) The sequence of random vectors Zi = {Yi, Xi}∞i=1 where Yi is real valued and
Xi is R

p valued form a strictly stationary sequence.
(H2) The sequence {Zi} is β−mixing and the sequence β(n) satisfies the following

summability requirement: β∗ =
∑∞

j=1 β(n) < ∞.
(H3) Let α = α(n) be a positive integer and let µ = µ(n) be the largest positive

integer for which 2αµ ≤ n. Then

lim sup[1 + 6e
1
2 β1/(µ+1)(α)]µ < ∞.

(H4) ‖x‖pK(x) → 0, as x → ∞, where the norm ‖x‖ of x = (x1, . . . , xp) is defined
by ‖x‖ = max(|x1|, . . . , |xp|).

(H5) i) φ is a real valued Borel function defined on R such that E|φ(Y )|s < ∞
for some s > 1.

ii)

sup[

∫

R

|φ(y)|sfXY (x, y)dy; x ∈ R
p] = C < ∞.
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Fig. 6.11. Denoising experience on a natural noisy image. Left: Original image, Dei village
(Mallorca). Right: NL-means filtered image.

(H6) i) For any point x and x′ in R
p and for some positive constant C(independent

of these points):

|K(x) − K(x′)| ≤ C‖x − x′‖

ii)
∫

‖x‖K(x)dx < ∞.
(H7) For any point x in R

p, there are positive constants C(x) such that, for all
x′ ∈ R

p and with J being as in (H8):
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Fig. 6.12. Detail of Figure 6.11. Left: Original detail. Right: NL-means filtered detail.

Image σ GF AF TV YNF EWF TIHWT NL-means

Boat 8 53 38 39 39 33 28 23
Lena 20 120 114 110 129 105 81 68
Barbara 25 220 216 186 176 111 135 72
Baboon 35 507 418 365 381 396 365 292
Wall 35 580 660 721 598 325 712 59

Table 6.1
Mean square error table. A smaller mean square error indicates that the estimate is closer to

the original image. The numbers have to be compared on each row. The square of the number on
the left hand column gives the real variance of the noise. By comparing this square to the values
on the same row, it is quickly checked that all studied algorithms indeed perform some denoising. A
sanity check! In general, the comparison performance corroborates the previously mentioned quality
criteria.

i)

||fX(x) − fX(x′)|| ≤ C(x)||x − x′||, sup[C(x); x ∈ J ] < ∞.

ii)

||ψ(x) − ψ(x′)|| ≤ C(x)||x − x′||, sup[C(x); x ∈ J ] < ∞,

where r(x) = E[φ(Y ) | X = x] and ψ(x) = r(x)fX(x).
(H8) There exists a compact subset J of R

p such that

inf[fX(x); x ∈ J ] > 0.
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