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On asymptotic normality of sequential LS-estimate

for unstable autoregressive process AR(2).

By Leonid Galtchouk and Victor Konev ∗

Louis Pasteur University of Strasbourg and University of Tomsk

Abstract

For estimating parameters in an unstable AR(2) model, the paper

proposes a sequential least squares estimate with a special stopping

time defined by the trace of the observed Fisher information matrix. It

is shown that the sequential LSE is asymptotically normally distributed

in the stability region and on its boundary in contrast to the usual LSE,

having six different types of asymptotic distributions on the boundary

depending on the values of the unknown parameters. 1 2
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1 Introduction

Consider an autoregressive AR(2) model

xn = θ1xn−1 + θ2xn−2 + εn, n = 1, 2, . . . , (1.1)

where (xn) is the observation, (εn) is a sequence of independent identically

distributed (i.i.d.) random variables with Eε1 = 0 and 0 < Eε21 = σ2 < ∞,

σ2 is known, x0 = x−1 = 0. The process (1.1) is assumed to can be unstable,

that is, both roots of the characteristic polynomial

P(z) = z2 − θ1z − θ2 (1.2)

lie on or inside the unit circle. The model (1.1) is a particular case of

unstable autoregressive processes AR(p) which have been studied by many

authors due to their applications in automatic control, identification and in

modeling economic and financial time series (we refer the reader to Anderson

(1971), Ahtola and Tiao (1987), Dickey and Fuller (1979), Chan and Wei

(1988), Rao (1978) for details and futher references).

A commonly used estimate of parameter vector θ = (θ1, θ2)
′ is the least

squares estimate (LSE)

θ(n) = (θ1(n), θ2(n))′ = M−1
n

n
∑

k=1

Xk−1xk, Mn =

n
∑

k=1

Xk−1X
′
k−1, (1.3)

where Xk = (xk, xk−1)
′; the prime denotes the transpose; M−1

n denotes the

inverse of matrix Mn if detMn > 0 and M−1
n = 0 otherwise.

It is well known that

√
n(θ(n) − θ)

L
=⇒ N (0, F ), as n→ ∞,

for all θ ∈ Λ, where Λ is the stability region of process (1.1), that is,

Λ = {θ = (θ1, θ2)
′ : −1 + θ2 < θ1 < 1 − θ2, |θ2| < 1}, (1.4)
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F = F (θ) is a positive definite matrix (see, e.g., Anderson (1971), Th.

5.5.7),
L

=⇒ indicates convergence in law. If θ belongs to the boundary ∂Λ of

the stability region Λ, the limiting distribution of LSE is no longer normal.

Moreover, there is no one universal limiting distribution for all θ ∈ ∂Λ and

the corresponding set of limiting distributions numbers 6 different types

depending on the values of roots z1 and z2 of the polynomial (1.2). Each

limiting distribution of LSE on the boundary coincides with that of the ratio

of certain Brownian functionals (we refer the reader to the paper of Chan

and Wei (1988) for general results on the limiting distributions of the least

squares estimates for unstable AR(p) processes and further details). For

example, for conjugate complex roots z1 = eiϕ, z2 = e−iϕ one has

n·(θ1(n)−2 cosϕ)
L

=⇒ (W 2
1 (1) −W 2

2 (1)) sinϕ+ (W 2
1 (1) +W 2

2 (1) − 2) cosϕ
∫ 1
0 [W 2

1 (s) +W 2
2 (s)]ds

,

n · (θ2(n) + 1)
L

=⇒ (2 −W 2
1 (1) −W 2

2 (1))/

∫ 1

0
[W 2

1 (s) +W 2
2 (s)]ds ,

where (W1(t), 0 ≤ t ≤ 1) and (W2(t), 0 ≤ t ≤ 1) are independent standard

Brownian motion processes; if θ = (2,−1), then (see Theorem 3.1.2 ibid)





n2 0

0 n



 (θ(n) − θ)
L

=⇒ G−1ξ, ξ =





∫ 1
0 Z(t)dW (t)
∫ 1
0 W (t)dW (t)



 ,

where

G =





∫ 1
0 W 2(t)dt

∫ 1
0 W (t)Z(t)dt

∫ 1
0 W (t)Z(t)dt

∫ 1
0 Z2(t)dt



 , Z(t) =

∫ t

0
W (s)ds .

It is well-known that a similar situation takes place in case of AR(1) process

xn = θxn−1 + εn, (1.5)

for which the limiting distributions of the least squares estimate are not

normal at the end-points θ = ±1 of stability interval (-1,1) (see White

(1958), Lai and Siegmund (1983)).
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Lai and Siegmund (1983) for a first order non-explosive autoregressive

process (1.5) proposed to use a sequential sampling scheme and proved that

the sequential least squares estimate for θ with the stopping time based

on the observed Fisher information is asymptotically normal uniformly in

θ ∈ [−1, 1] in contrast with the ordinary LSE.

In this paper we develop a sequential sampling scheme for estimating

parameter vector θ = (θ1, θ2)
′ in model (1.1). We will use the sequential

least squares estimate defined by the formula

θ(τ(h)) = M−1
τ(h)

τ(h)
∑

k=1

Xk−1xk, (1.6)

where τ(h) is the stopping time for the threshold h > 0 :

τ(h) = inf{n ≥ 1 :
n
∑

k=1

(x2
k−1 + x2

k−2) ≥ hσ2}, inf{∅} = +∞. (1.7)

This construction of sequential estimate is similar to that proposed in

the paper of Lai and Siegmund for AR(1) which is defined as

θ̂τ(h) =





τ(h)
∑

k=1

x2
k−1





−1
τ(h)
∑

k=1

xk−1xk , (1.8)

τ(h) = inf{n ≥ 1 :
n
∑

k=1

x2
k−1 ≥ hσ2}. (1.9)

It should be noted, however, that the first factor in (1.6) is a random matrix

and not a random variable, as in (1.8), and this makes additional difficulties.

For AR(1) the stopping time (1.9) turns the denominator in (1.8) prac-

tically into a constant hσ2 and this allows to use the central limit theorem

for martingales. In the case of AR(2) the stopping time (1.7) enables one

to control the inverse matrix M−1
τ(h) in (1.6) only partially since it remains

random. Nevertheless, we will see that such a change of time also enables

one to improve the properties of the estimate (1.3).

In our paper (2006) we proved the following result.

4



Theorem 1.1. Let (εn)n≥1 in (1.1) be a sequence of i.i.d. random variables

with Eεn = 0, 0 < Eε2n = σ2 <∞. Then, for any compact set K ⊂ Λ1,

lim
h→∞

sup
θ∈K

sup
t∈R2

|Pθ

(

M
1/2
τ(h)(θ(τ(h)) − θ) ≤ t

)

− Φ2(t/σ)| = 0,

where Φ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution function,

Λ1 = {θ = (θ1, θ2)
′ : −1 + θ2 < θ1 < 1 − θ2, −1 ≤ θ2 < 1}, t = (t1, t2)

′.

This theorem implies, in particular, that estimate (1.6) is asymptotically

normal not only inside the stability region (1.4) but also on the part of its

boundary {θ = (θ1,−1)
′

: −2 < θ1 < 2} in contrast to the LSE (1.3).

The goal of this paper is to prove the asymptotic normality of the esti-

mate (1.6),(1.7) in the whole region [Λ] including its boundary ∂Λ.

Our main result (Theorem 3.1) claims that, as h→ ∞,

M
1/2
τ(h)(θ(τ(h)) − θ)

L
=⇒ N (0, σ2I), (1.10)

for any θ = (θ1, θ2)
′ inside the stability region Λ (1.4) and on its boundary

∂Λ, where I is the identity matrix. Thus the sequential estimate (1.6), (1.7)

has a unique normal asymptotic distribution in the closure [Λ] of the stability

region (1.4). It will be observed that the normalizing factor M
1/2
τ(h) in the

limit theorem (1.10) remains the same in the whole region [Λ] in contrast to

the case of the LSE (1.3), which has seven different limiting distributions in

[Λ] and in order to apply the limiting distributions one needs some knowledge

about the location of unknown parameters (see Chan and Wei (1988)). The

convergence of the sequential estimate (1.6), (1.7) to the normal distribution

in (1.10) is not uniform in θ for θ ∈ [Λ]. It can be explained by the fact that

in the case, when the polynomial (1.2) has one root inside and the other on

the unit circle, the rates of information provided by sample values xn about

the unknown parameters θ1 and θ2 may differ greatly.
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Theorem 3.1 permits setting up tests of hypotheses about θ and forming

asymptotic confidence regions for θ on the basis of standard normal distri-

bution. Moreover, the asymptotic normality holds in [Λ] for a broad class

of the distributions of noises (εn).

The remainder of this paper is arranged as follows. Section 2 gives

the asymptotic distribution of the stopping time (1.7) (Theorem 2.1) and

some properties of the observed Fisher information matrix. In section 3 the

asymptotic normality of sequential estimate (1.6) for unstable AR(2) model

is established (Theorem 3.1). Section 4 proposes the sequential estimation

scheme for the case of unknown variance σ2 in model (1.1). The appendix

contains some technical results.

2 Properties of the stopping time τ(h) and the ob-

served Fisher information matrix Mn.

In this section the attention is mainly focused on the case when the unknown

parameter θ = (θ1, θ2)
′ belongs to the boundary ∂Λ of the stability region

(1.4). The boundary ∂Λ includes three sides:

Γ1 = {θ : −θ1 + θ2 = 1,−2 < θ1 < 0} ,Γ2 = {θ : θ1 + θ2 = 1, 0 < θ1 < 2} ,

Γ3 = {θ : −2 < θ1 < 2, θ2 = −1} (2.1)

and three apexes (0, 1), (−2,−1), (2,−1). Denote

A =





θ1 θ2

1 0



 , B =





1 0

0 0



 ,

W (n)(t) =
1

σ
√
n

[nt]
∑

i=0

εi, W
(n)
1 (t) =

1

σ
√
n

[nt]
∑

i=0

(−1)iεi, 0 ≤ t ≤ 1, (2.2)
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and introduce the following functionals

J1(x; t) =

∫ t

0
x2(s)ds, J2(x; t) =

∫ t

0

(∫ s

0
x(u)du

)2

ds, (2.3)

J3(x; y; t) =

∫ t

0
(x2(s) + y2(s))ds, J4(x; t) =

(∫ t

0
x(s)ds

)2

.

Theorem 2.1. Let (εn)n≥1 in (1.1) be a sequence of i.i.d. random variables

with Eεn = 0, Eε2n = σ2 and τ(h) be defined by (1.7). Denote by a and b

real roots of the polynomial (1.2), −1 ≤ a < b ≤ 1. Then, for each θ ∈ Λ,

Pθ − lim
h→∞

τ(h)/h = 1/trF, F −AFA′ = B. (2.4)

Moreover, for each θ ∈ ∂Λ, as h→ ∞,

τ(h)

ψ(θ, h)

L
=⇒















































ν1(W1) = inf{t ≥ 0 : J1(W1; t) ≥ 1} if θ ∈ Γ1,

ν2(W ) = inf{t ≥ 0 : J1(W ; t) ≥ 1} if θ ∈ Γ2,

ν3(W,W1) = inf{t ≥ 0 : J3(W ;W1; t) ≥ 1} if θ ∈ Γ3 ∪ {(0, 1)},

ν4(W ) = inf{t ≥ 0 : J2(W ; t) ≥ 1} if θ = (2,−1),

ν5(W1) = inf{t ≥ 0 : J2(W1; t) ≥ 1} if θ = (−2,−1),

(2.5)

where inf{∅} = ∞, Λ is defined in (1.4),

ψ(θ, h) =















































(1 + b)
√

h/2 if θ ∈ Γ1,

(1 − a)
√

h/2 if θ ∈ Γ2,
√

2h sinϕ if θ = (2 cosϕ,−1)′ ∈ Γ3,
√

2h if θ = (0, 1),

(h/2)1/4 if θ ∈ {(−2,−1), (2,−1)} ,

(2.6)

W (t),W1(t) are independent standard Brownian motions.

Proof Assertion (2.4) easily follows from Lemma 3.12 in [6].

For θ ∈ ∂Λ we decompose the original process (1.1) into two processes

(uk)k≥1 and (vk)k≥1 using the transformation

QXk = (uk, vk)
′ , (2.7)

7



where Q is a non-degenerate constant matrix of size 2 × 2 which will be

chosen later depending on the values of θ. The limiting relation (2.5) for

θ ∈ ∪3
i=1Γi has been proved in [7], Th 2.2. It remains to consider the apexes

(2,−1), (−2,−1), (0, 1).

For θ = (2,−1), putting in (2.7)

Q =





1 0

1 −1



 (2.8)

one obtains

vk =

k
∑

j=1

εj , uk =

k
∑

j=1

(xj − xj−1) =

k
∑

j=1

vj =

k
∑

j=1

j
∑

i=1

εi ,

n
∑

k=1

‖Xk−1‖2 =

n
∑

k=1

u2
k−1 +

n
∑

k=1

u2
k−2 = 2

n
∑

k=1

u2
k−1 − u2

n−1 . (2.9)

By the definition of τ(h) in (1.7), one gets

Pθ{τ(h) ≤ th1/4} = Pθ{
[th1/4]
∑

k=1

‖Xk−1‖2 ≥ hσ2} (2.10)

= Pθ{
2

hσ2

[th1/4]
∑

k=1

u2
k−1 −

1

hσ2
u2

[th1/4]−1
≥ 1} .

Further we show (by the argument similar to that in the proof of Lemma

2.3 in the Appendix) that the sum

Sn(t) =
1

n4σ2

[nt]
∑

k=1

u2
k−1

satisfies the relation

Sn(t) = J2(W
(n); t) + g(n)(t),

where g(n)(t) is a random process such that, for any δ > 0,

lim
n→∞

P
θ
(|g(n)(t)| > δ) = 0.
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Now we check that

lim
n→∞

u2
n/n

4 = 0 Pθ − a.s. . (2.11)

By the Cauchy-Schwarz-Bunyakovskii inequality and the law of iterated log-

arithm we have

u2
n/n

4 ≤ n−3
n
∑

k=1





k
∑

j=1

εi





2

,

n
∑

k=1

1

k3





k
∑

j=1

εi





2

<∞ Pθ − a.s. .

These inequalities, in virtue of the Kronecker Lemma, imply (2.11).

From here and (2.10), (2.11), we obtain

P
θ

(τ(h)/ψ(θ, h) ≤ t) = P
θ
(ν

(n)
θ

≤ t) + βθ(h) ,

where

ν
(n)
θ

= inf{t ≥ 0 : J2(W
(n); t) ≥ 1}, lim

h→∞
βθ(h) = 0 ,

W (n)(t) is given in (2.2). This, by the functional Donsker theorem (see

Billingsley (1968)), leads to (2.5) for θ = (2,−1).

The case of the apexes (0, 1), (−2,−1) can be considered similarly with

the use of Theorem 5.14 given in the Appendix. This completes the proof

of Theorem 2.1.

Now we will establish some properties of the observed Fisher information

matrix Mn. Introduce the following subsets of the closed region [Λ] :

Λd = [Λ]\
2
⋃

i=1

Bi, Λd = Λd,1 + Λd,2, (2.12)

where

Λd,1 = Λd ∩ Vd, Λd,2 = Λd\Λd,1;

Vd =

{

θ : −2 +
d√
2
≤ θ1 ≤ 0,

−θ2
1

4
+
d2

8
< θ2 ≤ 1 + θ1

}

∪
{

θ : 0 ≤ θ1 ≤ 2 − d√
2
,
−θ2

1

4
+
d2

8
≤ θ2 ≤ 1 − θ1

}

;
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Bi are open balls of radius d > 0 centered at the apexes (−2,−1), (2,−1).

In view of Theorem 1.1, it suffices to study the properties of Mn only

for the parametric subset Λd,1 and the apexes (−2,−1), (2,−1). In the case

of Λd,1, one can use the transformation (2.7) with

Q =





1 −b

1 −a



 , (2.13)

where −1 ≤ a < b ≤ 1. Substituting (2.7) and (2.13) in Mn (1.3) yields

Mn = Q−1Sn(Q′)−1 = Q−1R−1
n JnR

−1
n (Q′)−1, (2.14)

where

Sn =





(u, u)n (u, v)n

(u, v)n (v, v)n



 , Rn =





(u, u)
−1/2
n 0

0 (v, v)
−1/2
n



 ,

Jn = RnSnRn =





1 ξn

ξn 1



 , (2.15)

ξn = (u, u)−1/2
n (v, v)−1/2

n (u, v)n , (u, v)n =

n
∑

k=1

uk−1vk−1. (2.16)

Proposition 2.2. Under conditions of Theorem 2.1, for any d > 0, δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ

(

‖Jτ(h) − T (θ1, θ2)‖ > δ
)

= 0, (2.17)

where

T (θ1, θ2) =





1 r(a, b)

r(a, b) 1



 , r(a, b) =

√
1 − a2

√
1 − b2

1 − ab
. (2.18)

The proof of Proposition 2.2 is given in the Appendix.

Further we consider the asymptotic behaviour of the matrix Jn in the

extreme cases when the process xk is ”most” unstable, that is, θ coincides

with one of the apexes (−2,−1), (2,−1) of the parametric region [Λ].
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For θ = (2,−1) we take the matrix Q from (2.8). This yields

uk =

k
∑

j=0

j
∑

i=0

εi, vk =

k
∑

j=0

εj , k ≥ 1, u0 = v0 = ε0 = 0. (2.19)

For θ = (−2,−1) we take

Q =





1 0

1 1



 .

This implies

uk = (−1)k
k
∑

j=1

j
∑

i=1

(−1)iεi, vk =

k
∑

j=1

(−1)jεj .

Lemma 2.3. Let ξn be given by (2.16) and θ ∈ {(−2,−1), (2,−1)}. Then

ξn
L

=⇒







ϕ(W ) if θ = (2,−1),

ϕ(W1) if θ = (−2,−1),
as n→ ∞, (2.20)

where

ϕ(W ) = 2−1J −1/2
2 (W ; 1)J −1/2

1 (W ; 1)J4(W ; 1). (2.21)

The proof of Lemma 2.3 is given in the Appendix.

3 Asymptotic normality.

It is known that the sequential least squares estimate (1.6),(1.7) is asymp-

totically normal just like the ordinary LSE for any value of θ in the stability

region Λ. Moreover, according to Theorem 1.1, this convergence of sequen-

tial LSE to normal law is uniform in θ belonging to any compact set in

Λ supplemented with the part of its boundary corresponding to complex

roots of the polynomial (1.2). In this section, we will show that in contrast

with the ordinary LSE (c.f. Chen and Wei (1988)), the sequential LSE is

asymptotically normal also on the boundary ∂Λ of the stability region Λ.
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Theorem 3.1. Suppose that in AR(2) model (1.1), (εn)n≥1 is a sequence

of i.i.d. random variables, Eεn = 0 and 0 < Eε2n = σ2 < ∞. Define

τ(h), θ(τ(h)) and Mτ(h) as in (1.6),(1.7) and (1.3). Then for any θ ∈ [Λ]

lim
h→∞

sup
t∈R2

∣

∣

∣
Pθ

(

M
1/2
τ(h)(θ(τ(h)) − θ) ≤ t

)

− Φ2(t/σ)
∣

∣

∣
= 0, (3.1)

where Φ2(t) = Φ(t1)Φ(t2), t = (t1, t2)
′, Φ is the standard normal distribu-

tion function; [Λ] is the closure of the stability region (1.4).

Proof of Theorem 3.1 In view of Theorem 1.1, we have to show (3.1)

for θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1), (−2,−1), (2,−1)}. First we note that if θ ∈ Γ1 ∪

Γ2 ∪ {(0, 1)}, the minimal and the maximal roots a and b of the polynomial

(1.2) satisfy the inequalities −1 ≤ a < b ≤ 1. Therefore one can use the

transformation (2.7),(2.13) to decompose the original process AR(2) (1.1)

into two processes (uk) and (vk) which obey the equations

uk = auk−1 + εk, vk = bvk−1 + εk, u0 = v0 = 0. (3.2)

Since the matrix Q in (2.13) is non-degenerate, one can represent the ob-

served Fisher information matrix Mn in the form (2.14) to obtain

M1/2
n = Q−1R−1

n J1/2
n . (3.3)

Substituting this matrix in the standardized deviation of the sequential es-

timate (1.6), one gets

M
1/2
τ(h)(θ(τ(h)) − θ) = M

−1/2
τ(h)

τ(h)
∑

k=1

Xk−1εk

= J
−1/2
τ(h) Rτ(h)

τ(h)
∑

k=1

QXk−1εk = J
−1/2
τ(h) Zτ(h),

where

Zn =





(u, u)
−1/2
n

∑n
k=1 uk−1εk

(v, v)
−1/2
n

∑n
k=1 vk−1εk



 . (3.4)
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Further we note that Proposition 2.2 implies that, for any δ > 0,

lim
h→∞

sup
θ∈Γ1∪Γ2∪{(0,1)}

Pθ

(

‖J−1/2
τ(h) − I‖ > δ

)

= 0 . (3.5)

Therefore in order to prove (3.1) for θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1)} it suffices to

establish the following result.

Proposition 3.2. Let θ ∈ Γ1∪Γ2∪{(0, 1)}. Then, for each constant vector

λ = (λ1, λ2)
′ ∈ R2 with ‖λ‖ = 1, the random variable

Yh = λ
′

Zτ(h)/σ (3.6)

is asymptotically normal with mean 0 and unit variance, as h→ ∞, that is,

lim
h→∞

sup
t∈R

|Pθ(Yh ≤ t) − Φ(t)| = 0.

The main difficulty in the analysis of Yh is that the stopping time (1.7)

enables one to control the sums (u, u)τ(h), (v, v)τ(h) in the denominators of

(3.6) only partially because one of them or both are random variables even

in the asymptotics as h→ ∞.

The proof of Proposition 3.2 is given in the Appendix. The key idea of

the proof is to replace Yh by a more tractable random variable Ỹh equivalent

to Yh in distribution by making use of the Skorohod coupling theorem and

then apply the Central Limit Theorem for martingales. The appendix con-

tains also the proof of Theorem 3.1 for the case of θ ∈ {(−2,−1), (2,−1)}.

This case is considered separately because the matrix Jn in (3.3) converges,

according to Lemma 2.3, only in distribution.

4 Asymptotic normaliy in the case of unknown

variance.

In this section, we extend the sequential estimation scheme to model (1.1)

with unknown variance. It is shown that the sequential least squares es-

13



timate modified to embrace this case remains asymptotically normal uni-

formly in θ for any compact set in the region Λ1 = Λ ∪ Γ3 (Th. 4.1) and it

is asymptotically normal in the closure of the stability region [Λ] (Th. 4.2).

Suppose that the variance σ2 in (1.1) is unknown. A commonly used

estimate for σ2 in autoregression processes on the basis of observations

(x1, . . . , xn) is defined as

σ̂2
n = n−1

n
∑

k=1

(xk − θ
′

(n)Xk−1)
2 , (4.1)

where θ(n) is the least squares estimate of θ defined in (1.3). Now we must

modify the stopping time (1.7). At first sight, to this end one should replace

σ2 in (1.7) by σ̂2
n. However, we will use a different modification similar to

that proposed by Lai and Siegmund for AR(1) model, which turns out to be

more convenient in the theoretic studies. Define the sequential estimate as

θ(τ̂ (h)) = M−1
τ̂ (h)

τ̂(h)
∑

k=1

Xk−1xk , (4.2)

τ̂(h) = inf{n ≥ 3 :

n
∑

k=1

(x2
k−1 + x2

k−2) ≥ hs2n} , (4.3)

where s2n = σ̂2
n ∨ δn, δn is a sequence of positive numbers with δn → 0.

The main results of this section are stated in the following theorems.

Theorem 4.1. Let (εn)n≥1 in (1.1) be a sequence of i.i.d. random variables,

Eεn = 0, 0 < Eε2n = σ2 <∞. Then, for any compact set K ⊂ Λ1,

lim
h→∞

sup
θ∈K

sup
t∈R2

|Pθ

(

M
1/2
τ̂(h)(θ(τ̂(h)) − θ)/σ̂τ̂(h) ≤ t

)

− Φ2(t)| = 0, (4.4)

where Φ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution function,

Λ1 = {θ = (θ1, θ2)
′ : −1 + θ2 < θ1 < 1 − θ2, −1 ≤ θ2 < 1}, t = (t1, t2)

′ .
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Theorem 4.2. Let (εn)n≥1 in (1.1) be a sequence of i.i.d. random variables,

Eεn = 0, 0 < Eε2n = σ2 <∞. Then, for any θ ∈ [Λ],

lim
h→∞

sup
t∈R2

|Pθ

(

M
1/2
τ̂ (h)(θ(τ̂(h)) − θ)/σ̂τ̂(h) ≤ t

)

− Φ2(t)| = 0 .

The proofs of Theorems 4.1- 4.2 proceed along the lines of those of The-

orems 1.1 and 3.1 though they become more laborious because one needs to

control the additional terms appearing as a result of the unknown variance.

We will give only the proof of Theorems 4.1.

Proof of Theorems 4.1. Substituting (1.1) in (4.2) yields

M
1/2
τ̂(h)(θ(τ̂(h)) − θ)/σ̂τ̂ (h) = M

−1/2
τ̂(h)

τ̂(h)
∑

k=1

Xk−1εk/σ̂τ̂(h)

=
(

Mτ̂(h)σ̂
2
τ̂(h)/(σ

4h/2)
)−1/2

τ̂(h)
∑

k=1

Xk−1εk/(σ
2
√

h/2) . (4.5)

Further we need the following results.

Lemma 4.3. Let Mn, τ̂(h) be given by (1.3), (4.3). Then, for any compact

set K ⊂ Λ1 and δ > 0,

lim
h→∞

sup
θ∈K

Pθ

(

‖Mτ̂ (h)σ̂
2
τ̂(h)/(σ

4h/2) − L(θ1, θ2)‖ > δ
)

= 0 , (4.6)

where

L(θ1, θ2) =





1 θ1/(1 − θ2)

θ1/(1 − θ2) 1



 .

Lemma 4.4. Under the assumptions of Theorem 1.1, for any compact set

K ⊂ Λ1 and for each constant vector λ = (λ1, λ2)
′

with ‖λ‖ = 1,

lim
h→∞

sup
θ∈K

sup
t∈R

|Pθ(Yh ≤ t) − Φ(t)| = 0 ,

where

Yh = λ
′

L−1/2(θ1, θ2)

τ̂(h)
∑

k=1

Xk−1εk/(σ
2
√

h/2) .
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The proofs of these Lemmas are given below in this section.

Now we rewrite (4.5) as

M
1/2
τ̂(h)(θ(τ̂ (h)) − θ)/σ̂τ̂ (h) =

(

Mτ̂ (h)σ̂
2
τ̂(h)/(σ

4h/2)
)−1/2

L1/2(θ1, θ2) (4.7)

×L−1/2(θ1, θ2)

τ̂(h)
∑

k=1

Xk−1εk/(σ
2
√

h/2) .

According to Lemma 4.3 we have for each δ > 0

lim
h→∞

sup
θ∈K

Pθ

(

‖
(

Mτ̂(h)σ̂
2
τ̂(h)/(σ

4h/2)
)−1/2

L1/2(θ1, θ2) − I‖ > δ

)

= 0 .

From here and (4.7) by applying Lemma 4.4, we come to (4.4). This com-

pletes the proof of Theorem 4.1.

In order to prove Lemmas 4.3, 4.4, we need the following result.

Proposition 4.5. Let θ(n) and σ̂2
n be given by (1.3) and (4.1). Then, for

any compact set K ⊂ Λ1 and δ > 0,

lim
m→∞

sup
θ∈K

Pθ (‖θ(n) − θ‖ > δ for some n ≥ m) = 0 , (4.8)

lim
m→∞

sup
θ∈K

Pθ

(

|σ̂2
n − σ2| > δ for some n ≥ m

)

= 0 . (4.9)

Proof. We have

θ(n) − θ = (Mn/(x, x)n)−1 (x, x)−1
n

n
∑

k=1

Xk−1εk .

By Lemma 3.3 in [7], for any δ > 0 and any compact K ⊂
◦
Λ= [Λ] \

{(0, 1), (−2,−1), (2,−1)},

lim
m→∞

sup
θ∈K

Pθ (‖Mn/(x, x)n − L(θ1, θ2)‖ > δ for some n ≥ m) = 0 . (4.10)

Further it will be observed that, for any 0 < C < ∞ and compact set

K, there exists a positive number ∆ that, for all matrices L(θ1, θ2) with

θ = (θ1, θ2)
′ ∈ K and B such that ‖B−L(θ1, θ2)‖ < ∆, one has ‖B−1‖ ≤ C.
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Let C,B be such a pair. Then, for each θ ∈ K, we have the inclusions

(‖θ(n) − θ‖ > δ for some n ≥ m)

⊆
(

‖(Mn/(x, x)n)−1‖(x, x)−1
n ‖

n
∑

k=1

Xk−1εk‖ > δ for some n ≥ m

)

= (•) ⊆ (•, ‖Mn/(x, x)n − L(θ1, θ2)‖ ≤ ∆ for all n ≥ m)

∪ (•, ‖Mn/(x, x)n − L(θ1, θ2)‖ > ∆ for some n ≥ m)

⊂
(

C (x, x)−1
n ‖

n
∑

k=1

Xk−1εk‖ > δ for some n ≥ m

)

∪ (‖Mn/(x, x)n − L(θ1, θ2)‖ > ∆ for some n ≥ m) .

This yields

Pθ(‖θ(n) − θ‖ > δ for some n ≥ m)

≤ Pθ

(

(x, x)−1
n ‖

n
∑

k=1

Xk−1εk‖ > δ
′

for some n ≥ m

)

+Pθ (‖Mn/(x, x)n − L(θ1, θ2)‖ > ∆ for some n ≥ m) , δ
′

= δ/C .

By Lemmas 3.2,3.3 from [7], limiting m→ ∞, we come to (4.8).

Consider (4.9). Rewrite σ̂2
n in (4.1) as

σ̂2
n = n−1

n
∑

k=1

(εk + (θ − θ(n))
′

Xk−1)
2 = n−1

n
∑

k=1

ε2k

+2n−1(θ − θ(n))
′

n
∑

k=1

Xk−1εk + n−1(θ − θ(n))
′

n
∑

k=1

Xk−1X
′

k−1(θ − θ(n)) .

Substituting here θ(n) from (1.3) yields

σ̂2
n − σ2 =

(

n−1
n
∑

k=1

ε2k − σ2

)

− 2n−1

(

n
∑

k=1

X
′

k−1εk

)

M−1
n

n
∑

k=1

Xk−1εk

+n−1

(

n
∑

k=1

X
′

k−1εk

)

M−1
n MnM

−1
n

n
∑

k=1

Xk−1εk

=

(

n−1
n
∑

k=1

ε2k − σ2

)

− n−1

(

n
∑

k=1

X
′

k−1εk

)

M−1
n

n
∑

k=1

Xk−1εk
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=

(

n−1
n
∑

k=1

ε2k − σ2

)

− 1

n (x, x)n

(

n
∑

k=1

X
′

k−1εk

)

(Mn/(x, x)n)−1
n
∑

k=1

Xk−1εk .

The first term in the right-hand side of this equality converges to zero in

virtue of the strong law of large numbers. Therefore, in order to prove (4.9),

we have to verify that, for each K ⊂ Λ1 and δ > 0,

lim
m→∞

sup
θ∈K

Pθ

(

1

n

(

n
∑

k=1

X
′

k−1εk

)

M−1
n

n
∑

k=1

Xk−1εk > δ for some n ≥ m

)

= 0

In view of Lemma 3.3 in [7], it is equivalent to the following limiting relations

lim
m→∞

sup
θ∈K

Pθ





∣

∣

∣

∣

∣

n
∑

k=1

xk−1εk

∣

∣

∣

∣

∣

2

> δn(x, x)n for some n ≥ m



 = 0 , (4.11)

lim
m→∞

sup
θ∈K

Pθ





∣

∣

∣

∣

∣

n
∑

k=1

xk−2εk

∣

∣

∣

∣

∣

2

> δn(x, x)n for some n ≥ m



 = 0 . (4.12)

To prove these relations we will make use of Lemma 2.2 from [10]. First we

note that the matrix A defined in (2.2) possesses the property (see, [7]):

sup
θ∈K

‖An‖ ≤ κ, n = 1, 2, . . . , (4.13)

where κ is some positive number. This implies the following inequality

(x, x)n ≤ κ2
n
∑

k=1

(

k
∑

j=1

|εj |)2 =: Un . (4.14)

Indeed, writing down (1.1) in the vector form

Xk = AXk−1 + ξk, ξk = (εk, 0)
′

,

and using the formula Xk =
∑k

j=1 A
k−jξj, lead to the estimate

|xk| ≤ ‖Xk‖ ≤ κ
k
∑

j=1

|εj |

and, hence, to (4.14). By making use of the law of iterated logarithm and

the Kronecker Lemma, one can show that Un in (4.14) satisfies the following

relation

Un = o(n4) a.s. (4.15)
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Now let us prove, for example, (4.11). From the inequality under the sign

of probability in (4.11), it follows that

∣

∣

∣

∣

∣

n
∑

k=1

xk−1εk

∣

∣

∣

∣

∣

> δ1/2(x, x)5/8
n

(

n4/(x, x)n

)1/8

≥ δ1/2(x, x)5/8
n

(

n4/Un

)1/8
. (4.16)

This enables us to obtain the following inclusions for ∆ < σ2:

(

|
n
∑

k=1

xk−1εk| > δ1/2n1/2(x, x)1/2
n for some n ≥ m

)

⊆
(

•, |n−1
n
∑

k=1

ε2k − σ2| ≤ ∆ for all n ≥ m

)

∪
(

|n−1
n
∑

k=1

ε2k − σ2| > ∆ for some n ≥ m

)

⊆
(

•, n−1
n
∑

k=1

ε2k > σ2 − ∆ for all n ≥ m

)

∪
(

|n−1
n
∑

k=1

ε2k − σ2| > ∆ for some n ≥ m

)

⊆
(

•, n−1
n
∑

k=1

ε2k > σ2 − ∆ all n ≥ m,Un/n
4 ≤ 1 all n ≥ m

)

∪
(

|n−1
n
∑

k=1

ε2k − σ2| > ∆ for some n ≥ m

)

∪ (
Un

n4
> 1 for some n ≥ m) .

From here one gets

Pθ

(∣

∣

∣

∣

∣

n
∑

k=1

xk−1εk

∣

∣

∣

∣

∣

> δ1/2n1/2(x, x)1/2
n for some n ≥ m

)

≤ Pθ

(∣

∣

∣

∣

∣

n
∑

k=1

xk−1εk

∣

∣

∣

∣

∣

> δ1/2
(

4−1n3/2(σ2 − ∆) ∨ (x, x)5/8
n

)

for some n ≥ m

)

+Pθ

(

| 1
n

n
∑

k=1

ε2k − σ2| > ∆ for some n ≥ m

)

+Pθ

(

Un

n4
> 1 for some n ≥ m

)

.
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In order to come to (4.11), it remains to use Lemma 2.2 from [10], the

strong law of large numbers and put m→ ∞ . This completes the proof of

Proposition 4.5.

Proof of Lemma 4.3. We start with the representation

Mτ̂(h)σ̂
2
τ̂(h)

σ4h/2
=

Mτ̂(h)

(x, x)τ̂ (h)

·
(x, x)τ̂ (h)

2−1
∑τ̂(h)

k=1 ‖Xk−1‖2
·
∑τ̂(h)

k=1 ‖Xk−1‖2

hs2τ̂(h)

·
s2τ̂(h)

σ2
·
σ̂2

τ̂(h)

σ2
.

It suffices to show, for any δ > 0, the limiting relations

lim
h→∞

sup
θ∈K

Pθ

(

‖Mτ̂ (h)/(x, x)τ̂ (h) − L(θ1, θ2)‖ > δ
)

= 0 , (4.17)

lim
h→∞

sup
θ∈K

P
θ





∣

∣

∣

∣

∣

∣

(x, x)τ̂ (h)



2−1

τ̂(h)
∑

k=1

‖Xk−1‖2





−1

− 1

∣

∣

∣

∣

∣

∣

> δ



 = 0 , (4.18)

lim
h→∞

sup
θ∈K

Pθ





∣

∣

∣

∣

∣

∣

τ̂(h)
∑

k=1

‖Xk−1‖2/(hs2τ̂(h)) − 1

∣

∣

∣

∣

∣

∣

> δ



 = 0 , (4.19)

lim
h→∞

sup
θ∈K

P
θ

(

|s2τ̂(h)/σ
2 − 1| > δ

)

= 0 , (4.20)

lim
h→∞

sup
θ∈K

Pθ

(

|σ̂2
τ̂(h)/σ

2 − 1| > δ
)

= 0 . (4.21)

Consider (4.17). We have

Pθ

(

‖Mτ̂(h)/(x, x)τ̂ (h) − L(θ1, θ2)‖ > δ
)

≤ Pθ(τ̂(h) ≤ m) (4.22)

+Pθ (‖Mn/(x, x)n − L(θ1, θ2)‖ > δ for some n ≥ m) .

In view of (4.10), we need to check only that, for each sufficiently large m,

lim
h→∞

sup
θ∈K

Pθ(τ̂ (h) ≤ m) = 0 . (4.23)

Let m0 be a number such that, for all m ≥ m0, the sequence (δm) satisfies

the inequality δm ≤ σ2/2. By the definition of the stopping time τ̂(h) in

(4.3), it follows that

P
θ
(τ̂(h) ≤ m) = P

θ
(

m
∑

k=1

‖Xk−1‖2 ≥ hs2m)
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= Pθ(

m
∑

k=1

‖Xk−1‖2 ≥ hδm, δm ≥ σ̂2
m) + Pθ(

m
∑

k=1

‖Xk−1‖2 ≥ hσ̂2
m, δm < σ̂2

m)

≤ Pθ(σ̂2
m ≤ δm) + Pθ

(

m
∑

k=1

‖Xk−1‖2 ≥ hσ̂2
m

)

≤ P
θ
(|σ̂2

m − σ2| ≥ σ2/2) + P
θ

(

m
∑

k=1

‖Xk−1‖2 ≥ hσ̂2
m

)

. (4.24)

Further we have

P
θ

(

m
∑

k=1

‖Xk−1‖2 ≥ hσ̂2
m

)

= P
θ
(•, |σ̂2

m −σ2| ≤ ∆)+P
θ
(•, |σ̂2

m −σ2| > ∆)

≤ P
θ

(

m
∑

k=1

‖Xk−1‖2 ≥ h(σ2 − ∆)

)

+ P
θ
(|σ̂2

m − σ2| > ∆) . (4.25)

The inequalities (4.24),(4.25), in view of Proposition 4.5, imply (4.23). This

leads to (4.17). To show (4.18) we use the identity

(x, x)n = 2−1
n
∑

k=1

‖Xk−1‖2 + x2
n−1/2 ,

(4.23) and apply Lemma 3.1 from [7]. The relations (4.19)-(4.21) can be

checked in a similar way. This completes the proof of Lemma 4.3.

Proof of Lemma 4.4. We will use the argument similar to that in

the proof of Proposition 2.1 in [10]. First we introduce a sequence (x̂n) of

truncated observations (xn) defined as

x̂n =







xn if x2
n ≤ δ2h ,

δ
√
h if x2

n > δ2h, 0 < δ < 1 ,

and the set

Ω̂h = (xn = x̂n for all n < τ̂h) .

Along the lines of the proof of Proposition 2.1, one can verify that

lim
h→∞

sup
θ∈K

P
θ
(Ω̂c

h) = 0 . (4.26)
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Further we introduce stopping times T̃h and Th as

T̃h = inf{n ≥ 3 :

n
∑

k=1

(x̂2
k−1 + x̂2

k−2) ≥ h(σ̃2
n−1 ∨ δn)} ,

Th = inf{n ≥ 3 :
n
∑

k=1

(x̂2
k−1 + x̂2

k−2) ≥ h(σ2 ∨ δn)} , (4.27)

where

σ̃2
n−1 = n−1

n
∑

k=1

(x̂k−1 − θ̃
′

(n)X̂k−1)
2 ,

θ̃(n) =

(

n
∑

k=1

X̂k−1X̂
′

k−1

)−1 n
∑

k=1

X̂k−1x̂k .

On the set Ω̂h, we have T̃h = τ̂(h), σ̃2
n = σ̂2 and θ̃(n) = θ(n).

Now we write down Yh as

Yh =
Kθ

σ2
√
h

T̃h
∑

k=1

X̂k−1εk1Ω̂h
+

Kθ

σ2
√
h

τ̂(h)
∑

k=1

Xk−1εk1Ω̂c
h

=
Kθ

σ2
√
h

T̃h
∑

k=1

X̂k−1εk +
Kθ

σ2
√
h





τ̂h
∑

k=1

Xk−1εk −
T̃h
∑

k=1

X̂k−1εk



1Ω̂c
h

=
K

θ

σ2
√
h

Th
∑

k=1

X̂k−1εk +
K

θ

σ2
√
h





τ̂h
∑

k=1

Xk−1εk −
T̃h
∑

k=1

X̂k−1εk



1Ω̂c
h

+
K

θ

σ2
√
h





T̃h
∑

k=1

X̂k−1εk −
Th
∑

k=1

X̂k−1εk



 = Ỹh + rh , (4.28)

where 1A is the indicator of a set A, Kθ =
√

2λ
′

L−1/2(θ1, θ2),

Ỹh =
K

θ

σ2
√
h

Th
∑

k=1

X̂k−1(ε̃k −Eε̃k) , (4.29)

rh =
Kθ

σ2
√
h

Th
∑

k=1

X̂k−1(˜̃εk −E˜̃εk) +
Kθ

σ2
√
h

(

X̂T̃h−1εT̃h
− X̂Th−1εTh

)

(4.30)

+ηh +
K

θ

σ2
√
h





τ̂h
∑

k=1

Xk−1εk −
T̃h
∑

k=1

X̂k−1εk



1Ω̂c
h
,
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ηh =
Kθ

σ2
√
h





T̃h−1
∑

k=1

X̂k−1εk −
Th−1
∑

k=1

X̂k−1εk



 ,

ε̃k = εk1(|εk|≤1/
√

δ),
˜̃εk = εk1(|εk|>1/

√
δ) .

Let us show that

lim
h→∞

sup
θ∈K

Pθ(|rh| > δ) = 0 , (4.31)

lim
h→∞

sup
θ∈K

sup
t∈R

∣

∣

∣
P

θ
(Ỹh ≤ t) − Φ(t)

∣

∣

∣
= 0 . (4.32)

The first term in the right-hand side of (4.30) can be estimated as

E
θ
(
Kθ

σ2
√
h

Th
∑

k=1

X̂k−1(˜̃εk−E˜̃εk))
2 ≤ ‖K

θ
/(σ2

√
h)‖2E

θ

Th
∑

k=1

‖X̂k−1‖2E(˜̃εk−E˜̃εk)
2

≤ ‖Kθ/(σ
2
√
h)‖2Eθ

(

h(σ2 ∨ δTh
) + hδ2

)

D(˜̃ε1)

≤ ‖ Kθ

σ2
√
h
‖2

(

(σ2 ∨ sup
n≥1

δn) + δ2
)

D(˜̃ε1) .

From here, limiting δ → 0 we obtain

lim
δ→0

sup
h>0

sup
θ∈K

E
θ

(

Kθ

σ2
√
h

Th
∑

k=1

X̂k−1(˜̃εk −E˜̃εk)

)2

= 0 . (4.33)

The second term in (4.30) can be estimated as

E
θ

(

Kθ

σ2
√
h
X̂T̃h−1εT̃h

)2

≤ ‖ Kθ

σ2
√
h
‖2E

θ
‖X̂T̃h−1‖2Eε2

T̃h

≤ ‖Kθ/(σ
2
√
h)‖2δ2hEε2

T̃h
= ‖K

θ/σ2‖2δ2.

Therefore one gets

lim
δ→0

sup
h>0

sup
θ∈K

Eθ(
K

θ

σ2
√
h
X̂T̃h−1εT̃h

)2 = 0 . (4.34)

Further we note that

E
θ
η2

h ≤ ‖K
θ
/(σ2

√

h/2)‖2E
θ
th , (4.35)

where

th =

∣

∣

∣

∣

∣

∣

1

σ2h

T̃h−1
∑

k=1

‖X̂k−1‖2 − 1

σ2h

Th−1
∑

k=1

‖X̂k−1‖2

∣

∣

∣

∣

∣

∣

.
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Let us estimate th. If Th ≥ T̃h, then

th ≤ 1

σ2h

Th−1
∑

k=1

‖X̂k−1‖2 ≤ h(σ2 ∨ δTh
)

σ2h
≤ (1 ∨ (σ−2 sup

n≥1
δn)) . (4.36)

This estimate is also true in the case when Th < T̃h because then σ̃2
Th−1 < σ2

and, hence,

th ≤ 1

σ2h

T̃h−1
∑

k=1

‖X̂k−1‖2 ≤ h

σ2h
(σ̃2

T̃h−1
∨ δT̃h

) ≤ (1 ∨ (σ−2 sup
n≥1

δn)) .

Thus

th ≤
(

1 ∨ (σ−2 sup
n≥1

δn)

)

.

Now we will show that, for any ∆ > 0,

lim
h→∞

sup
θ∈K

P
θ
(th ≥ ∆) = 0 . (4.37)

We have the following estimate

th ≤

∣

∣

∣

∣

∣

∣

1

σ2h

T̃h−1
∑

k=1

‖X̂k−1‖2 − 1

σ2
(σ̃2

T̃h−1
∨ δT̃h

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

1

σ2
(σ̃2

T̃h−1
∨ δT̃h

) − (1 ∨ δTh

σ2
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(1 ∨ δTh

σ2
) − 1

σ2h

Th−1
∑

k=1

‖X̂k−1‖2

∣

∣

∣

∣

∣

.

From the definitions of T̃h and Th, it follows that

1

σ2h

T̃h−1
∑

k=1

‖X̂k−1‖2 ≤ h

σ2h
(σ̃2

T̃h−1
∨ δT̃h

) ≤ 1

σ2h

T̃h
∑

k=1

‖X̂k−1‖2 ,

1

σ2h

Th−1
∑

k=1

‖X̂k−1‖2 ≤ h

σ2h
(σ2 ∨ δTh

) ≤ 1

σ2h

Th
∑

k=1

‖X̂k−1‖2 .

Therefore

0 ≤ 1

σ2
(σ̃2

T̃h−1
∨ δT̃h

) − 1

σ2h

T̃h−1
∑

k=1

‖X̂k−1‖2 ≤ 1

σ2h
‖X̂T̃h−1‖2 ,

0 ≤ (1 ∨ σ−2δTh
) − 1

σ2h

Th−1
∑

k=1

‖X̂k−1‖2 ≤ 1

σ2h
‖X̂Th−1‖2
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and this leads to the estimate

th ≤ (σ2h)−1‖X̂T̃h−1‖2 + (σ2h)−1‖X̂Th−1‖2 + ζh ,

where ζh =
∣

∣

∣
σ−2(σ̃2

T̃h−1
∨ δT̃h

) − (1 ∨ (σ−2δTh
))
∣

∣

∣
.

Now we have to verify that, for any ∆ > 0,

lim
h→∞

sup
θ∈K

P
θ
((σ2h)−1‖X̂T̃h−1‖2 > ∆) = 0 . (4.38)

lim
h→∞

sup
θ∈K

Pθ((σ2h)−1‖X̂Th−1‖2 > ∆) = 0 , (4.39)

lim
h→∞

sup
θ∈K

Pθ(ζh > ∆) = 0 . (4.40)

For any ∆ > 0 and 0 < ∆̃ < 1, one has the inclusions

(

(σ2h)−1‖X̂T̃h−1‖2 > ∆
)

⊂
(

(σ2h)−1‖X̂T̃h−1‖2 > ∆, Ω̂h

)

∪ Ω̂c
h

⊂
(

(σ2h)−1‖Xτ̂ (h)−1‖2 > ∆, Ω̂h

)

∪ Ω̂c
h

⊂ (τ̂(h) ≤ m) ∪
(

(σ2h)−1‖Xτ̂ (h)−1‖2 > ∆, Ω̂h, τ̂ (h) > m
)

∪ Ω̂c
h

⊂ (τ̂(h) ≤ m) ∪
(

‖σ2 s−2
τ̂(h)

− 1‖ > ∆̃
)

∪ Ω̂c
h

∪



‖Xτ̂ (h)−1‖2 > ∆(1 − ∆̃)

τ̂(h)
∑

k=1

‖Xk−1‖2, τ̂(h) > m





⊂ (τ̂(h) ≤ m) ∪
(

‖σ2 s−2
τ̂(h)

− 1‖ > ∆̃
)

∪ Ω̂c
h

∪(‖Xn−1‖2 > ∆(1 − ∆̃)
n
∑

k=1

‖Xk−1‖2 for some n > m) .

This yields the inequality

Pθ

(

(σ2h)−1‖X̃T̃h−1‖2 > ∆
)

≤ Pθ(τ̂(h) ≤ m) + Pθ

(

‖σ2 s−2
τ̂(h) − 1‖ > ∆̃

)

+P
θ
(Ω̂c

h) + P
θ
(‖Xn−1‖2 > ∆(1 − ∆̃)

n
∑

k=1

‖Xk−1‖2 for some n > m) .

From here, (4.9),(4.23),(4.26) and Lemma 3.1 from [7], we come to (4.38).

In a similar way one can check (4.39).
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Further, for sufficiently large m, we have the inclusions

(ζh > ∆) = (ζh > ∆, T̃h ≤ m,Th ≤ m) ∪ (ζh > ∆, T̃h > m or Th > m)

⊂ (Th ≤ m) ∪ (ζh > ∆, T̃h > m,Th > m) ∪ (ζh > ∆, T̃h > m,Th ≤ m)

∪(ζh > ∆, T̃h ≤ m,Th > m) ⊂ (Th ≤ m) ∪ (T̃h ≤ m)

∪(ζh > ∆, T̃h > m,Th > m) ⊂ (Th ≤ m)∪ (T̃h ≤ m)∪ (|σ̃2
T̃h−1

σ−2−1| > ∆) .

This implies

P
θ
(ζh > ∆) ≤ P

θ
(Th ≤ m) + P

θ
(T̃h ≤ m) + P

θ

(

|σ̃2
T̃h−1

σ−2 − 1| > ∆
)

.

(4.41)

From the definition of Th in (4.27), it follows that for sufficiently large m

Pθ(Th ≤ m) = Pθ(

m
∑

i=1

‖X̂i−1‖2 ≥ h(σ2 ∨ δm)) ≤ Pθ(

m
∑

i=1

‖Xi−1‖2 ≥ hσ2)

and, hence,

lim
h→∞

sup
θ∈K

P
θ
(Th ≤ m) = 0 . (4.42)

Let us estimate the second term in the right-hand side of (4.41). In view of

(4.27), one has the inclusion

(T̃h ≤ m) =

(

m
∑

i=1

‖X̂i−1‖2 ≥ h(σ̃2
m−1 ∨ δm)

)

⊂
(

m
∑

i=1

‖X̂i−1‖2 ≥ hδm

)

.

Thus

Pθ(T̃h ≤ m) ≤ Pθ

(

m
∑

i=1

‖X̂i−1‖2 ≥ hδm

)

and one gets

lim
h→∞

sup
θ∈K

P
θ
(T̃h ≤ m) = 0 . (4.43)

It remains to consider the last term in the right-hand side of (4.41). We

have the following inclusions

(

|σ̃2
T̃h−1

σ−2 − 1| > ∆
)

⊂ (T̃h ≤ m) ∪
(

|σ̃2
T̃h−1

σ−2 − 1| > ∆, T̃h > m, Ω̂h

)
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∪Ω̂c
h ⊂

(

|σ̃2
T̃h−1

σ−2 − 1| > ∆, τ̂(h) > m
)

∪ (T̃h ≤ m) ∪ Ω̂c
h

⊂ (T̃h ≤ m) ∪
(

|σ̃2
nσ

−2 − 1| > ∆ for some n ≥ m− 1
)

∪ Ω̂c
h .

This yields

P
θ

(

|σ̃2
T̃h−1

σ−2 − 1| > ∆
)

≤ P
θ
(T̃h ≤ m) + P

θ
(Ω̂c

h)

+P
θ

(

|σ̃2
n − σ2| > σ2∆ for some n ≥ m− 1

)

.

From here, (4.9), (4.26), and (4.43) we come to (4.40). Taking into account

(4.38)-(4.40) we have proved (4.37). Combining (4.35), (4.36) and (4.37)

yields

lim
h→∞

sup
θ∈K

Eθη
2
h = 0 . (4.44)

From (4.30), (4.33), (4.34) and (4.44) we derive (4.31).

In order to complete the proof of Lemma 4.4, it remains to show (4.32).

Define the set

Ω̃h = (xn = x̂n for all n < Th) .

By the definition of Th in (4.27) one gets

P
θ
(Ω̃c

h) ≤
m
∑

k=1

P
θ
(x2

k−1 > δ2h)

+P
θ

(Th > m,xn 6= x̂n for some m ≤ n < Th)

≤
m
∑

k=1

P
θ
(x2

k−1 > δ2h) + P
θ

(

x2
n ≥ δ2

n
∑

i=1

(x̂2
i−1 + x̂2

i−2) for some n ≥ m

)

.

It can be proved that for the unstable model (1.1)

lim
h→∞

sup
θ∈K

P
θ

(

x2
n ≥ δ2

n
∑

i=1

(x̂2
i−1 + x̂2

i−2) for some n ≥ m

)

= 0 .

Therefore

lim
h→∞

sup
θ∈K

Pθ(Ω̃c
h) = 0 .
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Let

T0(h) = inf{n ≥ 3 :

n
∑

i=1

(x2
i−1 + x2

i−2) ≥ h(σ2 ∨ δn)} .

Since, Th = T0(h) on the set Ω̃h, we rewrite Ỹh defined in (4.29) as

Ỹh =
Kθ

σ2
√
h

Th
∑

k=1

X̂k−1(ε̃k −Eε̃k)1Ω̃h
+

Kθ

σ2
√
h

Th
∑

k=1

X̂k−1(ε̃k −Eε̃k)1Ω̃c
h

=
Kθ

σ2
√
h





Th
∑

k=1

X̂k−1(ε̃k −Eε̃k) −
T0(h)
∑

k=1

Xk−1(ε̃k −Eε̃k)



1Ω̃c
h

+
K

θ

σ2
√
h

T0(h)
∑

k=1

Xk−1(ε̃k −Eε̃k) =
1√
h

T0(h)
∑

k=1

gk−1
(ε̃k −Eε̃k)
√

D(ε̃k)

+
Kθ

σ2
√
h





Th
∑

k=1

X̂k−1(ε̃k −Eε̃k) −
T0(h)
∑

k=1

Xk−1(ε̃k −Eε̃k)



1Ω̃c
h
,

where

gk−1 =
Kθ

σ2
√
h

√

D(ε̃k)Xk−1 .

Further we introduce the stopping time

τ0 = τ0(h) = inf{n ≥ 3 :

n
∑

k=1

g2
k−1 ≥ h}

and represent Ỹh as

Ỹh =
1√
h

τ0(h)
∑

k=1

gk−1
(ε̃k −Eε̃k)
√

D(ε̃k)
+ η(h) + ∆(h) ,

where ∆(h) = ∆1(h) + ∆2(h),

∆1(h) = h−1/2gT0(h)−1εT0(h) ,∆2(h) = −h−1/2gτ0(h)−1ετ0(h) ,

η(h) =
1√
h

T0(h)−1
∑

k=1

gk−1
(ε̃k −Eε̃k)
√

D(ε̃k)
− 1√

h

τ0(h)−1
∑

k=1

gk−1
(ε̃k −Eε̃k)
√

D(ε̃k)

+
Kθ

σ2
√
h





Th
∑

k=1

X̂k−1(ε̃k −Eε̃k) −
T0(h)
∑

k=1

Xk−1(ε̃k −Eε̃k)



1Ω̃c
h
.

Further analysis of Ỹh proceeds along the lines of Lemma 3.7 in [7] and is

omitted. This completes the proof of Lemma 4.4.
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5 Auxiliary propositions.

This section contains the proofs of some results used in this paper.

1. Proof of Proposition 2.2. First we will prove the following three

Lemmas.

Lemma 5.1. Under conditions of Theorem 2.1, for each m = 1, 2, . . . and

for any δ > 0,

lim
h→∞

sup
θ∈[Λ]

Pθ(τ(h) < m) = 0, lim
h→∞

sup
θ∈[Λ]

Pθ(1/τ(h) > δ) = 0. (5.1)

Proof. From the definition of stopping time τ(h) in (1.7) and (4.14), it

follows that

(τ(h) < m) =

(

m
∑

k=1

(x2
k−1 + x2

k−2) > hσ2

)

⊂
(

Um > hσ2
)

.

This implies (5.1). Hence Lemma 5.1.

Lemma 5.2. Under conditions of Theorem 2.1, for any δ > 0,

lim
h→∞

sup
θ∈[Λ]

Pθ





∣

∣

∣

∣

∣

∣

1

τ(h)

τ(h)
∑

k=1

ε2k − σ2

∣

∣

∣

∣

∣

∣

> δ



 = 0 .

Proof. One has

P
θ



| 1

τ(h)

τ(h)
∑

k=1

ε2k − σ2| > δ



 ≤ P
θ
(τ(h) < m)

+P
θ

(

| 1
n

n
∑

k=1

ε2k − σ2| > δ for some n ≥ m

)

.

Applying Lemma 5.1 and the strong law of large number one comes to the

desired result. Hence Lemma 5.2.

Lemma 5.3. Let (uk)k≥0 and (vk)k≥0 be the processes defined in (3.2).

Then, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ

(

|τ(h)(u, u)−1
τ(h) − (1 − a2)/σ2| > δ

)

= 0, (5.2)
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lim
h→∞

sup
θ∈Λd,1

P
θ

(

|τ(h)(v, v)−1
τ(h) − (1 − b2)/σ2| > δ

)

= 0.

Proof. Since these relations are similar, we verify only (5.2). First we

show that, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1,

−θ1+θ2<1

Pθ

(

|τ(h)(u, u)−1
τ(h) − (1 − a2)/σ2| > δ

)

= 0. (5.3)

Squaring both sides of the first equation in (3.2) and summing give

(1 − a2)

τ(h)
∑

j=1

u2
j−1 = u2

0 − u2
τ(h) + 2a

τ(h)
∑

j=1

uj−1εj +

τ(h)
∑

j=1

ε2j .

By making use of this equality one obtains

|τ(h)(u, u)−1
τ(h) − (1 − a2)/σ2|

≤
u2

τ(h)

σ2(u, u)τ(h)

+
2|∑τ(h)

k=1 uk−1εk|
σ2(u, u)τ(h)

+
|∑τ(h)

k=1(ε2k − σ2)|
σ2(u, u)τ(h)

≤
u2

τ(h)

σ2(u, u)τ(h)

+
2|∑τ(h)

k=1 uk−1εk|
σ2(u, u)τ(h)

+
|∑τ(h)

k=1(ε2k − σ2)|
(σ2/4)

∑τ(h)−1
k=1 ε2k

. (5.4)

The last inequality follows from the estimate

n−1
∑

k=1

ε2k ≤ 4

n
∑

k=1

u2
k−1.

By Lemma 5.2, we have to show that, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1,

−θ1+θ2<1

Pθ

(

u2
τ(h)(u, u)

−1
τ(h) > δ

)

= 0, (5.5)

lim
h→∞

sup
θ∈Λd,1,

−θ1+θ2<1

Pθ



|
τ(h)
∑

k=1

uk−1εk|(u, u)−1
τ(h) > δ



 = 0. (5.6)

We have

P
θ

(

u2
τ(h)(u, u)

−1
τ(h)

> δ
)

≤ Pθ(τ(h) < m) (5.7)

+Pθ

(

u2
n(u, u)−1

n > δ for some n ≥ m
)

.
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It is known (see, [10]) that

lim
m→∞

sup
|a|≤1

Pθ



u2
n

(

n
∑

k=1

u2
k−1

)−1

> δ for some n ≥ m



 = 0. (5.8)

Applying this and Lemma 5.1 in (5.7) yields (5.5). To prove (5.6) we use

the representation

∣

∣

∣

∣

∣

∣

τ(h)
∑

k=1

uk−1εk

∣

∣

∣

∣

∣

∣

/(u, u)τ(h) = ζτ(h) max





τ(h)

(u, u)τ(h)

,

(

τ(h)

(u, u)τ(h)

)1/4
1

4
√

τ(h)



 ,

where

ζn =
1

max
(

n, (u, u)
3/4
n

)

∣

∣

∣

∣

∣

n
∑

k=1

uk−1εk

∣

∣

∣

∣

∣

.

By Lemmas 5.1, 5.2 and applying the uniform law of large numbers for mar-

tingales (see [10]) we come to (5.6). Combining (5.4) - (5.5) and Lemma 5.2

one gets (5.3). It remains to show that, for each d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1,

−θ1+θ2=1

Pθ(|τ(h)/(u, u)τ(h) − (1 − a2)/σ2| > δ) = 0. (5.9)

If θ1 + θ2 = 1, then a = −1 and the process uk in (3.2) satisfies the limiting

relation (see, e.g., Lai and Wei (1983))

lim inf
n→∞

n
∑

k=1

u2
k/(n

2/loglogn) =
σ2

4
a.s. (5.10)

By making use of the inequality

Pθ

(

τ(h)

(u, u)τ(h)

> δ

)

≤ Pθ(τ < m) + Pθ

(

n

(u, u)n

> δ for some n ≥ m

)

and (5.10), we come to (5.9). This completes the proof of Lemma 5.3.

Now we can prove Proposition 2.2. We have to show that, for each d > 0

and any δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ

(

|ξτ(h) − r(a, b)| > δ
)

= 0. (5.11)
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Denote

η
(l)
h = Ah

τ(h)
∑

k=l

uk−lvk−l, l = 1, . . . , τ(h), Ah = (u, u)
−1/2
τ(h) (v, v)

−1/2
τ(h) . (5.12)

From equations (3.2), one gets

τ(h)
∑

k=l

uk−lvk−l =

τ(h)
∑

k=l+1

(auk−l−1 + εk−l) (bvk−l−1 + εk−l)

= ab

τ(h)
∑

k=l+1

uk−l−1vk−l−1 + a

τ(h)
∑

k=l+1

uk−l−1εk−l+

+b

τ(h)
∑

k=l+1

vk−l−1εk−l +

τ(h)
∑

k=l+1

ε2k−l, l = 1, . . . , τ(h) − 1.

Substituting this in (5.12) yields

η
(l)
h = abη

(l+1)
h + zτ(h)−l, 1 ≤ l < τ(h),

where

zτ(h)−l = Ah



a

τ(h)
∑

k=l+1

uk−l−1εk−l + b

τ(h)
∑

k=l+1

vk−l−1εk−l +

τ(h)
∑

k=l+1

ε2k−l



 .

(5.13)

Putting ζm = η
(τ(h)−m)
h we come to the equation

ζm = abζm−1 + zm, 1 ≤ m < τ(h), ζ0 = 0.

Solving this equation one finds

ξτ(h) = ζτ(h)−1 =

τ(h)−2
∑

j=0

(ab)jzτ(h)−1−j .

Introducing the sums

Sm =

m
∑

l=0

(ab)l,m ≥ 0, (5.14)

one can rewrite this formula as follows

ξτ(h) = zτ(h)−1 +

τ(h)−2
∑

j=1

(ab)jzτ(h)−1−j (5.15)
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= zτ(h)−1 +

τ(h)−2
∑

j=1

(Sj − Sj−1)zτ(h)−1−j

= zτ(h)−1 +

τ(h)−2
∑

j=1

Sjzτ(h)−1−j −
τ(h)−3
∑

j=0

Sjzτ(h)−2−j

=

τ(h)−2
∑

j=0

Sjzτ(h)−1−j −
τ(h)−3
∑

j=0

Sjzτ(h)−2−j

= Sτ(h)−2z1 +

τ(h)−3
∑

j=0

Sj(zτ(h)−1−j − zτ(h)−2−j).

By making use of (5.13) one can easily verify that

zτ(h)−1−j − zτ(h)−2−j = aAhuτ(h)−2−jετ(h)−j−1

+bAhvτ(h)−2−jετ(h)−j−1 +Ahε
2
τ(h)−j−1.

Substituting this in (5.15) we obtain

ξτ(h) = ξ
(1)
h + ξ

(2)
h + ξ

(3)
h , (5.16)

where

ξ
(1)
h = Ah

τ(h)−1
∑

k=1

Sτ(h)−1−kε
2
k, ξ

(2)
h = aAh

τ(h)−1
∑

k=2

Sτ(h)−1−kuk−1εk, (5.17)

ξ
(3)
h = bAh

τ(h)−1
∑

k=2

Sτ(h)−1−kvk−1εk.

To show (5.11) we have to check that, for each d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1

P
θ
(|ξ(1)

h − r(a, b)| > δ) = 0, (5.18)

lim
h→∞

sup
θ∈Λd,1

P
θ
(|ξ(i)

h | > δ) = 0, i = 2, 3. (5.19)

First we will verify the equalities for some subsets of Λd,1: for any q ∈]0, 1[

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

P
θ
(|ξ(1)

h − r(a, b)| > δ) = 0, (5.20)
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lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

P
θ
(|ξ(i)

h | > δ) = 0, i = 2, 3. (5.21)

Denoting limn→∞ Sn = (1 − ab)−1 = S∗ we rewrite ξ
(1)
h as

ξ
(1)
h = AhS

∗
τ(h)−1
∑

k=1

ε2k +Wh, (5.22)

where

Wh = Ah

τ(h)−1
∑

k=1

(Sτ(h)−1−k − S∗)ε2k. (5.23)

By Lemmas 5.1, 5.3 one gets

AhS
∗

τ(h)−1
∑

k=1

ε2k = S∗
(

τ(h)

(u, u)τ(h)

)1/2(

τ(h)

(v, v)τ(h)

)1/2
1

τ(h)

τ(h)−1
∑

k=1

ε2k (5.24)

=
√

1 − a2
√

1 − b2(1 − ab)−1 + αh,

where αh satisfies, for d > 0, 0 < q < 1, and δ > 0, the limiting relation

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

P
θ
(|αh| > δ) = 0 . (5.25)

For |Wh|, on the set (τ(h) > N + 1), one has the following estimate

|Wh| =

∣

∣

∣

∣

∣

∣

Ah





τ(h)−N−1
∑

k=1

(Sτ(h)−1−k − S∗)ε2k +

τ(h)−1
∑

k=τ(h)−N

(Sτ(h)−1−k − S∗)ε2k





∣

∣

∣

∣

∣

∣

≤ max
n≥N

|Sn − S∗|Ah

τ(h)−N−1
∑

k=1

ε2k + max
n≥1

|Sn − S∗|Ah

τ(h)−1
∑

k=τ(h)−N

ε2k

≤ max
n≥N

|Sn − S∗|
(

τ(h)

(u, u)τ(h)

)1/2(

τ(h)

(v, v)τ(h)

)1/2
1

τ(h)

τ(h)−1
∑

k=1

ε2k

+max
n≥1

|Sn − S∗|
(

τ(h)

(u, u)τ(h)

)1/2(

τ(h)

(v, v)τ(h)

)1/2

×





1

τ(h)

τ(h)−1
∑

k=1

ε2k − 1

τ(h)

τ(h)−N−1
∑

k=1

ε2k



 .
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From here, in view of the inequalities,

max
n≥N

|Sn − S∗| ≤ qN+1/(1 − q), max
n≥1

|Sn − S∗| ≤ q/(1 − q),

by applying Lemmas 5.1- 5.3, we obtain

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

P
θ
(|Wh| > δ) = 0.

This and (5.22)-(5.25) imply (5.20).

By a similar argument, one can show (5.21).

Thus we have verified all limiting relationships (5.20),(5.21), which give

the asymptotic convergence of random variables ξ
(i)
h on the parametric set

Λd,1 with the additional condition |ab| ≤ q. It remains to show that ξ
(i)
h

converges on the set Λd,1.

It will be observed that, by the definition of parametric set Λd,1 in (2.12),

there exists a number q∗ ∈ (0, 1) such that for all q∗ ≤ q < 1 the correspond-

ing set Λd,1 ∩ {θ : |ab| ≤ q} contains all points of Λd,1 except for those lying

in some vicinity of the apex (0, 1). On the other hand, function r(a, b) in

(5.18) vanishes when |ab| approaches 1. Therefore, for a given δ > 0, there

exists a number q̃ ≥ q∗ such that, for every θ ∈ Λd,1 ∩ {θ : |ab| ≥ q̃},

√

1 − a2
√

1 − b2 < δ/3,

which implies

r(a, b) < δ/3. (5.26)

Consider ξ
(1)
h . Since Sn ≤ 1 for negative ab, then, in view of Lemmas 5.1, 5.3,

|ξ(1)h | can be estimated as

|ξ(1)h | ≤
(

τ(h)

(u, u)τ(h)

)1/2(

τ(h)

(v, v)τ(h)

)1/2
1

τ(h)

τ(h)−1
∑

k=1

ε2k

=
√

1 − a2
√

1 − b2 + αh,
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where

lim
h→∞

sup
θ∈Λd,1

Pθ(|αh| > δ/3) = 0.

From here and (5.26) one has

|ξ(1)h − r(a, b)| ≤ 2δ/3 + αh.

Therefore, for any ∆ > 0, there exists a number h0 such that for all h ≥ h0

sup
θ∈Λd,1∩{θ:|ab|>q̃}

P
θ
(|ξ(1)

h − r(a, b)| > δ) ≤ ∆. (5.27)

In view of (5.22), for a given ∆, there exists a number h1 such that for all

h ≥ h1

sup
θ∈Λd,1∩{θ:|ab|≤q̃}

Pθ(|ξ(1)
h − r(a, b)| > δ) ≤ ∆. (5.28)

Combining (5.27) and (5.28) we come to (5.18).

To prove (5.19), we estimate |ξ(2)
h | for θ ∈ Λd,1 ∩ {θ : |ab| > q̃} as

|ξ(2)h | ≤





τ(h)−1
∑

k=2

ε2k





1/2



τ(h)−1
∑

k=2

u2
k−1





1/2

(u, u)
−1/2
τ(h) (v, v)

−1/2
τ(h)

≤
(

τ(h)

(v, v)τ(h)

)1/2




1

τ(h)

τ(h)−1
∑

k=2

ε2k





1/2

=
√

1 − b2 + α
(1)
h ,

where α
(1)
h satisfies

lim
h→∞

sup
θ∈Λd,1

P
θ
(|α(1)

h | > δ/3) = 0.

This enables us, by the same argument as in the case of ξ
(1)
h , to show (5.19).

The case of ξ
(3)
h can be studied by a similar way. This completes the proof

of Proposition 2.2.

2. Proof of Lemma 2.3. Consider in detail the case when θ = (2,−1).

Denote

f (n)(t) =
1

n

[nt−1]
∑

j=0

W
(n)
j
n

, It(f) =

∫ t

0
f(s)ds, (5.29)
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where W
(n)
t is given in (2.2). Then the nominator in (2.16) becomes

n
∑

k=1

uk−1vk−1 =
n
∑

k=1





k−1
∑

j=0

j
∑

i=0

εi





k−1
∑

l=0

εl

= n3
n
∑

k=1



n−1
k−1
∑

j=0

W
(n)
j
n



W
(n)
k−1

n

1

n
= n3

n
∑

k=1

f (n)(
k

n
)W

(n)
k−1

n

1

n
. (5.30)

It will be observed that

f (n)(t) = I [nt−1]
n

(W (n)) + r(1)
n (t), (5.31)

|r(1)n (t)| ≤ ω(W (n); [0, 1]; 1/n), (5.32)

where ω(f ;E; δ) denotes the oscilation of a function f : E → R of radius

δ > 0, that is

ω(f ;E; δ) = sup
|x−y|≤δ,x,y∈E

|f(x) − f(y)|.

By (5.29), (5.32)

r(1)n (t) ≤ max
1≤i≤n

|εi|/
√
n→ 0 a.s. (5.33)

Substituting (5.31) in (5.30) yields

n
∑

k=1

uk−1vk−1 = n3
n
∑

k=1

I k−1
n

(W (n))W
(n)
k−1

n

1

n
+ n3r(2)n , (5.34)

where

r(2)n =
n
∑

k=1

r(1)n (
k

n
)W

(n)
k−1

n

1

n
.

Note that in view of (5.33)

|r(2)n | ≤ max
0≤t≤1

|W (n)
t | · max

1≤i≤n

|εi|√
n

= max
1≤k≤n

1√
n

∣

∣

∣

∣

∣

k
∑

i=1

εi

∣

∣

∣

∣

∣

max
1≤i≤n

|εi|√
n
.

Show that, for any δ > 0,

lim
n→∞

P
θ

(

|r(2)n | > δ
)

= 0. (5.35)
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By applying the Kolmogorov inequality one gets, for any δ > 0 and ∆ > 0,

P
θ

(

|r(2)n | > δ
)

≤ P
θ

(

max
1≤i≤n

|εi|√
n
> ∆

)

+ P
θ

(

∆ max
1≤k≤n

1√
n

∣

∣

∣

∣

∣

k
∑

i=1

εi

∣

∣

∣

∣

∣

> δ

)

≤ P
θ

(

max
1≤i≤n

|εi|√
n
> ∆

)

+
∆2

δ2n
E

θ

n
∑

i=1

ε2i = P
θ

(

max
1≤i≤n

|εi|√
n
> ∆

)

+
∆2σ2

δ2
.

This implies (5.35).

Now we rewrite (5.34) as

n
∑

k=1

uk−1vk−1 = n3

∫ 1

0
I [tn−1]

n

(W (n))W
(n)
[tn−1]

n

dt+ n3r(3)n (5.36)

= n3

∫ 1

0
It(W

(n))W
(n)
t dt+ n3r(3)n + n3r(4)n ,

where

|r(3)n | ≤ ω

(

I [tn−1]
n

(W (n))W
(n)
[tn−1]

n

; [0, 1];
1

n

)

(5.37)

≤ max
0≤t≤1

∣

∣

∣
I [tn−1]

n

(W (n))
∣

∣

∣
· ω
(

W
(n)
[tn−1]

n

; [0, 1];
1

n

)

+ max
0≤t≤1

∣

∣

∣

∣

W
(n)
[tn−1]

n

∣

∣

∣

∣

· ω
(

I [tn−1]
n

(W (n)); [0, 1];
1

n

)

≤ max
0≤t≤1

∣

∣

∣
W

(n)
t

∣

∣

∣
· ω
(

It(W
(n)); [0, 1];

1

n

)

+ max
0≤t≤1

∣

∣

∣W
(n)
t

∣

∣

∣ · ω
(

Wt; [0, 1];
1

n

)

= 2 max
1≤k≤n

1√
n

∣

∣

∣

∣

∣

k
∑

i=1

εi

∣

∣

∣

∣

∣

max
1≤i≤n

|εi|√
n

;

r(4)n =

∫ 1

0
I [tn−1]

n

(W (n))W
(n)
[tn−1]

n

dt−
∫ 1

0
It(W

(n))W
(n)
t dt = An +Bn, (5.38)

An =

∫ 1

0

(

I [tn−1]
n

(W (n)) − It(W
(n))
)

W
(n)
[tn−1]

n

dt,

Bn =

∫ 1

0
It(W

(n))

(

W
(n)
[tn−1]

n

−W
(n)
t

)

dt.

For An and Bn one has the estimates

|An| ≤ n−1 max
0≤t≤1

|W (n)
t |2 = n−2 max

1≤k≤n

∣

∣

∣

∣

∣

n
∑

i=1

εi

∣

∣

∣

∣

∣

2

;
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|Bn| ≤ max
0≤t≤1

|It(W (n))| · max
1≤i≤n

|εi|/
√
n ≤ max

0≤t≤1
|W (n)

t | · max
1≤i≤n

|εi|/
√
n.

From here and (5.37) and (5.38), it follows that, for any δ > 0,

lim
n→∞

Pθ(|r(i)
n | > δ) = 0, i = 3, 4. (5.39)

Consider now the sums in the denominator of (2.16). By the same argument,

one can show that

(u, u)n = n4

∫ 1

0
I2
t (W (n))dt+ n4r(5)n , (v, v)n = n2

∫ 1

0

(

W
(n)
t

)2
dt+ n2r(6)n ,

(5.40)

where r
(5)
n and r

(6)
n are such that, for any δ > 0,

lim
n→∞

Pθ(|r(i)
n | > δ) = 0, i = 5, 6. (5.41)

Substituting (5.34) and (5.40) in (2.16) yields

ξn = ϕ(W (n)) + rn, (5.42)

where rn, in view of (5.35), (5.39), (5.41), satisfies, for any δ > 0, the limiting

relation

lim
n→∞

P
θ
(|rn| > δ) = 0.

One can check that functional ϕ(x) given by (2.21) is continuous everywhere

in C[0, 1] except for the point x(t) ≡ 0. Since the Wiener measure of the

set D = {x ≡ 0} equals zero we can apply the Donsker theorem to this

functional in (5.42). This leads to (2.20). It remains to verify that 0 ≤

ϕ(W ) ≤ 1. It is obvious that the function ϕ(W ) in (2.21) can be viewed as

the inner product of the functions

x(t) = J −1/2
2 (W ; 1)

∫ t

0
W (s)ds, y(t) = J −1/2

1 (W ; 1)W (t).

The equality ϕ(W ) = 1 is possible iff the functions x(t) and y(t) are linearly

dependent, that is, x(t) = Cy(t), 0 ≤ t ≤ 1, for some constant C. However
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this does not hold with probability one, because x(t) is absolutely continuous

and y(t) is non-differentiable almost everywhere. Hence the case θ = (2,−1).

By similar argument, one can show (2.20) for θ = (−2,−1). This completes

the proof of Lemma 2.3.

3. Additional properties of the sums
∑τ(h)

k=1 u
2
k−1 and

∑τ(h)
k=1 v

2
k−1.

In addition to Lemma 5.3 we will need the following results.

Lemma 5.4. For each d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1∩(θ:θ1≤0)

Pθ

(∣

∣

∣

∣

∣

hσ2

∑τ(h)
k=1 u

2
k−1

− 2(1 + ab)

(1 − ab)(1 − b2)

∣

∣

∣

∣

∣

> δ

)

= 0, (5.43)

lim
h→∞

sup
θ∈Λd,1

Pθ

(∣

∣

∣

∣

∣

1
∑τ(h)

k=1 v
2
k−1

− 1 − b2

τ(h)

∣

∣

∣

∣

∣

> δ

)

= 0, (5.44)

lim
h→∞

sup
θ∈Λd,1∩(θ:θ1>0)

Pθ

(∣

∣

∣

∣

∣

hσ2

∑τ(h)
k=1 v

2
k−1

− 2(1 + ab)

(1 − ab)(1 − a2)

∣

∣

∣

∣

∣

> δ

)

= 0 ,

(5.45)

lim
h→∞

sup
θ∈Λd,1

Pθ

(∣

∣

∣

∣

∣

1
∑τ(h)

k=1 u
2
k−1

− 1 − a2

τ(h)

∣

∣

∣

∣

∣

> δ

)

= 0. (5.46)

Proof of Lemma 5.4. Consider first (5.44) and (5.46). By Lemma 5.3

τ(h)
∑τ(h)

k=1 u
2
k−1

= 1 − a2 + α1(h),
τ(h)

∑τ(h)
k=1 v

2
k−1

= 1 − b2 + α2(h),

where α1(h) and α2(h) satisfy, for any δ > 0, the relation

lim
h→∞

sup
θ∈Λd,1

Pθ(|αi(h)| > δ) = 0, i = 1, 2. (5.47)

Therefore

1
∑τ(h)

k=1 u
2
k−1

− 1 − a2

τ(h)
=
α1(h)

τ(h)
,

1
∑τ(h)

k=1 v
2
k−1

− 1 − b2

τ(h)
=
α2(h)

τ(h)
.

These equalities and (5.47) imply (5.44), (5.46). Denote

th = hσ2 (u, u)−1
τ(h) − 2(1 + ab)/((1 − ab)(1 − b2)).
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By the definition of stopping time τ(h) in (1.7), one has

hσ2 =

τ(h)−1
∑

k=1

‖Xk−1‖2 + αh‖Xτ(h)−1‖2 =

τ(h)
∑

k=1

′‖Xk−1‖2,

where the prime at the sum sign means that the last addend is taken with

the correction factor αh providing the validity of the left-hand side equality,

0 < αh ≤ 1.

This equality implies

hσ2

∑τ(h)
k=1 u

2
k−1

=
1

∑τ(h)
k=1 u

2
k−1

tr

τ(h)
∑

k=1

′Xk−1X
′
k−1

= trQ−1





1 (u, v)τ(h)/(u, u)τ(h)

(u, v)τ(h)/(u, u)τ(h) (v, v)τ(h)/(u, u)τ(h)



 (Q−1)′. (5.48)

By Lemma 5.3

(v, v)τ(h)

(u, u)τ(h)

=
τ(h)

(u, u)τ(h)

×
(v, v)τ(h)

τ(h)
= [

1 − a2

σ2
+α1(h)](v, v)τ(h)/τ(h) . (5.49)

Since, on the set Λd,1 ∩ (θ : θ1 ≤ 0), parameter b is bounded away from the

end-points of the interval (−1, 1), then, for any δ > 0,

lim
h→∞

sup
θ∈Λd,1∩(θ:θ1≤0)

Pθ

(

|(τ(h))−1(v, v)τ(h) − σ2(1 − b2)−1| > δ
)

= 0.

From here and (5.49), it follows that

(v, v)τ(h)/(u, u)τ(h) = (1 − a2)/(1 − b2) + α3(h),

where α3(h) satisfies the following relation : for any δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ(|α3(h)| > δ) = 0. (5.50)

In view of (5.49), Lemma 5.3 and Proposition 2.2, the cross-term in (5.48)

can be written as

(u, v)τ(h)

(u, u)τ(h)

=

(

(v, v)τ(h)

(u, u)τ(h)

)1/2
(u, v)τ(h)

(u, u)
1/2
τ(h)(v, v)

1/2
τ(h)

=
1 − a2

1 − ab
+ α4(h) , (5.51)
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where α4(h), in view of Proposition 2.2, also possesses the property given in

(5.50). Hence

hσ2

(u, u)τ(h)

= trQ−1





1 (1 − a2)/(1 − ab)

(1 − a2)/(1 − ab) (1 − a2)/(1 − b2)



 (Q−1)′ + rh,

(5.52)

where

rh = trQ−1





0 α4(h)

α4(h) α3(h)



 (Q−1)′.

One can easily verify that

trQ−1





1 (1 − a2)/(1 − ab)

(1 − a2)/(1 − ab) (1 − a2)/(1 − b2)



 (Q−1)′ =
2(1 + ab)

(1 − ab)(1 − b2)
.

From here and (5.52), taking into account (5.50), we come to the assertion

of Lemma 5.4.

4. The Skorohod coupling theorem. Proof of Proposition 3.2.

By Theorem 2.1, on the boundary ∂Λ of the stability region (1.4), the stop-

ping time τ(h) (1.7) converges in distribution to some functional of one

or two Brownian motions. In order to prove Proposition 3.2 we need to

strengthen this convergence by applying the following result.

Theorem 5.5. (extended Skorohod coupling; see Theorem 4.30 and Corol-

lary 6.12 in [9].) Let f, f1, f2, . . . be measurable functions from a Borel

space S to a Polish space T , and let η, η1, η2, . . . be random elements in S

with fn(ηn)
L→ f(η). Then there exists a probability space with some random

elements η̃
L
= η and η̃n

L
= ηn, n ∈ N, with fn(η̃n) → f(η̃) a.s.

Let W = (W (t))t≥0 and W1 = (W1(t))t≥0 be independent Brownian

motions and ε = (ε1, ε2, . . .) be an sequence of i.i.d. random variables with

Eε1 = 0 and Eε21 = σ2, which does not depend on W,W1. Random elements

η = (ε,W,W1)
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take on values in the space S = R∞ × C(R+) × C(R+), where C(R+) is

the set of all continuous functions on R+ = [0,∞). Define the metric on S

by the formula

ρ(η
′

, η
′′

) = ρ1(ε
′

, ε
′′

) + ρ2(W
′

,W
′′

) + ρ3(W
′

1,W
′′

1 ) ,

where

ρ1(ε
′

, ε
′′

) =
∑

k≥1

2−k |ε′k − ε
′′

k |
1 + |ε′k − ε

′′

k |
,

ρi(x, y) =
∑

k≥1

2−k max1≤t≤k |x(t) − y(t)|
1 + max1≤t≤k |x(t) − y(t)| , i = 2, 3 .

Let (S,B(S),Pη) be the corresponding Borel space with the distribution Pη

induced by η, that is, Pη = Pε ×PW ×PW1 .

Now we are ready to prove Proposition 3.2.

Assume that θ ∈ Γ1 ∪ Γ2.

Consider only the case when θ ∈ Γ1 (the case θ ∈ Γ2 is similar). For

θ ∈ Γ1 the processes (uk)k≥0 and (vk)k≥0 are described by equations (3.2)

with a = −1 and |b| < 1. Let us apply the Skorohod Theorem 5.5 to the

functional

fn(η) =
1√
n

τ(h)
∑

k=1

v2
k−1, n = [h/2] ,

and put ηn ≡ η. By Lemma 5.3 and Theorem 2.1 we have

fn(η)
L→ ν1(W1)σ

2/(1 − b) = f(η) .

By Theorem 5.5 there exists η̃ = (ε̃, W̃ , W̃1) such that η̃ = (ε̃, W̃ , W̃1)
L
= η =

(ε,W,W1) and

fn(η̃) =
1√
n

τ̃(h)
∑

k=1

ṽ2
k−1

a.s.→ ν1(W̃1)σ
2

1 − b
= f(η̃), n = [h/2] . (5.53)

It should be noted that all the sequences (x̃k), (ũk), (ṽk) and the stopping

time τ̃ are defined by formulae (1.1),(3.2) and (1.7) with a given θ ∈ Γ1
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replacing in them ε = (εk) by ε̃ = (ε̃k). Besides we define a counterpart Ỹh

for Yh in (3.6) by the formula

Ỹh =
λ1

σ
√

(ũ, ũ)τ̃(h)

τ̃(h)
∑

k=1

ũk−1ε̃k +
λ2

σ
√

(ṽ, ṽ)τ̃(h)

τ̃(h)
∑

k=1

ṽk−1ε̃k . (5.54)

By the construction the distribution of the random variable Ỹh coincides with

that of Yh and therefore, for our purposes, it suffices to study its asymptotic

distribution as h→ ∞.

In view of (5.53) and Lemma 5.4, we start the analysis of Ỹh by rewriting

it as

Ỹh =
λ1

σ
√
h

√

h

(ũ, ũ)τ̃(h)

τ̃(h)
∑

k=1

ũk−1ε̃k +
λ2

σ(h/2)1/4

√

√

h/2

(ṽ, ṽ)τ̃ (h)

τ̃(h)
∑

k=1

ṽk−1ε̃k

=
1

σ2
√
h

τ̃(h)
∑

k=1

g̃k−1ε̃k + r1(h), (5.55)

where

g̃k−1 =
λ1

√
2

1 + b
ũk−1 + λ2

√

1 − b

ν1(W̃1)
(2h)1/4ṽk−1 , (5.56)

r1(h) =
1√
h
t1h

τ̃(h)
∑

k=1

ũk−1ε̃k +

(

1

h

)1/4

t2h

τ̃(h)
∑

k=1

ṽk−1ε̃k , (5.57)

t1h =
λ1

σ2

(

√

hσ2/(ũ, ũ)τ̃(h) −
√

2

1 + b

)

,

t2h =
21/4λ2

σ2

(

√

σ2
√

(h/2)/(ṽ, ṽ)τ̃(h) −
√

(1 − b)/ν1(W̃1)

)

.

Let us show that, for any δ > 0,

lim
h→∞

P
′

θ(|r1(h)| > δ) = 0 , (5.58)

where P
′

θ
is the distribution of the process (x̃k). We rewrite r1(h) as

r1(h) =
t1h√
h

τ̃(h)−1
∑

k=1

ũk−1ε̃k +
t1h√
h
ũτ̃(h)−1ε̃τ̃ (h) +

(

1

h

)1/4

t2h

τ̃(h)
∑

k=1

ṽk−1ε̃k .
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For any δ > 0 and any C > 0, we have the estimate

P
′

θ(|r1(h)| > δ) ≤ P
′

θ





∣

∣

∣

∣

∣

∣

t1h√
h

τ̃(h)−1
∑

k=1

ũk−1ε̃k

∣

∣

∣

∣

∣

∣

>
δ

3





+P
′

θ

(

| t
1
h√
h
ũτ̃(h)−1ε̃τ̃(h)| >

δ

3

)

+ P
′

θ





1

h1/4
|t2h

τ̃(h)
∑

k=1

ṽk−1ε̃k| >
δ

3





≤ P
′

θ(
1√
h
|
τ̃(h)−1
∑

k=1

ũk−1ε̃k| > C) + P
′

θ(|t1h|C >
δ

3
) + P

′

θ(
|ũτ̃ (h)−1ε̃τ̃(h)|√

h
>

√

δ

3
)

+P
′

θ
(|t1h| >

√

δ/3) + P
′

θ
(

1

h1/4
|
τ̃(h)
∑

k=1

ṽk−1ε̃k| > C) + P
′

θ
(|t2h|C >

δ

3
) . (5.59)

Now we will study the asymptotic behaviour of the summands in the right-

hand side of (5.59).

Lemma 5.6. For each θ ∈ Γ1,

lim
C→∞

sup
h>0

P
′

θ





1√
h
|
τ̃(h)−1
∑

k=1

ũk−1ε̃k| > C



 = 0 . (5.60)

Lemma 5.7. For each δ > 0,

lim
h→∞

P
′

θ

(

h−1/2|ũτ̃ (h)−1ε̃τ̃ (h)| > δ
)

= 0 . (5.61)

Lemma 5.8. For any 0 < C <∞ and a > 0,

P
′

θ





1

h1/4
|
τ̃(h)
∑

k=1

ṽk−1ε̃k| ≥ C



 ≤ a

C
+ P

′

θ





1√
h

τ̃(h)
∑

k=1

ṽ2
k−1 ≥ a



 . (5.62)

Lemma 5.9. For any a > 0 and ∆ > 0,

lim
h→∞

P
′

θ





1√
h

τ̃(h)
∑

k=1

ṽ2
k−1 ≥ a



 ≤ P
′

θ(ν1(W̃1) ≥ a
′

) , (5.63)

where a
′

= a
√

2(1 + b)−1
(

σ2(1 − b2)−1 + ∆
)−1

.
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Proof of Lemma 5.6. By definition of stopping time τ(h) in (1.7) one

obtains

E
′

θ





1√
h

τ̃(h)−1
∑

k=1

ũk−1ε̃k





2

=
σ2

h
E

′

θ





τ̃(h)−1
∑

k=1

ũ2
k−1





≤ σ2

h
E

′

θ





τ̃(h)−1
∑

k=1

(ũ2
k−1 + ṽ2

k−1)



 ≤ σ2

h
‖Q‖2E

′

θ





τ̃(h)−1
∑

k=1

‖X̃k−1‖2



 ≤ σ4‖Q‖2 ,

where E
′

θ
is the expectation with respect to P

′

θ
. This implies (5.60). Hence

Lemma 5.6.

Proof of Lemma 5.7. One has

P
′

θ

(

|ũτ̃(h)−1ε̃τ̃ (h)|/
√
h > δ

)

≤ Pθ

(

‖Q‖(
√
h)−1‖X̃τ̃ (h)−1‖ · |ε̃τ̃ (h)| > δ

)

≤ P
′

θ(•, |ε̃τ̃ (h)| ≤ C) + P
′

θ(•, |ε̃τ̃(h)| > C)

≤ P
′

θ

(‖Q‖√
h
‖X̃τ̃(h)−1‖C > δ

)

+ C−2E
′

θ ε̃
2
τ̃(h)

≤ P
′

θ

(

h−1‖Q‖2‖X̃τ̃(h)−1‖2C2 > δ2
)

+ C−2σ2.

It remains to show that

lim
h→∞

P
′

θ(h−1‖X̃τ̃ (h)−1‖2 > δ̃) = 0, (5.64)

where δ̃ = δ2‖Q‖−2C−2. We have

P
′

θ(h−1‖X̃τ̃ (h)−1‖2 > δ̃) ≤ P
′

θ



‖X̃τ(h)−1‖2 ≥ δ̃

σ2

τ̃(h)−1
∑

k=1

‖X̃k−1‖2





≤ P
′

θ(τ̃ (h) ≤ m) + Pθ

(

‖X̃n‖2 ≥ δ̃

σ2

n
∑

k=1

‖X̃k−1‖2 for some n ≥ m

)

.

In virtue of relation (3.3) in [7] and Lemma 5.1, we come to (5.64). This

completes the proof of Lemma 5.7.

Further we need the following Lenglart inequality.
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Lemma 5.10. (See, [13] Ch VII, 3, Th4). Let (ξn,Fn) be non-negative

adapted sequence of random variables and (An,Fn) be predictable increasing

sequence which dominates (ξn) in the sense that, for any stopping time σ

with respect to (Fn), one has Eξσ ≤ EAσ. Then, for any ε > 0 and a > 0,

P( sup
1≤j≤σ

ξj ≥ ε) ≤ ε−1E(Aσ ∧ a) + P(Aσ ≥ a).

Proof of Lemma 5.8. Denote

ξn = h−1/2

(

n
∑

k=1

ṽk−1ε̃k

)2

, n ≥ 1, ξ0 = 0; (5.65)

An = h−1/2
n
∑

k=1

ṽ2
k−1, n ≥ 1, A0 = 0 (5.66)

Let us introduce the filtration (Fn)n≥0 with

F0 = σ{ν(W̃1)}, Fn = σ{ν(W̃1), ε̃1 . . . , ε̃n} . (5.67)

Note that for each stopping time σ with respect to this filtration, one has

E
′

θξσ ≤ E
′

θAσ.

Therefore the processes (5.65)-(5.66) satisfy the conditions of Lemma 5.10.

Applying this Lemma with σ = τ̃(h) yields (5.62):

P
′

θ(ξτ̃(h) ≥ C) ≤ C−1E
′

θ(Aτ̃(h) ∧ a) + P
′

θ(Aτ̃(h) ≥ a)

≤ aC−1 + P
′

θ(Aτ̃ (h) ≥ a).

Hence Lemma 5.8.

Proof of Lemma 5.9. For any ∆ > 0 one has

P
′

θ

(

h−1/2(ṽ, ṽ)τ̃ (h) ≥ a
)

= P
′

θ

(

(τ̃(h)/
√
h)τ̃(h)−1(ṽ, ṽ)τ̃(h) ≥ a

)

= P
′

θ

(

•, |τ̃ (h)−1(ṽ, ṽ)τ̃ (h) − σ2/(1 − b2)| < ∆
)

+P
′

θ

(

•, |τ̃ (h)−1(ṽ, ṽ)τ̃(h) − σ2/(1 − b2)| ≥ ∆
)
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≤ P
′

θ

(

τ̃(h)√
h

(
σ2

1 − b2
+ ∆) ≥ a

)

+ P
′

θ

(∣

∣

∣

∣

(ṽ, ṽ)τ̃ (h)

τ̃ (h)
− σ2

1 − b2

∣

∣

∣

∣

≥ ∆

)

= P
′

θ

(

τ̃(h)

(1 + b)
√

h/2

(1 + b)√
2

(σ2(1 − b2)−1 + ∆) ≥ a

)

+P
′

θ

(

|τ̃(h)−1(ṽ, ṽ)τ̃(h) − σ2/(1 − b2)| ≥ ∆
)

.

From here, in virtue of Theorem 2.1 and Lemma 5.3, we comme to (5.63).

Hence Lemma 5.9.

Now we are ready to show (5.58). Limiting in (5.59) h→ ∞ and taking

into account Lemma 5.4, Lemmas 5.6- 5.9 and (5.53) we obtain

lim sup
h→∞

P
′

θ(|r1(h)| > δ) ≤ sup
h>0

P
′

θ





1√
h

∣

∣

∣

∣

∣

∣

τ̃(h)−1
∑

k=1

ũ2
k−1ε̃k

∣

∣

∣

∣

∣

∣

> C





+a/C + P
′

θ(ν1(W̃1) ≥ a
′

) .

In view of Lemma 5.6, limiting C → ∞ and then a→ ∞, we come to (5.58).

So we have

Ỹh =
1

σ2
√
h

τ̃(h)
∑

k=1

g̃k−1ε̃k + r1(h) , (5.68)

where r1(h) satisfies (5.58) and

g̃k−1 =
λ1

√
2

1 + b
ũk−1 +

λ2

√
1 − b

σ
√

ν1(W̃1)
(2h)1/4 ṽk−1 .

For a given h > 0 we define the random variable

τ0(h) = inf{n ≥ 1 :
n
∑

k=1

g̃2
k−1 ≥ hσ2}, inf{∅} = ∞ , (5.69)

which is a stopping time with respect to the filtration (Fn) in (5.67), and

rewrite Ỹh from (5.68) as

Ỹh =
1

σ2
√
h

τ0(h)
∑

k=1

g̃k−1ε̃k + r1(h) + r2(h) , (5.70)

where

r2(h) =
1

σ2
√
h





τ̃(h)
∑

k=1

g̃k−1ε̃k −
τ0(h)
∑

k=1

g̃k−1ε̃k



 . (5.71)
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Now we observe that the first term in the right-hand side of (5.70) is a

martingale with respect to the filtration (Fn) in (5.67)) stopped at the time

(5.69). According to the Theorem 2.1 from [10], it is asymptotically normal

with mean 0 and unit variance as h → ∞. Therefore to end the proof of

Theorem 3.1 for θ ∈ Γ1 it remains to prove that, for any δ > 0,

lim
h→∞

P
′

θ(|r2(h)| > δ) = 0 . (5.72)

First we will establish the following results.

Lemma 5.11. For each θ ∈ Γ1 and any δ > 0,

lim
h→∞

P
′

θ



g̃2
τ0(h)−1 /

τ0(h)−1
∑

k=1

g̃2
k−1 > δ



 = 0 . (5.73)

Lemma 5.12. For each θ ∈ Γ1 and any δ > 0,

lim
h→∞

P
′

θ
(Uh > δ) = 0 ,

where

Uh =
1

h

τ̃(h)∨τ0(h)
∑

k=τ̃(h)∧τ0(h)+1

g̃2
k−1 .

Proof of Lemma 5.11. One has the inclusions, for any ∆ > 0,



g̃2
τ0(h)−1 /

τ0(h)−1
∑

k=1

g̃2
k−1 > δ



 ⊆
(

‖Jτ0(h)−1 − I‖ > ∆
)

∪A , (5.74)

where I is 2 × 2 identity matrix,

A =



g̃2
τ0(h)−1 /

τ0(h)−1
∑

k=1

g̃2
k−1 > δ, ‖Jτ0(h)−1 − I‖ ≤ ∆



 .

By (5.56) one gets

g̃2
n = (z1ũn + z2ṽn)2 ≤ 2z2

1 ũ
2
n + 2z2

2 ṽ
2
n, (5.75)

z1 = λ1

√
2/(1 + b), z2 = λ2

√
1 − b(2h)1/4/(σ

√

ν1(W̃1));
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n
∑

k=1

g̃2
k−1 =

n
∑

k=1

(

Z ′(ũk−1, ṽk−1)
′)2 = Z ′R−1

n JnR
−1
n Z

= Z ′R−1
n (Jn − I)R−1

n Z + Z ′R−2
n Z, Z = (z1, z2)

′;

Z ′R−2
n Z = z2

1 (u, u)n + z2
2 (v, v)n. (5.76)

From here it follows that

A ⊂
(

g̃2
τ0(h)−1 > δZ ′R̃−2

τ0(h)−1Z(1 − ‖J̃τ0(h)−1 − I‖), ‖J̃τ0(h)−1 − I‖ ≤ ∆
)

⊂
(

g̃2
τ0(h)−1 > δ(1 − ∆)Z ′R̃−2

τ0(h)−1Z
)

⊂ (τ0(h) ≤ m)

∪
(

g̃2
n > δ(1 − ∆)Z ′R̃−2

n Z for some n ≥ m
)

⊂ (τ0(h) ≤ m) ∪
(

2z2
1 ũ

2
n > δ2−1(1 − ∆)Z ′R̃−2

n Z for some n ≥ m
)

∪
(

2z2
2 ṽ

2
n > δ2−1(1 − ∆)Z ′R̃−2

n Z for some n ≥ m
)

⊂ (τ0(h) ≤ m) ∪
(

2ũ2
n > δ2−1(1 − ∆) (ũ, ũ)n for some n ≥ m

)

∪
(

2ṽ2
n > δ2−1(1 − ∆) (ṽ, ũ)n for some n ≥ m

)

. (5.77)

Combining inclusions (5.74), (5.77) yields



g̃2
τ0(h)−1 /

τ0(h)−1
∑

k=1

g̃2
k−1 > δ



 ⊂
(

‖J̃τ0(h)−1 − I‖ > ∆
)

∪ (τ0(h) ≤ m)

∪
(

ũ2
n > δ′(ũ, ũ)n for some n ≥ m

)

∪
(

ṽ2
n > δ′(ṽ, ṽ)n for some n ≥ m

)

, δ′ = δ 4−1(1 − ∆).

This implies

P
′

θ



g̃2
τ0(h)−1 /

τ0(h)−1
∑

k=1

g̃2
k−1 > δ



 ≤ P
′

θ
(‖J̃τ0(h)−1 − I‖ > ∆) (5.78)

+P
′

θ
(τ0(h) ≤ m) + P

′

θ

(

ũ2
n > δ′(ũ, ũ)n for some n ≥ m

)

+P
′

θ

(

ṽ2
n > δ′(ṽ, ṽ)n for some n ≥ m

)

.

50



By the same argument as in the proofs of Lemma 5.1 and Proposition 2.2,

one can show that for every θ ∈ Γ1 ∪ Γ2 and for each m = 1, 2, . . . and any

∆ > 0, respectively,

lim
h→∞

P
′

θ
(τ0(h) ≤ m) = 0, lim

h→∞
P

′

θ
(‖J̃τ0(h)−1 − I‖ > ∆) = 0.

The last two terms in (5.78) also converge to zero by the well-known property

of AR(1)−processes with parameter in the interval [−1, 1] (see, [10]). This

completes the proof of Lemma 5.11.

Proof of Lemma 5.12. Note that

Uh = h−1|(g̃, g̃)τ̃ (h) − (g̃, g̃)τ0(h)| .

In view of (5.75) this quantity can be estimated as

Uh = h−1
∣

∣

∣
Z ′R̃−1

τ̃(h)
(J̃n − I)R̃−1

τ̃ (h)
Z + Z ′R̃−2

τ̃(h)
Z − (g̃, g̃)τ0(h)

∣

∣

∣
(5.79)

≤ h−1‖J̃n − I‖Z ′R̃−2
τ̃(h)Z + |h−1Z ′R̃−2

τ̃(h)Z − 1| + g̃2
τ0(h)−1 /(g̃, g̃)τ0(h)−1.

Now we show that, for any δ > 0,

lim
h→∞

Pθ(|h−1Z ′R̃−2
τ̃(h)Z − 1| > δ) = 0. (5.80)

Using (5.76) and taking into account that for θ ∈ Γ1, z1 = λ1

√
2/(1 +

b), z2 = λ2(2h)
1/4

√
1 − b/(σ

√

ν1(W̃1)) we obtain

h−1Z ′R̃−2
τ̃(h)

Z − 1 = z2
1 h

−1(ũ, ũ)τ̃ (h) + z2
2 h

−1(ṽ, ṽ)τ̃(h) − 1

= λ2
1

(

2

(1 + b)2h
(ũ, ũ)τ̃ (h) − 1

)

+ λ2
2

(

(1 − b)(2h)1/2

σ2ν1(W̃1)
(ṽ, ṽ)τ̃(h) − 1

)

.

This, in view of (5.43) gives (5.80).

Now by applying Proposition 2.2 and Lemma 5.11 to (5.79) we come to

desired result. Hence Lemma 5.12.
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The case θ = (0, 1). Then a = −1, b = 1 and equations (3.2) yield

uk = (−1)k
k
∑

j=1

(−1)jεj , vk =
k
∑

j=1

εj .

By Corollary 5.15 one has

σ−2
(

n−2 (u, u)n, n
−2 (v, v)n

) L→ (J1(W1; 1), J1(W ; 1)) . (5.81)

Introduce a sequence of functionals

fn(η) =
(

(σn)−2 (u, u)n, (σn)−2 (v, v)n, τ(h)/
√

2h
)

, n = [h] .

From the definition of τ(h), Theorem 2.1 and (5.81) it follows that

fn(η)
L→ (J1(W1; 1),J1(W ; 1), ν3(W,W1)) = f(η) .

By Theorem 5.5 there exists η̃ such that η̃
L
= η and

fn(η̃)
a.s.→ f(η̃) =

(

J1(W̃1; 1),J1(W̃ ; 1), ν3(W̃ , W̃1)
)

.

On the basis of this η̃ we define as before (x̃k), (ũk), (ṽk) and Ỹh. It should

be noted that the ratio

tn = (ũ, ũ)n/(ṽ, ṽ)n

satisfies the limiting relation

lim
h→∞

tτ̃(h) = κ, κ = J1(W̃1; 1)/J1(W̃ ; 1) . (5.82)

Further by making use of the equality

τ̃(h)
∑

k=1

‖X̃k−1‖2 = tr

τ̃(h)
∑

k=1

X̃k−1X̃
′
k−1

= trQ−1





(ũ, ũ)τ̃ (h) (ũ, ṽ)τ̃ (h)

(ũ, ṽ)τ̃(h) (ṽ, ṽ)τ̃(h)



 (Q−1)′
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one gets

∑τ̃(h)
k=1 ‖X̃k−1‖2

(ũ, ũ)τ̃(h)

= trQ−1





1 t
−1/2
τ̃(h) ξτ̃(h)

t
−1/2
τ̃(h) ξτ̃(h) t−1

τ̃(h)



 (Q−1)′,

where ξn is defined in (2.16). Since for any δ > 0

lim
h→∞

P
′

θ
(|ξτ̃ (h)|t

−1/2
τ̃(h) > δ) = 0,

from here it follows that

P
′

θ
− lim

h→∞

∑τ̃(h)
k=1 ‖X̃k−1‖2

(ũ, ũ)τ̃ (h)

= trQ−1





1 0

0 1/κ



 (Q−1)′ =
1

2

(

1 +
1

κ

)

.

On the other hand, by the definition of stopping time τ(h) in (1.7) and

Proposition 2.2 one has

P
′

θ
− lim

h→∞
h−1

τ̃(h)
∑

k=1

‖X̃k−1‖2 = 1.

As result,

P
′

θ
− lim

h→∞
h
(

(ũ, ũ)τ̃(h)

)−1
= 2−1

(

1 + κ−1
)

. (5.83)

This and (5.82) give

P
′

θ
− lim

h→∞
h
(

(ṽ, ṽ)τ̃(h)

)−1
= 2−1(1 + κ). (5.84)

Now we rewrite (5.55) as

Ỹh =
1

σ2
√
h

τ̃(h)
∑

k=1

g̃k−1ε̃k + r1(h), (5.85)

where

g̃k−1 = λ1

√

(1 + κ−1)/2 ũk−1 + λ2

√

(1 + κ)/2 ṽk−1,

r1(h) =
λ1

σ2

(

(ũ, ũ)
−1/2
τ̃ (h) −

√

(1 + κ−1)/2
)

τ̃(h)
∑

k=1

ũk−1ε̃k

+
λ2

σ2

(

(ṽ, ṽ)
−1/2
τ̃ (h)

−
√

(1 + κ)/2
)

τ̃(h)
∑

k=1

ṽk−1ε̃k.
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Taking into account (5.83), (5.84), one can show along the lines of the proof

of Proposition 3.2 that, for any δ > 0,

lim
h→∞

P
′

θ
(|r1(h)| > δ) = 0.

Further analysis of (5.85) repeats the case of θ ∈ Γ1 and is omitted.

This completes the proofs of Proposition 3.2 and Theorem 3.1 for θ ∈

Γ1 ∪ Γ2 ∪ {(0, 1)}.

5. Proof of Theorem 3.1 for the case of multiple roots. Assume

that θ = (2,−1) (the proof for the case θ = (−2,−1) is similar). This

corresponds to the multiple root of the polynomial (1.2): a = b = 1. Since

matrix Q in (2.7) is degenerate, we use the matrix (2.19) to transform the

original process (xk)k≥0 into two components (uk)k≥0 and (vk)k≥0. This

leads to the equations

uk = xk, vk = xk − xk−1

with the solutions given by the formulae (2.19).

Now we introduce a sequence of functionals

fn(η) =

(

ξn, (σn)−2
n
∑

k=1

v2
k−1, τ(h)/(h/2)

4

)

, n = [h] ,

where ξn is defined in (2.16).

By Lemma 2.3 and Theorem 2.1 we have

fn(η)
L→ (ϕ(W ),J1(W ; 1), ν4(W )) = f(η) .

By Theorem 5.5 there exists η̃ such that η̃
L
= η and

fn(η̃)
a.s.→ f(η̃) =

(

ϕ(W̃ ),J1(W̃ ; 1), ν4(W̃ )
)

. (5.86)

On the basis of η̃ we define (x̃k), (ũk), (ṽk) and Ỹh. In view of (5.86) we have

lim
h→∞

Jτ̃(h) = T1 a.s., (5.87)
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where

Jn =





1 ξ̃n

ξ̃n 1



 , T1 =





1 ϕ(W̃ )

ϕ(W̃ ) 1



 (5.88)

ξ̃n =

(

n
∑

k=1

ũ2
k−1

)−1/2( n
∑

k=1

ṽ2
k−1

)−1/2 n
∑

k=1

ũk−1ṽk−1 . (5.89)

Besides, we will need the relations

lim
h→∞

1

h

τ̃(h)
∑

k=1

‖X̃k−1‖2 = lim
h→∞

1

h

(

2(ũ, ũ)τ̃ (h)−1 − ũ2
τ̃(h)−1

)

= σ2, (5.90)

lim
h→∞

1

σ2h1/2
(ṽ, ṽ)τ̃(h) = lim

h→∞
τ̃2(h)

(h/2)1/2

1

σ2
√

2τ̃2(h)
(ṽ, ṽ)τ̃(h) (5.91)

= 2−1/2J1(W̃ ; 1)ν2
4 (W̃ ) := µ ,

which directly follow from (5.86).

Consider now the standardized deviation of the sequential estimate (1.6):

M
1/2
τ(h)

(θ(τ(h)) − θ) = M
−1/2
τ(h)

τ(h)
∑

k=1

Xk−1εk .

Its distribution coincides with that of the vector

M̃
−1/2
τ̃(h)

τ̃(h)
∑

k=1

X̃k−1ε̃k

constructed from (x̃k), (ε̃k). Representing the matrix

M̃n =

n
∑

k=1

X̃k−1X̃
′

k−1

in the form (2.14) yields

M̃
−1/2
τ̃(h)

τ̃(h)
∑

k=1

X̃k−1ε̃k = J̃
−1/2
τ̃(h) R̃τ̃(h)

τ̃(h)
∑

k=1

QX̃k−1ε̃k

= J̃
−1/2
τ̃ (h) T

1/2
1 T

−1/2
1 Z̃τ̃(h) ,

where

Z̃n =





(ũ, ũ)−1/2
n

∑n
k=1 ũk−1ε̃k

(ṽ, ṽ)−1/2
n

∑n
k=1 ṽk−1ε̃k



 .

Taking into account (5.87), it suffices to establish the following result.
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Lemma 5.13. For each constant vector λ = (λ1, λ2)
′

with ‖λ‖ = 1, the

random variable

Ỹh = λ
′

T
−1/2
1 Z̃τ̃(h)/σ

is asymptotically normal with mean 0 and unit variance as h→ ∞.

Proof of Lemma 5.13. Represent Ỹh as

Ỹh =
1

σ
√
h

τ̃(h)
∑

k=1

g̃k−1ε̃k + r1(h) ,

where

g̃k−1 = λ
′

T
−1/2
1





√
2ũk−1

(h1/4√µ)−1ṽk−1



 , (5.92)

r1(h) =
λ

′

T
−1/2
1

σ







(

(ũ, ũ)
−1/2
τ̃ (h)

−
√

2/h
)

∑τ̃(h)
k=1 ũk−1ε̃k

(

(ṽ, ṽ)
−1/2
τ̃(h) − (h1/4√µ)−1

)

∑τ̃(h)
k=1 ṽk−1ε̃k






.

By an argument similar to that in the proof of Proposition 3.2, one can

verify that r1(h) satisfies (5.58). Further analysis of Ỹh holds true.

Let us check only that

lim
h→∞

(σ2h)−1(g̃, g̃)τ̃ (h) = 1 .

Using (5.92) one obtains

(σ2h)−1(g̃, g̃)τ̃ (h) = λ
′

T
−1/2
1 σ−2

×





(2/h)(ũ, ũ)τ̃(h) h−3/4
√

2/µ (ũ, ṽ)τ̃ (h)

h−3/4
√

2/µ (ũ, ṽ)τ̃(h) (µ
√
h)−1(ṽ, ṽ)τ̃ (h)



T
−1/2
1 λ .

Now using (5.91) we rewrite the cross term as

h−3/4
√

2/µ (ũ, ṽ)τ̃(h) = h−3/4
√

2/µ
(

(ũ, ũ)τ̃ (h)

)1/2 (

(ṽ, ṽ)τ̃(h)

)1/2
ξ̃τ̃(h)

=
(

(h/2)−1(ũ, ũ)τ̃ (h)

)1/2 (

(µ
√
h)−1(ṽ, ṽ)τ̃ (h)

)1/2
ξ̃τ̃(h) .
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From here, (5.90),(5.91) and (5.87) it follows that

lim
h→∞

h−3/4
√

2/h(ũ, ṽ)τ̃(h) = ϕ(W̃ ) .

Hence

lim
h→∞

(σ2h)−1(g̃, g̃)τ̃(h) = σ−2
λ

′

T
−1/2
1 T1T

−1/2
1 λ = λ

′

λ = 1 .

This completes the proof of Theorem 3.1 for θ ∈ {(−2,−1), (2,−1)}.

Theorem 5.14. Let W (n) = (W (n)(t))0≤t≤1 and W
(n)
1 = (W

(n)
1 (t))0≤t≤1 be

defined by (2.2). Then for the random functions

Xn =
(

Xn(s, t) = (W (n)(s),W
(n)
1 (t)) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1

)

with values in the product of the Skorohod spaces D[0, 1] ×D[0, 1], one has

Xn
L→ (W,W1) ,

where W and W1 are independent standard Brownian motions.

This result is a straightforward consequence of Theorem 3.3 in Helland

(1982). This functional central limit theorem implies the following result.

Corollary 5.15. Let uk = (−1)k
∑k

j=1 (−1)jεj, vk =
∑k

j=1 εj. Then

(

(σn)−2(u, u)n, (σn)−2(v, v)n

) L→ (J1(W1; 1), J1(W ; 1)) . (5.93)
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