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On asymptotic normality of sequential LS-estimate

for unstable autoregressive process AR(2).

By Leonid Galtchouk and Victor Konev *

Louis Pasteur University of Strasbourg and University of Tomsk

Abstract

For estimating parameters in an unstable AR(2) model, the paper
proposes a sequential least squares estimate with a special stopping
time defined by the trace of the observed Fisher information matrix. It
is shown that the sequential LSE is asymptotically normally distributed
in the stability region and on its boundary in contrast to the usual LSE,
having six different types of asymptotic distributions on the boundary

depending on the values of the unknown parameters. ! 2
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1 Introduction
Consider an autoregressive AR(2) model
Ty =0Ty 1+ 022, 0o+e,,n=12,..., (1.1)

where (z,,) is the observation, () is a sequence of independent identically
distributed (i.i.d.) random variables with Ee; = 0 and 0 < Ee? = 02 < o0,
o2 is known, g = _; = 0. The process (1.1) is assumed to can be unstable,

that is, both roots of the characteristic polynomial
P(2) =22 — 012 — 05 (1.2)

lie on or inside the unit circle. The model (1.1) is a particular case of
unstable autoregressive processes AR(p) which have been studied by many
authors due to their applications in automatic control, identification and in
modeling economic and financial time series (we refer the reader to Anderson
(1971), Ahtola and Tiao (1987), Dickey and Fuller (1979), Chan and Wei
(1988), Rao (1978) for details and futher references).
A commonly used estimate of parameter vector @ = (61, 63)" is the least
squares estimate (LSE)
n n
0(n) = (01(n),02(n)) = M;' > Xpoqap, My =D Xpo1Xf,, (1.3)
k=1 k=1

where X} = (2, zx_1)"; the prime denotes the transpose; M, ! denotes the
inverse of matrix M, if det M,, > 0 and M, I = 0 otherwise.

It is well known that
Vn(0(n) — 0) = N(0, F), as n — oo,
for all @ € A, where A is the stability region of process (1.1), that is,

A:{0:(91,92)/:—1+92<91 <1-—206, ’92‘ <1}7 (1.4)



F = F(0) is a positive definite matrix (see, e.g., Anderson (1971), Th.
5.5.7), £, indicates convergence in law. If € belongs to the boundary OA of
the stability region A, the limiting distribution of LSE is no longer normal.
Moreover, there is no one universal limiting distribution for all 8 € JA and
the corresponding set of limiting distributions numbers 6 different types
depending on the values of roots z; and 2 of the polynomial (1.2). Each
limiting distribution of LSE on the boundary coincides with that of the ratio
of certain Brownian functionals (we refer the reader to the paper of Chan
and Wei (1988) for general results on the limiting distributions of the least
squares estimates for unstable AR(p) processes and further details). For
example, for conjugate complex roots z; = €%, zo = ¢~*¥ one has

(W2(1) — W(1))sing + (W2(L) + W(1) — 2) cos
Jo W2 (s) + W3(s)]ds

n-(01(n)—2cos ¢) N

9

1
n-(0s(n) +1) = (2- W) - VV22(1))//0 (Wi (s) + W3 (s)]ds,

where (W1(t),0 <t < 1) and (Wa(t),0 <t < 1) are independent standard

Brownian motion processes; if @ = (2, —1), then (see Theorem 3.1.2 ibid)

’I’L2 0 fol Z(t)dW(t)

(6(m)-6) =G, = :
0 n Jo W(t)dw (t)

where

1 1 .
- Jo WA(tydt [y W(t)Z(t)dt 20— / o,
s wwzyde [} Z2(t)dt 0

It is well-known that a similar situation takes place in case of AR(1) process
Ty = 0,1 + €y, (1.5)

for which the limiting distributions of the least squares estimate are not
normal at the end-points § = +1 of stability interval (-1,1) (see White

(1958), Lai and Siegmund (1983)).



Lai and Siegmund (1983) for a first order non-explosive autoregressive
process (1.5) proposed to use a sequential sampling scheme and proved that
the sequential least squares estimate for 8 with the stopping time based
on the observed Fisher information is asymptotically normal uniformly in
0 € [-1,1] in contrast with the ordinary LSE.

In this paper we develop a sequential sampling scheme for estimating
parameter vector 8 = (61,62)" in model (1.1). We will use the sequential

least squares estimate defined by the formula

7(h)
O(r(h) = M=) S X o, (16)
k=1
where 7(h) is the stopping time for the threshold A > 0 :

7(h) =inf{n > 1:) (x}_; +2}_o) > ho?}, inf{f} = +oo. (1.7)
k=1

This construction of sequential estimate is similar to that proposed in
the paper of Lai and Siegmund for AR(1) which is defined as

) ~(h) Q)
Oy = | D@ | D wkam, (1.8)
k=1 k=1

n
7(h) =inf{n > 1: Zm%_l > ho?}. (1.9)
k=1
It should be noted, however, that the first factor in (1.6) is a random matrix

and not a random variable, as in (1.8), and this makes additional difficulties.

For AR(1) the stopping time (1.9) turns the denominator in (1.8) prac-
tically into a constant ho? and this allows to use the central limit theorem
for martingales. In the case of AR(2) the stopping time (1.7) enables one
to control the inverse matrix MT_(}L) in (1.6) only partially since it remains
random. Nevertheless, we will see that such a change of time also enables
one to improve the properties of the estimate (1.3).

In our paper (2006) we proved the following result.



Theorem 1.1. Let (¢,)n>1 in (1.1) be a sequence of i.i.d. random variables
with Be, =0, 0 < Ee2 = 0? < 0o. Then, for any compact set K C Ay,
lim sup sup |Pg (Ml(/,f)(e(T(h)) —-0) < t) —dy(t/o)| =0,
h—0o0 gc K tc R2 T

where ®o(t) = ®(t1)P(t2), D is the standard normal distribution function,
A1 = {0 = (91,92), =1 —{—02 < 01 <1-— 92, 1< 02 < 1}, t= (tl,tg)/.

This theorem implies, in particular, that estimate (1.6) is asymptotically
normal not only inside the stability region (1.4) but also on the part of its
boundary {6 = (61, —1)" : =2 < 6; < 2} in contrast to the LSE (1.3).

The goal of this paper is to prove the asymptotic normality of the esti-
mate (1.6),(1.7) in the whole region [A] including its boundary OA.

Our main result (Theorem 3.1) claims that, as h — oo,

M2 (0((h) — 8) = N(0,0°1), (1.10)

for any 6 = (01,62)" inside the stability region A (1.4) and on its boundary
OA, where [ is the identity matrix. Thus the sequential estimate (1.6), (1.7)
has a unique normal asymptotic distribution in the closure [A] of the stability
region (1.4). It will be observed that the normalizing factor MTl(/i) in the
limit theorem (1.10) remains the same in the whole region [A] in contrast to
the case of the LSE (1.3), which has seven different limiting distributions in
[A] and in order to apply the limiting distributions one needs some knowledge
about the location of unknown parameters (see Chan and Wei (1988)). The
convergence of the sequential estimate (1.6), (1.7) to the normal distribution
in (1.10) is not uniform in @ for @ € [A]. It can be explained by the fact that
in the case, when the polynomial (1.2) has one root inside and the other on

the unit circle, the rates of information provided by sample values x,, about

the unknown parameters 61 and 0, may differ greatly.



Theorem 3.1 permits setting up tests of hypotheses about 8 and forming
asymptotic confidence regions for @ on the basis of standard normal distri-
bution. Moreover, the asymptotic normality holds in [A] for a broad class
of the distributions of noises (ey,).

The remainder of this paper is arranged as follows. Section 2 gives
the asymptotic distribution of the stopping time (1.7) (Theorem 2.1) and
some properties of the observed Fisher information matrix. In section 3 the
asymptotic normality of sequential estimate (1.6) for unstable AR(2) model
is established (Theorem 3.1). Section 4 proposes the sequential estimation
scheme for the case of unknown variance 2 in model (1.1). The appendix

contains some technical results.

2 Properties of the stopping time 7(h) and the ob-

served Fisher information matrix M,,.

In this section the attention is mainly focused on the case when the unknown
parameter @ = (01,602)" belongs to the boundary A of the stability region
(1.4). The boundary 0A includes three sides:

F1:{0:—91+02:1,—2<91<0},F2:{0101—|—02:1,0<91<2},

Ty={0:-2<0; <20,=—1} (2.1)

and three apexes (0,1),(—2,—1),(2,—1). Denote

0, 0 10
A= " 7, B= ,
1 O 0 O
[nt] [nt]
W) = 1 W = L ST (C1)ye 0<t<1 2.2
() U\/ﬁzgu 1 () O'\/ﬁz( )527 >t =4, ()
i=0 i=0



and introduce the following functionals

Ji(z;t) = /Ot z2(s)ds, Jolx;t) = /Ot </OS x(u)du>2 ds, (2.3)

t t 2
o) = [ @)+ 920)ds. Taio) = ( [ alois)

0 0
Theorem 2.1. Let (€y,)n>1 in (1.1) be a sequence of i.i.d. random variables
with Ee, = 0,FEe2 = 02 and 7(h) be defined by (1.7). Denote by a and b

real roots of the polynomial (1.2), —1 < a < b < 1. Then, for each 8 € A,
Pg — lim 7(h)/h = 1/trF, F — AFA' = B. (2.4)

Moreover, for each 8 € OA, as h — oo,

7

v (Wh) =inf{t > 0: 71(Wy;t) > 1} if € Ty,
vo(W) =inf{t > 0: JL(W;t) > 1} if 6 € Ty,

l

X

J(W) =1inf{t > 0: T(W;t) > 1} if 0 = (2,—1),

(
(
s(W,Wy) = inf{t > 0 : J5(W;Wi;t) > 1} if 8 € T3 U {(0,1)},
(
(

vs(Wh) = inf{t > 0: Jo(Wy;t) > 1} if 0 = (-2, 1),

(2.5)
where inf{0} = oo, A is defined in (1.4),
(1+b)\/h/2 if 6 €T,
(1 —a)\/h/2 if @ € Ty,
P(0,h) = ¢ V2hsing if @ = (2cos p, —1)' € T3, (2.6)

V2h if 6 = (0,1),
(h/2)V* if @ € {(-2,-1),(2,-1)},

W (t), Wi(t) are independent standard Brownian motions.

Proof Assertion (2.4) easily follows from Lemma 3.12 in [6].
For 8 € OA we decompose the original process (1.1) into two processes

(ug)k>1 and (vg)r>1 using the transformation

QXk - (uka 'Uk)/ ) (27)



where @) is a non-degenerate constant matrix of size 2 x 2 which will be

chosen later depending on the values of 8. The limiting relation (2.5) for

0 c U?zlfi has been proved in [7], Th 2.2. It remains to consider the apexes

(27 _1)a (_2) _1)7 (07 1)
For 6 = (2,—1), putting in (2.7)

1 0
Q =
1 -1
one obtains
k k Kk
DTS NCRES S 3 3
Jj=1 Jj=1 j=1 j=11i=1

n n n n
2 2 2 2 2
Z [ Xk—1[I” = Zuk—l + Zuk—2 = 22’%—1 — Up_1-
k=1 k=1 k=1 k=1

By the definition of 7(h) in (1.7), one gets

[th1/4)
Po{r(h) < th'/*} =Pe{ > | Xp_1|? = ho?}
k=1
o /] 1
_ 2 2
— PO{W Z uk—l — Wu[thl/ﬂ—l Z 1} .
k=1

(2.9)

(2.10)

Further we show (by the argument similar to that in the proof of Lemma

2.3 in the Appendix) that the sum

[nt]
1
Snlt) = 3 > uiy
k=1

satisfies the relation
Sa(t) = (W) + g (2),
where g™ (t) is a random process such that, for any ¢ > 0,
Jim Po(lg™)(1)] > 8) = .

8



Now we check that
lim u2/n* =0 Py—as.. (2.11)
n—oo

By the Cauchy-Schwarz-Bunyakovskii inequality and the law of iterated log-

arithm we have
2

n k 2 n 1 k
ui/n4§n_3z Zsi , ZE Zsi <oo Pg—as..
k=1 \j=1 k=1 j=1

These inequalities, in virtue of the Kronecker Lemma, imply (2.11).

From here and (2.10), (2.11), we obtain
Py (r(h)/(8,h) < 1) = Po(vg” <)+ Bo(h),

where

v = inf{t > 0: J(WM;t) > 1}, Jim fg(h) =0,

W (t) is given in (2.2). This, by the functional Donsker theorem (see
Billingsley (1968)), leads to (2.5) for 6 = (2, —1).

The case of the apexes (0,1),(—2,—1) can be considered similarly with
the use of Theorem 5.14 given in the Appendix. This completes the proof
of Theorem 2.1. O

Now we will establish some properties of the observed Fisher information

matrix M,,. Introduce the following subsets of the closed region [A] :

2
Ag =M\ Bi, Ag=Aqy + gy, (2.12)
=1

where

Agg =AgN Vg, Ago = Ag\Ag;

NG 4 "8

d —6% 2
Ui0:0<60,<2— — L4 = <0,<1—0;5:
{ >~ U1 > \/E, 4 +8_ 2 > 1}7

2 2
Vd:{02—2+i§01§07 ﬁ+d—<92§1+01}



B; are open balls of radius d > 0 centered at the apexes (—2,—1),(2,—1).
In view of Theorem 1.1, it suffices to study the properties of M, only
for the parametric subset Ag; and the apexes (—2,—1),(2,—1). In the case

of Ag 1, one can use the transformation (2.7) with

1 -b
Q= , (2.13)
1 —a

where —1 < a < b < 1. Substituting (2.7) and (2.13) in M,, (1.3) yields

M, =Q7'S,(Q) ' =Q 'R, RN (Q) (2.14)
where
“1/2
u, )y (u,v)n U, U)p 0
Y U O A R e |
(w,0)n  (0,0)n 0 (v,0)5 "/
1 &
Jn = RS Ry = : (2.15)
&n 1
&n = (u,u) 2 (0,0) 72 (1, 0)n , (u,0)n = Zuk_lvk_l. (2.16)
k=1

Proposition 2.2. Under conditions of Theorem 2.1, for any d > 0,9 > 0,

lim sup Pg (HJT(h) — T(91,92)H > 5) =0, (2.17)
h—>oogEAd’1
where
1 r(a,b V1= a2v1 - b2
T(01,05) = (,5) , r(a,b) = a o (a8)

r(a,b) 1 1 —ab

The proof of Proposition 2.2 is given in the Appendix.
Further we consider the asymptotic behaviour of the matrix J, in the
extreme cases when the process zj is "most” unstable, that is, @ coincides

with one of the apexes (—2,—1), (2, —1) of the parametric region [A].

10



For 6 = (2,—1) we take the matrix @ from (2.8). This yields

ko J k
uk =) ) e = g k=1, ug=vg=g9=0. (2.19)
§=0 i=0 =0
For 8 = (—2,—1) we take
10
Q=
1 1
This implies
ko J ' k '
u = (=1)F (=D)'ei, v = Z(—l)Jsj.
j=1i=1 J=1

Lemma 2.3. Let &, be given by (2.16) and 0 € {(—2,-1),(2,—1)}. Then

W) if @ = (2,—1),
én £ o) ( ) as n — oo, (2.20)

p(Wh) if 6 = (=2,-1),

where

e(W) =272 7, 2w 1) g VAW 1) Z(Ws 1), (2.21)

The proof of Lemma 2.3 is given in the Appendix.

3 Asymptotic normality.

It is known that the sequential least squares estimate (1.6),(1.7) is asymp-
totically normal just like the ordinary LSE for any value of 6 in the stability
region A. Moreover, according to Theorem 1.1, this convergence of sequen-
tial LSE to normal law is uniform in 6 belonging to any compact set in
A supplemented with the part of its boundary corresponding to complex
roots of the polynomial (1.2). In this section, we will show that in contrast
with the ordinary LSE (c.f. Chen and Wei (1988)), the sequential LSE is

asymptotically normal also on the boundary dA of the stability region A.

11



Theorem 3.1. Suppose that in AR(2) model (1.1), (en)n>1 is a sequence
of i.i.d. random wvariables, Fe, = 0 and 0 < Ee? = 0% < oo. Define

7(h), 6(7(h)) and M,y as in (1.6),(1.7) and (1.8). Then for any 6 € [A]

lim sup
h—00 ¢ R2

Po (M7 (0(r() ~6) < t) — ®o(t/o)| =0, (31)

where Oo(t) = ®(t1)P(t2), t = (t1,t2)', P is the standard normal distribu-

tion function; [A] is the closure of the stability region (1.4).

Proof of Theorem 3.1 In view of Theorem 1.1, we have to show (3.1)
for 9 e T7 UTLU{(0,1),(—2,-1),(2,—1)}. First we note that if @ € T'; U
s U{(0,1)}, the minimal and the maximal roots a and b of the polynomial
(1.2) satisfy the inequalities —1 < a < b < 1. Therefore one can use the
transformation (2.7),(2.13) to decompose the original process AR(2) (1.1)

into two processes (uy) and (vg) which obey the equations
Up = QUp_1 + €k, Vp = bvp_1 + €k, ug = vg = 0. (3.2)

Since the matrix @ in (2.13) is non-degenerate, one can represent the ob-

served Fisher information matrix M,, in the form (2.14) to obtain
MYM? = Q7RI (3.3)

Substituting this matrix in the standardized deviation of the sequential es-

timate (1.6), one gets

7(h)
M2 (8(r(h) — 6 ;JPZXk 16k

7(h)
_1/2 -1/2
Jr(h g QXp_16r = Jr(h) Zq—(h)7

where

“1/2 <
U, Uy L Up_1E
Z, = ()" 2 gy e ) (3.4)

—1/2
(v,0)n / Z}Ezl Vk—1E€k

12



Further we note that Proposition 2.2 implies that, for any § > 0,

lim sup  Po(|lJ 2 —1|>6)=0. 3.5
h—00 geT, UTLU{(0,1)} (H 7(h) | ) (3:5)

Therefore in order to prove (3.1) for @ € T'; UTs U {(0,1)} it suffices to

establish the following result.

Proposition 3.2. Let @ € T1UT,U{(0,1)}. Then, for each constant vector

A= (A1, \2) € R? with | A|| = 1, the random variable
Vi =XZ. /o (3.6)
18 asymptotically normal with mean 0 and unit variance, as h — oo, that is,

lim sup|Pg(Y, <t) — ®(t)] =0.
h—oo tcR

The main difficulty in the analysis of Y}, is that the stopping time (1.7)
enables one to control the sums (u, )4y, (v,v);() in the denominators of
(3.6) only partially because one of them or both are random variables even
in the asymptotics as h — oo.

The proof of Proposition 3.2 is given in the Appendix. The key idea of
the proof is to replace Y}, by a more tractable random variable Y}, equivalent
to Y}, in distribution by making use of the Skorohod coupling theorem and
then apply the Central Limit Theorem for martingales. The appendix con-
tains also the proof of Theorem 3.1 for the case of 8 € {(—2,—1),(2,—1)}.
This case is considered separately because the matrix J,, in (3.3) converges,

according to Lemma 2.3, only in distribution. O

4 Asymptotic normaliy in the case of unknown

variance.

In this section, we extend the sequential estimation scheme to model (1.1)

with unknown variance. It is shown that the sequential least squares es-

13



timate modified to embrace this case remains asymptotically normal uni-
formly in @ for any compact set in the region A; = AUT'3 (Th. 4.1) and it
is asymptotically normal in the closure of the stability region [A] (Th. 4.2).

Suppose that the variance 2 in (1.1) is unknown. A commonly used

2

estimate for ¢° in autoregression processes on the basis of observations

(z1,...,2y) is defined as

62 =n""S (z1,— 0 (n)Xp_1)?, (4.1)
k=1

where 6(n) is the least squares estimate of @ defined in (1.3). Now we must
modify the stopping time (1.7). At first sight, to this end one should replace
o2 in (1.7) by 62. However, we will use a different modification similar to
that proposed by Lai and Siegmund for AR(1) model, which turns out to be

more convenient in the theoretic studies. Define the sequential estimate as

#(h)
0(+(h) = Mi}) S Xiora. (4.2)
k=1
#(h) =inf{n >3:) (a7, + a7 _y) > hs}, (4.3)
k=1
where s2 = 2 V 6, 6, is a sequence of positive numbers with &, — 0.

The main results of this section are stated in the following theorems.

Theorem 4.1. Let (¢,)p>1 in (1.1) be a sequence of i.i.d. random variables,
Fe, =0, 0 < B2 =02 < 0o. Then, for any compact set K C Ay,
lim sup sup [Pg (M7 (O(F(h)) — 0)/3:y < t) = a(t) =0, (4.4)
h—00 ge K teR?

where ®o(t) = ®(t1)D(t2), D is the standard normal distribution function,

A1:{0:(91,92),2 1460, <6 <1—05, —1§92<1}, t:(tl,tg)/.

14



Theorem 4.2. Let (¢,)p>1 in (1.1) be a sequence of i.i.d. random variables,

FEe, =0, 0 < Ee2 = 0% < 0o0. Then, for any 0 € [A],

lim sup [P (Ml(/,f)(e(%(h)) —0)/6:) < t) — By(t)| = 0.

h—o0 te g2
The proofs of Theorems 4.1- 4.2 proceed along the lines of those of The-
orems 1.1 and 3.1 though they become more laborious because one needs to
control the additional terms appearing as a result of the unknown variance.
We will give only the proof of Theorems 4.1.
Proof of Theorems 4.1. Substituting (1.1) in (4.2) yields

#(h)
2 p/n . 179 A
M (O (h) = 0)/62y = Moy* > Xiaen/ds,
k=1

:<M+<h>f}3< /(o 4h/2) ZXk 161/ (0*V/1/2) . (4.5)

Further we need the following results.

Lemma 4.3. Let M,,,7(h) be given by (1.3), (4.3). Then, for any compact
set K C Ay and § > 0,
lim sup P <||M 621,/ (0*h/2) — L(01,02)] > 5) ~0, (4.6)
h—oo gc K

where

1 01/(1 — 62)
01/(1 — 62) 1

L(61,09) =

Lemma 4.4. Under the assumptions of Theorem 1.1, for any compact set

K C Ay and for each constant vector X = (A1, A2)" with || A =1,

lim sup sup [Py (Y, <t) — ®(t)| =0,
h—oogeK teR

where "
7(h

Yi = XNL7Y2(01,05) > Xpo1en/(0*\/h/2) .
k=1

15



The proofs of these Lemmas are given below in this section.

Now we rewrite (4.5) as

ML (O (R) = 0)/6: 0y = (Mo 52y /(51/2)) g ey @

7(h
7(h)
><L_1/2(91, 92) Z Xk_lé-:k/(O'Q\/ h/2) .
k=1

According to Lemma 4.3 we have for each § > 0

. ) 4 —1/2 1/2

lim sup Py | || (Mf.(h)aﬁh)/(a h/2)) L7%(01,05) — 1] >6 ) =0.
h—ooge K

From here and (4.7) by applying Lemma 4.4, we come to (4.4). This com-

pletes the proof of Theorem 4.1. O

In order to prove Lemmas 4.3, 4.4, we need the following result.

Proposition 4.5. Let 6(n) and 62 be given by (1.3) and (4.1). Then, for

any compact set K C Ay and § > 0,

lim sup Pg (]|@(n) — 0] > 6 for some n >m) =0, (4.8)
m—00 ge K
lim sup Py (|6?L — ¢ > 6 for some n > m)=0. (4.9)

Proof. We have
0(n) — 0 = (My/(z,2)n) " (2,2)," Y Xp_16k.

k=1

By Lemma 3.3 in [7], for any § > 0 and any compact K CA= [A] \
{(071)a(_2>_1)7(27_1)}7

lim sup Pg (||M,,/(x, )y — L(61,602)]] > d for some n >m) =0. (4.10)

m— geK
Further it will be observed that, for any 0 < C < oo and compact set

K, there exists a positive number A that, for all matrices L(61,03) with

0 = (01,60,) € K and B such that | B—L(1,6,)|| < A, one has [|[B~|| < C.

16



Let C, B be such a pair. Then, for each 8 € K, we have the inclusions

(]|0(n) — 8] > o for some n > m)

- (H(Mn/(x,x)n)_lﬂ(x,x);lH Z Xk_1€k|| > 0 for some n > m)
k=1

= (o) C (o, ||M,,/(x,x), — L(01,09)|| < A for all n > m)

U(e, | My /(z,x), — L(01,62)| > A for some n > m)

C <C (z, ), | Z Xk—1€k|| > 0 for some n > m)
k=1

U (||My/(x,x), — L(61,02)| > A for some n > m) .

This yields

Py(]|0(n) — 0| > 0 for some n > m)

n
<Py ((:r,:v);lH Z Xi_1ek|| > § for some n > m)
k=1

+Pg (| M/ (2, 2), — L(61,02)|| > A for some n>m), § =4/C.

By Lemmas 3.2,3.3 from [7], limiting m — oo, we come to (4.8).

Consider (4.9). Rewrite 62 in (4.1) as

Gr=n""> (er+(0-0(n) Xe1)> =n""Y e}
k=1 k=1

n
/

+2n71(0 — 6(n)) Xp1er +n71 (0 - 0(n) Y X1 X, (0 —6(n)).

k=1 k=1
Substituting here @(n) from (1.3) yields

n n n
&?L —o’= (n‘l z—:i — U2> —on! (Z X,;_lsk> Mn_1 Z Xip_1ek
k

k=1 k=1

+n ! ( X,;_lek> MM MY Xy
k=1

= (n_l Zn: el — 02) —nt (f: X,;_lsk) Mt EH: Xp_1€k
k=1 k=1
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= (n_l Z et — 0'2) _n(Tl,:n)n (Z XI;—15k> (My/ (2, 2)5) " Z Xp—1€k -
k=1 k=1 k=1

The first term in the right-hand side of this equality converges to zero in
virtue of the strong law of large numbers. Therefore, in order to prove (4.9),

we have to verify that, for each K C Ay and § > 0,

1 (& .
lim sup Py (ﬁ (Z Xk_lz—:k> Mt Z Xp—1€r > 0 for some n > m> =0
k=1

m—00
0cK Pt

In view of Lemma 3.3 in [7], it is equivalent to the following limiting relations
n 2

lim sup Py Z Tp—1€k| > on(x,x), for somen>m | =0, (4.11)
m—0 geK b1
2

n
lim sup Py Z Tp_oek| > on(x, ), for somen >m | =0. (4.12)

To prove these relations we will make use of Lemma 2.2 from [10]. First we

note that the matrix A defined in (2.2) possesses the property (see, [7]):
sup [[A"|| <k, n=1,2,..., (4.13)
OcK

where k is some positive number. This implies the following inequality

n

(@, 2)n <KD O lgjl)? =:Un. (4.14)

k=1 j=1

Indeed, writing down (1.1) in the vector form
Xy = AXpo1 + &, & = (1,0)

and using the formula X; = Z?:l Ak=i &j, lead to the estimate

k
okl < I1Xkll < & el
j=1

and, hence, to (4.14). By making use of the law of iterated logarithm and

the Kronecker Lemma, one can show that U, in (4.14) satisfies the following

relation

U, = o(n?) as. (4.15)



Now let us prove, for example, (4.11). From the inequality under the sign

of probability in (4.11), it follows that

n
E Tk—1€Ek

k=1

> 51/2(33, x)?/S (n4/(:r, :E)n)l/s

> 51/2(33,@2/8 (n4/Un)1/8 . (4.16)

This enables us to obtain the following inclusions for A < ¢2:

<| Z Tp_1ex| > 6120 2 (x,2)}/? for some n > m)
k=1

n
C (o, |n_lz e2 — %] < A for all n > m>
k=1
n
U (\n_l Z e2 — 0| > A for some n > m>
k=1

C (o, n_125i>a2—Aforalanm>

k=1
n
U (\n_l Z e2 — 0% > A for some n > m)
k=1

n
C <o, n_lz z—:z>a2—Aalln2m,Un/n4§1alanm)
k=1

n
U
U <|n_125%—02| >Aforsomen2m> U(n—;1 > 1 for some n >m).
k=1

From here one gets

.

n
E Tl—1Ek

k=1

n

E Tk—1€Ek

k=1

> 61212z, 2)1/? for some n > m)

<y

1 — U
Poll=) et -0 >Af > Py — > 1 f > .
+ 0<|nk_15k O" or somen > m |+Py o or some n > m

S 5172 (4_1n3/2(02 —A)V (yc,:c)?/ss) for some n > m>
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In order to come to (4.11), it remains to use Lemma 2.2 from [10], the
strong law of large numbers and put m — oo . This completes the proof of
Proposition 4.5. [

Proof of Lemma 4.3. We start with the representation

MeOiay Mgy (@ 2)rm S IXeal® SFw T
oth/2 (.ZU,.CU)f,(h) 9— 1ZT(h [k hsT() o2 o2

It suffices to show, for any é > 0, the limiting relations

Jim_sup Py (10 / @, 2) 1y = L(01,02)]| > 8) =0, (4.17)
7(h) -1
lim sup P x,x)s 21 X —1>6| =0, 4.18
i sup Py ( (h) ZH k-l (4.18)
#(h)
lim sup Py [ Y | Xp1]?/(hs2y) —1| > 6| =0, (4.19)
h—o0 gecK 1
lim sup Py <| /U -1 > 5 =0, (4.20)
h—oc ge Kk
li P -1 4.21
phm_ sup o<|UT(h Jo® |>5) (4.21)

Consider (4.17). We have
Py (1| My /(2 2); 0 — L(01,02)]| > 8) < Po(#(h) <m)  (4.22)

+Py (|| M,/ (2, 2),, — L(01,02)| > 6 for some n > m) .

In view of (4.10), we need to check only that, for each sufficiently large m,

lim sup Py(7(h) <m)=0. (4.23)
h—o0 gek

Let mg be a number such that, for all m > mg, the sequence (9,,) satisfies
the inequality d,, < 0%/2. By the definition of the stopping time 7(h) in
(4.3), it follows that

Py(7(h) < m) =Pg(D_ | Xs1|* = hsy)
k=1
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=Po) 1 Xe1]> = hom, m = 65) + PO 1Xpl® > h67,, 6m < 67,)

k=1 k=1
< Py(62, < dm) + Py (Z [ Xpoea|® > hc}i)
k=1
< Py(l62, — 0% > 0*/2) + Py ( [ Xe—1]® > hﬁ%) : (4.24)
k=1

Further we have

Py (Z I Xkall* > hﬁi) =Pg(s, |07, — 0% < A)+Pg(s, |67, —0°| > A)
k=1

<Py <Z | Xp_1|?> > h(c? — A)) +Py(|62, — 0% > A). (4.25)
k=1

The inequalities (4.24),(4.25), in view of Proposition 4.5, imply (4.23). This
leads to (4.17). To show (4.18) we use the identity
n
(@, 2)n =271 | Xpa | + 224 /2,
k=1

(4.23) and apply Lemma 3.1 from [7]. The relations (4.19)-(4.21) can be
checked in a similar way. This completes the proof of Lemma 4.3. [

Proof of Lemma 4.4. We will use the argument similar to that in
the proof of Proposition 2.1 in [10]. First we introduce a sequence (&) of

truncated observations (z,,) defined as

x, if 22 < §%h,

Vhif 22 > 6%h, 0< 6 <1,

Tp =

and the set

Qp = (2 = &, for all n < 7).

Along the lines of the proof of Proposition 2.1, one can verify that

lim sup Pg(Q5) = 0. (4.26)
h—oc ek
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Further we introduce stopping times T, and T}, as

Th =inf{n >3: Y (&F_1 +&5_o) > h(Gh_1 Vn)},
k=1

Ty =inf{n >3:> (&, + &4 o) = h(0® Vn)}, (4.27)
k=1

where
n

Grr=n"" Y (Fr1 — 0'(n)Xy1)%,
k=1

n

-1
(Z X1 X, 1) ZXk_lgak.

k=1
On the set €, we have Tj, = 7(h), 62 = 6% and 0(n) = 6(n).

Now we write down Y}, as

K Ty K #(h)
_ 2] O R 2] R
Y, = 2T kZ:1 Xk—1€k19h + —02\/5 ; Xk—1€k1%
Ky &

202\/_224)(]€ 1€k + 2\/— ZXk 1Ek_ZXk 1€k 1()2

Ty, I

ZXk 16k + — = 2\/— ZXk 15k_ZXk 16k | 1ge

h
k=1

Ke

0_2\/_ ZXk lgk_ZXk 1€k :ifh-i-?“h, (4.28)

where 14 is the indicator of a set A, Kg = \/iAIL_l/Q(Hl, 0s),

Th

- K R
Yy, = —2 X161 — E&y), 4.29
h 02\/51;1 —1(€k k) (4.29)

. K (s :
"= f Z Xp1(Gr — E&) + o (th_lefh - XTh_leTh) (4.30)

ZXk 1Ek_ZXk 16k | Lge
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K Ty —1 Ty —1

_ 6 % _ %
Nh = N kZZI Xk-18k kZZI Xg—16k |

€k =kl <1/vE)r Sk = Ehl(e51/v5) -

Let us show that

lim sup Pg(|ry| > 0) =0, (4.31)
h—oo gec K
lim sup sup [Pg(Y, < t) — @(t)‘ =0. (4.32)

h—oogeK ter
The first term in the right-hand side of (4.30) can be estimated as

Ty Th
K > = =
o~ Z X 1(Ex—E&))” < Ko/ (0>VR)PEg Y | Xi—1|*E(E—E&;)?
‘7 Vhg k=1
< ||Kg/(a*VR)|*Eg (h(0® V 67,) + hd®) D(é1)
Ko 12 < 2 2) =
< o”Vsupd, )+ | D(&).
| \FII ( sup ) (é1)
From here, limiting 6 — 0 we obtain
Ky & i
lim sup sup Eg | —2= Xi1(6, — EE =0. 4.33
T S g

The second term in (4.30) can be estimated as

Ko 2 0 2p 2
Eg <02\/EXT~h—1ETh> <l 2\/—H EoHX;fh_lﬂ EETh
< Ko /(@ VR)PPHEEL, — |[Kg 2l 26°.

Therefore one gets

lim sup sup E  X- c-)2=0. 4.34
6—0 h>%(-)e[g 0(02\/E 7,-1°7,) (4.34)

Further we note that
Egni, < | Kg/(0?\/1/2)|*Egtn , (4.35)

where
Th 1 Th 1

= a2h Z | Xe—1ll” - Z | Xk ]?
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Let us estimate t,. If T}, > Th, then

Th—l 2
1 . h(o® V o7,) _
th< =+ > Xt |? € ——2 Il < (1V (07 2supdy)). (4.36)
o P o?h n>1

2 2

This estimate is also true in the case when T}, < T, » because then &Th_l <o
and, hence,
1 ~ 9 2 o h o -2
PO Z [Xk—1]" < —h( 7,1 Vo) <(AV(e ilill)5n))~

Thus

ty, < <1 V (02 sup (5n)> .

n>1

Now we will show that, for any A > 0,

lim sup Py(tp, > A) =0. (4.37)

h—oo gc Kk
We have the following estimate

Th—1
Z | Xe—1ll® - (5% L VOg)
Ty, —1
[ 5Th 5Th 1 % 2
+| =507 Vog) -1V ?) + |1V ?) ~ 3 ; [ X1 [7] -
From the definitions of Th and T}, it follows that
Ty —1 5 1 T,
= > IRl < (05 Vo) < S 3 1l
k=1
1 T, —1 L 1 In
S IR < e 0? V) £ o S 1K
k=1 k=1
Therefore
1 Th—1 A
0% 3001V 0n) ~ oy 2 Il < ol
T,—1
0<(1Vo2p)— 2h Z X1 ]® < || 71l
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and this leads to the estimate

< (@0 X, P+ (@) Xy P+ Gy

where (j, = 0_2(&%1_1 Vo) —(1V (07267,))] -

Now we have to verify that, for any A > 0,

lim sup Po((0”h) | Xz 4[> > A) =0. (4.38)
h—oc ge Kk
lim sup Pg((0?h) | Xy, _1|I” > A) =0, (4.39)
h—o00 gc K
lim sup Py(¢p, > A)=0. (4.40)
h—oo geK

For any A > 0 and 0 < A < 1, one has the inclusions
(@)1 %5, 12> A) < (@)%, 412 > A,0) U0
(@R X sl > A,20) U,
C () <m)U ((02R) M Xz 2 > A,y 7(R) > m) U,

C (#(h) <m)U (”02 s;fh) 1 > A) U

(XT(h LlP>A0-A ZHXk 1% )

c (7(h) <m)u (”02 AR A) U

U(|X,, 1]I? > A(1 — A) Z | Xx—1]|? for some n > m).
k=1

This yields the inequality

Py ((02h) !X, 4|2 > A) < P(p() <m) + Py (llo? 573 — 11 > A)

+P,(Q5) + Py X, 4 II> > A1 - Z | Xx_1]|? for some n > m).
k=1

From here, (4.9),(4.23),(4.26) and Lemma 3.1 from [7], we come to (4.38).

In a similar way one can check (4.39).
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Further, for sufficiently large m, we have the inclusions
(Ch>A)= (G > AT, <m, Ty, <m)U (G > ATy >mor Ty, > m)

C(Th<m)U (G >AT,>mT,>m)U (G > AT, >m, Ty <m)

U(Ch > A,Th <m,Ty >m) C (Th §m)U(Th Sm)
U(Ch > A,Th >m, Ty, >m) C (Th §m)U(Th §m)U(|&2~ _ 0'_2—1’ > A)

This implies

Po(Ch > A) < Py(T), <m) +Py(T), <m) + Py (|5 o2 -1 > A) .

2
Ty —1
(4.41)

From the definition of T}, in (4.27), it follows that for sufficiently large m

Py(T <m) =Po(D_ [ Ximal* = h(o? V 6)) < Po(Y_ IXim1]* = ho?)
i=1 i=1

and, hence,

lim sup Py(T, <m)=0. (4.42)
h—oc gek

Let us estimate the second term in the right-hand side of (4.41). In view of
(4.27), one has the inclusion

<n3nw=<§anth@;pwm)c(ZNXHWzmm)
=1

=1

Po(Th, <m) <Py (Z X)) > h5m>

i=1

and one gets

lim sup Py(T) <m)=0. (4.43)
h—o0 ge Kk

It remains to consider the last term in the right-hand side of (4.41). We

have the following inclusions

(162 02 =1>Aa) c (T <m)u (153,02 =11 > AT > m, )
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U ¢ (|&;h_la—2 — 1> A, #(h) > m) U (T, <m) U

C(Thgm)u(|5icf—2—1|>Af0rsomen2m—1)uf22.

This yields
P (162, _,072 = 1| > A) < Py(Th < m) + Po((%)

+Py (|5'721 — 0% > o2 A for some n > m — 1).

From here, (4.9), (4.26), and (4.43) we come to (4.40). Taking into account
(4.38)-(4.40) we have proved (4.37). Combining (4.35), (4.36) and (4.37)
yields

lim sup Egni = 0. (4.44)
h—o0 0cK

From (4.30), (4.33), (4.34) and (4.44) we derive (4.31).
In order to complete the proof of Lemma 4.4, it remains to show (4.32).
Define the set

Qn = (z, = &y, for all n < Tp,).

By the definition of T}, in (4.27) one gets
Po(();) < Zpe(ﬂf%—l > 6%h)
k=1

+Py (T}, > m,x,, # Ty, for some m < n < Tj)

< ZPe(xz_l > 6%h) + Py (azi > 62 Z(i?_l + 22 ,) for some n > m> .
k=1 i=1

It can be proved that for the unstable model (1.1)

n
lim sup Py [ 22 > 62 Z(aﬁf_l + 22 ,) for somen >m | =0.
h—o0 gc K =1

Therefore

lim sup Py(Q}) =0.
h—c0gek
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Let

To(h) =inf{n >3:> (x} | + a7 ) > h(c® Vé,)}.
=1

Since, T}, = Tp(h) on the set Qy,, we rewrite Y}, defined in (4.29) as

T},
” Ko 0 > (= .
Y, = X ér — E¢ Xip_1(ér — Eép)1s
h 02\/—2 k—1(Ek K)lg 02\/E; k—1(Ek K)1lg
K Ty, To(h)
] 5> ~ ~ ~ ~
= Xk_l(sk — EEk) — Xk:—l(gk — EEk) 1sc
o*Vh kZ::l kzzl o
To(h) To(h)
K@ 5 5 (Ek — EEk)
+ Xi 1 — E&) = J—1—F—="
T 2 7r 2 B
K Ty, To(h)
0
+ Xi—1(éx — E&g) — Xi—1(6r — Eé&) | 14 ,
where

Further we introduce the stopping time
n
70 = 10(h) = inf{n > 3: Z g >h}
k=1

and represent Y}, as

where A(h) = Aq(h) + Ag(h),

Ar(h) = B Pgp gy semymy » Da(h) = =h g, 4 180y »

(i) o g G EE) 1 o NCI -0
=— k-1 — b1 —
Vi o VDE) VR o vD(Ex)

K

Ty T()(h)
0 5 ~ - ~ ~
+ Xp_1(6p — Eér) — Xp_1(ép — Eé 1s. .
N 1}:1 k—1(Ek k) E k—1(Ek k) | Lo

k=1
Further analysis of ¥, proceeds along the lines of Lemma 3.7 in [7] and is

omitted. This completes the proof of Lemma 4.4. [
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5 Auxiliary propositions.

This section contains the proofs of some results used in this paper.
1. Proof of Proposition 2.2. First we will prove the following three

Lemmas.

Lemma 5.1. Under conditions of Theorem 2.1, for each m = 1,2,... and
for any 6 > 0,
lim sup Py(7(h) <m) =0, lim sup Pg(1/7(h) > ) =0. (5.1)
h—o0 ge[A] h—00 ge[A]
Proof. From the definition of stopping time 7(h) in (1.7) and (4.14), it

follows that

m

(r(h) <m) = <Z(xi_1 +a5_y) > h02> C (Up, > ho?).

k=1

This implies (5.1). Hence Lemma 5.1. [

Lemma 5.2. Under conditions of Theorem 2.1, for any d > 0,

7(h)

1
lim sup P — e2—g? >8] =0.
h—oogen)] 0\ |T(R) ; g
Proof. One has
1 7(h)
PB |%ZEI%_U2|>5 SPG(T(h)<m)
k=1

1 n
+P — e2 — 2| > 8 for somen >m | .
(i-rtostremnnc)

Applying Lemma 5.1 and the strong law of large number one comes to the

desired result. Hence Lemma 5.2. [

Lemma 5.3. Let (ug)r>0 and (v)p>o0 be the processes defined in (3.2).

Then, for each d > 0 and any § > 0,

. —1 12\, 2 _
lim 921131P9<\T(h)(u,u)ﬂh) (1 a)/a\>5) 0, (5.2
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. 1 1 12y,.2 _
Jim oiﬁf,lpe(|7(h)(v’v)7(h> 1 b)/a|>5> 0.

Proof. Since these relations are similar, we verify only (5.2). First we

show that, for each d > 0 and any ¢ > 0,

lim  sup P, (\T(h)(u,u);(lh) —(1—a%)/o? > 5) —0.
h—o0 GEAdyly
—01+02<1
Squaring both sides of the first equation in (3.2) and summing give

7(h)

7(h) T(h
(1—a?) Zug_l = uf — uz(h) +2a Z uj_1€5 +
j=1 j=1

)
Se
j=1

By making use of this equality one obtains

() (u, 1)) — (1= a?) /0|

7(h)
2 7(h T(h
< Ur(h) 2| Ek(:f up—1€x| | | Zk(:f (ez — )]
B 02(u7u)7'(h) UQ(U,U)T(h) UQ(U,U)T(h)
2 T(h T(h
T D T N Do ]
- g2 (U, U)T(h) o2 ('LL, U)T(h) (0_2/4) Zﬂ];(:hl)—l 5%

The last inequality follows from the estimate

n—1 n

Setcayi,

k=1 k=1
By Lemma 5.2, we have to show that, for each d > 0 and any § > 0,

. 2 -1
il P P (w07 > ) =0
—01+62<1
7(h)
lim sup Py |Zuk_1€k|(u,u);(z) >6 | =0.

h—>OO BEAd,l’ k:]_
—01+602<1

We have
2 -1
Py (uT(h) (u,u)T(h) > 5) < Po(1(h) <m)

+Py (ui(u,u);l > ¢ for some n >m) .
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It is known (see, [10]) that

n -1
lim sup Py | u2 <Z ui_1> > ¢ for some n >m | =0. (5.8)
k=1

m—0o0 \a|§l

Applying this and Lemma 5.1 in (5.7) yields (5.5). To prove (5.6) we use

the representation

| 1/4
h h
Up_ 12k /(U,U)T(h) = CT(h) max ( 7_( ) , <( 7_( )(h)> 1 1 )

k=1 u, U)T(h) u, U)T

7(h

where
n

E Uk—1EEk

k=1

1

max (n, (u, u)2/4>

Cn =

By Lemmas 5.1, 5.2 and applying the uniform law of large numbers for mar-
tingales (see [10]) we come to (5.6). Combining (5.4) - (5.5) and Lemma 5.2

one gets (5.3). It remains to show that, for each d > 0 and § > 0,

T sup Po(|r(h)/(u,u), gy — (1= a%)/0%] > 6) = 0. (5.9)
—00  geA R
—01€+3’21=1

If 01 + 6 = 1, then @ = —1 and the process uy in (3.2) satisfies the limiting
relation (see, e.g., Lai and Wei (1983))

n 2
lim ianu%/(nQ/loglogn) = UZ a.s. (5.10)
k=1
By making use of the inequality
Py ﬂ >0 §P9(T<m)+P9<L>6f0rs0men2m>
(’LL, U)T(h) (’LL, u)n

and (5.10), we come to (5.9). This completes the proof of Lemma 5.3. [
Now we can prove Proposition 2.2. We have to show that, for each d > 0

and any 0 > 0,

lim sup Py (&) — r(a,b)| > 6) =0. (5.11)
h—ocogen, ,
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Denote

7(h)
ng = AhZuk we—i,l=1,...,7(h), Ap = (u,u) (1h/)2(v v) (1h/)2.
k=l

From equations (3.2), one gets

7(h) 7(h)
Zuk Wi = Y (aug_i—1 + ep—y) (bop—i—1 + 5
k=i+1
7(h) 7(h)
=ab Z Up—|-1Vk—1-1+ @ Z U 1Ek— 1+
k=i+1 k=l+1
7(h)

+bzvk115kl+26kl,l—l (h)

k=1+1 k=l+1
Substituting this in (5.12) yields

@ _ 3D

ny, =abny "+ 2y, 1< <7(h),
where
7(h) 7(h)
Zr(h)—1t = An Zuk11€k1+bzvk11€kl+z€kl
k=Il+1 k=l+1
Putting (,,, = (T(h) ™) we come to the equation

Cm = ablm—1 + 2m, 1 <m < T(h),CO =0.

Solving this equation one finds

7(h)—2
Er(n) = T(h
7=0
Introducing the sums
Sm = Z(ab)l,m >0,
1=0

one can rewrite this formula as follows
7(h)—2
&y =2+ Y (@) z gy 1

j=1
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j=1
7(h)—2 7(h)—
= Zr(h)—1t+ Z SjZr(h)-1 Z Sj%r(n)—2—j
j=1
h 7(h)—3
> = D Sitmy-ay
=0 =0
r(h)—
)—221 T Z —j = Zr(h)—2—j)-

By making use of (5.13) one can easily verify that

Fr(h) =15 Fr(h)-2-j = GARUr(r)—2jE7(n) i1

ARV ()2 jEr(h)—j—1 T AnEry—j-

Substituting this in (5.15) we obtain

Gy =&+ a0 +67, (5.16)
where
7(h)—1 T(h) -1
ff(Ll) = Ay, Z S (h)—1-kEhs 522) = adp Z Sr(ny-1-kUk-18k,  (5.17)
k=1 k=2
7(h)—1
5}(13) :bAh Z ST(h)_l_kUk—lEk-
k=2

To show (5.11) we have to check that, for each d > 0 and § > 0,

Jim ~ sup Pg(ls —r(a,b)| > J) =0, (5.18)
h—%0 geA,
lim sup Po(\gh | >6)=0,i=23. (5.19)

h—00 gcA a1

First we will verify the equalities for some subsets of Ad71: for any ¢ €]0,1]

lim sup Pe(\ﬁl(ll) —r(a,b)| >6) =0, (5.20)
=00 ge A, 1N{6:|ab|<q}
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lim sup Py(lc) > 6) =0, i=2,3. (5.21)
h=0o0 e, ,n{6:|ab|<q}

Denoting lim,, oo Sy, = (1 — ab)~! = S* we rewrite 5}(11) as

7(h)—1
e = 4,5 Y 4w, (5.22)
k=1
where
7(h)—1
Wi =An Y (Syy—1-k — S7)et- (5.23)

k=1
By Lemmas 5.1, 5.3 one gets

r(h)—1 1/2 1/2 r(h)—1
* 2 Q* T(h) T(h) 1 2
ApS E e =29 ((u,u)T(h)> <( )) ) E ei (5.24)

k=1 U7U)T(h
=1 —a2y1—-02(1—ab)" ! +ay,

where «y, satisfies, for d > 0,0 < ¢ < 1, and é > 0, the limiting relation

lim sup Po(lan| > 6) =0. (5.25)
h=o0 gen 1 n{6:|ab|<q}

For |[W}], on the set (7(h) > N + 1), one has the following estimate

7(h)—N-1 7(h)—1
[Wh| = |An Sk =S+ D (Srmy—1-x — S)eR
k=1 k=r(h)—N
7(h)—N-1 7(h)—1
* 2 * 2
< max Sy — S*|An D G+ max EE VY =
k=1 k=r(h)—N

1/2 1/2 7(h)—1
y 7(h) 7(h) 1 E 2
<max|S, — S| | ——— ¢
n>N < (u7 U)T(h) ) <(v’ ’U) (h) T(h) k=1 ’

T
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From here, in view of the inequalities,

_§*| < N+1 _ _ ¥ < —
g;angn S <q¢" /(1 —q), Ig§§\5n S* < q/(1-q),

by applying Lemmas 5.1- 5.3, we obtain
lim sup Po(|Wh| > 6) = 0.
h—00 gcA, 1n{6:|ab|<q}

This and (5.22)-(5.25) imply (5.20).

By a similar argument, one can show (5.21).

Thus we have verified all limiting relationships (5.20),(5.21), which give
the asymptotic convergence of random variables & }(Li) on the parametric set
A, with the additional condition |ab] < ¢. It remains to show that § }(f)
converges on the set A, ;.

It will be observed that, by the definition of parametric set A4 in (2.12),
there exists a number ¢* € (0, 1) such that for all ¢* < ¢ < 1 the correspond-
ing set A, N {0 : [ab] < g} contains all points of A ; except for those lying
in some vicinity of the apex (0,1). On the other hand, function r(a,b) in
(5.18) vanishes when |ab| approaches 1. Therefore, for a given § > 0, there

exists a number ¢ > ¢* such that, for every 6 € A;; N {6 : |ab| > ¢},
V1—a?yv1-0b2<4/3,

which implies

r(a,b) < 0/3. (5.26)

Consider 5}(})' Since S,, < 1 for negative ab, then, in view of Lemmas 5.1, 5.3,

\ff(Ll)| can be estimated as

1/2 1/2 r(h)—1
W o [T 7(h) 1 5
l= <<u, um)) <<v, D) T 2
=v1—-a2y/1-0b2+qy,
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where

lim sup Py(|lan| > 3/3) =0.

h—o0 GEAd,l

From here and (5.26) one has
€D — r(a,b)| < 26/3 + ap.
Therefore, for any A > 0, there exists a number hg such that for all h > hg

sup Pyl — 1 (a,b)] > 6) < A. (5.27)
0cA, 1N{6:]ab|>q}
In view of (5.22), for a given A, there exists a number h; such that for all

h > hy

sup  Py(lg) — ()] > ) < A (528)
0cA,; 1N{6:ab|<q}

Combining (5.27) and (5.28) we come to (5.18).
To prove (5.19), we estimate |§}(LQ)| for @ € Ay N{0: |ab] > G} as

1/2 1/2

7(h)—1 7(h)—1
2 —1/2 —1/2
€] < ,; &t ; wioy | ) w0) )
1/2 r(h)—1 1/2
T(h) 1 9 (1)
< | ——— — =+/1—b2
- <<v,v>7(h>> () ,; E T

(1)

where «;, ’ satisfies

lim sup Py(latl]| > 6/3) = 0.

h—oogen, ,

This enables us, by the same argument as in the case of & ,(11), to show (5.19).
The case of £ }(L?’) can be studied by a similar way. This completes the proof

of Proposition 2.2. [

2. Proof of Lemma 2.3. Consider in detail the case when 6 = (2, —1).

Denote
[nt—1]

FOn =13 W, L) = / f(s)ds, (5.29)
n = 0

n
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where Wt( ) is given in (2.2). Then the nominator in (2.16) becomes

It will be observed that

FO) = Ty (W) + 0 (2), (5.31)

P (O] < (W5 [0, 1);1/n),

(5.32)
where w(f; E;d) denotes the oscilation of a function f : E — R of radius
6 > 0, that is
w(f;E:6) = sup  |f(x) = f(y)l-
|lz—y|<é,z,yeE
By (5.29), (5.32)

ri(t) < max |gg|/v/n — 0 as. (5.33)

1<i<n
Substituting (5.31) in (5.30) yields
n n n 1
Zuk_lvk_l =n Z.[k—l (Wt ))ng +n’r?), (5.34)
k=1 k=1 " "
where

. |

r® =57 )W& -

n
k=1
Note that in view of (5.33)
il _ .
(2) < .
s 02121 |W | 12580 /n \/_ 1Sk \/_ Z 1252 \/_
Show that, for any 6 > 0,
lim Pg (|r | > 5) (5.35)
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By applying the Kolmogorov inequality one gets, for any 6 > 0 and A > 0,

Zez >5>

ERNTE l | ), A%
< Po <1<Z<n \/_ A EGZE = Pe Lo, \/_ 52 .

This implies (5.35).

) 5 5) < il L
Pe (|’I"n | > 5) - Pe <1<z<n \/7 > * PB (A lgllgg(n

Now we rewrite (5.34) as

Sy vy = n? /O Ty (WO)WEL e+ D) (5.36)

1
= n3/ It(W("))Wt(n)dt + n?’r,(f’) + n?’r?(f‘),
0

where

n 1
P < w <I[tn—11 WWwE ;00,1 E) (5.37)
n 1
<W[(tn)1] ;10 1]; E)
™). 19 1. L
I[tnfll (W )7 [07 1]’ E

< max (W ‘ w( (W), [o,1];%>

T0<t<1

< max ‘I[m 3 ( W(n)) ‘W
0<t<

+ max
0<t<1

W[(:L)fl] "W

k

Zs

1 1
ri) = / Ty (WOYW) | dt — / LWYW M dt = A, + By, (5.38)
0 n n 0

ol 0.1): 2 —
* g 0 (W01 ) =2 s,

! (n)
Ay, = / (I[in—ll (W(n)) - It(W(n))) W[:%l] dt,
0 n —
1
B, = / I,(Ww®) <W[(Z)_1] - Wf’”) dt.
0 T
For A, and B,, one has the estimates

|An| <n™" max |W )| = n"? max
0<t<1 1<k<n
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< (n)y] . . < (n)) . )
|Bnl < moaxc |1,(WH)] lrg%}%klv\/ﬁ—(}g?gJWt | lrgggxnlle/\/ﬁ

From here and (5.37) and (5.38), it follows that, for any § > 0,

lim Py(|r| > 6) =0, i = 3,4. (5.39)

n—~o0

Consider now the sums in the denominator of (2.16). By the same argument,

one can show that

1 1 2
(u,u)y = n4/0 IE(W("))dt +n4r®) (v, 0), = n2/0 (Wt(")) dt +n?r(®,

(5.40)
where rs) and r,(lﬁ) are such that, for any § > 0,
lim Py(|r?| > 6) =0, i = 5,6. (5.41)
Substituting (5.34) and (5.40) in (2.16) yields
& = (W) + 1, (5.42)

where r,,, in view of (5.35), (5.39), (5.41), satisfies, for any ¢ > 0, the limiting
relation

lim Py(|rn| > 8) = 0.
n—oo

One can check that functional ¢(z) given by (2.21) is continuous everywhere
in C[0,1] except for the point () = 0. Since the Wiener measure of the
set D = {z = 0} equals zero we can apply the Donsker theorem to this
functional in (5.42). This leads to (2.20). It remains to verify that 0 <
@(W) < 1. It is obvious that the function (W) in (2.21) can be viewed as

the inner product of the functions
—1/2 ¢ —-1/2
o) = 7520 ) [ Wids. y(0) = I W) W),
0

The equality (W) = 1 is possible iff the functions x(t) and y(t) are linearly

dependent, that is, z(t) = Cy(t), 0 <t < 1, for some constant C'. However
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this does not hold with probability one, because z(t) is absolutely continuous
and y(t) is non-differentiable almost everywhere. Hence the case 8 = (2, —1).
By similar argument, one can show (2.20) for 8 = (-2, —1). This completes

the proof of Lemma 2.3. [

3. Additional properties of the sums Z;(hl uy | and ET(h

In addition to Lemma 5.3 we will need the following results.

Lemma 5.4. For each d > 0 and § > 0,

ho? 2(1 4+ ab)
lim sup Po - >6] =0, (5.43)
h—=00 gen , 11 (6:0,<0) <‘ ;(:hl) ui_l (1 —ab)(1—0?)
1 1—b?
lim sup Py - >4d | =0, (5.44)
h—o00 GEAd ) <‘ ;;(h) v, T(h) )
ho? 2(1 +ab
lim sup Py (h()j — (1+ab) 5| >0 ] =0,
h—00 e, 1n(6:01>0) S v (1 —ab)(1—a?)
(5.45)
1 1—a?
lim sup Pg - >0 ] =0. (5.46)
R (e )

Proof of Lemma 5.4. Consider first (5.44) and (5.46). By Lemma 5.3

T(()) :1—a2+a1(h) (()h2
Zkl k-1 Z =1 Y1

where o (h) and as(h) satisfy, for any § > 0, the relation

=1-b>+ay(h),

lim sup Pg(|a;(h)| >9) =0, i=1,2. (5.47)
h—cogen, ,
Therefore
1 1-— a2 Oél(h) 1 1-— b2 OéQ(h)

7(h) o - ’ 7(h o - '
S I DR RS I DI

These equalities and (5.47) imply (5.44), (5.46). Denote

th = ho® (u,u) ) — 2(1 +ab) /(1 — ab)(1 — b?)).
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By the definition of stopping time 7(h) in (1.7), one has

7(h)—1 7(h)
ho® = 31Xl + anll Xyl = D I1Xe 1%,
k=1 k=1

where the prime at the sum sign means that the last addend is taken with
the correction factor ay, providing the validity of the left-hand side equality,
O0<ap<l.

This equality implies

7(h)
ho? 1
= tr> X, X,
7(h 7(h k—1
k(:l) up Zk(:l) (T —
1 U, V), Uy U)
- 00/ | o1y
(W, 0)r(ny/ (W W)y (V3 0) 2y / (U, w) -y
By Lemma 5.3

U,0), T v,V); — a2
o Y o L (L 0,0 /78 (5:49)

Since, on the set A, N (6 : 61 < 0), parameter b is bounded away from the
end-points of the interval (—1,1), then, for any ¢ > 0,
lim  sup  Pe (|(T(h))—1(v,v)T(h) 21— b)Y > 5) ~0.
h—=00 gen, ;1 (6:0,<0)

From here and (5.49), it follows that

(0,0) )/ (W 0) gy = (1= a®) /(1 = %) + az(h),

where ag(h) satisfies the following relation : for any ¢ > 0,

lim sup Pg(|lag(h)| > J)=0. (5.50)
h—oogen, ,

In view of (5.49), Lemma 5.3 and Proposition 2.2, the cross-term in (5.48)

can be written as

1/2
(V) _ [ (0 0)7n) / (V) () 1 —a?
(u,u

= + a4(h), (b.51
(u, ) 7 () (U, u)r(n) )1/2 (v,v)1/2 1—ab a(h), (5:51)

7(h)

7(h)
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where a4 (h), in view of Proposition 2.2, also possesses the property given in

(5.50). Hence

— CL2 —a
oo 1 -ty \ o
(U, )7 (n) (1—a?)/(1—ab) (1—a2)/(1—0b?)
(5.52)
where
ay(h
T =trQ ’ «(h) Q.
as(h) az(h)
One can easily verify that
ot 1 aan | 0w
(1-a?)/(L—ab) (1-a?)/(1—1?) (1—ab)(1 —5°)

From here and (5.52), taking into account (5.50), we come to the assertion

of Lemma 5.4. [

4. The Skorohod coupling theorem. Proof of Proposition 3.2.
By Theorem 2.1, on the boundary A of the stability region (1.4), the stop-
ping time 7(h) (1.7) converges in distribution to some functional of one
or two Brownian motions. In order to prove Proposition 3.2 we need to

strengthen this convergence by applying the following result.

Theorem 5.5. (extended Skorohod coupling; see Theorem 4.30 and Corol-
lary 6.12 in [9].) Let f, f1, f2,... be measurable functions from a Borel
space S to a Polish space T, and let n,n1,m2,... be random elements in S
with fn(nn) £ f(n). Then there exists a probability space with some random
elements 7 £ n and My, £ My, 1 €N, with fn(7,) — f(77) a.s.

Let W = (W(t))>0 and Wi = (Wi(t))>0 be independent Brownian
motions and € = (€1,¢€9,...) be an sequence of i.i.d. random variables with

Ee; =0and EE% = ¢2, which does not depend on W, W;. Random elements
n= (57 VV7 Wl)
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take on values in the space S = R® x C(R;) x C(R4), where C(R4) is
the set of all continuous functions on R4 = [0,00). Define the metric on S

by the formula
p(n' 0" ) = pu(e e ) + pa (W, W) + ps(Wy, W),

where

! "

_ £, —€E
Pl(EI,EH) = Z 2 k1|k/7k|//7
=1 + ey, — &l

Z o—k _ MAX1<t<h |=(t) —y(1)] 1=2,3.

Pi(ﬂ% y) = 1+ maxi <<k ‘Ilf(t) - y(t)| ’

k>1

Let (S,B(S),Py) be the corresponding Borel space with the distribution P,
induced by 7, that is, P, = P. X Pw X Pyy,.

Now we are ready to prove Proposition 3.2.

Assume that 8 € I'; U Ts.

Consider only the case when @ € I'y (the case 6 € I'y is similar). For
0 € I'y the processes (uy)r>0 and (vy)r>o are described by equations (3.2)
with @ = —1 and |b] < 1. Let us apply the Skorohod Theorem 5.5 to the

functional
7(h)

ka n=[h/2],

and put 1, = 7. By Lemma 5.3 and Theorem 2.1 we have

Fa(n) & i (W1)o? /(1 —b) = f(n).

By Theorem 5.5 there exists 77 = (£, W, W}) such that 7 = (£, W, W) é =

(e, W,W7) and
_ 1 W o as. v1(Wr)o? _
) = 2 3 AW pa) n=th. (659)

It should be noted that all the sequences (Zy), (ax), (0x) and the stopping

time 7 are defined by formulae (1.1),(3.2) and (1.7) with a given 8 € I';
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replacing in them e = (¢,) by & = (£). Besides we define a counterpart Y},
for Yy, in (3.6) by the formula

7(h) 7(h)
Zuk 1€k —l— ka 1€k - (5.54)
U\/(N a) 7(h) k (v U) 7(h) k

By the construction the distribution of the random variable Y}, coincides with

Y, =

that of Y}, and therefore, for our purposes, it suffices to study its asymptotic
distribution as h — oc.

In view of (5.53) and Lemma 5.4, we start the analysis of Y}, by rewriting

it as
N ) A \/h
Yh:O- - ﬂ ﬂ Zuk 1€k + h/2)1/4 ka 1€k
= Jp_1€k +1r1(h), (5.55)
02\/Ek:1
where
N MV2 1-b V4~
21ve A _—(2n)Y/* .
Ge1 = T3 1+ A2 o 1)( ) k1, (5.56)

Let us show that, for any § > 0,
ngaMmﬂ>®:o, (5.58)

where Py is the distribution of the process (#3). We rewrite r1(h) as

tl 7(h)-1 tl 1 1/4 7(h)
ri(h) = _hh Ug—1Ex + \/_%ai—(h)—léi—(h) + <E> t% Z Vg—1Ek -
k=1 k=1



For any § > 0 and any C' > 0, we have the estimate

1 F(h)—
/ / )
P0(|7'1(h)| > 6) < Pe \/—h_ E Uk ]_Ek > =
k=

+Pj <|\/ﬁ Uz (h)—1E7(n)| > g) + Py Wﬁhz O—16x| > 3
=1

7(h)—1
’ 1 - ~ !
< Pe(ﬁ| > igoaEx| > C) + Py(|t|C >

1) o sy =185 d
)+ Po( T

7(h)
, | o , 5
+Py(|t)| > \/5/3)+P9(—|§ Dp_16k] > C)+ Py(|t7]C > ). (5.59)
h1/4 P 3

Now we will study the asymptotic behaviour of the summands in the right-

hand side of (5.59).

Lemma 5.6. For each 8 € 'y,

7(h)—
lim sup P, Ug—1€x| > C | =0. (5.60)
Jim sup Py ( — Z e
Lemma 5.7. For each 6 > 0,
lim Py (A2t 187| > 8) = 0. (5.61)
h—oo

Lemma 5.8. For any 0 < C < 0o and a > 0,

7(h) 7(h)
Py h11/4 kzl B > C | < E + P, ihkﬂ o >al. (5.62)
Lemma 5.9. For any a >0 and A > 0,
R A R L
han;o Py NG 2 U1 >a| <Pgri(W1)>a), (5.63)

where a' = av/2(1+b)~! (21 -0+ A)_l.
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Proof of Lemma 5.6. By definition of stopping time 7(h) in (1.7) one

obtains
F(h)—1 2 ) F(h)—1
g |2 i | =ZEe [ Y @
o | = k—1 =Ky -1
vh k=1 h =1
2 7(h)—1 9 #(h)—1
g / ~ - g ’ ~
< ﬁEe (U3, +0p_y) | < F”Q‘PEB Z [ Xkl ] < otIQI,
k=1 k=1

where E/B is the expectation with respect to P;,. This implies (5.60). Hence
Lemma 5.6. [

Proof of Lemma 5.7. One has
Py (12187 / VR > 8) < Po (IQUVA) 1 Xs il - £ > 6)
< Pg(s, 0| < C) + Po(e, [Ex4n) > O)
<P, MHX: |C > 6 ) + C2Epe?
=19 \/E 7(h)—1 0%7(h)
< Py (W QI [ Xy [2C? > 82) + C %0
It remains to show that

Tim Py(h | Xy [P > §) =0, (5.64)

where 0 = 02||Q[|~2C~2. We have

< F(h)—-1
/ _ i ~ / ~ 5 ~
Po(h [ Xz-1ll* > 0) <P | IX 0l > — D 1K
k=1
: . 0 = o
< Py(7(h) <m)+ Py <|]XnH2 > — Z | X, ||* for some n > m) .
o
k=1

In virtue of relation (3.3) in [7] and Lemma 5.1, we come to (5.64). This
completes the proof of Lemma 5.7. [

Further we need the following Lenglart inequality.
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Lemma 5.10. (See, [13] Ch VII, 3, Th4). Let (&n,Fn) be non-negative
adapted sequence of random variables and (A, F,) be predictable increasing
sequence which dominates (§,) in the sense that, for any stopping time o

with respect to (Fy), one has E§, < EA,. Then, for any e >0 and a > 0,

P( sup & >¢) <e 'E(4, Aa) +P(4, > a).
1<j<o

Proof of Lemma 5.8. Denote

n 2
& =h""/ (Z 17k—15k> ,n>1, §=0; (5.65)
k=1
A =023 "5 4, n> 1, Ag=0 (5.66)
k=1

Let us introduce the filtration (F,,),>0 with
Fo=c{v(W)}, Fn=c{v(W1),&1...,8,}. (5.67)
Note that for each stopping time ¢ with respect to this filtration, one has
Egés < EgA,.

Therefore the processes (5.65)-(5.66) satisfy the conditions of Lemma 5.10.

Applying this Lemma with o = 7(h) yields (5.62):
Py(xn > C) < C ' Ey(Azn A @) + Po(Asq > a)

<aC '+ PIQ(A;_(h) > a).

Hence Lemma 5.8.

Proof of Lemma 5.9. For any A > 0 one has

’

Py (h2(5,8);y = @) = P (F(0)/VR)F(R) ™ (5,8)-) > a)

(o

—I—Ple (o,

=P

o~

JF) N, 8)5 ) — /(1= 8)] < A)
#(0) (@, )smy — 02/(1 = 43)| = A)

47



From here, in virtue of Theorem 2.1 and Lemma 5.3, we comme to (5.63).
Hence Lemma 5.9. O

Now we are ready to show (5.58). Limiting in (5.59) h — oo and taking
into account Lemma 5.4, Lemmas 5.6- 5.9 and (5.53) we obtain

7(h)—1
/ ! 1
limsup Py(|ri(h)| > 9) <supPy | — W&l > C
olin(h)] > 8) <P | 2| D ki

h—o00

+a/C + Py (Wh) > d).

In view of Lemma 5.6, limiting C' — oo and then a — oo, we come to (5.58).

So we have
1 7(h)

Y, = —— Gr_16x +71(R), 5.68
h a%/ﬁ?gk 1€k 7‘1() ( )

=1
where r1(h) satisfies (5.58) and

~ )\1\/§~ )\2 1_b 1/4~

Jh—1= — U1 + ———=—=—=(2h) "0} .
1 + b o /7/1(W1)

For a given h > 0 we define the random variable

mo(h) =inf{n >1:> gi , > ho®}, inf{0} = oo, (5.69)
k=1

which is a stopping time with respect to the filtration (F,) in (5.67), and

rewrite Y, from (5.68) as

m0(h)
- 1 2
Y, = Jr—1€x +r1(h) +1r2(h), 5.70
h Jzﬁ;gklk 1(h) +ra(h) (5.70)
where

1 7(h) Toz(ff)
Tg(h) = gk_lék — gk_lék . (5.71)

o*vVh k=1 k=1
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Now we observe that the first term in the right-hand side of (5.70) is a
martingale with respect to the filtration (F,,) in (5.67)) stopped at the time
(5.69). According to the Theorem 2.1 from [10], it is asymptotically normal
with mean 0 and unit variance as h — oco. Therefore to end the proof of

Theorem 3.1 for 8 € I'y it remains to prove that, for any § > 0,
lim Pg(|ra(h)| > 6) =0. (5.72)
h—o00

First we will establish the following results.

Lemma 5.11. For each 8 € I’y and any § > 0,

T()(h)—l
Jim Py | G20y 1/ Y, G >0]=0. (5.73)
k=1

Lemma 5.12. For each @ € 'y and any § > 0,
lim Py(U, >6) =0,
h—o0

where
7(h)VTo(h)

Un =+ Z h -

k=7(h)Ato(h)+1
Proof of Lemma 5.11. One has the inclusions, for any A > 0,

T0(h)—
-1/ Z Goy1 >0 (II ro(h)— I||>A)UA, (5.74)

where [ is 2 x 2 identity matrix,

T0(h)—
A= To(h 1/ Z gk 1>6 [romy—1 — Il < A
By (5.56) one gets
G2 = (21 + 2200)? < 22302 + 22302, (5.75)

21 = MV2/(1+D), 22 = VT = b2h)"Y*/(0\/v1(W1));
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- 2 -~ _
ng 1 Z "(ig—1,0,1)")" = Z'R, IR, Z
k=1
=Z'R,)\(Jo—DR,'Z+ Z'R,*Z, Z = (21, 2)';
Z'R2Z = 2 (u,w)n + 23 (v, 0)n. (5.76)

From here it follows that

Ac (gio(h)

> 072 B2 200 = I ryyr = T g1 = T < A)
c (!730(h)_1 > 51— M)Z'R2, Z) C (ro(h) < m)
U (gi > 0(1 — A)Z’RH_QZ for some n > m)

C (ro(h) <m)U (22 > 62741 — A)Z'R*Z for some n > m)

( 92 > 6271 (1 — A)Z'R*Z for some n > m)
C (1o(h) <m)U (2u > 0271 (1 — A) (@, @), for some n > m)
U (202 > 6271 (1 = A) (9,@),, for some n > m) . (5.77)

Combining inclusions (5.74), (5.77) yields

—1
( Iro(hy-1/ Z e ) (” -1 — LIl > A) U (to(h) < m)

U (@i > §'(@, @), for some n > m)
U (17721 > §(v,0), for some n > m) L8 =64"11 = A).

This implies

T0(h)—1
P, (éﬁo(ml/ A ) Pyl gy — 11> 8) (579
k=1

!

+Pg(10(h) <m) + Ple (@ > &' (@, i)y, for some n > m)

—|—Plo (27121 > &' (0, D)y, for some n >m) .
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By the same argument as in the proofs of Lemma 5.1 and Proposition 2.2,
one can show that for every @ € I'y UT's and for each m = 1,2,... and any

A > 0, respectively,

lim P (ro(h) <m) =0, ]}LH;OP (I ny—1 — I > A) = 0.

h—o0

The last two terms in (5.78) also converge to zero by the well-known property
of AR(1)—processes with parameter in the interval [—1, 1] (see, [10]). This

completes the proof of Lemma 5.11. [
Proof of Lemma 5.12. Note that

Uh = h_l‘(ghg)%(h) - (gvg)m(h)‘ :
In view of (5.75) this quantity can be estimated as

Un=h""|Z'R 3y (Jn — D)RZ3 Z + Z'RZ30 Z — (§,9) ) (5.79)

<h Yy = | Z' Ry Z + (W Z'R50Z = 1+ 32 ()1 /(35 D) o)1

=h)

Now we show that, for any 6 > 0,

Jim Py(|h tz' R~(h Z—1]>0)=0. (5.80)

Using (5.76) and taking into account that for 8 € I'y, 21 = A\v2/(1
b), 2o = Aa(20)/*/1T=10/(0\/v1(W1)) we obtain

hW'Z'R 502 —1 =28 h™ (U, @)z + 23 h ™ (8,0) 5y — 1

B o (1—0b)(2R)/%
=\ <m(u,u);(h) — 1> + A2 (W(v,v);(m - 1) )

This, in view of (5.43) gives (5.80).
Now by applying Proposition 2.2 and Lemma 5.11 to (5.79) we come to

desired result. Hence Lemma 5.12. O

o1



The case 6 = (0,1). Then a = —1,b =1 and equations (3.2) yield

U = (—1)k :

k
J=

k
(e, e => &5
j=1

1

By Corollary 5.15 one has
072 (072 (, W)y 172 (0,0)0) S (F(Wis1), Ji(W51)) . (5.81)
Introduce a sequence of functionals
faln) = ((0n) 72 (), (o) 72 (v,0)n, 7(h)/V2R), n= [h].
From the definition of 7(h), Theorem 2.1 and (5.81) it follows that
Fan) 5 (F1(Ws 1), T2 (W 1), va (W, W) = £ ().

By Theorem 5.5 there exists 7 such that 7 £ n and

a.s.

1) ® 1) = (1013 1), (W51, 0 (W, W) )

On the basis of this 77 we define as before (i), (i), (7%) and Yj. It should

be noted that the ratio

satisfies the limiting relation

Wm te) =k, &= J1(Wi;1)/ T (W;1). (5.82)

h—o00

Further by making use of the equality

Ay AN
Z 1 X5 1[I = tr Z X1 X,
k=1 k=1
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one gets

7(h) || -1/2
Zk(:f HXk—1H2 _ tTQ_l ( 1 7(h) gi—(h) ) (Q_l),
U, U)x ~1/2 -1 ’
(U, )71 B S

where &, is defined in (2.16). Since for any § > 0
. ' 1/2
lim Py (& lt700" > ) = 0,

from here it follows that

, 7(h) 1 2 1 0
P, — lim Zk=~1 U kel — trQ! QY = 1 (1 + 1) .
h—oo (1, )7(p) 0 1/k 2 K

On the other hand, by the definition of stopping time 7(h) in (1.7) and

Proposition 2.2 one has

7(h)
Pl lim h™ Y X, P =1
k=1
As result,
~ -1 -1 -1
Py, — lim h ((u,u);(h)) =271 (14571, (5.83)
This and (5.82) give
-1 .
P’ —hlin;oh<( 7)- (h)) =27 1(1 + k). (5.84)
Now we rewrite (5.55) as
Yin=——"7) Graéktri(h), (5.85)
o*VhiH

where

gk—l :)\]_ (1+I£_1)/2ﬂk_1+)\2\/ (1+/§)/2’l~)k_17

7(h)
M o[ —1/2
ri(h) = U—; <(u,u)%(2/) (1+ Kk~ ) Zuk 1€k
7(h)
A2 [ —1/2 .
o (@0~ VITER2) it



Taking into account (5.83), (5.84), one can show along the lines of the proof

of Proposition 3.2 that, for any § > 0,
Jim. Py(|r1(h)| > 8) = 0.

Further analysis of (5.85) repeats the case of @ € I'y and is omitted.
This completes the proofs of Proposition 3.2 and Theorem 3.1 for 8 €
ruryu{(,1n}. 0O

5. Proof of Theorem 3.1 for the case of multiple roots. Assume
that @ = (2,—1) (the proof for the case 8 = (—2,—1) is similar). This
corresponds to the multiple root of the polynomial (1.2): a = b = 1. Since
matrix @ in (2.7) is degenerate, we use the matrix (2.19) to transform the
original process (zy)r>0 into two components (ug)g>o and (vg)r>o. This
leads to the equations

Uk = Tk, Vk = Tk — Tk-1

with the solutions given by the formulae (2.19).

Now we introduce a sequence of functionals
fn(n) = (ém (Un)_2zvi_1ﬁ(h)/(h/2)4> , n=[h],
k=1

where &, is defined in (2.16).

By Lemma 2.3 and Theorem 2.1 we have
Fan) 5 (W), T2 (W: 1), va(W)) = f(n).
By Theorem 5.5 there exists 7 such that 5 £ n and
Fa) 2 £@) = (£07), W5 1),04()) (5.86)
On the basis of 7 we define (Z},), (@x), () and Yy. In view of (5.86) we have

lim J) =T as., (5.87)

h—o00
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where

1 &, 1 W
g 3 = o(W)

&, 1 p(W) 1

~1/2 -1/2 ,
€n = (Z uj_ 1) (Z Vj 1> Zﬂk—lﬂk—l :
k=1
Besides, we will need the relations
Jim > Z 1Kl = tim (20 )y — ) = 0

lm — L @5y = im0 L g
hoo 02h1/2 (h) T e (h/2)V/2 62\/272(h) " 7(h)

=27 2 (Wi D)WW = p,

which directly follow from (5.86).

Consider now the standardized deviation of the sequential estimate
7(h)
1/2 —1 2
M2 (O(r(h) — W Z X1k

Its distribution coincides with that of the vector

_1/2 Z Xk: 15k

constructed from (Zy), (é;). Representing the matrix
M,=> X, ,X,_,
in the form (2.14) yields
1/2 0 1/2 5 0 >
%(h Z Xk 16k = J~( h) Rz Z QXy 18k
k=1

=1/2

_ 1/2 1/2
)

where
(a, ﬂ) 1/2Zk 1 Up—1Eg

(0,0), Y2370 Bp_18y

Zy =

(5.88)

(5.89)

(1.6):

Taking into account (5.87), it suffices to establish the following result.
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Lemma 5.13. For each constant vector A = (A1, A\g) with ||| = 1, the
random variable

-1/2 5
V= XNT1 22 0
18 asymptotically normal with mean 0 and unit variance as h — oo.

Proof of Lemma 5.13. Represent Y}, as

7(h)
~ 1
V), = ——= Z Jk—1&x +11(R),
where
V20,
Gy = ATV ol , (5.92)
(R /)~ oy
ATV ((ﬂ a)T(lf —/2/h ) Sl iy 48
ri(h) =

L\ —1/2 #h) ~ =
7\ (@an - eym ) S s
By an argument similar to that in the proof of Proposition 3.2, one can
verify that r1(h) satisfies (5.58). Further analysis of ¥}, holds true.

Let us check only that

lim (02h) (3, 3)s) = 1.

h—o00
Using (5.92) one obtains

(@2h) 1.9z = ATy V072

( @/ i@)sgy B2 (i B )m
X T A
W32 (@, 0) 7y (WVR)7H©,0)7,)

Now using (5.91) we rewrite the cross term as

S = T (5) (090) 60

= ((h/z)—l(a,a) (h)1/2 ((u\f) (g, )%(h))lmgf'(h)'

o6



From here, (5.90),(5.91) and (5.87) it follows that

lim h=3/4\/2/h (i, )5y = (W)

h—o0

Hence

lim (0”h) ™ (3.9)71) = o INTT AT P A = A A =1,

This completes the proof of Theorem 3.1 for 6 € {(-2,-1),(2,—-1)}. O

Theorem 5.14. Let W™ = (W) (t))o<i<1 and Wl(n) = (Wl(") (t))o<i<1 be
defined by (2.2). Then for the random functions

X, = (Xn(s,t) = (WM (s), W) 0<s<1,0<t< 1)
with values in the product of the Skorohod spaces D|0,1] x D[0,1], one has
X, 5 (W, W),
where W and W7 are independent standard Brownian motions.

This result is a straightforward consequence of Theorem 3.3 in Helland

(1982). This functional central limit theorem implies the following result.
Corollary 5.15. Let u, = (—=1)F 3% (=1)ej, vp = Z’?Zl gj. Then

Jj=1 J

((on) 2w, W, () 2(0,0)) & (Wi 1), ZW:D) . (5.93)
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